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Simple K3 Singularities Which Are Hypersurface
Sections of Toric Singularities

By

Hiroyasu Tsuchihashi*

Introduction

Yonemura [9] classified the weights of non-degenerate quasi-homogeneous
polynomials on C4 which define simple K3 singularities. On the other hand, to
each quasi-homogeneous polynomial /—2v(E/z>(y)4Cvzv there exists an element
"o in (6>o)4 such that < V , M Q > = 1 if cv^0, where z(>"^™^) = zF^zTtf4-
Then we may regard the point MO as the weight of/. Let A* be the convex hull of
{v <E (Z^0)

41 <V,MO) - 1}. Then dim A* = 3 and (1,1,1,1) E Int (A*), if/defines a
simple K3 singularity (see [9]). As a generalization of this fact, we obtain:

Theorem. Let f be a non-degenerate holomorphic function on the toric
singularity Y = SpecCfcr* H (Z4)*] with f ( y ) = 0 and let X= {/= 0}, where o* is
the dual cone of a 4-dimensional strongly convex cone a in R4 generated by
primitive elements wl9 u2,.. .and us in Z4 and {y} = {*E Y|zv(jt) = 0 for any
vE(a*n(Z4)*)\{0}}. // (X,y) is a simple K3 singularity, then the following
two conditions are satisfied.
(1) Y is Gorenstein, i.e., there exists an element v0 E (Z4)* such that (VO ,M/) = 1, //
R^QUi is a \-dimensional face of a, for i = 1 through s.
(2) There exists an element a0 £ Int (a) such that f= 2vea, n (Z4), crz

v with cv = 0
if (V,UQ} < 1, that dim Zi* = 3 a«J ^^ v0 E Int (zi*), i^/z^r^ A* is the convex hull
o/{vGa*n(Z4)* |<v^0)=l}.

The purpose of this paper is to show that the pairs (CJ,MO) satisfying the
conditions of the above theorem are finite modulo GL(4,Z). Moreover, all
representatives of them are obtained by an algorithm which can be excuted by a
computer. (However, the program I wrote spent so much time that I could not
wait to the end. The number of the equivalent classes is at least greater than
10000.)
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* 1991 Mathematics Subject Classification: 32C40.
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In §1, we prove the above theorem and show that there exists a partial order
on the set of the pairs satisfying the conditions of the above theorem such that
for a pair (cr,w0)?

 a^ tne pairs (r,w0) = (CT,WO) are finite and obtained by a simple
algorithm (see Proposition 1.6 and its proof).

In §2, we classify "minimal" pairs into some classes.
In §3, we enumerate all pairs belonging to each of the classes and make a

list of representatives of them at the end of this paper.

§1. Tork Singularities and Their Hypersurface Sections

Let N = Zn+l be a free Z-module of rank n 4- 1^3 and let TV* be its dual
module with canonical pairing { ,): TV* x N—» Z. Let a = R^Gui + R^oU2 4- ... 4-
R^QUS be an (n + l)-dimensional strongly convex rational cone in NR: = N ®ZR
generated by primitive elements ut in N. Here we may assume that R^QUi is a
1-dimensional face of a, i.e., there exists an element v in N% such that {wE
a\ (v,u) = 0} = R^0Ui for each / = 1 through s. Let Y= SpecC[o* n TV*] and let
Z

V:Y-»C be the character of v, which is the natural extension of v ® lcx \

SpecC[TV*] - (CX)"+1->CX, for each v in a* n TV*. Then the set (x E Y| zv(x) =
0 for all v E (a* fl N*) \ {0}} consists of only one point y and any holomorphic
function / on Y with f ( y ) = 0 is expressed as the power series:

/: =2v(E(a,. n ̂ ^|Qj cvz
v.

Let X be a hypersurface section of Y containing y, i.e., X={f=0}, for a
holomorphic function / on Y with f ( y ) = 0. Here we note that if (X,y) is an
isolated singularity, then the dimension of the singular locus Sing(Y) of Yis not
greater than 1, i.e., any (n — l)-dimensional face of a is generated by a part of a
basis of TV. Assume that X is normal and that Jf\ {y} has only rational singular-
ities. Then by [7] and [1], we obtain:

Proposition Id, The following three conditions are equivalent.
(1) (X,y) is Gorenstein.
(2) (Y,y) is Gorenstein.
(3) (G) There exists an element v0EN* such that (v0,«/) = 1 for l^i^s.

We denote the above v0, by v(o).

Definition 1.2. The Newton polyhedron F+(f) of / is the convex hull of
Ucv*o (^ + cr*) and the Newton boundary F(/) of/is the union of the compact
faces of r+(f).

Definition 1.3. We call / non-degenerate, if df^/dzi = ... = o)/^*/olzn+1 =
0 has no solutions in T: = SpecC[TV*] C Y for each face A* of JT+(/), where
fA* = ̂ vGA*nN*cvZv an(* (zi' ^25- • -rZn+i) is a global coordinate of T, i.e., z/ =
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zVl for a basis {v l5v2,.. . ,vn+1} of N*.

Proposition 1.4. ([6, Theorem 2.2]) Assume that the condition (G) in
Proposition 1.1 is satisfied and that f is non-degenerate. Then (X,y) is purely
elliptic if and only if v(o) E F(f). (See [8], for the definition of a purely elliptic
singularity.)

Remark. If v(cr) E d F + ( f ) \ F ( f ) , then ^f\ {y} has irrational singularities.

Proposition 1.5. Under the assumption of Proposition 1.4, (X,y) is of
(0, n — l)-type if and only if dim A* = n, where A* is the face of F(f) with v(a) E
lnt(A*). (See [2], for the definition of (Q,i)-type of a purely elliptic singularity.)

Proof. Let 2 be a subdivision of the dual Newton decomposition F*(f) of
F(f) consisting of non-singular cones (see [5] and [6], for the definition of
r*(/)). Then Y: = TNemb(Z) and X are non-singular, where X is the proper
transformation of X under the holomorphic map P: Y^» Y obtained by the
morphism of r.p.p. decompositions (7V,Z)—»(Af, {faces of a}). Let ZA be the set
of the 1-dimensional cones in Z which are not 1-dimensional faces of a and let ET

be the intersection of the closure of orb(r) with X, for each T in 2A. Then
P\x~i(y) = ^T^^()ET, where 20 = {rElx | rClnt(a) U {0}} and we can express
Kx = (P\X)*KX + 2TeZi aTET. Here we note that aT = < v(a),MT) - d(wT) - 1, by [6,
Lemma 2.1], where UT is the primitive element in N generating r and d(uT) = min
{(V,UT) | vGr+(/)}. Hence flT^ — 1, for each r in 2L. Assume that dim/i* = n.
Then there exists only one 1-dimensional cone r in 20 with 0T= — 1 and ET is
irreducible. Hence (X,y) is of (0, n — l)-type. Next, assume that dim A* ^n — 1.
Then we easily see that there exist at least two 1-dimensional cones r in 2X such
that aT= -1 and that ET±0. Hence (X,y) is not of (0, n — l)-type. q.e.d.

Assume that / is a non-degenerate holomorphic function on Y with f ( y ) = 0
and let X= {/= 0}. When n = 3, (X,y) is a simple K3 singularity (i.e., (X,y) is
Gorenstein purely elliptic of (0,2)-type [3]), if and only if (Y,y) is Gorenstein
and v(a) is contained in the interior of a 3-dimensional face of T(/), by
Propositions 1.1, 1.4 and 1.5. Assume that (X,y) is Gorenstein purely elliptic of
(0, n-l)-type. Then there exists the unique element w0 in Int(cr) such that
{ V,MO) - 1 for all elements v in the face A* of F(/) whose interior contains v(cr).
Hence A* is contained in

4*,(MO): = convex hull of {v E a* n N* | (v,w0) = 1}-

Therefore, the pair (CT,WO) satisfies the following condition:

(E) dim A*a(uv) = n and v(o) E Int (4*,(M0)).

Thus we obtain the theorem in Introduction. Conversely, assume that (<J,w0)
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satisfies the conditions (G) and (E), and let X={f=Q}, where /=
^vfE^Cw )nN*cvZv + higher terms, for certain non-zero complex numbers cv.
Then (X,y) is Gorenstein purely elliptic of (0, n — l)-type, if /is non-degenerate
and (X,y) is an isolated singularity. Let

%n = {(cr,M0) I o is an (n + l)-dimensional strongly convex rational cone
satisfying (G), M0elnt(a) and MO satisfies (E)}

and let %n = % "/—, where (a,M0) ~ (tf'^o) if an^ only if there exists an element g
in GL(N) such that ga= a' and that g(w0) = "6- We define a partial order on %n

as follows: (a,M0) = (X^o) if and only if cO a', v(a) = v(a') and MO = u$. Let

«g = {(<J,MO) £ ^ I O,wo) is minimal}

and let ^Q = ^O/~, where we call (a, MO) minimal, if (a, MO) = (T,MO) implies
(a,M0) = (T,MQ), for any (T,WO) £<!".

Remark. (1) Assume that (cr, MO) E cl". If the cone r generated by a subset
of L: = {wE crD A^| {V(CT),M} = 1} is (AZ + l)-dimensional strongly convex and
contains MO in the interior, then (T,MO) E^", because T* D a*.
(2) Since #L<+oo, for any pair (a,M0) in 'l^2, we have #{(r,M0)E«/1|(or,Mg)
^ (T,MO)} < +°°. Hence for any pair (a,M0) in "I", there exists a pair (T,MO) in ^g
with (a,Mo)S(r,M0).

Let C(CJ,MO) = {(r,M0) E f" | (r,M0) ^ (<T,MO)}, for a pair (a,M0) in «". Then by
the above remark, we have ^"= U(a )e^» C(a,M0). Hence if ^g is a finite set,
then so is %'\ by the following proposition.

Proposition 1.6. C(CJ,MO) w a finite set, for any pair (a,M0) in %n.

Proof. Since for any pair (T,MO) in C(CT,MO), ^T(^O) is the convex hull of a
subset of the finite set L*:= {v E a* fl N* (V,MO) = 1}, we have #{^^(MO) | (T,MO)
E C(a,M0)} < +°°. Conversely, let A* be the convex hull of a subset of L* such
that v(o)Elnt(4*) and that dimA* = n. Then # {u £ (R^0 A*)* Cl N \ <v(a),M>
= 1} < +°°. Hence C": = {(T,MO) E C(CJ,MO) | AJ

T(UQ) = A*} is a finite set, because
rC(^^0A*)* for any pair (r,M0) in C'. Therefore, C(CT,MO) is a finite seL

q.e.d.

Next, we show that for a cone a satisfying the condition (G), all the
elements MO in Int (a) satisfying the condition (E) are finite. Let Wa(v0) = (u E
Int(a)|dim/l^(M) = «, v0Elnt(^(M))}, for an (n + l)-dimensional strongly
convex rational cone a and for an element v0 in N"R.

Theorem 1070 Wa(vQ) is a finite set, for any v0Elnt(o*).
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Proof. For v l5v2, . . . ,vy E a* n #*, let W(vl9v2, . . . ,Vj) - (u E Wa(v0) |
< V X , M > = ••• = <V ;-,M) =1}. For MEAfe , let W*(M) - {vE a* PlW* | < V , M ) < 1}.
Here we note that if u E Int (a), then W*(M) is a finite set. First, take an element
M0 ^ Int (a) with { VO,MO) = 1. Then for any element u in Wa(v0) with M =£ MO, we

see that {v e W*(MO) | (V ,M) = 1} =£ 0. Hence wa(vn) C {MO} U UvieW,(wQ) W(vA).
Here we note that if W(y\) + 0, then v0

 and vi are linearly independent. Next, if
W(vi) + 0, then we can take an element MI E Int (a) with (v0,wi) = (VI ,MI) = 1,
for each ViGW*^)- Then we have W(v^ C {Wl} U U^^^ W(vl9v2).
Proceeding similarly, we finally obtain W(vi,. . . ,vn_i) C {un-i} U Uv/fewn.(llyi_1)

W(v l5. . . ,v7l). Then #W(v1?. . . ,v7I)S 1, because v0 ,v l 5 . . .and vn are linearly
independent, if W^, . . . ,v;i) + 0. Hence # W(vl7 . . . ,vn_!) < +00 and thus

+s°. q-e.d.

In the next section, the following proposition plays key role.

Proposition 1.8. // Wa(v0) =f= 0 for an element v0 G Int (a*), then #/LCT(v0) =
1, where 7La(v0) = {w E Int (a) fl N \ (VO ,M) = 1}. Conversely, if 7La(v0) = {^o},

Proof. If 7La(v0) =£ 0, then for each element MO in ^a(vo)j we have (V,MO)
>0 for any v in cr*\{0} and hence (v,w0) = 1 for any v in (cr*\{0}) fl A^*.
Therefore, WCT(v0) C {w0}, as we see in the proof of Theorem 1.7. Hence if
#7La(v0) g 2, then Wa(v0) - 0. q.e.d.

§20 Classification

We restrict ourselves to the case that n = 3 and show that ^o is a finite set, in
the rest of this paper. For finite elements u^u2,. . . ,us in NR, we denote by
u\u-i . . . us, the convex hull {a\u± + a2u2 + . . . + asus \ a( ̂  0, a^ + a2 + ... + a, =
1} Of {Mi ,M 2 >- • -,"J-

Theorem 2.1. Any pa/r (a,M0) in ^o is on^ o/ the following.
(1) aw generated by four primitive elements MI, w2, w3 0nJ M4 m A^ «n<i M,M; D N =
{uhuj} for each {ij} C {1,2,3,4}.
(2) a is generated by five primitive elements u±,u2, . . . and u5 in N, w0 E Int (
and MiM2Z/3 Pi M4M5 =£ 0.

(3) a w generated by six primitive elements Wi,w2 , . . .and u6 in N,
. w6 Pi

Proposition 2.20 (a,M0) /« (7j of Theorem 2.1 w one of the following.
(1-1) UiU2U3U4C(NC. {Mo,Mi,M2,M3,M4}.

(1 — 2) (UiU2U3U4n A
r)\{Wo,M1,M2,M3,M4} = {MS, . . . ,

5 = |(M, + My + M6), M6 = 5 (M5 + My), . . .
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kj] = {1,2,3,4} and u6 = uk, when s = 5.

Proposition 23. (CF,MO) in (2) of Theorem 2.1 is one of the following.
(2-1) UiU2U3U4U5 PI Ml {Mo,Mi,M2,M3,M4,M5}.

(2-2) (uiU2u3U4U5nN)\{un,Ui,U2,u3,U4,u5} = {u6} and M0Glnt(M/M6), where
u6 = k(uj+uk) and {/,/,&} = {1,2,3}.

(2-2-1) M; = KM4 + M5).
(2-2-2) U6 = KM4 + M5).
(2—2—3) MElnt(M/M 6) and hence M O £M/M, w/zere u is the intersection point of
MiM2M3 and M4M5.

(2-2-4) Uj = KM4 + MS) and MO = KM/ + u6) E TV.
(2-3) (UiU2U3U4U5 H AO\{Ml,M2,M3,M4,M5} = {M6, • • • 5M5} C M/My (s ^ 6), W/ =

I(M4 + M5), Uo^UjUkus and u0&N, where u6 = \(Ui +u7),. . .and us = \(us-i +
Uj) (s ̂  7) or M6 - KM/ + M;-) (5 = 6).
(2-4) (UiU2U3U4U5 H AO\{M0,M1,M2,M3,M4,M5} = {M6,M7,M8}, M/ =KM4 + M5) fl/ld
wo = KM* + M?) ^ W, w/xere M6 = K2M/ + My), M7 = KM/ + 2wy-) and u8 = \(ut + uk).

Proof of Theorem 2.1. Let n = {M E o\ (v(o},u) = 1}. Then a= Jfc>0
n and

M0Elnt(n). Moreover, o>n has the natural polygonal decomposition {rfin r
are faces of a with T+ {0}, T+ a}. Since the vertices of a belongs to N, we can
take a triangulation /d of <9n so that zl is a subdivision of the polygonal
decomposition and that the set of vertices of A coincides with do n N. On the
other hand, for each point M on <5tJ9 there exists the unique point M on <9n with
M Q ^ M M . We denote by A(M), the simplex of Zl with MElnt(A(M)).
(I) Assume that there exists an element MI E <3n D Af such that A(MI) is a
triangle of A and let M2, u3 and M4 be the vertices of A(MX) . Then MO E Int (u^u2u3u4}.
Hence n = Uiu2u3u4, because (a,M0) is minimal. When M/My H7V= {M/,M;-}, for any
{/,/} C {1,2,3,4}, (a,MO) is in the case of (1). Assume that M/Myfl W=£ {M/,M;-}, for
a certain {i,/} C {1,2,3,4}. Then since (CT,MO) is minimal, we easily see that
M/My C\N= {M/,My,M5} and that M0 E Int (M^M/MS), where M5 = KM/ + My) and {/,/,£,/}
= {1,2,3,4}. Hence (a5M0) is in the case of (2).
(II) Assume that there exists an element MA E do fl TV such that A(M^ is an
edge of A and let M2 and M3 be the vertices on A(MJ). Then MO E Int (uiU2u3). Let
H = J?MI + J^M2 + ^M3 C A/^. Then there exist certain elements M4 and u5 in d^HN
such that M4, u5&H and that u4u5nH=f=0, because n is the convex hull of
dnHN, dimn = 3 and M0Elnt(n). Since (<J,MO) is minimal, n = Uiu2u3u4u5.
We denote by M, the intersection point of M4M5 and H. Then M = a\u\ + a2u2 +
a3u3 = b4u4 + b5u5, for certain real numbers a1? a2, a3 and for certain positive
real numbers 64, fo5 with flA + a2 + a3 = b4 + fo5 = 1.
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Lemma. One of the following holds.
(i)
(ii) at < 0, aj > 0, ak > 0 and w0 ^ Int (w/w), w/zere {/,;,&} = {1,2,3}.
(iii) fl£- < 0, 0y > 0 <md ̂  = 0, w/zere {/,/,&} = {1,2,3}.

Proof. Suppose that ah ay<0, where {/,/,&} = {1,2,3}. Then ak>0, uk =
(l/ak)u + (—a-Jai^Ui + (—dj/a^Uj and 1/0^ + (—aja^) 4- (—cij/ak) = 1. Hence wfc E
Int (a). It contradicts the fact that uk^donN. Therefore, it suffices to show
that woElnt(w;w), if 0/<0, fly>0, ak>0, where {ij,k} = {1,2,3}. Since UQ^
Int (u^u2u3), we have w0 = Cii^ + c2u2 + c3w3, for certain positive real numbers c1?

c2 and c3 with Ci + c2 + cj = l. Suppose that aj/ak<Cj/ck. Then u0 = ((ciak-
ckai)lak)Ui 4- ((Cjak- ckaj)/ak)uj + (cklak)u, (c^- cka^ + (cjak- ckaj) + ck =
&k, Cj-ak — ckaj>0, Ciak — Qfl/>0 and c^>0. Hence MO ^ Int (u-uju^u^ and w^€
UiUjU4u5. It contradicts the assumption that (cr,w0)^^o- Therefore, aj/ak = Cj/ck.
Thus we have w0 = ((Q«y ~ cyfl/)/fly)i/i + (cjla^u E Int (w/w). q.e.d.

Proof o/ Theorem 2.1 continued. When (i) in the above lemma holds,
u£uiU2u3. Hence (cr,w0) is in the case of (2). When (ii) in the above lemma
holds, UQ E Int (UiU4u5) and Uj-uknUiU4u5^0, because (l/(fly + fl^)) (cijUj + akuk)
= (l/(b4 + 65 — «/)) (£j4w4 + 65w5 - fl/w/). Hence (cr,M0) is in the case of (2). When
(iii) in the above lemma holds, w = fl/w/ + flyMy. Then My = (l/a^u + (—aila^)ul -E.
uui. Hence n = uLuku4u5. We already considered this case in (I).
(Ill) Assume that u^N, for all i ^EdnnA/ . There exist certain elements MI,
a3 and w5 E 5n fl N such that Wj[ — u0, u3 — u0 and u5 — u^ are linearly indepen-
dent, because dimn = 3. Let u2 = u^, let u4 = u3 and let u6 = u5. Then w0^

Int(w3w4), Int(u5u6) and hence wo^Int(i / iW2. . .u6). Therefore,
.u6 and n n A^C {MO ,MI,. . . ,w6}, because (a,w0) is minimal. Then

is in the case of (3). q.e.d.

Proof of Proposition 2.2. We may only consider the case that
AO\{Mo,Mi,M2 ,M3 ,M4} =/= 0.

(I) Assume that there exists an element w E Int (u^u^u^) n Af with u + u4,
where w4 is the point in 5(wiW2^3w4) with w0Elnt(w4w4). Then u4^uiu, u2u or
w3w, because (a,w0) is minimal. Hence we may assume that w 4 Ew 3 w. Let H =
Ru+Rui + Ru4. Then (uiU2u3u4D N)\{ui,u2} C/f, because W0^lnt(ww3w4).
On the other hand, w^ intersect H at a point, which we denote by u. Then
UiU2u3 n H = uu3. We may assume that uu3 n W= {w3,w5,. . .,wj, where w5 =
I(w3 + w^-i), w5_x = ^(M5 + Ws_2), . . . and u6 = ^(w7 + u5). Then w0 E u3u4us. Other-
wise, w0 E Int (u^u2u4us}. Moreover, u5 = -3(ui + u2 + w6), because u5 E Int (uiU2u6)
and u\u2u^ n N = {w1,w2,w5,w6}. Hence w = |(wi + u2). In the following, we show
that uu4riN= {u4}, i.e., 3(uiU2u3u4) n N = {a1,w2,w3,M4,. . . ,MS}.
(I— i) Assume that w0 ̂  N. Since u3u4us HN= {u3,u4,us} , {w4 — M3, w5 — u3}
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is a basis of (R(u4 — u3) + R(us — «3)) n N. On the other hand, any point u' on
uu4 is expressed as u' = au4 4 bu, for certain non-negative real numbers a and b
with a + b = \. Hence u' — u3 = a(u4 — u3) 4 b(u — u3) = a(u4 — u3) 4- b((s — 44
|) (w5 — w3)). Therefore, uu4nN={u4}.
(I— ii) Assume that u^^N. If uQ^u4us (resp. W0£lnt(w3w4ws))' tnen wo =

5(^4 4- MS) (resp. Mo = s(M34- M44 us)). Hence s^6 (resp. s = 5). Otherwise,
\(u4 4 us-2) = |(2wo — w5 + 3w5 — 2w3) = M0 + "5 "~ "3 E N H Int (o) (resp. 5(2^4 +
MJ-I) = K2(3wo - M3 - us) 4 2M5 — M3) = 2w0 — "3 E N fl Int (a)). Then we easily
see that MM4 fl N = { u4} .
(II) Assume that UiU2u3u4n Nd {Uo,ui,u2,u3,u4,ui,u2,u3,u4} and that M4£
N. Then M4 = |(Mi 4 M24 M3). Suppose that M3EJV. Then z23 = |(wi + "2 + ^4)-
Hence w4 — u3 = |(w3 — w4). Then u3 + w3 — u4 = u3 4- |(w4 — w3) = fw3 + \u4 E
Int (w3w4) D TV. This contradicts the assumption that w3w4H A^= {w3,w4}. There-
fore, u^u2u3u4 Pi TVC {uo,u^U2-,U3,u4,u4} . q.e.d.

Proof of Proposition 2.3. We easily see that (uiU2. . . u5 D AO\{M4'Ms} =

N, because (a,w0) is minimal and w0
elnt(wiw2"3)- We may only con-

sider the case that d(uiU2u3) HN=t= {ui,u2,u3}. Let u be the intersection point of
UiU2u3 and u4u5.
(I) Assume that u = u±.
(I— i) If u2u3n N± {u2,u3}, then u2u3 HN= {u2,u3,u6} and u$^UiU6,
where u6 = \(u2 + u3). Hence duiU2u3 D N = {ui,u2,u3jU(,}, because (a,w0) is
minimal. Then (CT,MO) is in the case of (2—2—1).
(I-ii) If u2u3HN= {u2,u3}, then lnt(uiU2) HN=f=0 or Int(wiW3) HTV^ 0.
Hence we may assume that lnt(uiU2)nN= {w6,w7,. . .,w5) (5^6), where u6 =
\(HI + M7) = |(w6 + M8), . . . ,w5 = \(us-i + M2)- Then MO ^ usu2u3, because (CT,WO) is
minimal.
(I— ii— a) When UQ£N, u2u3usn N = {u2,u3,us}. Hence {u3 — u2, us — u2} is a
basis of (R(u3 - u2) + R(us — u2)) Pi N. On the other hand, any point u' on u±u3

is expressed as u' = au± + bu3 for certain non-negative real numbers a and b with
a + b = 1. Hence u' — u2 = a(u^ - u2) + b(u3 — u2) = a(s — 4) (us — u2) + b(u3 —
u2). Therefore, u±u3nN= {u^u^}. Then (a,M0) is in the case of (2-3).
(I— ii— b) When UO^N and Uo^u3us, we have s = 6 or 7. Otherwise Kw5-2 +
u3) = ̂ (2us_i — us + 2uo — us) = UH + us^i — us G N Pi Int (a). If 5 = 6, then w6 =
l(ui + u2) and «o = KM6"*" w3). Then (O,MO) is in the case of (2-2—4). If 5 = 7,
then ii6 = ^(MX + M7), «7 = \(u6 + w2)7 ^o = KM7 + "3) an^ u8: = \(HI 4- M3) = ^(2u6 —
u-j + 2w0 ~ w?) = Uo + u6 — u7&N. Then (cr,M0) is in the case of (2-4).
(I-ii - c) When u^^N and w0 ^ Int (u2u3us) , we have w0 — \(u2 + M3 + M5)
and 5 = 6. Otherwise |(2M3 + us^ ,) = |(2(3w0 ~u2 — us) 4- (2a5 - w2)) — 2w0 — u2E.
N Hint (a). Hence M6 = f(wi 4 M2), w7: = 5(2w3 4 Mt) = 2^0 ~ M2, u 8 :=^(M 34
2^i) = uo 4 w6 — u2 E N and ^0 = KM2 + "?)• Then (cr,M0) is in the case of (2—4).
(II) Assume that wG Int (u2u3). Then u0^uiu. Otherwise, w0 ^ Int (uiU2u4u5)
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or Int(MiM3M4M5). Moreover, (MiM2M3n Af)\ {M0,Mi,M2,M3} = {M}, because (cr,M0)
is minimal. Therefore, u = ̂ (w2 + "3) = KM4 + ws) e N. Then (a,M0) is in the case
of (2-2-2).
(Ill) Assume that u E Int (uiU2u3). If there exists a lattice point M6 on Int(M2M3),
then M0 E M6MA and hence u E M6Mi. Otherwise, UiU2u4u5u6 or Uiu3u4u5u6 contains
M0 in the interior and is strictly contained in MiM2M3M4M5. Moreover, we see that
M0EM!M and uiu2u3nNd{u^Ui,u2,u?nu6}, because (CT,MO) is minimal. Then
(CF,MO) is in the case of (2—2—3) q.e.d.

§3. Representatives of the pairs in *&$

In this section, we need the following lemmas, which are easily obtained
from the terminal lemma [4] (see also [9, Lemma 3.6]).

Lemma 3 A. Assume that MI, M2, M3 and u4 are elements in N with UiU2u^u4

HN= {M!,M2,M3,M4}. Moreover, assume that MI, M2, M3 and u4 are linearly inde-
pendent and that there exists an element v0 in N* such that { VO,M/) = I .for i = 1
through 4. Then there exists an element g in GL(N) such that g(ui) = (0,0,0,1),
that g(u2) = (1,0,0,1), that g(u3) = (0,1,0,1) and that g(u4) = (o,p,q,l), where
o, p, gE Z,0^o, p<q, g.c.d.(o,q) = g.c.d.(p,q) = lando = l,p =

Lemma 3,2, Under the same assumptions as in Lemma 3.1, there exists an
element g in GL(JV) such that g(M/) = (0,0,0,1), that g(uj) = (1,0,0,1), that g(uk) =
(0,1,0,1) and that g(uf) = (l,p,^,l), where {i,j,k,l} = {1, 2,3,4}, O^p^f and
g.c.d.(p,q) = 1. Moreover, we may assume that i = 1 or 1 = 4.

Assume that o—R^^u^ + R^u2+ ... + R^uf is a 4-dimensional strongly
convex rational cone in NR satisfying the condition (G). Moreover, assume that
J^oM, is a 1-dimensional face of a, for i = 1 through t.

Proposition 3.3. Assume that t = 4, that {u E o H N ] (v(0),u} = 1} = {M1?M25

M3,M4} and that Wa(v(o)) =f= 0. Then there exists an element g in GL(N) such that
g(uf) = (0,0,0,1), that g(Uj) = (1,0,0,1), that g(uk) = (0,1,0,1) and that g(u/) =
(l,p,9,l), where {i,j,k,l} = {1,2,3,4} and (p,q) = (0,1), (1,2), (1,3), (1,4), (2,5),
(2,7), (3,7), (3,8) or (3,10).

Proof. By Lemma 3.2, there exists an element g in GL(JV) such that
g(u,) = (0,0,0,1), that g(uj) = (1,0,0,1), that g(uk) = (0,1,0,1) and that g(M/) =
(l,p,?,l), where {fj,fc,/} = {1,2,3,4}, p, <?EZ, Q^p^q/2 and g.c.d.(p,^f) = 1.
We may only consider the case that z = 1, ; = 2, A: = 3 and 1 = 4. When q^4,
(p,q) = (0,1), (1,2), (1,3) or (1,4). In these cases, we easily see that Wa(v(a)) + 0.
In the following, we consider the case that q>4. Then 0<p<f . Let v± =
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£(0,0,1,0), let v2 = £(0,0,-/>,0), let v3 = i(9>0,-l,0), let v4 = \(-q,-q,p,q) and
let M0 = K2,P+1,9,4). Then (go)* = J^0Vi + ̂ 0^2 + ^i=oV3 + ̂ 0^4, "o^
Int(ga), <V!,w0) = {v2,w0) = (v3,w0) = (v4,w0) = £ and (VO,MO) = 1, where
vo = g(v(a))(= (0,0,0,1)).

Step 1. First, we examine when M0E Wr
ga(vo)=g(W0(v(a1))). Assume that

v:=0vi + &V2 + cv3 + dv4E#*. Then c-d, b-d, (a - bp - c + dp)lq, dEZ.
Hence a, b, c, d E Z and a — bp — c + dp = 0 (mod g). By an easy calculation, we
obtain:

Lemma 3.3.1. (0) L0:= {va + v2 + v3 + v4, 2va + 2v3, 2v2 + 2v4} C TV*.
(1) For v E LI: = {2v1 + 2v2, 2v3 + 2v4, va + 2v2 + v4, 2vx + v2 + v3, VA + 2v3 +
v4, v2 + v3 + 2v4},
v E TV* z/ ^«rf ow/y if p = l.
(2) For v G L2: - {Vi + 3v2, v3 + 3v4},
v E N* if and only if3p — l = q.
(3) For v E L3:= {3vi + v2, 3v3 + v4},
v E N* if and only if p = 3.
(4) For v E L4:= {3vj + v4, v2 + 3v3},
v E TV* // anrf onfy if p + 3 = q.
(5) For v E L5: = {2vi + 2v4, 2v2 + 2v3},
v E TV* // a«rf only if2p + 2 = q.
(6) For v E L6: = {vx + 3v4, 3v2 + v3},
v E TV* if and only if 3p + 1 = q.
{v E (ga)* n TV* | ( V,MQ> = 1} C L0 U L! U. .. U L6. Moreover, L0 U L£- w co/i-
tained in a sublinear space of TV^, /or eac/z 1S / ̂  6.

If w0 £= Wga(v0), then at least two conditions in (1) ~ (6) of the above lemma
hold at the same time. When (p,q) = (2,5), the conditions in (2) and (4) hold.
When (p,q) = (3,8), the conditions in (2), (3) and (5) hold. When (p,q) = (3,10),
the conditions in (3) and (6) hold. In fact, in these cases, w0E Wga(vQ). For all
pairs (p,q) with g.c.d.(p,g) = 1 except the above ones, any two conditions in
(1) ~ (6) do not hold at the same time.

Step 2. Next, we examine when Wga(vo)\{uQ} + 0. Then there should
exist an element vE(go)*HTV* such that (v ,w 0 )< l and that v0 and v are
linearly independent, as we see in the proof of Theorem 1.7. We easily obtain:

Lemma 33.2. (0) L^:= {vi + v3, v2 + v4} C TV*.
(1) F(9rvELi:={v! + V2, v3 + v4},
v E TV* // and only if p=l.
(2) For v E L2: = {2vl + v2, 2v3 + v4},
v E TV* //" and on/y if p = 2.
(3) For v E 1,3: = {vl + 2v4, 2v2 + v3},
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v G N* if and only if2p + l = q.

If (VO,M) = { v, + Vy,«) = 1, for an element u in A^, then (v& + v/, w) =0 and
hence w£Int(ga), because v0 = VA + v2 + v3 + v4, where {*,/,&,/} = {1,2,3,4}.
Therefore, if M G Wga(v0) \ {MO} , then (V ,M) = 1, for an element v in (L2UL3)
fl N* and hence p = 2 or 2p + 1 = q.

Step 2—\. Assume that p = 2 and that there exists an element u in Wgo(v0)
with <2v3 + v4, M> = 1. Let M! = £(3,3,4,6). Then mGlntfea), (VI ,MI) - <v 2 ,Mi>
= i <v3 ,M1) = <v 4 ,u 1 )=5 and hence (VO ,MI) = (2v3 + v^i^) = 1. Since
{ vn, (0,0, 1,0)) = 0, we see that MA £ Wga(v0), by the following lemma, which and
the next lemma we obtain by an easy calculation.

Lemma 3.3.3. {v e (go)* n W* | < v ,M t ) - 1} C {v G N*R \ (v,(0,0,l,0)) ^0}.

Lemma 3.3.4. (0) M0:= {v2 + v4, VA + v3, 2v! + v2} C N*.

(1) For vGM!:= {2v2 + v3, vx + 2v4, vj. + 3v2, 3vt + v4, 5v1? 5v2}, vGN* i/
fln6? o«/y if q = 5.
(2) For v G M2: = { vl + 4v2, 3v2 + v3} ,
v E W* if and only if q = 7.
{v G (ga)* H N* \ 0 < < V,M! ) < 1} C M0 U Af t U M2.

Assume that (2vx + v2, M) = (2v3 + v4, w) = (v0, M) = 1, for an element u in
NR. Then { v2 + v4, M) = 0. Hence u £ Int (ga). Therefore, g = 5 or q = 7, by the
above lemma.

Step 2—ii. Assume that/? = 2 and that there exists an element u in Wga(v0)
such that (2vi + v2, w) = 1. Then we obtain the same results as in Step 2— i, by
the same way, letting u 1 = ̂ (3, 6, 2q, 6).

Step 2— iii. Assume that q = 2p + 1 and that there exists an element u in
Wga(v0) with <2v2 + v3, u) = 1. Let MI = £(3, p + 2, <j, 6). Then MX G Int (ga) and
{ VO,M!> - <2v2 + v3, MI) = 1. Since (v0, (0,1,2,0)) - 0, we see that M! S Wga(v0),
by the following lemma, which and the next lemma we obtain by an easy
calculation.

Lemma 3.3.5. {v E (ga)* n AP | (v,w t) = 1} C {v G A& | <v,(0,l,2,0)) ^

Lemma 3.3.6. (0) K0:= {v2 + v4, vx + 2v4, VA 4- v3} C N*.
(1) For vE^!:= {5v4, v3 + 3v4, 2v3 + v4, 2vx + v2, 3vi + v4, 5V!}, v € = A f
on/y if p = 2, q = 5.
(2) For v E K2: = {3vl + v2, 4vx + v4} ,
v E N* if and only if p = 3, # = 7.
{v E (ga)* H W* | 0 < < V,MI) < 1} C ^0 U KI U ̂ T2.
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Assume that (vi + 2v4, u) = (2v2 + v3, u) = (v0, u) = 1, for an element u in
Afo. Then (vl + v3, M) = 0. Hence u & Int (go). Therefore, (p,g) = (2,5) or (3,7),
by the above lemma.

Step 2— iv. Assume that q = 2p + 1 and that there exists an element u in
Wga(vo) such that (vi + 2v4, w) = 1. Then we obtain the same results as in Step
2— iii, by the same way, letting Ui =£(3, q, 2q, 6). q.e.d.

Proposition 3 A, Assume that t = 4 and that {«E aHN\ (v(o),«) =
!}\{wi,M2,w3,M4} consists of only one point u$ which is in Int (a). Then there
exists an element g in GL(N) such that g(w/) = (1,0,0,1), that g(uj) = (0,1,0,1)
and that (gK),g(W/)) - ((0,0,1,1),(-1, -!,-!,!)), ((1,1,2,1),(-1,-1,-1.1)),

((l,2,5,l),(-2,-3,-5,l)), ((1,2,7,1),(-1,-1,-2,1)) or ((l,3,7,l),(-l,-2,-3,l)),
where {i,j,kj} -{1,2,3,4}.

Proof. We may only consider the case that |det(w<),Mi,w2,w3)| ^ |det
(Mo,Mi,«2,M4)l» |det(^0,%,%,W4)|> |det(«o,M2,M3,M4)|. Since u0uiU2u3 HN = {UQ,
Mi,M2,M3}, by Lemma 3.2, there exists an element g in GL(N) such that g(w0) =
(0,0,0,1), that g(Mi) - (1,0,0,1), that g(M/) - (0,1,0,1) and that g(uk) = (l,p,?,l),
where /?, g E Z,g > 0, 0 ̂ p ^ f and g.c.d.(p,g) = 1. Here, we may only consider
the case that / = 1, / = 2 and & = 3. Since w0 ^ Int (u\u^u^u^) and cr satisfies the
condition (G), g(^4) = (— s,— t,— w,l), for certain positive integers 5-, t and u. Let

fi = — • — (qg(u4) + ug(u3)) = — - — (u - sq,pu - tqfl,q + u). Since g(^0) ^
g + u q + u

Int(ug(ui)g(u2)), we have u — sq<Q, pu — tq<Q. On the other hand, we
have \dQt(uo,Ui,u2,U4)\ = u^q, |d^(M0,M2,M3,M4)| = |s^ — u\ ̂ q and |det(w05

Mi,M3,M4) = |pw — tq\^q. Thus we obtain the following inequalities.
(1) 1^M^9 , i < j ^£+ l , p£<f^p£+ l .

When q= 1, we have/? = 0, M = 1, ^ = 2 and f = 1. Namely, g(w3) = (1,0,1,1) and
g(w4) = (—2,—!, -1,1). Next, we consider the case that q=^2.

(I) Assume that u = q. By the inequalities (1), we have s — 2 and t = p + l.
Since

'l-qQ 10"
-p 1 00
-9 010

0 0 0 1 _

"001-2
Olp -p-l
00 q -q
111 1

=

"00 1 q-2
0 10/7-1

000 9

111 1
and

'l-qQ 10"
-p 100
-q 0 10

0 001

EGL(AT),

7 - 2=1, 77 — 1 = 1 or (4 - 2) + (p — 1) = q. Hence q = 3, p = 2 OT p = 3. Since

"10 -10"
01-10
00 -10
00 01

"010-2
001 -p-1
000 -q
111 1

=

'QlQq-2
00 1 q-p-1
000 q
111 1

and

"10 -10"
01-10
00-10

_ 0 0 0 1 _

EGL(JV),
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q-2=l, q-p-l=l or (q - 2) + (q -p - 1) = q. Hence q = 3, q=p + 2 or
q=p + 3.
(i) When q = 3, we have p = 1 and t = 2. Then the convex set g(u3u4) contains
the lattice point (0,0,1,1) =lg(u3) + 5g(M4). It contradicts the assumptions that

(ii) When p = 2 and q =p + 2, we have g.c.d.(p,g) =£ 1.
(iii) when p = 2 and q =p 4- 3, we have q = 5 and t = 3. Hence g(w3) = (1,2,5,1)

10 -10
01-10
00-10
00 01

"010 -i"
001 -t
000 -u
111 1

—

0 10u-l
QQlu-t
000 i/
111 1

and

"10 -10"
01-10
00 -10
00 01

(iv) When p = 3 and q=p + 2, we have p > j.
(v) When p = 3 and q =p + 3, we have g.c.d.(/?,g) =£ 1.

(II) Assume that u < q. By the inequalities (1), we have 5 = 1 and 0 < t^
Since

•GL(N),

= l, M —1 = 1, u — t—l or (w — 1) + (w — f) = w. Hence w = £ = l , w = 2 or
= t+l. Since

! GL(AO

-u, we have 9-
M = 1, ^ — M — 1 = 1, p — ̂  = 1 or (q — u — l) + (p — t) = q — u. Hence q = u+l,
q = u + 2 or p = t+ 1.
(i) When u = t=l and q = u + l, we have q = 2 and p = 1. Hence g(u3) =
(1,1,2,1) and g(u4) = (-!,-!,-1,1).
(ii) When u = t=l and ^ = w + 2, we have g = 3 and /? = 1. Then g
contains the lattice point (0,0,1,1) =\g(u3) + ?g(w4).
(iii) When u = t = 1 and p = 14-1, we have p = 2 and g = 5. Since

1-^0 10"
-p 100
-<7 0 10
0 0 0 1

"oo i -i"
0 1 P -t
QQq -u
111 1

"00 lq-u-1
010 p-t
000 g-w
111 1

'

'l-qO 10
-p 100
-4 0 1 0
0 0 0 1

1-210
0-210
0-110
0 001

01-11
0 0 - 1 2

11 11

0 10 <?-3
00 1 4-4
0004-2
111 1

and

1-210
0-210
0-110
0 001

GL(AO,

we have q — 2 = 1, q — 3 = 1, 4 -4=1 or (4 - 3) + (q — 4) £(4 - 2)Z. Hence
g = 5, because q^5. Therefore, g(«3) = (1,2,5,1) and g(«4) = (-!,-!,—1,1).
(iv) when u = 2 and g = w + l , we have 4 = 3, p = l and /=!, by the third
inequality in (1). Hence g(u3) - (1,1,3,1) and g(u4) = ( — !, — !,—2,1).
(v) When u = 2 and q = u + 2, we have 4 = 4, p = 1 and f = 1, by the third
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inequality in (1). Then g(u3u4) contains the lattice point (0,0,1,1) = 5g(w3) + \
(vi) When u = 2 and p = t + 1, we have t = 1 or 2, because 0 < t^=- u. Suppose
that t = 2. Then g(uiU4) contains the lattice point (0,—1, —1,1) = 5g("i) + 18(1*4).
Hence f = l , g(u4) = (-!,-!,-2,1), p = 2 and q^5. Since

"l -3 1 0"
0-310
0-210
0 001

"01 -1 l"
00-12
0 0 - 2 ?
11 11

010(7-5
OOlq-6
000 <?-4
111 1

and

1-310
0-310
0-210
0 001

<EGL(AO,

we have q-4=l, q-5 = l, q-6 = l or (q - 5) + (q ~6) E:(q -4)Z. Hence
q = 5 or q = 7, because q^5 and g.c.d.(2,g) = 1. If q = 5, then g(&3) = (1,2,5,1).
If 9 = 7, then g(M3) = (1,2,7,1).
(vii) When u = t 4- 1 and q = u + l, we have g = 3. By the third inequality in
(1), we have (q-2)q^p(q-l) + q. Hence p^q-2q/(q - l) = q - (2 + 21
(q — 1)). Therefore, q — p ^ 3 with the equality holds only if q = 3. When q = 3,
we have w = 2, f=l and p = l, because p^f . Hence g(w3) = (1,1,3,1) and
g(u4) = (-!,-!,-2,1). When q>3, we have q-p^2. Then since q -2^p^f ,
we have q ̂  4. Hence q = 4 and p = 2. However, then g.c.d.(p,q) + 1.
(viii) when u = t+l and g = M + 2, we have ^^4. Hence p — t=l, because
Q^p-t<q-t = 3 and g.c.d.(p-f, 9-^) = !. Then f^p = /+l = 9-2.
Hence 9 = 4 and p = 2. However, then g.c.d.(p,g) ^ 1.
(ix) When u = t+l=p, we have p = 2. If p = 2, then w = 2. This case was
already considered in (vi). Therefore, we may assume that pi=3. By the third
inequality in (1), we have (p — l)q^p2 + q. Hence p2 = (p — 2)q^2(p — 2)p.
Therefore, p = 3 or p = 4. When p = 3, we have u = 3, t = 2 and q = 1 or q = 8,
because g.c.d.(p,g) = 1, p ^ f and p2^(p — 2)q. If g = 8, then g(uQUiU3u4) con-
tains the lattice point (0,0,1,1) = ̂ (z/0) + ̂ MI) + fg(w3) + |g(«4). If 9 = 7, then
g(w3) = (1,3,7,1) and g(u4) = (—1,-2,—3,1). When/? = 4, we have q = 8, because
p=\ and p2^(p — 2)q. However, then g.c.d.(p,g) + 1. q.e.d.

For the cases (1—2) through (3) in §2, it is easier to obtain similar propositions
as Propositions 3.3 and 3.4, by Lemmas 3.1 and 3.2. Hence we only give a list of
representaives of all pairs in ^o below. We denote by G(a) the minimal set of
generators of a which are primitive elements in N = Z4.

(i-i)
1. G(o) = {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)}. See [9, Table 2.2], for
MO-

2. G(o) = {(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,1,2,1)} and «o = J(l,l,l,2),
1(1,1,1,3), £(5,3,4,12), K3,2,2,8), £(7,5,4,20), £(5,4,2,16), 1(3,2,1,9), £(2,1,1,5),
£(4,3,1,13), £(5,2,3,11), £(5,3,2,14), £(7,3,4,16), £(4,7,3,19) or £(5,9,4,24).
3. G(o) = {(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,1,3,1)} and «o = J(2,l,2,4),
K3,2,l,7), $(3,1,2,5), 1(5,2,3,9), 1(2,3,3,6), 1(3,4,3,9) or KU,2,2).
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4. G(<r) = {(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,1,4,1)} and MO = 5(1,1,2,2).
5. G(a) = {(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,2,5,1)} and «„ = $(2,3,5,4),
£(2,3,5,5), 1(1,1,1,2) or 1(1,1,1,3).
6. G(0) = {(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,2,7,1)} and «0 = 1(1,1,2,2).
7. G(a) = {(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,3,7,1)} and u0 = £(1,2,3,2).
8. G(a) = {(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,3,8,1)} and un = £(1,2,4,2).
9. G(a) = {(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,3,10,1)} and MO = £(1,2,5,2).
10. G(a) = {(1,0,0,1), (0,1,0,1), (0,0,1,1), (-1,-1,-1,1)} and MO = (0,0,0,1).
11. G(a) = {(1,0,0,1), (0,1,0,1), (1,1,2,1), (-!,-!,-1,1)} and u0 = (0,0,0,1).
12. G(a) = {(1,0,0,1), (0,1,0,1), (1,1,3,1), (-!,-!,-2,1)} and MO = (0,0,0,1).
13. G(a) = {(1,0,0,1), (0,1,0,1), (1,2,5,1), (-!,-!,-1,1)} and «0 = (0,0,0,1).
14. G(a) = {(1,0,0,1), (0,1,0,1), (1,2,5,1), (-!,-!,-2,1)} and u0 = (0,0,0,1).
15. G(cr) = {(1,0,0,1), (0,1,0,1), (1,2,5,1), (-2,-3,-5,l)} and u0 = (0,0,0,1).
16. G(or) = {(1,0,0,1), (0,1,0,1), (1,2,7,1), (-1.-1,-2,1)} and «„ = (0,0,0,1).
17. G(a) = {(1,0,0,1), (0,1,0,1), (1,3,7,1), (-l,-2,-3,l)} and MO = (0,0,0,1).

(1-2)
1. G(<7)= {(1,0,0,1), (0,1,0,1), (-1,-1,0,1), (1,0,1,1)} and uo = 1(0,0,1,2),
£(-l,-l,l,3), K-1,-1,2,4) or £(-1,-1,2,6).
2. G(a) = {(2,0,0,1), (0,1,0,1), (-1,-1,0,1), (1,0,1,1)} and «„ = £(1,0,1,2).
3. G(a) = {(1,0,0,1), (0,1,0,1), (-1,-1,0,1), (1,2,3,1)} and «„ = £(2,2,3,3).
4. G(a) = {(1,0,0,1), (0,1,0,1), (-1,-1,0,1), (0,0,2,1)} and w0 = (0,0,1,1).
5. G(a) = {(2,0,0,1), (0,1,0,1), (-1,-1,0,1), (-1,0,2,1)} and u0= (0,0,1,1).
6. G(a) = {(1,0,0,1), (0,1,0,1), (-1,-1,0,1), (-1,0,3,1)} and MO = (0,0,1,1).

(2-1)
1. G(a) = {(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,0,1,1), (-1,0,-!,!)} and «n =
£(1,1,0,3), Kl,l,0,4) or ̂(1,2,0,6).
2. G(a) = {(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,0,1,1), (0,0,-1,1)} and «0 =
£(1,1,0,3) or $(1,2,0,4).
3. G(a) = {(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,1,2,1), (0,0,-1,1)} and MO =
i(l,l,0,4).
4. G(a) = {(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,1,2,1), (-1.-1,-2,1)} and «„ =
i(l,l,0,4).
5. G(a) = {(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,1,3,1), (1,-1,-3,1)} and un =
£(1,1,0,3).
6. G(a) = {(1,0,0,1), (0,1,0,1), (-1,-1,0,1), (0,0,1,1), (0,0,-1,1)} and «0 =
(0,0,0,1).
7. G(a) = {(1,0,0,1), (0,1,0,1), (-1,-1,0,1), (0,0,1,1), (1,1,-1,1)} and u0 =
(0,0,0,1).
8. G(a) = {(1,0,0,1), (0,1,0,1), (-1,-1,0,1), (0,0,1,1), (2,0,-1,1)} and «0 =
(0,0,0,1).
9. G(a) = {(1,0,0,1), (0,1,0,1), (-1,-1,0,1), (1,2,3,1), (-l,-2,-3,l)} and
MO = (0,0,0,1).
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(2-2-1)
1. G(a) = {(1,0,0,1), (-1,0,0,1), (0,1,1,1), (0,1,-1,1)} and u0 = f(0,l,0,2).
2. G(a) = {(1,0,0,1), (-1,0,0,1), (1,1,2,1), (-1,1,-2,1)} and w0 = 5(0,1,0,2).
3. G(a) = {(1,0,0,1), (-1,0,0,1), (0,2,1,1), (0,2,-1,1)} and «0 = (0,1,0,1).
4. G(o) = {(1,0,0,1), (-1,0,0,1), (1,2,2,1), (-1,2,-2,1)} and «n = (0,1,0,1).

(2-2-2)
1. G(o) = {(1,0,0,1), (-1,0,0,1), (0,1,0,1), (0,-1,0,1), (0,0,1,1)} and MO =
2(0,0,1,2).
2. G(a) = {(1,0,0,1), (-1,0,0,1), (0,1,0,1), (0,-1,0,1), (1,1,2,1)} and u0 =
5(1,1,2,2).
3. G(a) = {(1,0,0,1), (-1,0,0,1), (0,1,0,1), (0,-1,0,1), (0,0,2,1)} and u0 =
(0,0,1,1).

(2-2-3)
1. G(o) = {(1,1,0,1), (0,0,1,1), (0,0,-1,1), (0,1,0,1), (1,0,0,1)} and w0 =
5(14,0,2).
2. G(a) = {(-1,0,0,1), (1,0,1,1), (1,0,-1,1), (0,1,0,1), (0,-1,0,1)} and «„ =
(0,0,0,1).
3. G(a) = {(-1,0,0,1), (1,1,2,1), (1,-1,-2,1), (0,1,0,1), (0,-1,0,1)} and
MO = (0,0,0,1).
4. G(a) = {(-1,0,0,1), (1,0,1,1), (1,0,-1,1), (0,1,0,1), (1,-1,0,1)} and utt =
(0,0,0,1).

(2-2-4)
1. G(a) = {(0,-1,2,1), (0,2,0,1), (1,0,0,1), (-1,0,0,1)} and u0 = (0,0,1,1).

(2-3)
1. G(a) = {(1,0,0,1), (-1,0,0,1), (0,2,0,1), (0,0,1,1)} and «0 = 1(0,1,1,2),
=1(0,3,1,3) or i(0,4,l,4).
2. G(a) = {(1,0,0,1), (-1,0,0,1), (0,3,0,1), (0,0,1,1)} and wn = 5(0,2,1,2).
3. G(cr) = {(1,0,0,1), (-1,0,0,1), (0,2,0,1), (1,1,2,1)} and un = 1(1,1,2,2).

(2-4)
1. G(cr) = {(0,0,2,1), (0,3,0,1), (1,0,0,1), (-1,0,0,1)} and «„ = (0,1,1,1).

(3)
1. G(CT) = {(0,0,0,1), (1,1,0,1), (1,0,0,1), (0,1,0,1), (0,0,1,1), (1,1,-1,1)} and
110 = 5(1,1,0,2).
2. G(o-) = {(1,0,0,1), (-1,0,0,1), (0,1,0,1), (0,-1,0,1), (0,0,1,1), (0,0,-1,1)}
and M0 = (0,0,0,1).
3. G(a) = {(1,0,0,1), (-] ,0,0,1), (0,1,0.1), (0,-1,0,1), (1,1,2,1), (-1,-1,-2,1)}
and MO = (0,0,0,1).
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