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Simple K3 Singularities Which Are Hypersurface
Sections of Toric Singularities
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Hiroyasu Tsuchihashi*

Introduction

Yonemura [9] classified the weights of non-degenerate quasi-homogeneous
polynomials on C* which define simple K3 singularities. On the other hand, to
each quasi-homogeneous polynomial f =ZvE(Z§O)4cvz" there exists an element
Uy in (Q=0)* such that (v,ug) =1 if ¢, # 0, where g(mmmum) = gmizmms mi
Then we may regard the point ug as the weight of f. Let A* be the convex hull of
{vE (Z=¢)*| {(v,up) = 1}. Then dim A* =3 and (1,1,1,1) € Int (A*), if f defines a
simple K3 singularity (see [9]). As a generalization of this fact, we obtain:

Theorem. Let f be a non-degenerate holomorphic function on the toric
singularity Y = Spec C[o* N (Z*)*] with f(y) = 0 and let X = {f =0}, where o* is
the dual cone of a 4-dimensional strongly convex cone o in R* generated by
primitive elements u,, U,,...and u; in Z* and {y} = {x€Y|z"(x)=0 for any
vE (0* N (ZH*)\A{0}}. If (X,y) is a simple K3 singularily, then the following
two conditions are satisfied.

(1) Y is Gorenstein, i.e., there exists an element vy € (Z*)* such that {vo,u;) =1, if
R=gu; is a 1-dimensional face of o, for i=1 through s.

(2) There exists an element ug € Int(0) such that f=2 c ;i - z4y: ¢,2" with ¢, =0
if {v,ug) <1, that dim A* =3 and that vy € Int (A*), where A* is the convex hull
of {vE o*N(ZH*|{v,up) =1}.

The purpose of this paper is to show that the pairs (o,ug) satisfying the
conditions of the above theorem are finite modulo GL(4,Z). Moreover, all
representatives of them are obtained by an algorithm which can be excuted by a
computer. (However, the program I wrote spent so much time that I could not

wait to the end. The number of the equivalent classes is at least greater than
10000.)
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Faculty of Liberal Arts, Tohoku Gakuin University, Sendai 981—31, Japan



784 HiroyAasu TSUCHIHASHI

In §1, we prove the above theorem and show that there exists a partial order
on the set of the pairs satisfying the conditions of the above theorem such that
for a pair (o,up), all the pairs (7,up) = (0,uq) are finite and obtained by a simple
algorithm (see Proposition 1.6 and its proof).

In §2, we classify “minimal” pairs into some classes.

In §3, we enumerate all pairs belonging to each of the classes and make a
list of representatives of them at the end of this paper.

§1. Toric Singularities and Their Hypersurface Sections

Let N=2Z""! be a free Z-module of rank n+1=3 and let N* be its dual
module with canonical pairing ( , ): N¥* X N—Z. Let 0=R=ou; + R=ouo + ... +
R=ou, be an (n + 1)-dimensional strongly convex rational cone in Ng:=N Q2R
generated by primitive elements u; in N. Here we may assume that R=gu; is a
1-dimensional face of o, i.e., there exists an element v in N% such that {u €
o| (v,u) =0} = R=yu; for each i =1 through s. Let Y =SpecC[o* N N*] and let
72":Y—C be the character of v, which is the natural extension of v & lex:
Spec C[N*] = (C*)"*'— C*, for each v in o* N N*. Then the set {x € Y|z"(x) =
0 for all v € (0* N N*)\ {0}} consists of only one point y and any holomorphic
function f on Y with f(y) =0 is expressed as the power series:

Ppp— v
fr=Z e (orn N0y OF -

Let X be a hypersurface section of Y containing y, i.e., X={f=0}, for a
holomorphic function f on Y with f(y) =0. Here we note that if (X,y) is an
isolated singularity, then the dimension of the singular locus Sing(Y) of Y is not
greater than 1, i.e., any (n — 1)-dimensional face of ois generated by a part of a
basis of N. Assume that X is normal and that X"\ {y} has only rational singular-
ities. Then by [7] and [1], we obtain:

Proposition 1.1. The following three conditions are equivalent.

(1) (X,y) is Gorenstein.

(2) (Y,y) is Gorenstein.

(3) (G) There exists an element vo & N* such that {vo,u;) =1 for 1 <i=s.
We denote the above vy, by v(0).

Definition 1.2. The Newton polyhedron I', (f) of f is the convex hull of
Ue,+0 (v + 0*) and the Newton boundary I'(f) of f is the union of the compact
faces of I", (f).

Definition 1.3. We call f non-degenerate, if 9fx«/0z1= ... = f s/ Ozns1 =
0 has no solutions in 7: = SpecC[N*] C Y for each face A* of I',(f), where
far=2Z c e 62 and (21, 22,. . .,2n41) is @ global coordinate of T, i.e., z;=
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7" for a basis {vy,vs,...,vy4} of N*.

Proposition 1.4. ([6, Theorem 2.2]) Assume that the condition (G) in
Proposition 1.1 is satisfied and that f is non-degenerate. Then (X,y) is purely
elliptic if and only if v(o) € I'(f). (See [8], for the definition of a purely elliptic
singularity.)

Remark. 1fv(o) €9, (f)\TI(f), then X\ {y} has irrational singularities.

Proposition 1.5. Under the assumption of Proposition 1.4, (X)y) is of
(0, n —1)-type if and only if dim A* = n, where A* is the face of I'(f) with v(0) €
Int(A*). (See [2], for the definition of (0,i)-type of a purely elliptic singularity.)

Proof. Let Z be a subdivision of the dual Newton decomposition I'*(f) of
I'(f) consisting of non-singular cones (see [5] and [6], for the definition of
I'*(f)). Then Y:= Tyemb(Z) and X are non-singular, where X is the proper
transformation of X under the holomorphic map P: Y— Y obtained by the
morphism of r.p.p. decompositions (N,X)— (N, {faces of o}). Let X, be the set
of the 1-dimensional cones in X which are not 1-dimensional faces of o and let E,
be the intersection of the closure of orb(7) with X, for each 7 in =,. Then
Pz '(y) = Zres, Er, where o= {r€X,|tCInt(0) U{0}} and we can express
K= (P 3)*Kx + Zex, a,E,. Here we note that a, = (v(0),u,) — d(u,) — 1, by [6,
Lemma 2.1], where u, is the primitive element in N generating 7 and d(u,) = min
{{vyuy)|veE T, (f)}. Hence a,= —1, for each tin Z,. Assume that dim A* = n.
Then there exists only one 1-dimensional cone 7 in X, with a,=—1 and E, is
irreducible. Hence (X,y) is of (0, n — 1)-type. Next, assume that dim A* =n — 1.
Then we easily see that there exist at least two 1-dimensional cones 7 in X; such
that a,= —1 and that E,+# ¢. Hence (X,y) is not of (0, n— 1)-type. q.e.d.

Assume that f is a non-degenerate holomorphic function on Y with f(y) =0
and let X = {f=0}. When n=3, (X.,y) is a simple K3 singularity (i.e., (X,y) is
Gorenstein purely elliptic of (0,2)-type [3]), if and only if (Y,y) is Gorenstein
and v(o) is contained in the interior of a 3-dimensional face of I'(f), by
Propositions 1.1, 1.4 and 1.5. Assume that (X,y) is Gorenstein purely elliptic of
(0, n—1)-type. Then there exists the unique element ug in Int (o) such that
(v,ug) =1 for all elements v in the face A* of I'(f) whose interior contains v(o).
Hence A* is contained in

A% (ug): = convex hull of {v €& o* N N*|{v,uy) =1}.
Therefore, the pair (o,ug) satisfies the following condition:
(E) dim A%*(ug) =n and v(o) € Int (A% (ug))-

Thus we obtain the theorem in Introduction. Conversely, assume that (o,uq)
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satisfies the conditions (G) and (E), and let X={f=0}, where f=
2, cAtugna+62” + higher terms, for certain non-zero complex numbers c,.
Then (X,y) is Gorenstein purely elliptic of (0, n — 1)-type, if f is non-degenerate
and (X,y) is an isolated singularity. Let

={(o,up)| o is an (n+ 1)-dimensional strongly convex rational cone
satisfying (G), ug € Int (0) and u satisfies (E)}

and let €" = €"/~, where (0,ug) ~ (0’ ,u}) if and only if there exists an element g
in GL(N) such that go= ¢’ and that g(ug) = uj. We define a partial order on ¢"
as follows: (o,ug) = (0',ug) if and only if 0D o', v(0) =v(0") and ug= ug. Let

&t = {(0,up) € €"| (0,ug) is minimal}

and let 4 =¢s/~, where we call (o,up) minimal, if (o,uo) = (7,ug) implies
(o,up) = (t,uo), for any (t,up) €€".

Remark. (1) Assume that (o, u) € €". If the cone 7 generated by a subset
of L:={u€onNN|{v(o),u) =1} is (n+ 1)-dimensional strongly convex and
contains u in the interior, then (7,u) € €", because 7+ D o*.

(2) Since #L <+, for any pair (o,uy) in €*, we have #{(t,uo) € €"| (o, Uo)
2 (T,u)} < +o. Hence for any pair (o,u) in €, there exists a pair (7,uq) in €}
with (o,ug) = (7,ug)-

Let C(o,ug) = {(T,u0) € €" | (t,u0) Z (0,up)}, for a pair (o,ug) in €". Then by
the above remark, we have €" = U (o.ugyezy C(0,u0). Hence if €7 is a finite set,
then so is €”, by the following proposition.

Preposition 1.6. C(0,ug) is a finite set, for any pair (o,ug) in &".

Proof. Since for any pair (t,ug) in C(0,ug), A(up) is the convex hull of a
subset of the finite set L*:= {v € o* N N* | (v,uy) = 1}, we have #{A*(uo) | (7,up)
€ C(o,ug)} < +. Conversely, let A* be the convex hull of a subset of L* such
that v(0) € Int (A*) and that dim A* =n. Then #{u € (R=, A*)* "N | (v(0),u)
=1} < +x. Hence C': = {(t,up) € C(0,ug) | A-(ug) = A*} is a finite set, because
TC (R=q A*)* for any pair (7,ug) in C'. Therefore, C(o,uq) is a finite set.

g.e.d.

Next, we show that for a cone o satisfying the condition (G), all the
elements i, in Int (o) satisfying the condition (E) are finite. Let W, (vo) = {u €
Int(0) |dim Ay(u) =n, voEInt(A,(u))}, for an (n+ 1)-dimensional strongly
convex rational cone o and for an element vy in Npg.

Theorem 1.7. W,(vo) is a finite set, for any vy € Int (0%).
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Proof. For vy,vy,....v;E0*NN*, let W(vvy,...,v;) = {u€ Wy(vo)|
(visu) = -+ =(vju) =1}. For u€ Ng, let W*(u) = {vE€ o* N N*|(v,u) <1}.
Here we note that if u € Int (o), then W*(u) is a finite set. First, take an element
uo € Int(o) with (vg,up) = 1. Then for any element u in Wy(vo) with u # uy, we
see that {v € W*(ug) | (v,u) =1} #¢. Hence wo(vo) C{uo} U U, cys(ug W(V1)-
Here we note that if W(v,) # @, then vy and v, are linearly independent. Next, if
W(v,) #+ ¢, then we can take an element u; € Int (o) with (vo,u;) = (vi,uy) =1,
for each vi€ W*(up). Then we have W(vi) C{u1} U U, cpu) Wvi,va).
Proceeding similarly, we finally obtain W(vy,...,va—1) C{tp—1} U U, cwiqu,_p

W(vy,...,v,). Then #W(vq,...,v,)=1, because vg,vy,...and v, are linearly
independent, if W(vy,...,v,)#¥6. Hence #W(vy,...,vy_1)<+% and thus
#Wy(vg) < +x. g.e.d.

In the next section, the following proposition plays key role.

Proposition 1.8. If W,(vq) # @ for an element vy € Int (0%), then #IL,(vg) =
1, where IL,(vo) = {u€Int (o) N N | {vo,u) =1}. Conversely, if IL,(vo)= {uo},
then Wo(vo) C {up}.

Proof. 1f IL,(vo) # @, then for each element ug in IL,(vy), we have (v,ug)
>0 for any v in 0*\ {0} and hence (v,up) =1 for any v in (0*\ {0}) N N*.
Therefore, Wy(vo) C {ug}, as we see in the proof of Theorem 1.7. Hence if
#IL (vo) Z 2, then W (vy) = ¢. q.e.d.

§2. Classification

We restrict ourselves to the case that n = 3 and show that €3 is a finite set, in
the rest of this paper. For finite elements uj,u,,...,u; in Ng, we denote by
U\ls. . .U, the convex hull {au, +au, + ... +awus|a; 20, aj+ar+ ... +a,=
1} of {ug,ua,. .. us}.

Theorem 2.1. Any pair (0,uq) in & is one of the following.
(1) o is generated by four primitive elements u;, u,, us and uy in N and uu, "N =
{u;u,} for each {i,j} C{1,2,3,4}.
(2) ois generated by five primitive elements u,,u, . . . and us in N, uq € Int (uu>us)
and uusuz N ugus F @.
(3) o is generated by six primitive elements uy,u,,. . .and ug in N, ug € Int (1 u,),
Int (usuy), Int (usug) and uiu,. . .ugN N C {ug,uy,. . . ,Ug}-

Proposition 2.2. (o,uq) in (1) of Theorem 2.1 is one of the following.
(1-1)  uyususus NN C {ug,us,Us,Usz,lUs} -
(1-2)  (uyuausug N NYNAug,uy,uz,usz,usy = {us, . . ., usy Cupjuy (s=5) and ug €
usuiuy, where us=>3(u, + uj+ ug), Ue= Yus+uy),. . .and u,=3(u,_, +u), {ij,
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k,l} ={1,2,3,4} and ug= uy, when s=>5.

Proposition 2.3. (o,uq) in (2) of Theorem 2.1 is one of the following.
(2-1) wusuzugus N NC {ug,Uy, U, Uz,Us,Us )}
(2—-2) (uquausugus N NY\ {ug,uy,u,us,us,us} = {ug} and ug € Int (uug), where
ue=35(u;+u) and {i,j,k} = {1,2,3}.
(2-2-1) w;=3(us+ us).
(2-2-2) ug=13(us+ us).
(2—2-3) € lInt(uug) and hence ug € u;ii, where i is the intersection point of
U Usus and usls.
(2—2—-4) u;=3%(us + us) and uo=>5(u; + us) EN.
(2-3)  (uiugusuqus N N) N\ {u,uz,Uu3,Us,tus} = {Us, . . . sy Cupt; (SZ6), u;=
3(us+ us), uo € uugu, and ug&N, where ug=3(u;+ us),...and us=735(us_y +
u)) (s=7) or ug=13(u; +u;) (s=6).
(2—4)  (uiuouzugus N N)\ {ug,u1,ua,u3,us,us} = {ug,uz,ug}, u;=2(us+us) and
uo=3(ux + u7) €N, where ug=3Q2u; + u;), us =3(u; + 2u)) and ug=35(u; + uy).

Proof of Theorem 2.1. Let 0= {u€ o|(v(0),u) =1}. Then 0= R=,0 and
uo € Int (0). Moreover, 30 has the natural polygonal decomposition {tNO|7
are faces of o with t# {0}, T+ o}. Since the vertices of O belongs to IV, we can
take a triangulation A of 90 so that A is a subdivision of the polygonal
decomposition and that the set of vertices of A coincides with o0 N N. On the
other hand, for each point u on o0, there exists the unique point # on 30 with

ug € uii. We denote by A(u), the simplex of A with 4 € Int (A(u)).
(I) Assume that there exists an element u; € 90NN such that A(y;) is a

triangle of A and let u,, u3 and u,4 be the vertices of A(u;). Then ug € Int (v ususu,).
Hence O = uyu,usus, because (o,uo) is minimal. When wu; N N = {u;,u;}, for any
{i,j} €{1,2,3,4}, (o,up) is in the case of (1). Assume that uu; NN # {u;,u;}, for
a certain {i,j} C {1,2,3,4}. Then since (o,up) is minimal, we easily see that
uie; N N = {u;,u;,us} and that ug € Int (uguus), where us = 3(u; + u;) and {i,j,k,I}
={1,2,3,4}. Hence (o,uy) is in the case of (2).

(II) Assume that there exists an element u; € 30N N such that A(u;) is an
edge of A and let u, and u; be the vertices on A(u;). Then ug € Int (uyuusz). Let
H = Ru; + Ru, + Ru; C Ng. Then there exist certain elements uy and usin 900 N N
such that u,, us& H and that wusus N H # ¢, because O is the convex hull of
JONN, dimO=3 and uy € Int(0). Since (o,ug) is minimal, O = uqurusuusus.
We denote by i, the intersection point of usus and H. Then i = aju; + axu, +
asus = bguy + bsus, for certain real numbers a;, a5, a3 and for certain positive
real numbers by, bs with a; +a, + a3 =b,+ bs=1.
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Lemma. One of the following holds.
(l) a;,dz,a3 =0.
(i) a;<0, a;>0, a,>0 and uy € Int (u;i), where {i,j,k} ={1,2,3}.
(iii) a;<0, a;>0 and a;, =0, where {i,j,k} = {1,2,3}.

Proof. Suppose that a;, a;<0, where {i,j,k} ={1,2,3}. Then a;, >0, u; =
(Vaw)i + (—ailag)u; + (—ajlay)u; and 1/ay + (—ailay) + (—a;la;) = 1. Hence u, €
Int (o). It contradicts the fact that u, € 90N N. Therefore, it suffices to show
that ug € Int (u;i), if a;<0, a;>0, a,>0, where {i,j,k} ={1,2,3}. Since uy€
Int (uyususz), we have ug = ciuy + cup + c3us, for certain positive real numbers ¢,
¢, and c3 with ¢+ c;+c3=1. Suppose that a;/a; <c;/c,. Then ug= ((ciax —
crai)lau; + ((cax — cra)la)u; + (el an)i, (car — cia;) + (cjag — cra) + ¢ =
ay, cjax — cxa;>0, ca —ca;> 0 and ¢, >0. Hence ug € Int (wujusus) and w, &
uujusus. It contradicts the assumption that (o,up) € &3. Therefore, ajlay = cilcy.
Thus we have ug = ((cia; — cja;)/ap)u; + (cj/a;)ii € Int (uii). g.e.d.

Proof of Theorem 2.1 continued. When (i) in the above lemma holds,
i € ujupus. Hence (o,up) is in the case of (2). When (ii) in the above lemma
holds, up € Int (uuqus) and wu, N uuaus + ¢, because (1/(a, + ax)) (au; + aguy)
= (1/(bs + bs — a;)) (baus + bsus — au;). Hence (o,u) is in the case of (2). When
(iii) in the above lemma holds, & = au;+ aju;. Then u;= (1/a)i + (—a;/a;)u; €
iu;. Hence O = uu,uqsus. We already considered this case in (I).
(IIT) Assume that 2 € N, for all u€ 30N N. There exist certain elements u,,
uz and us € 90 N N such that u; — ug, us — ug and us — u, are linearly indepen-
dent, because dimO=3. Let u,=4d,, let uy=1; and let ug=1iis. Then uy €
Int (u,u,), Int(usug), Int(usug) and hence ug€Int(uju,...us). Therefore,
O=ul,...us and ONN C{ug,uy,...,Us}, because (o,up) is minimal. Then
(o,up) is in the case of (3). g.e.d.

Proof of Proposition 2.2.  We may only consider the case that (u;ususus N
NN A{ug Uy, uz,us} + 0.
(I) Assume that there exists an element u & Int(ujuou3) NN with u# iy,
where 4, is the point in O(uuyusu,) with ug € Int (uyiiy). Then 44 € uju, uu or
usu, because (o,uy) is minimal. Hence we may assume that #i, € usu. Let H =
Ru + Rus + Ruy. Then (uqupuzus N N)N\ {ug,up} CH, because ug € Int (uuzuy).
On the other hand, uu, intersect H at a point, which we denote by i. Then
uupus N H =dus. We may assume that dus NN = {us,us,...,u;}, where u;=
5(us + ug_q), U1 =3(us + Us_»),...and ug = 3(u7 + us). Then uy € ususu,. Other-
wise, ug € Int (uusuqus). Moreover, us = 3(uy + uy + ug), because us € Int (uquoue)
and uusue NN = {uyg,us,us,ug}. Hence i = 3(uy + u,). In the following, we show
that duys NN = {uy}, i.e., Nuguousug) NN = {uy,Us, Uz, Uy, . . . Us}.
(I-i) Assume that ug& N. Since wuzuqus NN = {us,uqs,Us}, {Us—uz, u;—us}
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is a basis of (R(us — u3) + R(us; — u3)) N N. On the other hand, any point u’ on
Giuy is expressed as u' = au, + bii, for certain non-negative real numbers @ and b
with a+b=1. Hence u' —us=a(us—uz) +b(id — uz) =a(us — us3) + b((s —4 +
3) (us— u3)). Therefore, duy NN = {uy}.

(I—ii) Assume that ugEN. If ug€ugu, (resp. up€ Int (usuqu,)), then ug=
Hug+ ug) (resp. ug=7%(us+ us+u,)). Hence s=6 (resp. s=235). Otherwise,
Hug + ug_5) =3Quo — us + 3us — 2us) = ug+ u;— us ENNInt (o) (resp. 3Quy+
us_1) =32Bug — us — ug) + 2u; — uz) =2ug— u3 € NNInt(0)). Then we easily
see that fiuy NN = {uy}.

(II) Assume that wujuyusuy NN C {ug,Uy,Us Uz, U, 01, 00,03,0,) and that 44 €
N. Then ity =3(u; + u, + us). Suppose that 63 EN. Then fs = 3(ug + up + uy).
Hence 14— 3 =3(us—us). Then wus+iy— ilg=us+3(us— us) =3us +jus €
Int (u3uq) N N. This contradicts the assumption that usuq N N = {us,us}. There-
fore, ujusustg NN C {ug,uy,Us,U3,Uq,04} q.e.d.

Proof of Proposition 2.3. We easily see that (ujuy...us N N)\ {ug,us} =
uususz NN, because (o,ug) is minimal and ug € Int (v uou3). We may only con-
sider the case that d(ujusus) NN # {uy,us,us}. Let i be the intersection point of
uUusus and ugls.

(I) Assume that i = u;.

(I-1) I wuusNN#{uus}, then wuusNN={upus,us} and uy€ uqug,
where ug=3(up +u3). Hence Ouqusuz NN = {uy,uz,us,ue), because (o,up) is
minimal. Then (o,uq) is in the case of (2—2-1).

(I—=ii) If wpuzs NN = {up,us3}, then Int(uuy) "NN+#¢ or Int(uus)NN+go.

Hence we may assume that Int (u,u;) NN = {ug,U7,. . .,us} (s=6), where ug=
Huy + u7) =3(ug + ug),. . . . us=3(us_1 + uy). Then ug € uguous, because (o,uq) is
minimal.

(I—ii—a) When wug& N, ususus NN = {u,uz,u,}. Hence {us—us, us;—uy} is a
basis of (R(us — u,) + R(u; — us)) N N. On the other hand, any point u’ on uus
is expressed as u’ = au; + bus for certain non-negative real numbers a and b with
a+b=1. Hence u' —upy=a(u;—uy)+blus—uy) =a(s —4) (u;— u) + b(uz —
u,). Therefore, uus NN = {u;,us}. Then (o,uy) is in the case of (2—3).
(I-ii—b) When uyE N and u, € usu,, we have s =6 or 7. Otherwise 3(u;_, +
uz) =3Qus_1 — ug+ 2ug — ug) =ug+ us_, —u; ENNInt (o). If s=6, then ue=
3(uy + up) and ug=3(ug+ u3). Then (o,up) is in the case of (2—2—4). If s=7,
then ue = 5(us + u7), uy = 3(ue + us), ug = 3(u7 + uz) and ug: = 3(u; + us) = 3(2us —
u7 + 2ug — u7) = ug + ug — u7 € N. Then (o,uy) is in the case of (2—4).

(I—ii—c) When uyEN and u,€ Int (uousu,), we have wug=3(uy+ us+ uy)
and s = 6. Otherwise 1(2us + u;_,) =3(2(3ug — s — us) + Quy — 1)) = 2ug — up €
NNInt(o). Hence wug=3(u,+uy), ur:=3%Qus+u))=2uy—u,, ug =3(us+
2uy) = ug+ ug — u, € N and uy = 3(us + u7). Then (o,up) is in the case of (2—4).
(I1) Assume that i € Int (uou3). Then ug € uyii. Otherwise, uy € Int (uyusuqus)
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or Int (uusugus). Moreover, (uyusus N N)YN\ {ug,us,us,us} = {ii}, because (o,up)
is minimal. Therefore, @ = 3(u> + u3) = 3(u4 + us) € N. Then (o,u) is in the case
of (2—-2-2).

(IIT) Assume that & € Int (u;u,us). If there exists a lattice point ug on Int(uous),
then ug € ugu; and hence i € ugu;. Otherwise, ujusuglsitg OT UjlslsUsiig contains
ug in the interior and is strictly-contained in ujupususus. Moreover, we see that
uy € uqii and wyuous NN C {ug,uy,Us,us,Ug}, because (o,up) is minimal. Then
(o,up) is in the case of (2—2-3) q.e.d.

§3. Representatives of the pairs in €3

In this section, we need the following lemmas, which are easily obtained
from the terminal lemma [4] (see also [9, Lemma 3.6]).

Lemma 3.1. Assume that uy, u,, uy and u, are elements in N with uquyusy
N N = {uy,us,u3,us}. Moreover, assume that uy, u,, uz and uy are linearly inde-
pendent and that there exists an element vq in N* such that {vy,u;) =1.for i=1
through 4. Then there exists an element g in GL(N) such that g(uy) = (0,0,0,1),
that g(uy) =(1,0,0,1), that g(us)=(0,1,0,1) and that g(us) = (0,p,q,1), where
0,p,q€Z,0=0,p<gq, g.c.d.(0,q) =g.c.d.(p,q) =lando=1,p=1loro+p=q.

Lemma 3.2. Under the same assumptions as in Lemma 3.1, there exists an
element g in GL(N) such that g(u;) = (0,0,0,1), that g(u;) = (1,0,0,1), that g(u,) =
(0,1,0,1) and that g(u)=(1,p,q,1), where {i,jk,0}={1,2,3,4}, 0=p=4% and
g.c.d.(p,q) = 1. Moreover, we may assume that i=1 or [ =4.

Assume that o= Rzgu; + R=gur + ... + R=gu, is a 4-dimensional strongly
convex rational cone in Ng satisfying the condition (G). Moreover, assume that
R=qu, is a 1-dimensional face of o, for i=1 through ¢.

Proposition 3.3.  Assume that t =4, that {u € cNN| (v(0),u) =1} = {uy,u,
us,us} and that Wo(v(o)) # . Then there exists an element g in GL(N) such that
g(u;) =(0,0,0,1), that g(u)=(1,0,0,1), that g(u,)=(0,1,0,1) and that g(u;) =
(1,p,q,1), where {i,j,k, [} = {1,2,3,4} and (p,q) = (0,1), (1,2), (1,3), (1,4), (2,5),
2,7, (3,7), (3,8) or (3,10).

Proof. By Lemma 3.2, there exists an element g in GL(N) such that
g(u;) =(0,0,0,1), that g(u;) =(1,0,0,1), that g(u,)=(0,1,0,1) and that g(u,)=
(1,p.q,1), where {i,j,k,l} ={1,2,3.4}, p, q€EZ, 0=p=gq/2 and g.c.d.(p,q) =1.
We may only consider the case that i=1, j=2, k=3 and /=4. When g=4,
(r,9) =(0,1), (1,2), (1,3) or (1,4). In these cases, we easily see that W,(v(0)) + ¢.
In the following, we consider the case that ¢g>4. Then 0<p<%. Let v;=
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2(0,0,1,0), let v,=%(0,9,~p,0), let v3=1%(q,0,—1,0), let v4=%(—q,—q,p,q) and
let Ug = %(2,p+1,q,4) Then (gO')* = Rgovl + Rgon + Rgov::, + R50V4, Ugp S
Int(go), (vi,uo) = (va,uo) = (vs,up) = (va,ulg) =3 and (vo,ug) =1, where
vo=g(v(0)) (= (0,0,0,1)).

Step 1. First, we examine when uy € Wy, (vo) = g(Wo(v(0))). Assume that
vi=avy+bvy+cv3+dvysEN*. Then ¢c—d, b—d, (a—bp—c+dp)lq, dEZ.
Hence a, b, ¢, d€Z and a — bp — ¢ + dp =0 (mod q). By an easy calculation, we
obtain:

Lemma 3.3.1. (0) Lo:= {v{ + vy +v3+ vy, 2v; +2v3, 2v5 + 2v} CN*.
(1) For vEL;:={2vy+2v,, 2v3+2vy, vi+2vy+ vy, 2vy + v+ v3, vy +2v3+
V4, Vo + v3+ 214},
v E N* if and only if p=1.
(2) For vE Ly:={vy+3v,, v3+3v,},
vEN* if and only if 3p —1=q.
(3) For vE L3:={3vy+ vy, 3vs+ vy},
v € N* if and only if p=3.
(4) For vE Ly={3vy+ vy, va+3v3},
vEN* ifand only if p+3=gq.
(5) For vE Ls:={2v, +2vy, 2v, + 2v3},
vEN* if and only if 2p+2=gq.
(6) For veE Lg:= {vy+3vy4, 3vy+v3},
vEN* if and only if 3p+1=gq.
{ve(go)* N N*|{(vup) =1} CLyU L, U...ULgs. Moreover, LoyUL; is con-
tained in a sublinear space of Ny, for each 1=i=6.

If ug € Wyo(vo), then at least two conditions in (1) ~ (6) of the above lemma
hold at the same time. When (p,q) = (2,5), the conditions in (2) and (4) hold.
When (p,q) = (3,8), the conditions in (2), (3) and (5) hold. When (p,q) = (3,10),
the conditions in (3) and (6) hold. In fact, in these cases, uy € W,,(vo). For all
pairs (p,g) with g.c.d.(p.q) =1 except the above ones, any two conditions in
(1) ~ (6) do not hold at the same time.

Step 2. Next, we examine when W,,(vo)\{uo} #¢. Then there should
exist an element v € (go)* N N* such that (v,up) <1 and that vy and v are
linearly independent, as we see in the proof of Theorem 1.7. We easily obtain:

Lemma 3.3.2. (0) Lg:= {vy +v3, vo+ vy} CN*.
(1) ForveLi:={vi+vy, vi+vy},
v EN* if and only if p=1.
(2) For vE Ljy:={2vi+ vy, 2v3+ vy},
v E N* if and only if p=2.
(3) Forve Lj:={vy+2v,, 2v, + v3},
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vEN* if and only if 2p+1=gq.
{(vE (go)* N N*|0< (v,up) <1} CLEUL;UL3U Lj.

If (vo,u) = (v;+ v;u) =1, for an element u in N, then (vy +v;, u) =0 and
hence u & Int(go), because vo=v;+ v, +v3+v,, where {ij.k,[} ={1,2,3,4}.
Therefore, if u € Wyo(va) \ {uo}, then (v,u) =1, for an element v in (L;U L3)
N N* and hence p=2 or 2p+1=gq.

Step 2—i. Assume that p =2 and that there exists an element u in W,,(vo)
with (2v3 + vy, u) = 1. Let u; =#(3.3,9,6). Then u, € Int (go), (vi,u;) = (vy,u;)
=4, (vau)=(vepuy) =% and hence (vo,u;)=(2v3+vsu;)=1. Since
(v0,(0,0,1,0)) =0, we see that u; & W,,(vy), by the following lemma, which and
the next lemma we obtain by an easy calculation.

Lemma 3.3.3. {v€&(go)* N N*|(v,u;) =1} C{v EN%]|(v,(0,0,1,0)) =0}.

Lemma 3.3.4. (0) Mqy:= {vo+ vy, vi +v3, 2v1 + v} CN*.
(1) For veEM:={2vy+ v3, vi+2vy, vi+3vy, 3vi+ vy, 5v, 5vo}, vVEN* if
and only if g =>5.
(2) For ve My:= {vi+4v,, 3v, +v3},
v E N* if and only if g=1.
{ve(ga)* NN*|0<(v,u;) <1} CMoUM,; U M,.

Assume that (2vq + vy, u) = (2v3+ vy, u) = {vy, u) =1, for an element u in
Ng. Then (v, + vy, u) =0. Hence u & Int (go). Therefore, g =35 or g =7, by the
above lemma.

Step 2—ii. Assume that p =2 and that there exists an element u in W,,(vo)
such that (2v, + v,, u) = 1. Then we obtain the same results as in Step 2—i, by
the same way, letting u, =#(3, 6, 2q, 6).

Step 2—iii. Assume that g =2p + 1 and that there exists an element u in
Weo(vo) with (2v, +v3, u) = 1. Let u; =¢(3, p + 2, g, 6). Then u, € Int (go) and
(vo,u1) = (2vo + v3, u;) = 1. Since (vo, (0,1,2,0)) =0, we see that us & W,,(vo),
by the following lemma, which and the next lemma we obtain by an easy
calculation.

Lemma 3.3.5. {v€E€(go)* N N*|(v,u;) =1} C{vE Ng| (v,(0,1,2,0)) =0}.

Lemma 3.3.6. (0) Ko:= {vo+v4, vy +2v4, vi +v3} CN*,
(1) Forve&Ky:={5v4, v3+3vy, 2v3+ vy, 2v1 + vy, vy + vy, Svi}, vE N* if and
only if p=2, q=5.
(2) For vEKy:={3vy+ vy, 4vy + vy},
vEN* ifand only if p=3, q=1.
{(ve(go)*NN*|0<(v,u;) <1} CKoUK; UK,.
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Assume that (v; + 2vy, u) = (2v, + v, u) = (v, u) =1, for an element u in
Ng. Then (v; + v3, u) =0. Hence u & Int (go). Therefore, (p,q) = (2,5) or (3,7),
by the above lemma.

Step 2—iv. Assume that g =2p + 1 and that there exists an element u in
W,o(vo) such that (v +2v,, u) = 1. Then we obtain the same results as in Step
2—iii, by the same way, letting u; =33, ¢, 29, 6). g.e.d.

Proposition 3.4. Assume that t=4 and that {u€onNN|(v(o)u)=
1} N\ {uq,uz,us,us} consists of only one point ug which is in Int(o). Then there
exists an element g in GL(N) such that g(u;) = (1,0,0,1), that g(u;) =(0,1,0,1)
and that (g(uy).g(u)) =((0,0,1,1),(-1,-1,-1,1)), ((1,1,2,1),(-1,-1,-1.1)),
((1,1,3,1),(-1,-1,-2,1)), ((1,2,5,1),(~1,—1,—1,1)), ((1,2,5,1),(=1,~1,-2,1)),
((1,2,5,1),(=2,-3,-5,1)), ((1,2,7,1),(~1,—1,-2,1)) or ((1,3,7,1),(=1,—2,-3,1)),
where {i,j,k,l} = {1,2,3,4}.

Proof. We may only consider the case that |det (ug,u;,us,us)|=|det
(gt uz,us)|, |det (uo,uy,us,ug)|, |det (ug,us,us,us)|. Since uguuus NN = {ug,
uy,Uy,us}, by Lemma 3.2, there exists an element g in GL(N) such that g(ug) =
(0,0,0,1), that g(u;) = (1,0,0,1), that g(u;) = (0,1,0,1) and that g(u) = (1,p.q,1),
where p, g€Z,g>0,0=p=4% and g.c.d.(p,q) = 1. Here, we may only consider
the case that i=1, j=2 and k= 3. Since ug € Int (v uou3u,) and o satisfies the
condition (G), g(u4) = (—s,—t,—u,1), for certain positive integers s, ¢ and u. Let

1 .
i =——(qg(uq) + ug(uz)) = (u—sq,pu—1tq,0,q + u). Since  g(up) €

qgtu q+tu
Int (iig(u,)g(u2)), we have u—sq<0, pu—1tq<0. On the other hand, we
have |det (ug,u1,us,us)| =u=gq, |det(ug,uzuz.,us)|=1|sq—u|=q and |det(uo,
ui,uz,ug)| = |pu —tq| = q. Thus we obtain the following inequalities.

W) 1=su=q, 7<s=4+1, pg<t=ps+1.
When q=1, we have p=0, u=1, s=2 and ¢t = 1. Namely, g(u3) = (1,0,1,1) and
g(ug) = (—2,—1,—1,1). Next, we consider the case that g =2.

(I) Assume that u = q. By the inequalities (1), we have s=2 and t=p + 1.
Since

[1-g010] [001 —2 001g-2 1-g010
-p 100 Olp-p-1| |(010p-1 -p 100
—g 010| [00g-q | = l000 ¢ |4 =4 010] €CLM:
| 0 001] [111 1 111 1 0 001

g—2=1,p—1=1or(q—2)+(p—1)=q. Hence g=3, p=2 or p=3. Since

[10-10] [010-2 010g-2 10-10
01-10| (001 —p—1| _|001g—p-1 01-10
00-10| [000—g | = 000 ¢ |9 |o0-10] €OLM

100 01 111 1 111 1 00 01
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g-2=1,q—p—1=1or (q—2)+(q—p—1)=q. Hence g=3, g=p+2 or
q=p+3.
(i) When g =3, we have p=1 and ¢ =2. Then the convex set g(usu4) contains
the lattice point (0,0,1,1) =3g(us3) + 3g(u4)- It contradicts the assumptions that
AL=g¢.
(ii) When p=2 and q =p + 2, we have g.c.d.(p,q) + 1.
(iii) when p=2and g=p+ 3, we have ¢ =5 and 7= 3. Hence g(u3) = (1,2,5,1)
and g(ug) = (-2,-3,-5,1).
(iv) When p=3 and g=p +2, we have p>1%.
(v) When p=3 and g=p+3, we have g.c.d.(p,q) #1.

(IT) Assume that u < g. By the inequalities (1), we have s=1and 0<t=p,u.
Since

10-10] [o10 -1 010u-1 10-10
01-10| (001 —¢ 001 u—t 01-10
00-10| |000-u| = {000 « | ™ |00—-10] ECLM;
00 01| [111 1 111 1 00 01

u=1, u—1=1, u—t=1or (u—1)+(m—t)=u. Hence u=t=1, u=2 or
u=t+1. Since

1-g010] [oo1 —1 001g-u-1] [1-qo010
—p 100| [01P—¢| |010 p-t —p 100
—g 010| [00g —u| = 000 g=u | " |-q 010] SCLW™)
0 001] [111 1 111 1 0 001

and 0=p—t=pi—1+(1=5) p<(1-%) p=(g—u) L<q—u, we have q -
u=1,q-—u—1=1,p—t=1lor(q—u—1)+@p—t)=q—u. Hence g=u+1,
g=u+2orp=t+1.

(i) When u=t=1 and g=u+1, we have g=2 and p=1. Hence g(u;) =
(1.1,2,1) and g(uy) = (-1,-1,-1,1).

(ii) When u=¢r=1 and g=u+2, we have ¢=3 and p=1. Then g(usuy)
contains the lattice point (0,0,1,1) =3g(us3) + 3g(us).

(iii) When u=t=1and p=1t+1, we have p=2 and g =5. Since

1-210] Jo1-11 010g-3 1-210
0-210| [o0-12] |001¢-4 0-210
0-110| [00-14| = 000g-2| ® |0-110| SCLMNV):
0 001 |11 11 111 1 0 001

we have g—2=1, g—3=1, g—4=1 or (g—3)+(q—4)E(q—2)Z. Hence
g =3, because g =5. Therefore, g(us) = (1,2,5,1) and g(uy) =(—1,-1,—-1,1).
(iv) when u=2 and g=u+1, we have ¢g=3, p=1 and t=1, by the third
inequality in (1). Hence g(us) = (1,1,3,1) and g(uy) = (—1,-1,-2,1).

(v) When u=2 and g=u+2, we have g=4, p=1 and =1, by the third
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inequality in (1). Then g(usu,) contains the lattice point (0,0,1,1) = 3g(u3) + 38(us)-
(vi) When u=2 and p=t+1, we have t=1 or 2, because 0 <?=u. Suppose
that ¢ =2. Then g(u;u,) contains the lattice point (0,—1,—1,1) = 3g(u1) + 38(14)-
Hence r=1, g(us) = (—1,—1,-2,1), p=2 and g=5. Since

1-310] [o1-11 010g-5 1-310
0-310| [00-12| [0014-6 0-310
0-210| [00-24| = 000g-4| 2™ |o—210| ECLW:
0 001] |11 11 111 1 0 001

we have g—4=1, q—5=1, g—6=1 or (¢q—5)+(q—6)E(q—4)Z. Hence
g=5o0rq=7,because g=5 and g.c.d.(2,q) =1. If g =5, then g(u3) = (1,2,5,1).
If g =7, then g(us) = (1,2,7,1).

(vii) When u=t+1 and g=u+1, we have g =3. By the third inequality in
(1), we have (g—2)g=p(g—1)+q. Hence p=q—2q/(qg—1)=q—(2+2/
(q —1)). Therefore, g — p = 3 with the equality holds only if g = 3. When g = 3,
we have u=2, t=1 and p=1, because p=%. Hence g(u3)=(1,1,3,1) and
g(ug) =(—1,—1,-2,1). When g >3, we have ¢ — p=2. Then since ¢ —2=p =1,
we have g =4. Hence ¢ =4 and p =2. However, then g.c.d.(p,q) # 1.

(viii) when u=t+1 and g=u+2, we have g=4. Hence p —t=1, because
0=p—t<gq—t=3 and gcd.(p—t, g—u)=1. Then F=p=t+1=qg—2.
Hence g =4 and p = 2. However, then g.c.d.(p,q) # 1.

(ix) When u=t+1=p, we have p=2. If p=2, then u=2. This case was
already considered in (vi). Therefore, we may assume that p =3. By the third
inequality in (1), we have (p —1)g=p?+q. Hence p’=(p —2)q=2(p — 2)p.
Therefore, p=3 or p=4. When p=3, we have u=3,t=2and g=7 or g=3§,
because g.c.d.(p,g) =1, p=% and p>= (p — 2)q. If ¢ =8, then g(uou,usus) con-
tains the lattice point (0,0,1,1) = 3g(ug) + 3g(u1) + 3g(us) + 3g(us). If g =7, then
g(u3) =(1,3,7,1) and g(uy) = (—1,-2,—3,1). When p = 4, we have g = 8, because
p=% and p*> = (p — 2)q. However, then g.c.d.(p,q) # 1. q.e.d.

For the cases (1—2) through (3) in §2, it is easier to obtain similar propositions
as Propositions 3.3 and 3.4, by Lemmas 3.1 and 3.2. Hence we only give a list of
representaives of all pairs in €3 below. We denote by G(o) the minimal set of
generators of o which are primitive elements in N = Z*.

(1-1)
1. G(0)={(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)}. See [9, Table 2.2], for
Ug-
2. G(0)=1{(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,1,2,1)} and uy=%1,1,1,2),
1(1,1,1,3), 5(5,3,4,12), 1(3,2,2,8), 5(7,5,4,20), £(5,4,2,16), 3(3,2,1,9), }(2,1,1,5),
1(4,3,1,13), £(5,2,3,11), £(5,3,2,14), (7,3,4,16), (4,7,3,19) or %(5.9,4,24).
3. G(0)={(0,00,1), (1,0,0,1), (0,1,0,1), (1,1,3,1)} and uo=2(2,1,2,4),
13,2,1,7), 13,1,2,5), 4(5,2,3,9), 42,3.3,6), 1(3,4,3,9) or 4(1,1,2,2).
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4. G(o)={(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,1,4,1)} and uo=1(1,1,2,2).
{(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,2,51)} and uo=2%2,3,5.4),
1(2.,3,5.,5), 4(1,1,1,2) or 1(1,1,1,3).
6. G(o)=1{(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,2,7,1)} and uo=1(1,1,2,2).

7. G(o) ={(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,3,7,1)} and uo=1(1,2,3,2).

8. G(o)=1{(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,3,8,1)} and uo=1%(1,2,4,2).

9. G(0)={(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,3,10,1)} and uo=1(1,2,5,2).
G(0) = {(1,0,0,1), (0,1,0,1), (0,0,1,1), (=1,—1,—1,1)} and uo= (0,0,0,1).

5.

10.
11.
12.
13.
14.
15.
16.

17.

1.

[

o v AW

1.

( 1,

G(o) =

G(o)=

{(1,0,0,1), (0,1,0,1), (1,1,2,1), (=1,—1,—1,1)} and uo = (0,0,0,1).

G(0)={(1,0,0,1), (0,1,0,1), (1,1,3,1), (=1,-1,-2,1)} and uo = (0,0,0,1).
G(G)z {(1’07031)7 (0717071)’ (13275’1)5 (_1,_1,_1,1)} arld u0=(0,0,0,1).

G(o) =
G(o)=

G(o) =

G(o) =
(1-2)
G(o) =

G(o) =
G(0) =

G(o)=
G(o)=
G(o)=

-1

~1,1.3), X1,

{(1,0,0,1), (0,1,0,1), (1,2,5,1), (=1,—1,—2,1)} and uo = (0,0,0,1).
{(1,0,0,1), (0,1,0.1), (1,2,5,1), (=2,—3,—5,1)} and uo= (0,0,0,1).

{(1,0,0,1), (0,1,0,1), (1,2,7,1), (—=1,—1,—2,1)} and uo = (0,0,0,1).
{(1,0,0,1), (0,1,0,1), (1,3,7,1), (—1,—2,—3,1)} and uo = (0,0,0,1).

{(1,0,0,1), (0,1,0,1), (-1,-1,0,1), (1,0,1,1)} and uy=13(0,0,1,2),

{(2,0,0,1), (0,1,0,1),
{(1,0,0,1), (0,1,0,1),

{(27050’1)5 (0’15011)’

—1,2,4) or #(—1,-1,2,6).
,—1,0,1), (1,0,1,1)} and uo=13(1,0,1,2).
,—1,0,1), (1,2,3,1)} and uy=13(2,2,3,3).

-1,-1,0,1), (=1,0.2,1)} and uy = (0,0,1,1).

(-1,—
(-1,—

{(1,0,0,1), (0,1,0,1), (—1,—1,0,1), (0,0,2,1)} and uo = (0,0,1,1).
(-1
(-1

{(170,0’1)’ (0517071)s

-1,-1,0,1), (-1,0,3,1)} and uy=(0,0,1.1).

G(0) = {(0.0,0.1), (1,0,0,1), (0,1,0,1), (LO,1,1), (=1,0,~1,1)} and uo=
1(1,1,0,3), 1(1,1,0,4) or (1,2,0,6).
2. G(0)={(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,0,1,1), (0,0,—1,1)} and uo=
1(1,1,0,3) or 1(1,2,0.,4).

3. G(0)={(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,1,2,1), (0,0,—1,1)} and wuo=
1(1,1,0,4).
4. G(o)={(0,0,0,1), (1,0,0,1), (0,1,0,1), (1.1,2,1), (—1,—1,-2,1)} and uo=
1(1,1,0,4).
5. G(0)={(0,0,0,1), (1,0,0,1), (0,1,0,1), (1,1,3,1), (1,—1,—3,1)} and uo=
1(1,1,0,3).
6. G(o)={(1,0,0,1), (0,1,0,1), (—1,-1,0,1), (0,0,1,1), (0,0,—1,1)} and uy=
(0,0,0,1).
7. G(o)={(1,0,0,1), (0,1,0,1), (-1,—1,0,1), (0,0,1,1), (1,1,—1,1)} and uo=
(0,0,0,1).
8. G(o)={(1,0,0,1), (0,1,0.,1), (-1,-1,0,1), (0,0,1,1), (2,0,—1,1)} and uo=
(0,0,0,1).

9. G(0)={(1,0,0,1), (0,1,0,1), (-1

uo = (0,0,0,1).

,—1,0,1), (1,2,3,1), (-1,-2,-3,1)} and
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2-2-1)
G(o) = {(1,0,0,1), (—1,0,0,1), (0,1,1,1), (0,1,—1,1)} and u,=3(0,1,0,2).
G(0)={(1,0,0,1), (-1,0,0,1), (1,1,2,1), (—=1,1,—2,1)} and uo=3(0,1,0,2).
G(0)={(1,0,0,1), (-1,0,0,1), (0,2,1,1), (0,2,—1,1)} and uo=(0,1,0,1).
G(o0) ={(1,0,0,1), (-1,0,0,1), (1,2,2,1), (—-1,2,—2,1)} and u,= (0,1,0,1).
2-2-2)
1. G(0)={(1,0,0,1), (-1,0,0,1), (0,1,0,1), (0,—1,0,1), (0,0,1,1)} and ug=
1(0,0,1,2).
2. G(o)={(1,0,0,1), (-1,0,0,1), (0,1,0,1), (0,—1,0,1), (1,1,2,1)} and ugp=
1(1,1,2,2).
3. G(o)=1{(1,0,0,1), (-1,0,0,1), (0,1,0,1), (0,—1,0,1), (0,0,2,1)} and up=
(0,0,1,1).
(2—2-3)
1. G(o)={(1,1,0,1), (0,0,1,1), (0,0,—1,1), (0,1,0,1), (1,0,0,1)} and ug=
3(1,1,0,2).
2. G(o)={(-1,0,0,1), (1,0,1,1), (1,0,—1,1), (0,1,0,1), (0,—1,0,1)} and uy=
(0,0,0,1).
3. G(o)={(-10,0,1), (1,1,2,1), (1,-1,-2,1), (0,1,0,1), (0,-1,0,1)} and
uo = (0,0,0,1).
4. G(o)={(-1,0,0,1), (1,0,1,1), (1,0,-1,1), (0,1,0,1), (1,—1,0,1)} and ug=
(0,0,0,1).
(2—2-4)
1. G(o)={(0,-1,2,1), (0,2,0,1), (1,0,0,1), (—1,0,0,1)} and un=(0,0,1,1).
(2-3)
1. G(o)={(1,0,0,1), (-1,0,0,1), (0,2,0,1), (0,0,1,1)} and u,=13(0,1,1,2),
1(0,3,1,3) or 3(0,4,1,4).
2. G(0)=1{(1,0,0,1), (—1,0,0,1), (0,3,0,1), (0,0,1,1)} and u,=3(0,2,1,2).
3. G(0)=1{(1,0,0,1), (—1,0,0,1), (0,2,0,1), (1,1,2,1)} and uy=13(1,1,2,2).
(2-4)
1. G(o)={(0,0,2,1), (0,3,0,1), (1,0,0,1), (—1,0,0,1)} and u,=(0,1,1,1).
3)
1. G(o)={(0,0,0,1), (1,1,0,1), (1,0,0,1), (0,1,0,1), (0,0,1,1), (1,1,—1,1)} and
Moz%(l,l,O,Z).
2. G(o)={(1,0,0,1), (-1,0,0,1), (0,1,0,1), (0,—1,0,1), (0,0,1,1), (0,0,—1,1)}
and ug=(0,0,0,1).
3. G(o)=1{(1,0,0,1), (-1,0,0,1), (0,1,0.1), (0,—-1,0,1), (1,1,2,1), (—1,—-1,-2,1)}
and ug = (0,0,0,1).

BN

Referemnces

[1] Ishida M.-N.. Torus embeddings and dualizing complexes, Tohoku Math. J., 32 (1980). 111—
146.
[2] Ishii S., On isolated Gorenstein singularities, Math. Ann., 270 (1985), 541—554.



(3]
(4]
[5]

6]
(71
(8]

1]

SiMpLE K3 SINGULARITIES 799

Ishii S. and Watanabe K., On Simple K3 singularities, Note appeared in the proceedings of the
conference of Algebraic Geometry at Tokyo Metropolitan Univ., (1988), 20—31.

Morrison D.R. and Stevens G., Terminal quotient singularities in dimension three and four,
Proc. Amer. Math. Soc., 90 (1984), 15—20.

Oka M., On the resolution of the hypersurface singularities, Complex analytic singularities (T.
Suwa and P. Wagreigh, eds.), Advanced Studies in Pure Math., 8, Kinokuniya, Tokyo and
North-Holland, Amsterdam, New York, Oxford, 1986, 405—436.

Tsuchihashi H., Hypersurface sections of toric singularities, Kodai Math. J., 14 (1991), 210—
221.

Watanabe K., Ishikawa T., Tachibana S. and Otsuka K., On tensor products of Gorenstein
rings, J. Math. Kyoto U., 15 (1975) 387—395.

Watanabe K., On plurigenera of normal isolated singularities I, Complex analytic singularities
(T. Suwa and P. Wagreigh, eds.), Advanced Studies in Pure Math., 8, Kinokuniya, Tokyo and
North-Holland, Amsterdam, New York, Oxford, 1986, 671—685.

Yonemura T., On hypersurface simple K3 singularities, Téhoku Math. J., 42 (1990) 351-380.






