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Elementary Abelian p Subgroups of Lie Groups

By

Richard KANE* and Dietrich NOTBOHM**

§1. Introduction

In this paper we will study elementary abelian p subgroups

V=Z/pZx ... xZ/pZ

of compact Lie groups. If there are r copies of Z/pZ in the above decomposition
then Fis said to have rank r. An elementary abelian p group is a mod/? version
of a torus

T=Slx ... xS1.

A torus T contains a canonical elementary abelian p subgroup

VT={X<ET\ xp = i}.

Given a compact Lie group G an elementary abelian p subgroup is called toral if
it can be imbedded in a torus of G. Otherwise it is said to be non toral. The
importance of non toral elementary abelian p subgroups was first pointed out by
Borel thirty years ago when he observed the relation between the presence of
non toral elementary abelian p subgroups in G and the presence of p torsion in
//*G. In [1] he proved

Theorem 1.1. (Borel) Let G be a compact connected Lie group and let BG
be its classifying space. The following are equivalent.
(i) H*G has no p torsion.
(ii) H*BG has no p torsion.
(\\\) Every elementary abelian p group in G is toral.
(iv) Every elementary abelian p group of rank <3 in G is toral.
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Our study of elementary abelian p subgroups is motivated by this result and
gives some insight into it. When Borel proved his theorem the implications (i) =>
(ii) => (iii) =^> (iv) were either trivial or were proved by general arguments. He
then proved the implication (iv) => (i) basically via a case by case argument. For
every compact connected Lie group G with p torsion Borel located a specific
non toral elementary abelian/? group of rank <3 lying in G. The equivalence of
(i), (ii), (iii) and (iv) still lacks a general explanation. More precisely there are
two implications still lacking such an explanation, namely (iv) => (iii) => (ii). This
paper will give a conceptual argument explaining (iv) => (iii). It should be observed,
however, that, as explained after Theorem 1.2, our argument also depends upon
an empirical observation about Lie groups. So it is not a classification free
argument. Nevertheless, our argument still seems an advancement.

Before expanding further on the above statements we will state our main
results. We will work with H*(BG\ Fp), the mod p cohomology of J5G, and
develop a cohomological characterization of non toral elementary abelian p
subgroups in terms of H*(BG\ Fp) which is valid when p is odd and in certain
cases when p = 2.

A global relationship between the algebraic structure of H*(BG\ Fp) and the
elementary abelian p subgroups of G was worked out by Quillen in [6]. Further
extensions of this relationship were obtained in [4] and [7]. The machinery
developed in these studies in a key ingredient in the proof of our characterization.
Also used are some homotopy theoretic facts obtained by applying the Q
spectrum of connective J^-theory.

We begin with the case of p odd. If V C G is an elementary abelian p group
then

H*(BV\ FP) = E®S

where

E = the exterior algebra on H\BV\ Fp)
S = the symmetric algebra on /3pH

l(BV; Fp)CH2(BV', Fp).

Here f}pH
l(BV\ Fp) is the isomorphic image of H\BV\ Fp) under the Bockstein

PP: Hl(BV; FP)-»H2(BV\ Fp).

Theorem 1.2. Let G be a connected, simply connected, compact Lie group.
Let p be odd and let a: FC G be an elementary abelian p group. Then V is toral
if and only if (Ba)*x E S C H*(BV\ Fp) for all x E H\BG; Fp).

We should remark that this result depends on the Cartan-Killing classification of
the compact Lie groups. Namely, in the proof we use the empirical observation
that when p is odd and G is 1-connected the module of indecomposables
2even//*(G; Fp) is concentrated in the degrees 2(p 4- 1) and 2(p2 + 1). The best
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theoretical bounds on Qeven//*(G; Fp) are far cruder. By working at the level of
finite //-spaces general theorems have been deduced which severely limit the
degrees in which <2even//*(G; Fp) can be non trivial. The possible degrees are
those of the form 2(pk + . . . +pi+l + p1 + pL~l + . . . +p + 1). (See [5]). So there
are many possibilities besides 2(p + 1) or 2(p2-h 1). However, even for 1 con-
nected finite //-spaces, Qeven//*(^; Fp) is only known to be non zero in the
degrees 2(p + 1) and 2(p2 + 1).

When one passes to p = 2 one generally modifies statements by replacing
even degree indecomposables with squares of odd degree indecomposables.
Notably, if V is an elementary abelian 2 subgroup then

H*(BV\ F2) = the symmetric algebra on H\BV\ F2).

For any X we have the Frobenius map

In particular £ is an algebra map and 1~H*(X\ F2), the image of £, is a subalgebra
of H*CY;F2).

Theorem 1.3. Let G be a connected, simply connected, compact Lie group
where £//*(G; F2) has indecomposables only in the degrees 2k + 2 (k>2). Let a:
VC.G be an elementary abelian 2 subgroup. Then V is toral if and only if
(Ba)*x E %H*(BV\ F2) for all x E H\BG\ F2).

The hypothesis on £//*(G; F2) may be redundant. However, it is needed for the
present type of proof. And it is restrictive. It is not satisfied by the classical
compact Lie group Spin(«) for n > 15 nor by the exceptional compact Lie group
Es. As we have already alluded to earlier, the preceeding cohomological charac-
terization of toral/non toral elementary subgroup can be used to explain one of
the results obtained by Borel.

Corollary 1.4. Let G be as above. IfVdGisa non toral elementary abelian
p group then there exists a subgroup V C V of rank 3 which is non toral. In
particular rank F>3.

The next four sections are devoted to the proof of Theorem 1.2 and 1.3 as well
as Corollary 1.4. The theorems are proved in §1.4 and the corollary is proved in
§1.5. Sections §1.2 and §1.3 are preliminaries. They develop needed machinery
and establish preliminary results.
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Assumption. In all that follows we will assume that G is a connected, simply
connected, compact Lie group. We will also assume that p is odd. The changes
to handle the p = 2 case are minor and are in line with those mentioned above.
We will use Z^ to denote the integers localized at the prime p and we will use
H*( ) to denote cohomology localized at the prime p.

§2. The Ideals of H*(BG; Fp)

Quillen established in [6] that there is a relation between the elementary
abelian p subgroup of G and the ideals of H*(BG; Fp). This relationship was
completely worked out by Rector in [7]. In this section we will sketch the
relationship and explain how it leads to a criterion in terms of the ideals of
H*(BG, Fp) for an elementary abelian p subgroup to be non toral.

First of all, one can fix a maximal torus TCG and discuss toral/non toral
elementary p subgroups in terms of T. For since every torus is contained in a
maximal torus and since any maximal torus is conjugate to T it follows that

Lemma 2.1. An elementary abelian p group VC G is total if and only if it
can be conjugated into T.

Consider a fixed maximal torus i:TCG. Let a: FCG be an elementary
abelian p subgroup. Let

7=ker{(Bi)*: H*(BG; FP)-*H*(BT\ Fp)}
a)*: H*(BG\ FP}-+H*(BV', Fp}}.

If V is toral then we have a commutative diagram

H*(BG; Fp)

(Bar H*(BV;FP)

which gives the inclusion / C Iv. This inclusion actually characterizes V being
toral. Namely

Proposition 2.2. V is toral if and only if 1C Iv.

The rest of this section will be devoted to justifying this result. For the
following discussion consult §1 and §2 of [7]. The ideal IVCH*(BG', Fp),
defined above, is a prime ideal invariant under the Steenrod algebra A*(p).
Quillen demonstrated in [6] that the map V*-*Iy sets up a one-to-one cor-
respondence between conjugacy classes of elementary abelian p groups and
the invariant prime ideals of H*(BG\ Fp). Moreover, the correspondence is
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functorial in that, given F1? V2 there exists an inner automorphism of G mapping
FI into V2 if and only if /y, C IVi.

Now consider an elementary abelian p subgroup V where / C Iv. As before
let

Asserting that V can be conjugated into T is the same as asserting that V can be
conjugated into VT. Moreover, since H*(BTm, FP}^>H*(BVT\ Fp) is injective we
can also define / as

/ = ker{//*(£G; FP)-+H*(BVT', Fp)}.

The proposition now follows from the last sentence in the previous paragraph.

§3. The Idea!/

We now give a different description of the ideal 7=ker{(B/)*: H*(BG\
FP)-+H*(BT'9 Fp}}. This new characterization is the key to the proofs of the
theorems from §1.

(A) Connective ̂ -Theory
Let bu denote the complex connective K-theory and let € C bu^ denote the

canonical direct summand where

degv = 2(p-l).

In Brown-Peterson notation £ = BP(1) where BP(n) is the theory such that
n*BP(n)=Z(p)[Vi,V2,. . .,Vn]. Let {€„} be the Q spectrum associated to €.
This Q spectrum and, more generally, the Q spectrum of the theories BP(n)
were studied in [8] and [9]. We will limit ourselves to the spectrum {€„}.

For each n > 1 there exists a fibration of the form

For n < 2p + 2 //*€„ is torsion free and is either an exterior algebra (n odd) or a
polynomial algebra (n even). The map ^has the property that

Lemma 3.1. Im ^* = the subalgebra of H*(K(Z(p^ri)\ Fp} generated over
A*(p} by

(B) The Mod p Cohomology of G
Since G is a finite //-space the structure theorems of [5] apply and the

module of indecomposables, Qeven//*(G; Fp) must be trivial except in the
degrees 2(pk + ... + pi+l + p* + pl~l + ... +p + 1). It is an empirical observation
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that, in the case of 1-connected compact Lie groups, (2even//*(G; Fp) is trivial
except in the degrees 2(p + 1) and 2(p2 + 1). The structure theorems of [5] also
tell us that the maps

(3.2) G3//*(G; Fp)-^ 02^+2//*(G; Fp)-^+ Q2p2+2H*(G' Fp)

are surjective. As another result of [5] there exists a short exact sequence of
Hopf algebras over A *(p).

(3.3) 0 - >T - »H*(G; Fp) - >E - >0

where

(i) F is a primitively generated Hopf algebra and QF= Qeven//*(G; Fp)
(ii) E is a primitively generated Hopf algebra and Qodd//*(G; Fp) = QE.

(C) The Space G
We will define and study a space G. We begin by defining a space L and a

map /: G— » L. First of all, any 1-connected mod p finite //-space X is actually 2
connected and //3^ is torsion free. Choose a map

/: G-*K=UK(Z(p)3)
i=l

representing a basis of H3G. In other words, / * induces an isomorphism on
H3( ). We define / to be the composite

7 v A
/: G - >K - >L=U

_
where W=\\W. We now define

1=1

G = the fibre of /.

The map / is an //-space map. Indeed, as we will shortly point out, it is a loop
map. It follows from the discussion in Parts A and B (see, in particular, 3.1 and
3.2) that

(3.4) Im/* = r.

Since //*(L; Fp) is a polynomial algebra it is easy to deduce that

Proposition 3050 //*(G; Fp) is an exterior algebra (on odd degree generators).

To do this use the Serre spectral sequence associated to the fibration
G. This is a spectral sequence of Hopf algebras. Also H*(QL\ Fp) =k
<§) //*(€2/,+i", Fp) is an exterior algebra on odd degree generators. We can use
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3.4 to force non trivial differentials. Once we introduce all these non trivial
differentials we are left with an exterior algebra. Since the spectral sequence is
one of Hopf algebras it collapses from this stage on. (See §1—6 of [3]).

(D) The Space BG
The space BG is a loop space. We obtain BG by delooping the map / and

taking the fibre. We have already observed that G is 2 connected. It follows that
BG is 3 connected and

via the loop map

So the map / given above can be delooped and we can define the delooping Bf
of / as the composite

where

Bf BW
Bf: BG >BK >BL

BK=UK(Z(P)A)
i=l

k

BL = 11

If we let BG be the fibre of the map 5/then it follows from Proposition 3.5 that

CoroEary 3.6. H*(BG; Fp) is a polynomial algebra (on even degree
generators).

In particular, since H*(BG\ Fp) is concentrated in even degrees H*BG is
torsion free. The definition of G and BG gives maps/: G-> G and Bj: BG-^BG.
In the rest of this section we will show

Proposition 3.7. / = ker {(Bj)*: H*(BG* Fp) -> H*(BG\ Fp}}.

The diagram

Bi f
BT

can be extended to a diagram of fibrations
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BG >BG >BL
T t II

Lx BT >BT >BL
t t f

GIT = GIT > *

Regarding the fact that L x BT is the fibre of the map BT^BL observe that
since €*(j5T) is concentrated in even degrees the composite BT^BG-^BL =

k
II ^2/7+3 must be trivial.
1=1

Lemma 3.7. The maps H*(BG; Fp) -> H*(L x BT\ Fp) and H*(BT\ Fp) ->
H*(L x BT\ Fp) are injective.

Proof. Only the first map needs comment. Consider the Serre spectral
sequence of the fibration

Since H*(GIT\ Fp) and H*(BG\ Fp) are concentrated in even degrees the
spectral sequence collapses. Q.E.D.

Corollary 3.8. Ker (Bi)* = Ker (£/)*.

§4. Proof of Theorem 1.2

Let a: FC G be an elementary abelian/? subgroup and let /: TC. G be a fixed
maximal torus.

First of all assume that Fis toral. As observed in §2 there exists a commuta-
tive diagram

(Bar H*(BV\ Fp)

If we write H*(BV\ FP} = E®S as in §1 then Image{/f*(#r; Fp)-»
//*(J5F; Fp)}CS. Consequently, by the above diagram, (Ba)*xES for all
xeH*(BG'9Fp).

Conversely, suppose (Ba)*x E S for all x E H4(BG\ Fp). We can then set up
a homotopy theoretic diagram
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» Bj Bf BW
BG - > BG - >BK - >BL

(4.1) £*t f/z

BV - >BT
s

The top maps were defined in §3. In particular BG - >BG is the fibre of Bf=
Bf. The map

g: BV-+BT

is obtained by thinking of B T as the generalized Eilenberg-MacLane space
n

BT= El K(Z,2). It has the property that g*: H*(BT\ Fp) = S. The existence of
1=1

the map

n
Li- DT" ^ D V 1 \ V(*7 A\n. nl —* nK — 11 /C(Z,4)

/=l

filling in 4.1 is then equivalent to asserting that (Ba)*x E 5 for all x E H\BG', Fp).
Here we also need the fact that H4(BV) consists of elementary p torsion. This
will be proved in §5 in the discussion following Corollary 5.2.

We can use 4.1 to show that Ba factors through BG. In other words we have
a homotopy commutative diagram

(4.2) BG-^->BG

*\ t Ba
^ BV

~ Bj Bf
The point is that BG >BG >BL is a fibration and the composition

Ba Bf
BV >BG >BL is trivial. For by (4.1) we can rewrite BfoBa as

g h Bp
BV-» BT-* BK > EL.

However, l*(BT), the connective ^-theory of BT, is concentrated in even
k

degrees. So any map BT-*BL= Yl ^2P+3 is trivial.
1=1

We now apply §2 and §3. By Theorem 2.1 V will be toral if IC.IV. By
Proposition 3.7 and diagram 4.2 we have Idv.

§5. Proof of Corollary 1.5

Fix x E H\BG\ Fp) and assume that (Ba)*x E 5 C H*(BV\ Fp). We will use
p to denote mod p reduction.
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Lemma 5.1. x E Image {p: H*BG^H*(BG\ Fp)}.

Proof. Since G is 1-connected it follows from the structure theorems of [5]
that, in degree <2p 4- 2, //*(G; Fp) is an exterior algebra on odd degree
generators. It follows from a Bockstein spectral sequence argument that, in
degree <2p + 2, //*G is torsion free and an exterior algebra on odd degree
generators, (see §11-2 of [3]). Consequently, in degree <2p + 3 H*BG is torsion
free and a polynomial algebra on even degree generators. In particular, p:
H*BG-^H*(BG', Fp) is surjective in degree <2p. Q.E.D.

The commutative diagram

H*(BG) ^ H*(BV)

Pi (Ba)4. iP
H*(BG'9 Fp)—*H*(BV' Fp)

tells one that

Corollary 5.2. (Ba)*x E Image {p: H*(BV) -» H*(BV\ Fp)}.

The image of p: H\BV)->H\BV\ Fp) can be described explicitly. We can
write

where

&(«/) =fi

If we calculate homology with respect to f}p we have H(H*(BVm, Fp)) =
®H(Aj) = Fp (in degree 0). It follows that H*(BV) consists of elementary p
torsion and

Image [H*(BV)-*H*(BV'9 Fp)} = Image #,.

In degree 4 Image /3p is spanned by the elements {/3p(eiejek)} and {////}. So it
follows from Corollary 5.2 that

Lemma 503. (Ba)*x E So (Ba)*x can be expanded in terms of the elements

We now set about proving Corollary 1.4.

Proof of Corollary 1.4. Suppose a: FCG is a non toral elementary p
subgroup. By Theorem 1.2 there exists x^H4(BG; Fp) where (Ba)*x£S.
Write
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H*(BV; Fp) = E(el9... ,*„) ® 5(/1?... ,/„).

It follows from Lemma 5.3 that when we expand (Ba)*x in terms of {/,//}
JL {Ppfaej-ek)} one of the terms j8p(e/ey^) appears as a non trivial summand. We
can locate a rank 3 subgroup V C V such that

H*(BV', Fp) = E(ehej9ek) ® S(fhfJ9fk)

and e r=/ r = 0 of r±ij,k. So, when we pass to H*(BV'm, Fp), Pp(e£ejek) still
appears as a non trivial summand of (Ba)*x and V C G is non toral.
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