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On the Closed Hull of Subsets of Inductive Limits

By

Gerald HOFMANN*

Abstract

The present note investigates the closed hull of subsets M contained in the (unrestricted)
inductive limit E[T] of topological vector spaces £"Jra], aE. A. Sufficient conditions for the validity
of Mr= u Mr\Ea

Ta are given. These conditions are discussed by examples, and it is shown that
oeA

there is not any redundance among them. Applications to F-linked topologies and sequence spaces
are indicated. Futhermore, some inaccuracies contained in some of the standard text books are
corrected.

§1. Introduction

For the following let us given a family {Ea[Ta]}a(EAk of topological vector
spaces such that i) there is a vector spaces E with E = U Ea, ii) a=/= 6 implies

orGA

Ea+Ep, iii) the index set A is directed, where a< fi if EaCEp, iv) the embed-
dings Iaj: Ea[Ta]-*Ep[Tp] are continuous for all a< /3, (or,/3E A). Let us mention
that this is an often used realization for the construction of inductive limits.

The present note is aimed at an investigation of the closed hulls of subsets
MCE, where E is endowed with the vector topology of respectively, the unre-
stricted inductive limit rM, the locally convex (I.e.) inductive limit T/, and the
weakest vector topology p making the projections Pa: E[p]^>Ea[Ta], orEA,
continuous (for a definition of Pa see (I), below). The main theorem gives
sufficient conditions such that

orGA

and

MTu = AT',

respectively. These conditions are discussed by some examples, and it is shown
that there is not any redundancy among them. Further, some applications of this
theorem to the interesting concept of F-linked topologies are discussed. These
results are finally applied to some problems of the theory of sequence spaces.
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Let us mention that in some of the standard text books on topological vector
spaces ([6], [8a]) there are some inaccuracies concerning the closed hull of
subsets of inductive limits. This is pointed out by some examples (see Remarks
3b), 4b) below), and a correction is given in Theorem 1 and Corollary la).

The pattern of the present note is as follows. In §2 the main theorem on the
closed hull (Theorem 1) is stated and proved. The assumptions needed for the
proof are discussed by Lemma 1 and Remark 2. The aim of §3 is to show
that there is not any redundance among the assumptions of Theorem 1. In §4,
some applications to F-linked topologies on inductive limits are pointed out by
Theorem 2 and Corollary 1. Finally, some applications to problems concerning
sequence spaces are indicated in Corollary 2.

§2. A Theorem on the Closed Hull

Let us confirm some notation. For any (topological) vector space X[T] and
any linear subspace Y C X, let r ^ Y denote the topology which is induced by r on
the subspace Y. In the following let tt(r) stand for some (local) base of O
neighborhoods defining the (vector) topology r. Further, for any subset ZcX
let ZT (resp. Z1) be the closed hull of Z in X (resp. the completed hull of Z)
with respect to r. Furthermore, if r and r' are two given topologies on X, then
let T< rf mean that r' is finer (stronger) than r.

Let E= U Ea be endowed with respectively, the finest vector topology ru
orGA

and the finest I.e. topology r/ such that the canonical embeddings

Ia: Ea[ra]-*E[Tu]

and

are continuous for all a&A. Recall that ru and r/ are the unrestricted inductive
limit topology and the inductive limit topology, respectively (see [14; 13.2.4]).
Obviously, TU> r/. Furthermore, if the indexing set A is countable and ^[rj,
orE A, are I.e. spaces, then TU = rh ([14; probl. 13.1.5, 13.1.108]).

Let us consider the following conditions: For each ore A, let Ea be topo-
logically complemented in E[ru] and E[TI], respectively, i.e., the canonical
projections

Pa: E[rJ->Ed>J (I)

and

Pa: E[Ttl-*Ea[Ta] (F)

(<vEA) are continuous. Recalling TU> rh (F) implies (I). Conditions (I), (F)
are discussed by the following lemma.
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Lemma 1. a) (I) implies ru^Ea=ra (orEA), and ra - E/j = Tp for /3EA,
13 < a. If E^t^ (orEA) are Lc. spaces and (F) is satisfied, then T^ Ea= Ta

(orE A), and Ta^E0= Tp for /?E A, /3< a.
b) If Ea[Ta], <#E A, are Lc. spaces and (I) is satisfied, then (/') follows.
c) Let us given a family of vector spaces (resp. Lc. spaces) {Fp[tp]m, /?E B},

B is a set of indices. Then, the unrestricted inductive limit E[TU] (resp. inductive
limit E[Ti]) of {Eb[rb]) b E 33} satisfies (I) (resp. (I')), where $ denotes the set of
all the finite subsets ofE directed by inclusion "C", and Eb = 0 Fp[tp].

d) Let E[TU] be the unrestricted inductive limit of a sequence of Lc. spaces
00

En[Ttl], such that En+iD En (n = 0,1,2,. . .), E= U En, and (I) is satisifed.
/x=0

Then, TU = i- and E[rt] = ® Fn[tn], where F0[f0] = EQ[TQ], Fm[tm] = EJEm_^^

and rm denotes the quotient topology, m = 1,2,3, • • • •

Proof, a) (I) and the continuity of Ia imply TU ̂  En > Ta and ra> TU > E^
respectively. Thus, rw \ Ea

 = Ta is implied. Now, let U(TM) be some base of 0-
neighborhoods defining rw on E. Then, {Ur\Ea\ U^n(tu)} defines ra on Ea

). For ]8<ar (a, jSEA), it follows that (t/n£a)n£; j g= Ur\Ep and thus

The assertions concerning r/ follow analogously.
b) Recall that T/= (ru)c, where (TM)C denotes the finest I.e. topology on E

weaker than TM, and (ru)c is defined by

where aco(.) denotes the absolutely convex hull of., (see [14; 7.1.103, 13.1.101]).
(I) implies now that for each absolutely convex r^-neighborhood of 0 Va E II (ra),
orE A, there is a U E U(TM) such that Pa(U) C Va. Using that Va is absolutely
convex Pa(aco(U)) C F^ follows, Thus, (F) is implied.

c) Consider the product

and recall that for each ^GB, frESB, the canonical projections

are continuous. Finally using TP^E<TU and IT Fp[tp\= 0 ^[^], the con-

tinuity of Pa = Pa ^ E: E[Tu]->Ea[Ta] follows. Hence (I) is satisfied. The second
assertion to be shown is now a consequence of b).

d) The observation made above implies ru = r/. Using now a) and the
continuity of Pn: £[TM]—» £„[!•„], the continuity of
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Pn+l,n = Pfi r E,,+1
: En+i[Tn+i]~* En[Tn]

is implied. Hence, the topological isomorphisms

En+i[Tn+i] = En[Tn] 0 Fn[tn+l]

follow, n = 0,1,2, ____ Then,

En[rn] = FoM © Fifo] 0 -.. e/M,

are implied, ([8; §§18.5(2), 19.4]). This completes the proof of Lemma 1.

Remark 1. Concerning the assertion of Lemma la) let us mention that if
A = N and En[rn] are I.e. spaces (n = 0,1,2,. . . ) , then r,- r EM = r,, are implied
without assuming (I), (see [8]). However, if (I) is not satisfied and A ¥= N, then
there are examples such that T/ \ E(X ^ ^() f°r some o^E A; (see [7]).

For the following let p denote the weakest vector topology on E such that
Pa: E[p]^ Ea[Ta], ctEA, are continuous. Recall that p is defined by the
following base of O-neighborhoods

where tt(Ta) denotes some base of O-neighborhoods defining r^on Ea. Obviously
(I) yields

p<Tu. (1)

Notice also that if E = ® Fa, then p is equivalent to the topology which is
crGA

induced by the topology of the product TT Fa [rj on its subspace E.
creA

For a subset M C E let us consider the following condition: There is an index
Oft E A such that

M (II)

for all orE A with a> OQ.

Theorem 1. Let us given the unrestricted inductive limit E[ru] of a family of
topological vector spaces {Ea[Ta]}a^A as in chapter 1, and a subset MC.E. Let (I)
and (II) be satisfied.

a) It is

b) If furthermore Ea[Ta] (orE A) are I.e. spaces and (F) is satisfied, then
MT" = MTl
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Proof, a) Using (1) and Lemma la), it follows that

U MnEa
T"CMT»CMp. (2)

or>cv()

Now, let us assume that there is an /E Mp such that

f^^WnJ^. (3)

Choose then an index /3 E A with /3 > ar0

W)=/- <3')

Because of (3) there exists a O-neighborhood t/E II (TQ) such that

( /+J7)n(Mn£ / 3)^0. (4)
Further, using the continuity of Pp. E[p]-^ Ep[ip], it follows that there is a O-
neighborhood FEE il(p) with

P000CC7. (4')

Finally,

( ' ) (4)V) n M) c p^/4- F) n pp(M) c (/+ 1/) n (M n EP) = 0 (5)

are implied, where (*) is a consequence of (3'), (4;), and (II). However (/+
V) H M =f= 0, due to /E Mp and F<B U(p). This yields a contradiction to (5) since

Pp is defined on the whole of E. Thus

AfpC U
a>a0

This implies together with (2) the assertion of a).
b) Noticing that the assumptions of b) imply p<r/,

MTu C MTl

follow. Applying a), the assertion under consideration is implied.

A discussion of (II) is given by the following.

Remark 2. If A = N, and M is a linear subspace that satisfies (II), then
there are linear subspaces M0 C EQ, Mn C EJEn_l (n = 1,2,3, . . .) such that

M - M0 0 M! 0 M2 0 . . . .

Proof. Let us put

M0 = {W);/£M},
Af „= {Pn(/) -?„_!(/); /EAf},

n = 1,2,3,. ... The assumptions of the assertion under consideration imply
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M W CM (m = 0,1,2,. ..). Using the isomorphisms considered in the proof of
Lemma Id), let Mn be canonically identified with a linar subspace of Fn = Enl
£"„_!. Hence,

0 MmCM.
m=0

Conversely, let /e M. Considering /„ = />„(/) E Af0, /„ = />„(/) - /Vxtf) £ MB

(n= 1,2,3,. . .), it follows that

m=u

§3. Discussion of Theorem 1

It will be shown by two examples that there is not any redundance among
the assumptions (I), (II) of Theorem 1.

Example 1. Let us given a strict inductive limit

with a defining sequence (En[rn])^=i of I.e. spaces satisfying EnCEn+l, E =

U £„, and r/l+1 r En = r«, n = 1,2,3, . . . . Further, let us assume that E[r] is not a

direct sum as described in Lemma Id). (For a concrete example one can choose
the Schwartz-spaces 2) of basic functions having a compact support.) Notice that
(I) is not satisfied. Then there is a subsequence of (En)n=i such that Pm:
E[T\->Em[Tm] are not continuous for all m G N . Hence there is a net (v(/

B is a directed set of indices, v^ E £", such that

concerning r, and for each m E. N,

concerning rm. Consider the set

M-{v (^>; /3EB} U{Pi(v(^>); ^eB} U (F2(v
(/3))

Then,

i) Pn(M)CM,n =1,2,3,-..,

ii) OGMT , iii) 0£ U MH£ / ?
T"7 n = i

follow. Thus the assertion of Theorem la) does not hold true. This example
shows that (I) is not any redundance among the assumptions ©f Theorem la).
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Example 2. Consider the direct sum

C(g) = C vE7 \^ \JJ . . . ,

where C stands for the set of complex numbers. Further, let

CN = C 0 C ® . . . © C ( N + 1 items), ATE N*,

denote the Nth "truncated" part of C®. In the following let C® be furnished with
the topology of the direct sum r, i.e., r is denned by the following system of
semi-norms

where

" /z=0

/= (/o,/i,... ,/m,0,0,. ..) E C®, and R++ denotes the set of all the sequences of
positive real numbers. (Recalling that for all but finitely many homogeneous
components /„ of /EC® the equality fn = 0 holds, (6) is well-defined.)

Furthermore, let TN stand for the I.e. topology on CN that is induced by r
on the subspace CN of C®. Notice that C®[T] is a strict inductive limit with the
defining sequence (CN[TN])^=Q, i.e.,

C® =

Now, let us consider the set

tO, /i(|/0| + |/n|)> 1, n = 1,2,. . .}, where/<,©/„ =

Lemma 2. The following are satisfied:
a) M does not satisfy condition (II),

c) 0 E MT

Proof, a) Take any /0 0//7 E M and consider Pn-i(fo ©/«) =/o- Noticing
that every /EM has exactly two non-vanishing homogeneous components, a)
follows.

b) Assume that b) is not satisfied. Then there is a certain n' E N such that

OEMHC,/".
Hence, for every sequence (rn)^=0ER^" and every £>0 there has to be an

(7)
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with

Note that (7) implies m < n'. Choosing e = — -, r0 = rx = . . . = 1, (8) implies
2n

Thus /£ Af follows. But this contradicts (7).

c) Let us given any (rn)^=0^R++
5 £>0. Then choose AX' EN with n' >

2r0/£. Consider /=/o ®/,,«, where /0 = £/2r0, /„- = e/2/v. Because of

!/„•!) = (l/r0 + 1/r,,') > r0(l/r0

/EM follows. Then,

V \fn> \ = 8/2 + s!2 = s

yields c).

Remark 3. a) Because of Lemma Ic), the present example satisfies
assumption (I). Hence, Lemma 2 implies that (II) is not any redundance among
the assumptions of Theorem 1.

b) Example 2 sets also a counter-example to [8a; §19. 5(5), (6)]. Hence
these assertions are incorrect, and Theorem 1 represents a possibility to correct
them. Let us mention that the last edition [8] does not contain any assertions
about the closed hull of subsets of inductive limits.

c) In the case of tensor- algebras, condition (II) was first considered by J.
Yngvason ([4], [15]).

§40 On F-lieked Topologies on Inductive Limits

Following Wilansky, let us recall the concept of F-linked topologies.

Definition 1 ([14; 6.1.9]). Let t, t' be vector topologies for a vector space X.
Then, t' is called F-linked to t if there is a base of O-neighborhoods U'(t') which
defines t' and each U^ll(t') is t-closed.

Remember also that among others there are the following interesting appli-
cations of this concept: i) characterization of completed and closed hulls ([8;
§18.4(4)], [3], [14; 6.1.13, 6.1.16]), ii) characterization of polar topologies ([14;
probl. 8.5.4]), and iii) characterizations of barrelled and ultrabarrelled vector
spaces ([14; probl. 9.3.112-114, 126, 131]).
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Definition 2. Let us given E= U Ea as in chapter 1, and let (I) be satisfied.
a^A

Then, a test topology t on E (i.e., Ia: Ea[ra]-^ E[t], #E A, are continuous, [14;
13.1.1]), is called filtrated, if

i) there is a t-defining base M(t) of ^-neighborhoods with the property. For
each U E n(f) there is an index OQ £ A such that Iao Pa(U) C U for all a> #0,

ii) p<t.

Lemma 3. Let E[TU] satisfy (I). Then,
a) p is the weakest filtrated topology on E,
b) every vector topology t with p<t< TU satisfies

tSEa=*ai OrG A.

Proof, a) Using (1), it is implied that p is a test topology. Further,
consider the base of O-neighborhoods

which defines p on E. For U = P^l(U^) £ U(p), choose a0 = /?. For each ore A,
On, it follows

This proves a).
b) Using the continuity of Pa: E[p]^Ea[Ta], (1) and Lemma la), the

assertion under consideration is implied by

a(=A.

Theorem 2, Let us given the unrestricted inductive limit £[rj. // E[TU]
satisfies (I) and t' is a filtrated topology on E, then t' is F-linked to every vector
topology t that satisfies p<t<ru.

Proof. Definition 2 and Lemma 3a) imply p<tr < ru. Consider the base
ll(O given in Definition 2, and notice that

for each J/e U(r'). Applying Theorem la) to Af = 17, it follows that Uf= Ur' .
Finally noticing that {£/; I /EU(f ' )} defines t' , the proof is completed.

Let us discuss Theorem 2 for the special case of the direct sums E[TU] and
Efa] of vector spaces and I.e. spaces F$tp\-> /?EB (set of indices), respectively.
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Lemma 4. Let us given vector spaces (resp. I.e. spaces) Fp[tp], /?EB. Then,
a) ru (resp. T/) is the finest filtrated vector topology (resp. finest filtrated I.e.

topology) on E= 0 Fft,
pEEo

b) the box topology 7 is also filtrated.

Proof, a) Using Lemma Ic) and (1), it follows that Definition 2ii) applies
to TU and r/, respectively. Let U(tp) be bases of O-neighborhoods which define tp
on Fp, /3&B Then,

H(rb) = {VbCEb\ there are 0E6, C/pElIfo) such that Vb =

defines rb on Eb, where Pb,p = PptEb> Pp: E-^Fp (canonical projection).
Remembering that the system of all

tf= u S u ib(vin\
K—L n—\ OG S

V(bl} EL It (T£,), « = 1,2,3, - . . , defines TW on £, condition i) of Definition 2 follows
from

for all Z?0E§8, where Pb,c
 = PC\ Eht PC- E-*EC (canonical projection), c = bn

fe0E^8, Pfrj0(^/l)) = 0. Finally recalling that TU is the finest test topology on E,
the assertion under consideration is shown for ru.

Now, let Fffcp], ^GB, be I.e. spaces. Recall that r/ is defined by

U(ii) = {aco(£/);

If MEaco(t/) = {AMi + ^M2; |A| + |^|<1, Mi,M2Et/}, then

I*°P<M = A/,o F^^O + ^IaoPa(u2) E aco

because of I^P^Uj) E [/ (/ = 1,2), aG A.

b) Recalling that y is defined by

and it satisfies p< y< yw, the filtratedness of y follows straightforwardly.

Corollary 1. Assume that the assumption of Lemma 4 are satisfied. Further
let us given a filtrated vector topology T' on E.

a) T' is F-linked to every vector topology T on E which satisfies p<r<ru.
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b) // E[T'] is ultrabarrelled, then Tf = ru.
c) // Ep[tp\, ^^B, are I.e. spaces and E[T'] is barrelled, then r' — r/.
d) // if' is a second filtrated topology on E such that if' < T' , then Ep D E*'

D ET' D ETu.

Proof, a) follows from Lemma Ic) and Theorem 2.
b) follows from Lemma 4 and [14; probl. 9.3.113].
c) follows from Lemma 4 and [14; probl. 9.3.112].
d) is a consequence of the closed neighborhood theorem, Theorem 2 and

Lemma 4.

Remark 4. a) If T' = rM, r= p, then Corollary la) implies the assertion of
[14; 13.2.11].

b) The following Example 3 shows that the assertion stated in [6; 4.4.2]
is incorrect. However, setting r=p, Corollary la) gives a correction of this
assertion.

c) For tensor-algebras, some families of filtrated I.e. topologies are
introduced and investigated, e.g., in [2], [4], [5], [9], [12], [15]. Let us mention
that the investigations of tensor-algebras were initiated by Borchers and
Uhlmann ([1], [13]).

The aim of the following is to show that the assumption of the filtratedness
of T' is not any redundancy in Theorem 2 and Corollary 1.

Example 3. Let us consider the Schwartz space ^(R) of basic functions
endowed with its well-known I.e. topology given by the system of norms

/ <* \ 1/2

pM(h) = ( J \Nmh(x)\2 dxj ,
— oo

m = 0,1,2,. .., where N=l+x2 - (d2/dx2), fteSP(M), (e.g., see [10]). Let

E= ® F,z,

where Fn = ̂ (E). On E let us consider the I.e. topologies TU,TX, and p given by
the following systems of semi-norms:

cc

TU- P(y,,)(/"„)(/)= S Yn P{mn)(fn), (Yn)i(mn)^NN (set of all the sequences of

natural numbers),

TOO'. P(y,,),m(/)? (y«) £NN, m = 0,1,2,.. . (fixed in each semi-norm!),

),/!,*: = 0,1,2,...,

where /= (/i,/2,... ,/yv,0,0,...) E E. Note that E is complete with respect to
both TZC and T...
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Consider now the linear functional T(f) = Z Tn(fn) where

Notice that T is ^-continuous, but not Tec-continuous. Furthermore, let us
consider the I.e. topology T* defined by the semi-norms

where pT(f) = |r(/)|, feE. Obviously,

Lemma 5. E is not complete concerning T*.

Proof. Let us assume the contrary. Since T is not i^-continuous, the
hyperplane

is dense in E concerning rx. Hence there is a net (/(M))Me^ /(M) E: //, A is a
directed set of indices, such that

/<">-> 0 (9)

with respect to rx. Now, (9) and p7</(Ac)-/(A1')) = 0, ^, ju 'e^l , imply that
(f^)iA^A is a Cauchy-net with respect to T*. Using our assumption, the existence
of gE£" satisfying /(M)->g with respect to T* is implied. Because of TX< T*, it
follows that f^-^g holds also with respect to r^. However, this yields g = 0
being a contradiction to

4. Thus the proof is completed.

Notice that condition i) of Definition 2 does not apply to

Recalling that E is complete with respect to both TX and TM, the closed neigh-
borhood theorem and Lemma 5 imply that U is not closed concerning both p
and TX. Hence, the assumption of the filtratedness is not redundant in Corollary 1.
Furthermore, it follows that T* is not F-linked to p. Thus the assertion of
[6;4.4.2] is incorrect.
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Let us give some simple applications of the foregoing to the following typical
problems concerning sequence spaces: a) problem of identification, b) inclusion
problem (Abelian theorems), c) intersection problem (Tauberian theorems,
i.e., are there sequence spaces S;, j = 1,2,3, such that Si D 52 and Si fl S3 C 52?),
see [11; p.2].

Let us put B = N and Fp=C (endowed with its standard topology) in
Lemma 4. Then, E = cp (space of complex sequences which are eventually zero)
and TU = TI.

Corollary 2. a) // T is a filtrated topology for cp, then <pT is a sequence
space.

b) // TJ (j= 1,2) are filtrated topologies for cp such that TI < T2, then the
sequence spaces qpTj satisfy <pT2 C <pT1.

c) Let us given filtrated topologies TJ (j = 1,2,3) such that TI < T2 < sup (r1?

T3). Then,

Proof, a), b) Noticing that co=qf (space of all complex sequences),
Corollary Id) implies the assertions of a), b).

c) Recalling that n(sup(rl5r3)) = (Ul n t/3; t /yEU(ry) , /E {1,3}}, the fil-
tratedness of sup(rl5r3) is implied. The assertion under consideration is now a
consequence of <pT1 H <^ = <psup(T1'^ ([14; probl. 6.1.4]), T2<sup(T1,r3), and
Corollary Id).

Let us mention that the method of constructing new sequence spaces by
completion of cp is also used by Dubin and Hennings ([2]).
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