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A Characterization of Pettis Sets in
Dual Banach Spaces

By

Minoru MATSUDA*

Abstract

In this paper, we give a characterization of Pettis sets in dual Banach spaces in terms of 6-
Rademacher trees. This is a generalization of our Theorem 1 in [1].

§1. Introduction

Throughout this paper X is a real Banach space with topological dual X*.
The closed unit ball of X is denoted by Bx. In the sequel, (Q, Z, /i) always
denotes a complete probability measure space and ([0, 1], A, A) is the Lebesgue
measure space on [0, 1]. For each (Q, 21, //), a function/: Q-^X (resp. X*) is
said to be scalarly measurable (resp. weak*-measurable) if the real-valued

function (**, /(a>)) (resp. (jt, /(&>))) is /^-measurable for each jc*EX* (resp.
* E JT). We say that a scalarly measurable function/: Q-^Xis Pettis integrable
if (**, /(co)) E Li(O, Z, IJL) for every x* EX* and moreover for each E E J£ there
exists an element XE of X that satisfies

(**, XE) = f (x*, f(a>))di4<o)
JE

for every x*GX*. If / : Q->X* is a weak*-measurable function with bounded
range, then we obtain a bounded linear operator Tf\ X-*Li{Q, 2, jj) given by
Tf(x) =xof for every x E X, where (x of) (co) = (x, f(co)) for every co E Q. The
dual operator of Tf is denoted by T}.

Let K be a compact Hausdorff space. Then a real-valued function h defined
on K is universally measurable if h is cr-measurable for every Radon probability
measure a on K. If / is a function from K to X then / is called universally
scalarly measurable if the real-valued function (jc*, f ( k ) ) defined on K is univer-
sally measurable for each x* E.X'*.

A subset C of X is said to be a weak Radon-Nikodym set if for any (Q, 2, //)
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and any measure ar:<T—> X for which oc(E) GE ^(E)-C for every E G Z, there exists
a Pettis integrable function g: Q—» C such that

(**, *(£)) - f (*
J F

1 ^V

E

for each E&Z and ** E Jf*. Let // be a weak*-compact subset of X*. Then we
always understand in the following that H is topologized by the weak*-topology
a(X*, X). As a general notion of weak*-compact convex weak Radon-Nikodym
sets, the following is defined.

Definition. A weak*-compact subset H of X* is called a Pettis set if the
identity map i: H->X* is universally scalarly measurable.

Then it has been shown in [3] (or [7]) that H is a Pettis set if and only if w*-
conv(/f) (the weak*-closed convex hull of H) is a weak Radon-Nikodym set.

Now a sequence {xn}n^i in X is called a tree if xn = (*2« + *2«+i)/2 for all
H § 1. Following Riddle and Uhl [4], we say that a tree {xn}n^i is a 6-Rademacher
tree if there exists a d > 0 such that

and, in general,

2rn-l

/=0

for all m ̂  0.
In a series of papers [4], [2] and [1], some attempts to characterize weak*-

compact convex weak Radon-Nikodym sets of X* in terms of 5-Rademacher
trees have been made in various cases (or steps) and the following result
(Theorem 1 in [1]) has been obtained.

Theorem A. Let C be a weak*-compact convex subset of X*. Then the set C
is a weak Radon-Nikodym set if and only if it contains no 6-Rademacher tree.

In this paper we present the following Theorem 1 concerning the character-
ization of weak*-compact (not necessarily convex) Pettis sets in terms of 6-
Rademacher trees, which is an extension of Theorem A. This is the aim of our
paper. In the statement (b) of Theorem 1, [0, 1] is endowed with A and A.

Theorem 1. Let H be a weak*-compact subset of X*. Then the following
statements about H are equivalent.

(a) The set H is a Pettis set.
(b) For any weak*-measurable function f: [0, !]—>//,

A(/4) > 0, A E. A} contains no d-Rademacher tree.
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(c) For any (Q, Z, ^u) and any weak* -measurable function f: Q^>H, {7/Ofe/
} contains no d-Rademacher tree.

§2. Preliminaries

Before proving Theorem 1, let us recall and prepare some notations and
facts that are needed in the process of our proof of Theorem 1.

Let K be a compact Hausdorff space. A sequence of pairs (An, BfJ)n^1 of sets
of K with An D Bn — (f> for all n is said to be independent if for all {£/}I^A: with

k
EJ = 1 or -1, H EjAj + 4> where EjAj = Aj if EJ = 1 and EjAj = B} if EJ = —I. When

there exists an independent sequence (An, Bn)n^l of closed subsets of K, put
oc

F= n (An U Bn). Then Tis a non-empty compact subset of K, since (An, Bn)n^l

is independent. Define 0: F-* A (={0, 1}N, Cantor space) by 0(z) = {tn}n^i
where tn = 1 if z^An and tn = 0 if z ^ Bn. Then, setting Um = {t= {tn}n^i ^ A:
tm = 1}, 4> is a continuous surjection that satisfies FC\Am = 4>~l(Um) and Fr\Bm

= <^>~1(f/^) for all m ̂  1. Since 0 is a continuous surjection, we have a Radon
probability measure yon Fsuch that 0(y) (the image measure of y by 0) =v (the
normalized Haar measure on A) and {/o0: fE.Li(A, 2*v, v)} = L!(r, J£y, y)
(cf. (1-2-5) in [7]), where J£v (resp. I^y) is the family of all v (resp. y)-measurable
subsets of A (resp. F).

cc

Furthermore, consider a function p: A-*[Q, 1] defined by p(t) = 2 tn/2
n,

n = l

where t= {tn}n^^^A. Then we easily obtain that p is a continuous surjection
satisfying p(v) = A and {wop: i^eL^fO, 1], A, A)} =Li(-A, Zv, v).

Under these preparations we first note the following lemma, which has been
essentially suggested in the proof of (b) => (a) of Theorem (7-3-7) in [7]. But, for
the sake of completeness, we dare state it in a more explicit form suitable for our
subsequent argument and give its simple proof.

Lemma. Let S be the linear operator on Lj([0, 1], A, A) given by S(u) =
uopocj) for every wEL^O, 1], A, A). Then the following statements hold.

(a) The linear operator S is a surjective isometry from Lx([0, 1], A, A) to
L,(F, Zv, y).

(b) For every g<ELx(F, ZY, y), S*(g)(p(0(z))) = g(z) Y-<*.e. on T, where
5* is the dual operator of S.

(c) For gl and g2 in LJ(T, Zr y), S*(grg2) = S*(gi) ' $*(g2) in L«<[0, 1],
A, A).

Proof. Let us first show the statement (a). As for the isometry of 5, it
easily follows from the fact that
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\u(p(t))\dv(t) = f
->rn

using the change-of-variables formula. As for the surjectivity of 5, suppose the
contrary. Then (S(u): wEL^fC), 1], A, A)} is a proper closed subspace of Lx(F,
2r y). Hence, by the Hahn-Banach theorem, there exists a non-zero element g
of Loo(r, Zy, y) such that Jrg(z)5(a)(z)rfy(z) - 0 for every M G L^fO, 1], A, A).
That is, Jr g(z)w(p(^(z)))Jy(z) = 0 for every wGLi([0, 1], A, A). Since {wop:
u G Li([0, 1], A, A)} = Li(A9 2V, v) as stated above, J> g(z)/(0(z))dy(z) = 0 for
every /GLi(A, Zv, v) which means that g = 0 in L^F, Zy, y) since {/o0:/e
Li(A, 2"v, v)} = Li(T, 2"y, y) as noted above. This is a contradiction.

To prove (b), it suffices for us to show that

f S*fe)(p(0(z)))A(z)dy(z) = f g(z)h(z)d7(z)
Jr Jr

for every /zGL^r, 2"y, y). For each AGLi(r, Zy, y), in virtue of (a), there
exists an element u of /^([O, 1], A, A) such that h = uop°(j) in Li(r, Zy, y).
Then we have

[0, 1]
= I g(Z)S(u)(z)d7(z)Jr

= f g(z)«(p(0(z)))rfy(z)= f
Jr Jr

On the other hand, we have

[o,

Hence we have the desired equality for each ftGL^r, Zy, y). This completes
the proof of (b). Finally, by virtue of (b), the statement (c) follows easily. So the
proof of Lemma is completed.

§3, Proof off Theorem 1

In [3] and [7], the following Theorem B has been obtained concerning the
characterization of Pettis sets in dual Banach spaces.
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Theorem B. Let H be a weak*-compact subset of X*. Then the following
statements about H are equivalent.

(a) The set H is a Pettis set.
(b) Each sequence of A has a pointwise convergent subsequence on H,

where A = {x\H: x E Bx} (that is, every sequence {xn}n^i in Bx has a subsequence
{*n(k)}k^i sucn that for every jc*G//, lim (**, *„(&)) exists).

K—>oc

(c) The set w*-conv(H) is a weak Radon-Nikodym set.

We are now in a position to prove Theorem 1, making use of Theorems A,
B and Lemma.

Proof of Theorem 1. Let us first show that (a) implies (c). In virtue of
Theorems A and B, the proof of this part is simple. Let H be a Pettis set and
suppose that (e) fails. Then there exist a complete probability measure space (£?,
I, a) and a weak*-measurable function /: Q->H such that {^(^/^(E)):
ju(E)>0, E^Z} contains a <5-Rademacher tree. For each EE.T, we have that
(Tf(xE)j X) = (XE, Tf(x)) = jE (x, f((D)}dii((D) for every x^X. Hence, by the
separation theorem, it holds that T^XE) ^ f-i(E)-w*-conv(H) for each EE21,
since f(Q}C.H. So vi>*-conv (//) contains a 5-Rademacher tree by the assump-
tion. Thus, by Theorem B, iv*-conv (H) is a weak Radon-Nikodym set containing
a (5-Rademacher tree, which is contradictory to Theorem A.

Next let us prove that (b) implies (a). This is the crucial part of our proof.
Suppose that H is not a Pettis set. Then we are going to construct a weak*-
measurable function h: [0, !]-># such that {1^(;^/A(A)): A(A) >0, AEA}
contains a 5-Rademacher tree for an appropriate positive number 6. To this
end, invoke Theorem B to conclude that there exists a sequence [xn}n^i in Bx

having no pointwise convergent subsequence on H. Then, by the celebrated
argument of Rosenthal (cf. [5] or [6]), we have a subsequence {*„(&) }/^t of
{*«}/*>! and real numbers r and rj with 77 > 0 such that putting Ak = {x* E H: (x*,
xn(k)}^r} and Bk={x*£H: (**, jc,l(Jt)) ^r + 2rj}, then (Ak, Bk)k^ is an inde-

oc

pendent sequence of pairs of closed subsets of H. Put r= Q (AkUBk)^H.

Then, by Lemma above, we have a complete probability measure space (T,
Zy, y) and a surjective isometry 5: Lj([0, 1], A, A)->Li(F, Zy, y) such that
5*(§)(p(0(^*)))=g(^*) 7-a-e- on ^for everY g^Lx(r, Ir y) (Here, functions
p and 4> are the same ones as stated in §2).

Now, for each x e ^, consider a function /Y on F given by fx(x*) = (jc*, jc)
for every jc* E T. Then {/r: x E 5^} C C(F) (the Banach space of all real-valued
continuous functions on F). Let p be a lifting of L^dfO, 1], A, A). For each fixed
sE[0, 1], we associate a following bounded linear functional Ls on C(F):
Ls(f) = p(S*(f))(s) for every/EC(F). Then, in virtue of (c) in Lemma, Ls is
multiplicative and so there exists a unique point x* E F such that Ls(f) =/(**)
for every/E C(F). Then define A: [0, 1] -> Fby /z(s) = x* for each 5 E [0, 1]. This
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means that f ( h ( s ) ) = p ( S * ( f ) ) ( s ) for every /eC(F). Hence, in particu-
lar, fx(h(s))=p(S*(fx))(s) for every x<EBx. That is, we have that (jc, h(s)) =
p(S*(fx))(s) for every 5 G [0,1] and x E Bx- So the function h is weak*-measurable.
Moreover, we have that for each AEiA,

/(.,*
JA

r r

= I fx(**)dy(x*) (by (b) of Lemma)

= f (x* x\dv(x*} (*}I \A 5 A/u AA / • • • \ /•

Consider a measure or: A—> Jf* defined for each ^4 E A by putting

for every xE.X. Then it holds that a(A) = T\(XA} for every A&A, since
(*G4), jc) = SA (x, h(s}}dX(s) = (xA, Th(x)} = (Tl(xA), x) for every xtX. Put
JC2-+/ = 2ma(Im,i) (m g 0, 0 ̂  i S 2m - 1), where Jm,,- = [i/2m, (i + l)/2m]. Then we
easily know that **z = (*2,, + *2/i+i)/2 f°r aU ^ = 1 and the sequence {x*n}n^i is
contained in {7^ (%A/h(A)): h(A) >Q,A£A}. Hence, to complete the proof of this
part, it suffices for us to show that the sequence {x*n}n^i contains a <5-Rademacher
tree for an appropriate positive number <5.

To see this, let us first relabel {Im^} (m^O, 0^«^2 m - 1) by /0,0 = / (=
[0, 1]), 7lf0 = /(0), /M = 7(1), 72f0 = 7(0, 0), 72tl = 7(0, 1), 72,3 = 7(1, 0), 72,4 =
7(1, 1), etc. That is, 70,0 = 7 and if ImJ = I(a^\ . . . ,a%) (m g 1, 0 ̂  / ̂  2m - 1),
then

/m+1,2/ = 7(4'>,...,^, 0)

and

Here {«}f)}i^;^m denotes a sequence consisting of 0 or 1 and {(a[l\ . . . ,0$): 0 ^
i^2m-l} = {(fli,...,flm): a; = 0 or fl;-=l}. Then we have that for every
{fl;}i^-^m with «y- = 0 or 1

where e(/) = 1 if a-} •= 1 and e(j) = c (complement) if a} • = 0. Hence we have that
for every {0/}i^m with ^ = 0 or 1,
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(or(/(fli,...,flm)), x)= (x, h
JI(aL,...,am)

= 1 (**, x)dy(x*) (by (*) above)

— I (Y* Y^//V^T*^I \A, , AJUY^ )

for all xE.X. Then this easily yields that

J , UJJt ) ^

and

/=o X m ' "m

f f
J <j>-L(Um+l) " m J .

Thus we have that for every m = 0,

i=0

/=0

2"'-l 2'"-l

— Z^ (-^*2'"+1 + 2i9 -^/7(m+l)) ~ 2^ (-^*2'
i=0 i=0

= 2m+1 • { 2 (a(/(fli0, • - - , «£>, 0)),
I /"=0

- 2 (or(/(flW,...,flW, 1)), ̂ l
i=0

2m+1- (**, JcB(lB+i

- f
J

2m+1 • {(r + 2r/)/2 - r/2} = 2m+1 ij.



834 MINORU MATSUDA

In the case where x\ (= or(/)) =£0, setting 6 = min{||jti||, ^} (>0), iXj/ii=i Itself
Is a (5-Rademacher tree contained In {T*h(xAl X(A))\ A(^4)>0, A^A], which is
contradictory to (b).

Next consider the case where x\ = 0. By the inequality proved above, it
holds that ||*2-~*3|| =2?]. Hence one of x2 and ^3 does not vanish. So, without
loss of generality, we may assume that x2 (= #([0, 1/2])) =£0. Let {/m,/} (ra^O,
0^z^2m —1) be a sequence of closed Intervals in [0, 1/2] given by /m,/ =
[//2m+1,(z + l)/2m+1]. Then, putting y^+i = 2m+1a(Jm,i) (m^O, 0^/^2m-'l),
{yn}n^i Is a tree contained In {r^(^4/A(A)): A(^4)>0, AeA}. Relabel {/m,/}
(m^O, 0^ /^2 m - l ) by /0,o = ̂  (= [0> 1/2]), /i,0

 = /(0)5 A,i = ^(l)? ^2,0 =
J(0, 0), /2,i=/(0, 1), J2,3 = J(1, 0), /2,4 = /(l9 1), etc. Then It holds that for
every {^/}i^/^m with a}- = 0 or 1,

In the same notation as above. Hence, by the same argument as above we have

X (a(J(a^\. . .,4;/7), 0)), */z(m + 2))
/=0

r

(jf*, *,i(m+«r

and

(**, xn(m+2})dY(x*)
• /0-1(^nt/BI+2)

(JT*
J rn^n^,^..

Consequently, we have that for every mi^O,
™ + i _ i
2 (-iyyv-
/=0

= 2^ -M I I A - , ̂ (m+2)
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- I r s

m+1^ 2m+2 - {(r + 2rj)/4 - r/4} = 2

So, setting 6 = min{||.X2||? rj} (>0), we obtain a <5-Rademacher tree {y*n}n^i
contained in {7t(x4/A(yl)): A(^4) >0, AeA}, which is contradictory to (b).
Hence we complete the proof of the fact that (b) implies (a). Moreover, the fact
that (c) implies (b) is obvious and so the proof of Theorem 1 is completed.

Remark 1. Consider the case where H is a weak*-compact convex Pettis
set. Then, by Theorem B, the set H is .a weak Radon-Nikodym set. Hence, in
virtue of Theorem 1, the set H is a weak Radon-Nikodym set if and only if for
any weak*-measurable function/: [0, !]->//, {T^Ou/A(A}): A(A)>0, A<EA}
contains no (5-Rademacher tree (Of course, this result follows more easily even
from our proof of Theorem 1 in [1]). In particular, the set H is a weak Radon-
Nikodym set if and only if it contains no 5-Rademacher tree (Theorem A), since

• H in this case.

Remark 2. Without invoking Lemma, the equivalence between the state-
ments (a) and (c) of Theorem 1 can be proved. In fact, we have only to show
that (c) implies (a) whose proof goes as follows. Suppose that (a) fails. Then, by
the first part of the proof of the fact that (b) implies (a) in Theorem 1, we have a
complete probability measure space (r, 2r y) and a continuous surjection 0:
r^ A such that 0(y) = v. Let h: F-+H given by h(x*) = x* for every x* £ r.
Then the function h is weak*-measurable and (T*h(xE), x) = J# (**, x)dy(x*) for
every E E SY and x EL X. Define a sequence {Xn}n^i by x\ — T*h(Xr) and if *2»>+/
= 2m-Thr^e<An...n*»A) mSl, O S i S 2 m - l , then

i = 2m -

and

= 2m •

Here {e}°}i^^m denotes a sequence of 1 or -1 and {(4'V . .,£^}): 0^/^2m -
1} = {(EI,. . . ,fm)- fy= 1 °r "•!} for all rai^l. Then, by the same argument as
above, the sequence {Xn}n^i contains a (5-Rademacher tree for an appropriate
positive number 6 and so {Tl(xE/7(E)): y(£)>0, E^ZY} contains a 6-
Rademacher tree, which is contradictory to (c). Hence the proof is completed.

Finally, let us note that Theorem 1 and the results of [3] or [7] give the
following theorem.
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Theorem 2« Let H be a weak*-compact subset of X*. Then the following
statements about H are equivalent.

(a) The set H is a Pettis set.
(b) Every sequence in Bx has a pointwise convergent subsequence on H.
(c) For every ***E:X** and every weak*-compact subset M of H, the

function x** restricted to M has a point of continuity.
(d) For any weak*-measurable function f: [0, !]—>//, {Tf(%A): A&A} is

relatively norm compact.
(e) The set w*-conv(H) is a weak Radon-NIkodym set..
(f) For any weak*-measurable function /: [0, !]—>//, {T^(x^l X(A}}:
> 0, A E A} contains no d-Rademacher tree.
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