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On Multiplicities of Non-isolated
Intersection Components
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Wolfgang VOGEL*

§ 0. Introduction

In 1942, B.L. van der Waerden observed a very interesting fact in [24].
(We translate here from the original German): "However, to the best of my
knowledge, the multiplicity of a non-isolated intersection point of 3 surfaces
has never yet been defined." (For a wealth of background material see, e.g.,
[9, 10, 13, 21]. Of course, it is very difficult to investigate embedded primary

components, see, e.g., [11].)
The focus of this paper is a discussion of this observation. First, our

theorem 1 shows that indeed we need contributions of non-isolated intersection
components to the intersection theory in Pn as developed in [4] and [18, 20] (see
[7,3] for the relation between [4] and [20].). Second, our theorem 2 establishes
that non-isolated intersection points of 3 surfaces have not always multiplici-

ties. Third, our theorem 3 shows that certain non-isolated intersection
points do indeed have multiplicities. This is demonstrated by examples. Here
is our first example (see also [19]).

Example,, Let X and Y be subschemes of P3 with defining ideals

I(X)=(XlX0«(X1X3-Xl)) and I(Y) = (Xl) .

We obtain the following primary decomposition:

i(x)+i(Y) = (xl9 xi) n (xQ, xi xi) n (xi xi x3) .
Then the line given by X1=X2=0 and the non-isolated intersection point de-
fined by XQ=X1=X2=Q are counted with multiplicities 8 and 4, resp. Moreo-
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ver, the embedded Intersection point given by X1=X2=X3=0 has no multi-
plicity in the sense of the intersection theory as presented in [4, 20],

Therefore the main purpose of this paper is to describe contributions of
non-isolated components to the intersection theory. Hence our approach
also yields new results concerning a converse of Bezout's theorem (see [2,3?

15, 21, 22]). Finally, we conclude by studying some examples and problems.

§ lo Notations ami Preliminary

Before embarking on the proofs of the theorems we must prove several
preliminary results. First we want to recall the main theorem of [18, 20]. Let
X, Y be pure dimensional subschemes of P\ with defining ideals I(X) and
I(Y) in k[xQ9 "ao

y xn] = : Rx over a field k. We introduce a second copy
k[yQ9 °°°,yn]=: Ry of Rx and denote by I(Y)' the ideal in Ry corresponding to
I(Y). Furthermore, we Introduce new Independent variables ui>m over k for
i9 m=®, 1, •••, n. Let K be the field extension k(um, •-• , unn). We consider
the polynomial ring R=K[xQ9'--9xn9 yQ9 •••, yn]9 and forms of degree 1 in R:

/i = S3 uim(xm-ym) for / = 0, — , n .
m = 0

We note that (70, — , ln)*R=(x0—yQ9 — , xn—yH)'R= : c. We set

5:=Kndl-dimension of I(X)+I(Tf in R,
^:-Krull-dimension of I(X)+I(Y) in Rs, and
^:-dim X n F-(dim X+dim Y—n), that is,

e is the excess dimension of X and Y,
We note that n—e=d—d—l.
Take the linear forms /0, — , l^d^ and put (I(X)-R+I(Y)'R).1:=I(X)R+

I(Y)'R, and

(I(X)R+I(YYR)m: = !U-R+UWX)R+I(YYX)U^

for any m=Q, 8 e ° 3 d—d—l, where U(°°°) is the Intersection of all highest dimen-
sional primary ideals belonging to the ideal ('°°)°

Furthermore, we put

)8_d-2, and

5 ̂ intersection of all primary ideals belonging to t/(as_1+4-j+s-2^) such
that c°R is not contained in their associated primes for all s=!9 -°°9

e+l provided a^
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Following [18, 20, 2] we want to recall the construction of the collection
C and the definition of the intersection multiplicities j(X9 Y; C) and k(X, Y; C)
for all elements C of C.

The collection C contains irreducible and reduced subvarieties, say
C, of X fl F lying in Pn

K with the property that dim X fl F^dim C ;>dim X+
dim Y— n. We shall denote here this collection of subvarieties by C(X, Y).
When there is no possibility of confusion we will denote C(X, Y) simply by C.

The elements of C of dimension dim X fl Y—i for f=0, •••, e are defined as
follows :

Consider all prime ideals belonging to U(ai+ln_e+iR) and containing the

ideal c-J^. Then these prime ideals modulo C-.R define irreducible and re-
duced subvarieties of X fl Y in Pn

K. These subvarieties are the elements of C
of dimension equal to dim X fl Y—i.

Moreover, we would like to recall the definition of the intersection multi-
plicities j(X, Y; C) and k(X9 Y; C) of X and Y along C for all CeC. Let C
be an element of C of dimension equal to dim X fl Y—i. Let /(C) be the
defining prime ideal of C in K[x09 •••,#„]. We then set

j(X9 F; C): = length of

and

k(X, Y; C): -length of (l7(o,+/ll.H.lU)+c.JR)/(c)JH.M

^J(^ F; C)

Hence both intersection numbers are defined by the length of well-defined
primary ideals of the polynomial ring K[x0, ••- , xn, yQ, •••, jj. Hence the
above definitions describe an intersection algorithm in the ruled join const-
ruction of P2K+l (for a wealth of background material on this join construction,
see, e.g., [5, 8]).

It follows immediately from the above construction that every irreducible
component of X n Y belongs to C. We denote by CiIT the collection of
irreducible components of X n Y. We set

Ch: = {C<=C with dim C = dim X n F}.

Observe that

But we also have elements of C defined by certain embedded prime ideals
belonging to I(X)+I(Y) (see, e.g., our example of the introduction). More-
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over, our algorithm also does yield some extra components of X fi Y defined
over k or K (see Example 2 of § 4). Therefore an important object is the
(dim X n Y— i )-dimensional cycle

where the sum is taken over all C ̂ C of dimension equal to dim X fl Y—i for
/=0, ••-, e. This shows that the Segre-Mather classes of [25] naturally appears
in our cycle theory (see also [7, 3]). Hence our above intersection algorithm does
yield an affirmative answer to some questions asked in [26], (2.6) and (3.5).

We need main results of [18, 20] and [2, 3].

Lemma 1 (Refined Bezouf s theorem of [18, 20]). Let X and Y be pure
dimensional subschemes of Pn

k, Then we have

degree Jf ° degree 7 = S j(X, Y; C) degree C

Lemma 2 [(2)]. Let X and Y be reduced and pure dimensional subschemes of
P\. Moreover, we assume that X and Y are connected in dimension dim X— 1
and dim Y— 1, resp. Let X U Y be not lying in a hyperplane. Then we have

degree X« degree F^ 2 k(X, Y; C) degree C+e ,

where e = dim X fl Y— (dim X+dim Y— n) ,

As a corollary we therefore obtain a converse of Bezout's theorem.

Corollary,, degree X- degree F<^ 2 k(X, Y; C) degree C if and only if

We will also apply a certain bilinear property of the above intersection
algorithm in the join construction of P2g+l. We therefore state a theorem of
additivity and a reduction theorem needed for the proof of our theorems. There
are different arguments in proving this result. For example, L. van Gastel
[6, 7] described geometrically and partly generalized the intersection theory of
[18, 20]. Hence the following lemma is clear from the definition of the above
algorithm (see [6], Remark 4.4).

Lemma 3e Let X, Y be pure dimensional subschemes of PI with defining

ideals I(X) and I(Y) in K[xQ, — , XH].

We consider primary decompositions of I(X) and J(F), say I(X)=q1f] °°° Dcf r

where q,- is ^-primary, and I(Y)=q{ n "° f lCfs where qj is ^/-primary. We set
r s

X= U Xs and Y= n Y* where Xi is defined by q,-, and F,- is given by qj for
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/=!, ••• , /* , and j=l, •••,£, resp. We define reduced and irreducible subschemes
Pi and fT, defined by the prime ideals &, l^i <£r, and £}, l fgj<£j , resp., that

is, PQred — Vi and (ry)red: = »V We set

/,- := length of q,- for i = 1, •••, r, and

/Wyi = length of q/ for j = 1, ••- , 5- .

Then we have

(i) C(X, Y)=\J U C(Vi9 W,).
1=1 y=i

(ii) For every CeCpT, F) we get

./(*, r; C) = ii 2 h-mrj(vi9 w- C)
1=1 j=i

where we setj(?i, ^-; C)=0 if

Remark. Examples show that we cannot replace the intersection number
j(X, Y; C) in (ii) o/ Lemma 3 Z>j ?Ae intersection multiplicity k(X, Y; C).
Analyzing such examples one might be tempted to ask the following question:

Let X and Y be irreducible subschemes of PI. Let C be an irreducible com-
ponent o f X C i Y . Is it true that

k(X, 7; C)^length0^>Zred- length 0r,rred-/c(Jrred, 7red; C)?

However, this is not so, as we will show by Example 1 of § 4. The construction
of this example is based on joint discussions with H. Flenner (Gottingen).

§ 2. Main Results

Theorem 1. Let X, Y be pure dimensional projective subschemes of Pn
k, say

T s

X= U Xi and Y= U Y, where X: and Yt- are irreducible, and dim X=dim Xhi=i j=i
dim F^=dim Yjfor all i=l, •••, r andj=l, ••- , s. Let r^^O be the integer such
that the reduced scheme (X{ U Fy)Ted is contained in an (n—rfi)-plane but not lying

in an (n—rfj — l)-plane. Let e^O be the excess dimension of X and Y, that is,
e=dim X fl F— (dim Z+dim Y—n). Consider the following conditions:

(i) e^rnfor all i=l, •••,randj=l, ••• , ,?
(ii) degT-deg Y= S j(X, F; C) deg C

c^ch
(iii) dim X n F-dim X{ n Yjfor all i = l, — , r andj=l, — , s.

Then we have

(a) (i)-*(ii)-»(iii)
(b) The implications (iii) =*> (ii), and (ii) =» (i) are not true in general.
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Proof, (a): (i)=>(il): We will show that the collection C(X3 Y) =
Ch(X, Y), Therefore we consider the Intersection algorithm in the join con-
struction as developed in [18, 20] (see also § 1) by taking always the radical
of the corresponding ideals. Let I(Xt) and I(Yj) be the defining ideals of Xi

and YJ, resp. for all i = l, ° ° ° 9 r and j=l, ° ° ° 3 s.
Hence we get

Rad(7(3T), 7(7)', /0, .», 4_e) = nRad(/(JT,), 7(7,)', 70, -, 4_e) .i.y

The ideal Rad/(Xg-)nRad/(7y) does contain rf-y linear Independent forms of
degree 1. Since r^^e we therefore may assume that the e elements xn-e+l~

yn-e+i, -, ^-j,eRad(/(T3.)5 7(7y)', /0, °°° , 4-e). This provides that the ideal

Therefore the intersection algorithm does not yield an ideal alm Hence the
algorithm stops, that is, C=Ch. This shows our condition (ii). (ii)=^(iii)
follows from the theorem of additivity and reduction (see Lemma 3 of § 1).

It is easily to construct examples which show (b).
This completes the proof of Theorem 1, q.e.d.

Corollary LL With the same notations as in the theorem, assume that all
irreducible components of X fl Y have the same dimension, Suppose that there
are integers i, l^i^r, andj, l^j^s such that dim X fl Y^pdim Xi fi Yj then
there is at least one non-isolated component of X fl Y belonging to C(X, Y) ; that
is, non-isolated components do yield contributions to the intersection theory.

Corollary Oo With the same notations as in the theorem, assume that
there is an irreducible component of X [}Y with dimension <dim X fl Y. Then
there are integers i, l^i^r, andj, l^j^s such that r^<e.

Remark 1.3. We want to study our example from the introduction. We
have X=X, U X2 with defining ideals 7(Ar

1)=(Arf , X^-Xl) and I(X2)=(Xl JQ,
and Y=Yl with 7(F1)=(Zi). Hence 0- dim l"2n Y^ dim Xfl Y=l. Our
corollary 1.1 therefore shows that non-isolated intersection points of X fl Fhave
multiplicities.

Theorem 20 With the same notations as in Theorem I, take any subvariety
C o f X f t Y with dim X fl Y> dim C ̂  dim X+dim Y-n. Set c : -dim X n Y-
dimC^l. Consider all integers i, l^i^r, and j, l^-j^s, such that CS
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Xf n YJ. We assume that fij^e—c+l for all these integers i and j. Then C

does not belong to the collection C(X9 Y), that is, C does not yield a contribution
to the intersection theory.

Proof. We consider again the intersection algorithm by taking always
the radical of the corresponding ideals. Moreover, we regard this algorithm
with respect to the localization at the prime ideal /(C)+c where /(C) is the
defining ideal of C. Then we get

e(Rad(ac))/(c)+c .

Since r^Sre— c+1 we obtain that

Therefore we have c£(Rad(ac))/(Z))+c. Hence (Rad(ac))/(C)+c is the whole ring
since the prime ideals belonging to ac do not contain the ideal c (see the
intersection algorithm of § 1). Therefore the intersection algorithm shows that

, q.e.d.

Remark 2.1. We would like to study again our example from the intro-
duction by applying Theorem 2. With the same notations as in the introduc-
tion and Remark 1.3, consider the non-isolated intersection point C defined by
;q=:jc2=;c3=0, Then we get c = l and e=l. Since C £ J^i n Yl but C ffil"2 n Yl

we only have ru = l satisfying our assumption of Theorem 2: ru^e—c+l.
Therefore we obtain C$C, that is, C has no multiplicity in the sense of the
intersection theory of [4, 20].

Theorem 3e With the same notations as in theorem 1, consider all irreduci-

ble intersection components of l^fl YJ for all i=l, ••-, r and j=l, •••, s. Then
these components do belong to the collection C(X, F), that is, such components

do yield a contribution to the intersection theory.

Proof. Lemma 1 and Lemma 3 of § 1.

Remark 3.1. Consider again our example from the introduction. With
the same notations as In the introduction and Remark 1.3, consider the non-
isolated Intersection point P defined by ^0=^=^2=0. Then we see that P is
an Isolated intersection point of X2r\Ylf Therefore Theorem 3 shows that
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5 F)3 that is, P has a multiplicity in the sense of the intersection theory

of [4, 20].

§ 3o On a Converse of Bezout's Theorem

An aim of this section is to discuss the following problem (see [22], problem
1): Let X9 Y be pure dimensional subschemes of Pn. Under which circum-

stances is the following implication true :

- 2 j(X9 Y; C)°deg C=^ e = 0?

Of course, examples show that this is not true in general (see, e.g., [2,3,7]).
However, the following theorem yields some applications for a solution of this
problem.

Theorem 40 With the same notations as in Theorem 1, consider the following
conditions:

(i) degX*deg Frg 2 k(X9 Y; C)-degC
CGE^irr

(ii) ris =etj foraIli=I9—9 r, o/irfy = 1 , • • • , s.
(iii) C(X9 Y)=(jCh(Xh Yj)fori=l, -9randj=l9 -,*

«, j
7%en we have

(a) G)-»(ii)-Kiii)
(b) TTze implications (iii) =£> (ii), a/z^f (ii) =§> (i) ar^ «o^ true in general.

Proof, (a) : We will reach the desired result by a suitable deepening of
the approach as presented in the proof of the theorem of [22] and [14].

(i)=^>(ii). Consider the excess dimensions e(Xi9 Yj) and e(Vi9 Ws)9 where

Fg« and Wj are the embeddings of the reduced schemes (^)red an(i (^y)ied» resP-
in P*-ru. Then we have e(Xi9 Yl)=e(Vi, Wj)+rij9 that is, we have to show
that e(Vi9 Wj)=Q under the assumption (i). First, condition (i) gives:

deg X - deg Y ̂  2 k(X, Y; C) deg C
C<E£irr

^ 2 j(X, F;C)degC

^ 2 j(X9 Y; C) deg C - deg X deg Y.
c<=c

Hence we obtain that CitI(X9 Y)=C(X, F), and also j(X9 Y; Q=k(X, Y; C)
for all C^C(X, Y). Therefore we get from Lemma 3 of § 1 and Lemma 4 of
[22] that C(Vi9 Wf)=Cit£V,9 Ws) and j(Vi9 W- C)=k(Vi9 W- C) for all
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These properties do yield the following:

deg Krdeg W^ 2 k(Vi9 W,\ C)-deg C+e(Vl9 W,)

by Lemma 2 of § 1

,, IF.;C)-degC

= deg F,-deg FF,

by Lemma 1 of § 1.
Therefore we have e(Vi9 Wj)=Q.
(ii)=^(iii): Condition (ii) provides that e(Vf, Wj)=Q for all /"=!, •••, r and

.7=1, •••, j; that is3 Fg- n JFy is a proper intersection in P*~ra. Hence we have
that Ch(Vi9 Wj)=C(Vi9 Wj). There is a 1-1 correspondence between the ele-
ments of C(Xi9 Yj)=C((Xi)ted9 (Fy)red) and C(Vi9 Wj). Therefore we obtain
C(Xi9 Yj)=Ch(Xi, Yj). Our lemma 3 yields condition (iii).

(b): Example 2 of [22] shows that the implication (iii)=^(ii) is not true
in general.

(ii)=^(i): In P2 consider the curves X and Y with defining ideals I(X) =
(X1X2)=(X1) fl (X2) and I(Y)=(X1)9 resp. Hence we have rn=eu = l, and ra =
e21=0. But 2=-- deg X* deg Y^k(X, Y; C)deg C where C has defining ideal
/(OKJQ, k(X, Y; C) -length OX«Y ;c = l and Cirr(^, F)-{C}. This com-
pletes the proof of Theorem 4, q.e.d.

Corollary 4.1. Let X, Y be irreducible subschemes of Pn such that
(X\J r)red£P*->- but not in p*-*-* with r^O. Assume that e(X, Y)=r then
we get

deg X - deg Y = 2 j(X, Y; C) deg C .

Proof. Apply the implication (ii)=t>(iii) of Theorem 4, q.e.d.

In the following we want to discuss the converse of Corollary 4.1. We
need the following

Lemma 4e Let X, Y be pure dimensional projective subschemes of Pn. Let

C be an irreducible component of X fl Y. We assume that the local rings Ox,c

and OY,c are Cohen-Macaulay. Moreover, suppose that j ( X , Y; C)^length
- Then we have
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j ( X , Y; C) - k(Xs Y; C) = length

Proof. Since Ox,c
 and QY.C are Cohen-Macaulay we get k(X, Y; C) =

length OXKY,C' Therefore we obtain from Corollary 3.19 of [20]:

j ( X , Y; C)^lmgthOznYlc=k(X9 Y; C)^j(X, Y; C) .

This shows our lemma, q.e.d.

Theorem §0 With the same notations as in Theorem 1, we assume for all

C^Ch(X, Y) that Ox,c and OY,C are Cohen-Macaulay, and j(X, Y;
length OX(\Y,c- Then the following conditions are equivalent:

(i) e£ru

(ii) e=ru

(iii) degX°deg Y^ S j(X, Y; C) deg C

(iv) deg X» deg Y= 2 j(X, Y; C) deg C

(i) =^ (iii) follows from Theorem 1 . (iv) =^ (ii) : Our lemma 4 pro-
vides j(X, Y; C)=k(X, Y; C). Therefore the theorem of [22] yields our con-
dition (ii). By Lemma 1 we have (iii)=^(iv), q.e.d.

Corollary 5.1. With the same notations as in Corollary 4.1, suppose for
all C<=Ch(X, Y) that OXtC and OYiC are Cohen-Macaulay, andj(X, Y: C)^
Length Ox n Y ,c- Then e =r if and only if

= 2 j(X, F;C)degC.

In case r=0 our approach now yields the following result.

Corollary §020 Let X, Y be irreducible and reduced subschemes of Pn such
that X U Y is not lying in a hyper plane. We assume for all irreducible components
C of X n Y that OXiC and OYfC are Cohen-Macaulay, and j ( X , Y; C) ^
length OX[)Y,c- Then the following conditions are equivalent:

(i) e=0
(ii) degX^degF- 2 j(X,Y;C)tegC

(iii) deg X- deg 7= J} j(X,Y;C)degC
c<=ck

(iv) deg X - deg r= 2 ^(^5 5"; C) deg C
Ce^irr

(v) degX°degF= 2] k(X, Y; C) deg C
c^ck

Proof. Lemma 4 shows that j(X9 Y; C)=k(X, Y; C). Therefore Lemma 1
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and 2 provide Corollary 5.2.
L. O'Carroll's idea in [12] of bounding the intersection multiplicity

j(X, F; C) is indeed a key assumption in some of our above results. We

therefore want to investigate such bounds.

Theorem 6, Let X, Y be pure dimensional projective subschemes of Pn, say
r s

X= U X: and Y= (J Y.- where Xs and F.- are the irreducible components of X and
1=1 j=i

Y, resp. Let C be an element of C(X, Y). We set c:=dimX fl F-dim C^O.
Consider all integers i, 1 ̂  / ̂  r, and j, l^j^s, such that C S Xi and

GFy, say /=!,••-, r'^r and j=l, ••°,s'^s. Let t^Q be the integer such
r' s'

that \JXt\J U Yj is contained in an (n-t)-plane but not lying in an (n—t—V)-
1=1 y=i

plane. We assume that t^e(X, Y)—c. Then we get

j(X9 Y; C) = k(X, Y; C)

Moreover, if C is an irreducible component ofXRY then we obtain:

and we have equality if and only if the local rings Ox,c
 an^ @Y,C are Cohen-

Macaulay.

Proof. Let /(C) be the defining prime ideal of C. Using our notations of
§ 1 we see that /(C)+c is a prime ideal belonging to ac+ln-e+c. Let 2 J2
&c+ln-e+c be the primary ideal belonging to /(C)+c. We now consider the
intersection algorithm in the join construction as developed in § 1. Moreover,
take this algorithm with respect to the localization at J(C)+c. Then we get

= 6 -

Since t >e— c we obtain that

This shows that j(X, F; C)=k(X, F; C). If C is an irreducible component
then we have length (0znr,c) = length Q. Since c£g we get from Corollary

3.19 of [20] and lemma 3 of [1] that 7^, F; C)=length (Oznr,c) if and only if
Ox,c

 and OY,c are Cohen-Macaulay. This completes the proof of theorem 6,
q.e.d.

Finally, we want to prove a result in terms of length-multiplicity. We
first recall that the degree of a closed subscheme Wc.Pn is given by
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deg W = 2 length((Vc)-deg C
C

where the sum is taken over all irreducible components C with dim C=dim W.
Letting C run over all irreducible components we set

W := S length «Vc)- deg C .
o

Theorem 70 Le? X Y be reduced and pure dimensional subschemes of PI

with defining ideal I(X) and I(Y) in k[xQ9 » ° ° 3 xn] = :R. We assume that
(i) X and Y are locally Cohen-Macaulay

(ii) depth R/I(X) ^ 2 and depth R/T( Y)^2
(iii) dim X+ dim Y—n ̂  0
(iv) X U Y is not lying in a hyperplane

Then we have

deg X "deg F^deg X fl

Proof. The assumptions (i), (ii) and (iii) do provide that X and Y are
connected in dimension dimX— 1 and dim Y— 1, resp. For example, this
follows from Theorem 5 of [16], Let C be an irreducible component of X fl ^
Then condition (i) and (iii) show that

k(X, Y; C) = length 0Znr,c-

Therefore Lemma 2 of § 1 gives Theorem 7. q.e.d.
The proof of this theorem gives the following

Corollary,, Let X and Y be reduced and arithmetically Cohen-Macaulay
subschemes of dimensional in PI. If X U Y is not lying in a hyperplane then

deg Jf °deg F^deg X H Y+e .

Question. Is this corollary true if X or Y is not reduced?

§ 4. Examples Problems

We discuss in conclusion some examples and open questions. In con-
nection with our remark after Lemma 3 of § 1 we want to study our first example.

Example I. Consider the subschemes X and Y of P\ given by the follow-
ing homogeneous ideals in k[X09 X19

 o e ° ? X5]:

= (Xi9 X29 X1X2, XiX± X2X39 X}X5 X2X^9 X3X5 X i) ,

= (X3, X4, X,)
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Claim, X and Y are irreducible, and X fl Y has precisely one irreducible
intersection component, say C, with defining ideal /(C) — (Xl9 X2) X3, Jf4, X5).

Moreover, we get

(*) k(X, Y; C)>length C^-length OY,C2*k(Xr^ 7red; C) ,

where Q is defined by I(C1)=(Xl9 X2, X3X5—Xl) and C2 is given by I(C2) =
(X39 X^ X$). We also note that (*) remains true by replacing the multiplicity
k by the length-multiplicity.

Proof. First we show that X Is an irreducible and arithmetically Cohen-
Macaulay scheme. Let F be the Veronese surface in JP5 given parametrically

by

{t0, tQtly tQt2, ti, t-Jfr t2} .

Then F is given by the following prime ideal

^ X i? X QA5 A 2,

The defining equations of X are given by (/(F), XQ) modulo X0. Therefore X

is arithmetically Cohen-Macaulay and degree X=4 since F has these properties.
Since XIed Is given by the prime I(XIed)=(Xl9 X2, X3X5—Xl) we see that X is
indeed irreducible. Since X, XTed and Y are arithmetically Cohen-Macaulay
we get

d? -* redJ ^) == *(^red> -*red5 ^) == 1 ?

5 F; C)=l(X9 Y; C)=3. Moreover, we have length 0^fCl=2 since 7(Ci) =
). These properties yield our claim, q.e.d.

We will study again an example of the intersection of 3 surfaces in F3.
We will obtain two extra (non-isolated) intersection points counted with multipli-
cities.

Example 2. Let X, Y be subschemes of Pi with the following ideals in

(X,,X1X2} and

Then X fl Y is given by the following primary decomposition :

/(X)+/(F) = (z05 *i) n (XQ9 x2, x2) .
Then Theorem 3 shows that our collection C(X, Y) contains, of course, the line
^=^=0 and the point X0=X2=X3=Q, and moreover, two extra non-isolated
intersection points : XQ = X1=X2=Q and X0=X1=X3 = 0. All elements of
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C(X, Y) have multiplicity one.
The third example shows again that non-isolated intersection points of 3

surfaces in JP3 have not always multiplicities in our intersection theory. More-
over, this example establishes also our theorems 1,2,4 and our remark below.

Example 3* Let X and Y be subschemes of P\ with the following ideals

I(X) - (Xl X&-XI) and I(Y)=(X3), resp.
Then

For example, Theorem 1 and Lemma 1 show that C(X, Y)=Ch(X, Y), There-
fore the line X2=X3=Q has multiplicity 43 and the embedded point X1=X2=X3

=0 has thus no multiplicity.
Finally., we want to state two problems.

Problem I (see also [20]). Let X and Y be reduced and irreducible
subschemes of Pn

k such that the union X U Y is not lying in a hyperplane.
Describe contributions of non-isolated components of X fl Y to the intersection
theory.

Remark. If X or Y is not reduced then our paper does provide some re-
suits on contributions of non-isolated components to intersection theory. A
reason for this is the following fact:

Let C be an irreducible component of X fl Y. It is well-known that

dim C^dim X+dim Y~ n .

But this lower bound is not sharp in general (see the first proof of this bound
given in [23]). Indeed, we have the following correction term:

Let a and b homogeneous ideals of the polynomial ring k[X0, °°°,Xn],
Let p be a minimal prime ideal belonging to a+b. Then we get for the
(homogeneous) dimension:

dim p^ dim a+dim b— »-fdimA [Rad a fl Rad b]x ,

where [Rad o n Rad b]x is the vector space of all forms of dgeree 1 contained
in Rad a n Rad b? and Rad (•") is the radical of the ideal (•••).

In this sense we can replace the condition e= 0 for a proper intersection
by the assumption

e = dimk [Rad a fl Rad b^ (see, e.g., our theorems 1, 2, 4, 5) .

Problem 2 (see also [17]). Give an arithmetic version of Bezout's theo-
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rem. However, Christophe Soule informed me during the international
congress of mathematicians in Kyoto that he has now an approach for solving
this problem. Therefore we want to state an extended problem:

Describe a refined Bezout's theorem (see our lemma 1 of § 1) in algebraic
and arthmetic geometry.
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