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§0. Inmtroduction

0.0. Let G be a connected reductive group defined over the complex
number field C and (o, V) its finite dimensional rational representation. A
triple (G, o, V) is called a prehomogeneous vector space (abbrev. PV) if there
exists a Zariski open dense orbit in V. A polynomial function f(Z£0) on V is
called a relative invariant of character ¢ if f(gv)=¢(g)f(v) for any g&G and
ver.

0.1. Roughly speaking, a main result of the theory of prehomogeneous
vector spaces [24], [28], [30] says that, if the regularity condition

2
det (QM) =0
X;0X;

is satisfied, the Fourier transform of a complex power f* is also a complex
power f~* multiplied with certain factors. Thus it has been believed that, for an
application of the theory of prehomogeneous vector spaces, it is necessary to as-
sume the regularity condition.

0.2. A prehomogeneous vector space is called regular if it has a relative
invariant satisfying the regularity condition. By [27; §4] and [22], the following
conditions for a prehomogeneous vector space (G, o, V) are equivalent to each
other:

() (G, p, V) is regular.

(2) The isotropy subgroup of G at a point in the open orbit of ¥ is reduc-

Communicated by K. Saito, October 16, 1990. Revised April 11, 1991.
1991 Mathematics Subject Classification: 14130
* Institute of Mathematics, Yoshida College, Kyoto University, Kyoto 606-01, Japan.



862 AxHIKO GYOJA

tive.
(3) ([G,Gl, o, V) is stable.
(A G-module V is said to be stable if there is an open dense subset of ¥ con-
sisting of G-orbits which are closed in V)

0.3. The classification theory of prehomogeneous vector spaces presents
a strange contrast to the application of the theory; once we assume the reg-
ularity, classification results usually become much more complicated. For
example, assume the regularity in the first part of the theorem in [7; 1.13]. It
would be worth noting that, in the classification theory of representations of
reductive groups satisfying some properties other than prehomogeneity, analo-
gous phenomenon occurs; once we assume the stability, classification results
become complicated. For example, assume the stability in the second part of
the theorem in [7; 1.13].

0.4. Prehomogeneous vector spaces also appear in the Dynkin-Kostant
theory concerning the nilpotent orbits of complex semisimple Lie algebras
([31]), which plays an important role in the representation theory. See [18].
The prehomogeneous vector spaces appearing in the Dynkin-Kostant theory
form a class (DK), which is contained in the class (R) of regular prehomogene-
ous vector spaces. Denote the totality of PV’s by (PV). Among these three
classes (DK)C(R)C(PV), the author considers that (DK) forms a natural class,
since it has a natural characterization [7]. If we restrict ourselves to the case
where [G,G] is simple and V is irreducible, (PV) is a class which ‘corresponds’
to the class of Kac-Moody Lie algebras of finite type as is indicated in [7; 1.13],
neglecting a small deviation. (Similarly, the class of coregular (G, o, V)’s ‘cor-
responds’ to the class of Kac-Moody Lie algebras of affine type.) At present,
the author can not find a proper place for (R) in the classification theory.

0.5. Without assuming G to be reductive, it is possible to define the reg-
ularity of (G, o, V) by the existence of a relative invariant satisfying the regularity
condition. But it seems to the author that there is a room for doubt about the
naturality of this concept.

First, it was conjectured that, for a regular (G, o, V) in the generalized
sense, the open G-orbit in V is an affine variety. But, recently this conjecture
turned out to be false [6].

Secondly, as is shown by Rubenthaler-Schiffmann [23] and Bopp-Rubenthaler
[2], some examples of regular PV’s in the generalized sense can be treated



THEORY OF PREHOMOGENEOUS VECTOR SPACES 863

and even better understood in the framework of PV’s with reductive G. See
also [8].

0.6. By these reasons, we study prehomogeneous vector spaces assuming
the reductivity of G and without assuming the regularity. Roughly speaking,
our main result is that, even without assuming the regularity condition, the
Fourier transform of a complex power f® of a relative invariant fis also a com-
plex power f~* multiplied with a certain factor 4. Unlike the regular case, 4 is
supported by a closure of an orbit whose dimension is, in general, not equal to
dim V. This phenomenon seems to fit naturally to a more general scheme in-
cluding the differential equations of Harish-Chandra [12].

0.7. In our study of prehomogeneous vector spaces, we constantly rely on
the theory of D-modules, which is mainly developed by M. Sato, T. Kawai
and M. Kashiwara. In this regard, see (4.21).

0.8. This paper consists of four sections. In the first section we study
geometric structure of prehomogeneous vector spaces. The main result of this
section is (1.18). In the second section, we review the theory of systems of
linear differential equations. In the third section, we study a system of linear
differential equations Df® satisfied by f®. The purpose of this section is to
determine the Fourier transform of Df* and the sheaf of its holomorphic solu-
tions. The main results are (3.11) and (3.23). In the fourth section, we study
the hyperfunction solutions of Df* and their Fourier transforms. The main
result is (4.19).

0.9. The present paper is partly based on the series of lectures given at
Tsukuba University in October 1988. The author would like to express his
thanks to those who attended at the lectures, in particular to Prof. T. Kimura.
The author is profitted much from the note [9] taken by Prof. T. Kimura and
his comments. The author would like to thank Prof. M. Muro and Prof. R.
Hotta for their careful reading and comments, which helped the author to
improve the paper to a great extent. It is a great pleasure to acknowledge the
valuable comments of the referee, by which the author could correct several er-
rors contained in the original manuscript.

§ 1. Structure of Prehomogeneous Vector Spaces

1.0. The purpose of this section is to prove (1.18), which describes a
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geometric structure of a prehomogeneous vector space. Although (1.3) and
(1.5)-(1.9) are contained in [27], we include them here for the sake of the con-
venience of the readers.

Definition 1.1. Let G be a connected reductive group defined over the
complex number field € and o: G—GL(V) a finite dimensional rational repre-
sentation. Such a triple (G, o, V) is called a prehomogeneous vector space
(abbrev. PV) if there exists an open dense G-orbit, say O,=G-v,, in V.

Defimition 1.2. Let f be a polynomial function on ¥ which is not identi-
cally zero and ¢ eHom(G, C*), where C*=GL(C). If f(gv)=¢(g)f(v) for any
g€ G and veV, then we call f a relative invariant and ¢ the character of f.

Lemma 1.3. Let (G, o, V) be a prehomogeneous vector space.

(1) If two relative invariants f, and f, have the same character, then f, is
a constant multiple of f,.

(2) A relative invariant is homogeneous.

Proof. (1) Let f=f/f;, Then f is constant on Oy=G-v,, which is open
and dense in V. Hence fis a constant.

(2) For ceC*, let £,(v)=f(cv). Then f and f, have the same character.
Hence f, is a constant multiple of f.

Henceforth we fix a prehomogeneous vector space (G, o, V') and a relatively
invariant polynomial function f on ¥ with character ¢. Let n=dim V, d=deg f
and 2=2(f)=f"Y(C*). Note that the open orbit O, is contained in £2.

Lemma 1.4. (1) There is a unique G-orbit O,=O0,(f) in 2=8(f) which
is Zariski closed in 2.
(2) For ceC* and vE 0, cvEO;.

Proof. (1) Let m: 2—>2/G be the projection onto the quotient space.
Since the Zariski closure O, in £ is equal to 2, we get 7(2)=z(0,) C(Oy).
Hence £2/G consists of only one point. Since the (closed) points of the quotient
space are in one-to-one correspondence with the closed orbits [21], £ has a
unique closed G-orbit.

(2) Since cO, is also a closed G-orbit of 2, cO,=0,.

Lemma 1.5. Let p": G—>GL(V") be a rational representation and <|>:
VY x V—C a non-degenerate bilinear form such that {gv"|gv>=<{v"|v> for any
geG V' eV andvev.
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(1) The triple (G, 0", V") is a prehomogeneous vector space.
(2) The prehomogeneous vector space (G, p", V") has a relatively invariant
polynomial whose character is ¢, and whose polynomial degree is equal to

d(=degf).

Proof. (1) Let K be a maximal compact subgroup of G. If we fix a
basis of ¥, we can identify GL(V) with GL,(C) and ¥V with C*. The compact
subgroup o(K) of GL,(C) is contained in a conjugate of the unitary group.
Hence by taking a vector basis {v,, --+, v,} of V suitably, we may assume that
o(K) is contained in the unitary group. Let {v, -+, v»} be the dual basis of
VY. By this basis, we identify GL(V") with GL,(C) and V" with C*. Then
0 (k)=o(k)*'=p(k)" for any kK. Here * means the transposition of a
matrix and ‘ means the complex conjugation. Hence p0"(K)-vé=(o(K)v,)° is
Zariski dense in the orbit (o(G)v,)’=0¢. Hence p"(G)v§ is Zariski dense in V.

(2) Let f¥ be a polynomial function on V" defined by f'(v")=f(v"")
for any v' € V"=C". Then

Y@ k) = flo(ky™) = (k) f(v™°) = ¢(k)7f (")
for any k&K and v'€V". Since K is Zariski dense in G,
[ (") =@ (")

for any geG and vYEV". Since any relative invariant of (G, p", V") with
character ¢! is a constant multiple of this particular £V, it is of degree d.

Henceforth we fix (G, 0", V"), <{|>: VY XV—C, {v, =, v,}, and {vy, -+,
v+t asin the above lemma. We also fix a relative invariant /¥ on V" whose
character is ¢~!. By convention, we set <v¥|v>=v|v">. Let 2¥=2Y(f")
=f"V"YC*) and Oy (resp. Oy =01 (f")) be the unique open (resp. closed) G-orbit
in 2V,

Lemma 1.6. There exists a polynomial b(s)=bys®-+bys?™*-++.-+b,&C[s]
of degree at most d such that both of the formal identities

[ (grad,) S+ = b(s) f(x)

and
Sgrad,)) )+ = b(s) /()
hold in the same time. Here grad,,z(—a—, ey, i) and grady=<i, =y 9 )
0x; ox, 232} oy,
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(Sometimes, we write grad for grad, or grad,.)

Proof. 1In order to prove the first identity, we may assume s to be a natural
number. By (1.3, (1)),

[ (grad,) f(x)*! = b(s) f(x)

with some constant b(s) which depends on s but not on x. Obviously b(s) is a
polynomial in s. By the same argument, we get a similar identity

flgrad) f*(yy™ = b))
with some polynomial b¥(s)EC[s]. First, let us take as f" the polynomial con-

structed in the proof of (1.5, (2)). Then we can write f(x)=31f;,,..,;,Xit***Xa"
and 1V (x) =33 f§,,..i, Xite-- x3n with f; .., €C. Hence

b(0) = f"(grad) f(x) = X | fiy,s, |* 1oe1, ! = f(grad) £¥(y) = 57(0)

is a positive real number. Similarly

b(0)b(1)-+-b(m—1) = f"(grad)” f(x)" = f(grad)” 1 (x)"
= bY(0)BV(1)-+-b"(m—1)>0.

Hence b"(s)=>b(s) for our special choice of fV. If we replace /" by ¢f " (cE
C*), then b(s) and b"(s) are replaced by cb(s) and cb"(s), respectively. Hence
b"(s)=>b(s) for any relative invariant f".

Lemma 1.7, by=E=0, i.e., deg b(s)=d.

Proof. We may assume that f(x)=3f;, ., Xitxi* and f'(x)=
3 Sy i, Xiteeoxin. Transforming the basis {v;, -+, v,} by a unitary matrix in
GL,(C), we may assume that f(1, 0, ---, 0)==0, i.e., fy,..0,3+0. If deg b(s)=
e(<d), then there exists a constant ¢ such that |b(s)| <c(s+1)¢ for s>0. Then

| fa,0,012™(md)! < £ (grad)” f(x)" = b(0)b(1)-+-b(m—1)<c"(m!)".
Since (md)!(m!)*>1, (m!)**<(c/| f1.0,01D)". Hence d=e.

Lemma 1.8. Let F=grad log f and F" =grad log 1.

(1) Forve®, fY(F»)=b,f(»)™ . (Recall that 2=f"'C*.)

Q) Forv'efY, f(F'(v")=bf ()™

(3) F defines a regular morphism 2—8", compatible with G-actions.
(4) FV defines a regular morphism 2" —8, compatible with G-actions.
(5) ForceC* and ve 2, F(cv)=c I F().

(6) For ceC* andv'e82", F¥(cv")=c 'F'(»").
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Proef. By (1.7), it is enough to prove the first assertion. If 4+~ 4i,=d,

(22 re = (2L 21 00 s

0x, ox, 0x, ox,

Hence

[ (grad) f(x)** = (s°f " (grad £)-+O(s* ™) f(x)*+~
= (bos’ +O(s* ™)) f(x)".

Comparing the coefficients of s¢, we get the assertion.

The character ¢: G—C* induces the character of Lie(G), which we shall
denote by the same letter ¢.

Lemma 1.9. (1) For ve® and AELie(G),
F(v) | 4vp = ¢(4) .
) Forv'e®" and ALie (G),
SFYM) ] AvY> = —¢(4) .

Proof. If o(A)=(a;;)<; j<s» then by differentiating f(exp(z4)-v)=d¢(exp
(t4)) f(v) at =0, we get

» 0

23 4;%; 3

i,j=1 X;

1.9.1) ( —(d))f =0,

which is nothing but the first assertion. In the same way, we get

(192 (3 Camm—row)r =0,
and the second assertion.
Lemma 1.10. (1) For ve® and A< Lie(G),
{FYF(v)—v|AF(»)> =0.

(2) F(O,) is an open dense subset of the Zariski closure F(2) of F(2) in
£Y. (Recall that F(2)C 2" by (1.8,(3)).
(3) Ifvef and F(v)EF(0O,), then

FYF)—vE(TpmF(00) ™"

Here T,X denotes the tangent space of X at p, and (Trw(F(O,))™" denotes the
orthogonal complement in V of TpyF(O))C TrpyV'=V".
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Proof. (1) By (1.8,(3)) and (1.9,(2)),
KFYF(r)| 4-F)) = —¢(4)
for ve £ and 4= Lie(G). On the other hand, by (1.9,(1)),
V| A-FO)) = —<Av|F(v)) = —¢(4) .
By these equalities, we get the assertion.
(2) Since F(O,) is Zariski dense in F(2), it contains a non-empty open set
of F(2) by the Hilbert’s second theorem (cf. [32; 1.13]). Since F(Oy) is G-
homogeneous, it is open in F(£2).
(3 By(@®)
(1.10.1) FY F(v)—v < (Lie(G)- F(»))™.
Since F(v)=F(v') for some v' € O, by the assumption,
(1.10.2) Lie(G) - F(v) = Tre)(G-F(')) = TrnF(Oy) -
By (1.10.1) and (1.10.2), we get the assertion.
Lemma 1.11. (1) Let F(2), be the union of all the open sets of F(2)
contained in F(2). If a point vE 2 satisfies
(1.11.1) FEF®), and (dF)(V) = TrF(2)o,
then
T(F'F()) = (TroyF(2))™ .

(For the moment, F~F(v) and T,(F~'F(v)) should be understood scheme theoret-
ically.)
2) Ifve0,, (1.11.1) is satisfied.

Proof. (1) The following conditions for a=(ay, *°*, a,) are equivalent:
(@ a=T(FF®y)).
(B (@F),(@)=0.

2
(&) Vi1 @—g—f(—v)a,- = 0 for any i.

@ 2% biw%=0 for any (by, >, b,).
§0X;

(&) @R)(V) La

() TrwF(2) L a
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(2) Since the natural morphism G—G-F(v) is a submersion, F: G-v—
G-F(v) is also a submersion. Hence if v&0,, by (1.10,(2)),
TrwF(2)y = TryF(Oy) = (dF)(T,00) = (dF)(V) .
Lemma 1.12. The morphism F: O,—>F(Oy) is smooth.

Proof. Since O, is G-homogeneous and F is compatible with G-actions,
it is enough to note that there is a point v&E O, such that F is smooth at v.

Lemma 1.13. For vE0,,
FUF) Dv+(TpwyF(Oy)) ™

Proof. By (1.11), for a given vE0,, the tangent space of OyN F~F(v)
at any point is the same space (Tpu)F(2)) =(TrxyF(Op))=. By (1.12), O,N
F~1F(v) is a union of open subsets of affine subspaces of ¥ which are parallel to
(TryF(Oy))". Thus we can find a non-empty open subset U of (Tr,)F(O,))™
such that

(1.13.1) O,NFF»)Dv+U.
If v’ F~'F(v), then by (1.8),
bof(v') ™t = fYFW)) = FE)) = b f() .
Hence, by (1.7), f=c¢ on F™'F(v) for some non-zero constant c, i.c., f~(c)
DF7'F(v). Since F~'F(v) is closed in £, it is also closed in f~Y(c), which

implies that F~'F(v) is closed in V. By (1.13.1), F~'F(v) contains the Zariski
closure of v++U in ¥V, which is v+ (Tr,yF(Op)) ™.

Lemma 1.14. The morphisms F¥: F(2)—F"(2") and F: F*(2")—F(2) are
isomorphisms and the inverse of each other. (Here F(2) (resp. F¥(2")) is the
Zariski closure in 2" (resp. £).)

Proof. For any vEQ,,

FYF)Ev+(TpwF(On) " CFF(v)
by (1.10,(3)) and (1.13). Hence FF'F=F on O,, i.e., FF" is the identity on
F(0,). Since F(O,) is dense in F(2), FF" is the identity on F(2). Analo-
gously, FVF is the identity on F"(£2").

Lemma 1.15. (1) F(2) is a smooth affine variety and Zariski closed in
Y.

(2) Forv'EF(2),
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T, F(2) = (dF)p+ ) (V) = ([dF)p+ o) (Tr+ o F (2Y))
and

Tpeo(FY(2")) = (@F"),« (V") = (dF"),-(T,-F(2)) .

Proof. By (1.14) and (1.8,(4)),
F(2)= {vWeg|vW = FF'(")}.
Hence F(2) is closed in V. Similarly, F¥(2")=F"(£2"). As F(2)is a closed
subset of the affine variety 2 =f""YC>), F(2) is an affine variety. By (1.14),
T, F(2) = Tprvo F(2)D(dF)rv(ov)(V)
DAF)p )T o F (2Y)) = Tpp+ o F(2)

for v' €F(£2). By these relations, we get the first equalities in (2). The second
equalities can be proved in the same way. Let a(v')=dimT7,vF(2). Then a
is upper semicontinuous on F(£2), i.e., the values of a are not larger than
a (v") in a small neighbourhood of v*. On the other hand, as a(v") is the rank

of (dF)gvvy, it is lower semicontinuous. Hence a is locally constant, and
F(£2) is smooth.

Lemma 1.16. For v' € F(2), the symmetric matrix

(7o)
0y;0y; 1<i,j<n

defines a G,v-invariant, non-degenerate, symmetric, bilinear form B,« on T,«F(£).
Here G,v denotes the isotropy subgroup of G at v".

Proof. If gvy=3"%_1 v;g;sr, then g=tvy =3_, g;#vi» and
0 logfv(g“‘°)> 8% log [V (-1
D) =G (( ) &) @™
( Oy 8y;  /ii 0y18y; Y

Hence the bilinear form B,v on T, F(2) is G,v-invariant. Since B,+ is also
given by

T, F(@)X T,»F(2)3(a, b) = <a|([dF "), (b)>,
its kernel is
T, F(2)N((dF"),« (T,  F2))™,
which is, by (1.11) and (1.15, (2)), equal to
T F@) N (TpvonyFY (V)" = T F@)N T (F''F'(vY)).
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(Note that, by (1.14) and (1.15), F(2),=F(£) and (1.11.1) is automatically
satisfied.) Since F(£) is a cross section of F': 2'—FY(2") by (1.14) and
(1.15), and FY~'FY(v") is a fibre,

TNFRNT,W(FYIFY(Y)) =0.
Hence B,v is non-degenerate.

Lemma 1.17 ([19]). Let X be a smooth affine variety and G a reductive
group acting on X. Suppose that a G, -invariant, non-degenerate, symmetric bi-
linear form on T,X is given for each point x&X. Then there exists an open,
dense, G-stable subset U of X such that G-x is closed in X for any point x& U.

Theorem 1.18. (1) The G-orbit O, is affine variety and the isotropy group
at a point of O, is reductive.

(2) F(2)=F(0)=0x.

(3) The morphisms F: 0,—0) and F:0{—>0, are isomorphisms and
the inverse morphisms of each other.

(4) Let (TOY)™ be the conormal bundle of OY, i.e.,

(TOY)Y*: = {(v,v\)EVXOY |vE(T, OY)"}.
Let
O, v") =v+FYOY)  for (v, v)E(TOY)™ .

Then @ defines a G-isomorphism between fibre spaces wm: (TOY) —0Y (natural
projection) and F: 2—0y. The inverse of @ is given by

¥(v) = v—F'F(v), F(v)) forve®.

(Recall that F=grad log f, £=f"Y(C*) and O, (resp. O,) is the unique open
(resp. closed) orbit in 2. The objects FY, 2", O, and Oy are defined in the
same way starting from /" instead of £.)

Proof. (1) Since O, is Zariski closed in the affine variety £, it is affine.
Hence the isotropy group at a point of O, is reductive [20].

(2) By (1.15), (1.16) and (1.17), there exists a non-empty, G-stable open
subset U of F(£) such that, for any x& U, G-x is closed in F(£). Since F(O,)
is dense in F(£), UNF(Oy)=+¢. Since F(O,) is a G-orbit, F(O,)C U. Hence
F(0.)=F(0,)=F(2). By (1.15), F(Oy)=F(£2) is a closed orbit in 2. Hence
F(2)=0y.

(3) This follows from (2), (1.14) and (1.15).
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(4) Let v'€0yY. For any veF '(v"), F))=v'€0, =F(0, by (2).
Hence by (1.10,(3)), v—FYF(v) € (Tr,yF(£))*. Hence

(1.18.1) FY0")CFY(0") (T, F(2))*.
Since v € 0y =F(0,), we can write v’ =F(v') with v'€0,. By (1.13),
(1.18.2) F(vY) = FIF(v") D v/ +-(Tyv F(2))™.

Since F¥(v")-+(T, F(2))*" and v'+(T,vF(2))* are affine spaces of the same
dimension, it follows from (2), (1.18.1) and (1.18.2) that

(1.18.3) FIY) = FYO0) T F@) " = F'(")+H(T0i)™

Then, @ defines an isomorphism z~*(v')—>F~'(v¥) and ¥ defines its inverse.
In fact, if (v, v)E771(v"),

O, v") = v+F'ONE(TO))+F' () = F(v"),

by (1.18.3). Hence FO(v,v")=v"' and ZO®,v")=(@(,v")—F ("), v" )=
(v, v¥). On the other hand, it is easy to see that ®¥(v)=v. Thus we get the
assertion.

Example 1.19. Let V=V"=C% {(x, )| (x’, y")D>=xx'+yy" and G=(C*)’.
Define a G-action on V by (g, g,) (x, y)=(gx, g&¥). Let f(x, y)=x°*. For
any a and b, 0,=04 =C* xC*.

(1) If a=b—0, then 2—C2, 0,—{(0, 0)}, O} —{(0, 0)} and F-(0, 0)=C".

2@ If a=0,b5>0, then 2=CxC*, 0,={0} xC*, 0Y={0} xC* and
F~Y(0, y)=C x {b/y}.

(3) If a>0,b>0, then 2—C*xC*, 0,—C*xC*, 0} =C* xC* and
F~(x, y)=A{(a/x, b/y)}.

Example 1.20. Let V=V"=M,, 4(C), {v|v'>=Tr(v*-v") and G=C*x
SP2(C) X SO4(C). Here Sp,(C)={g=GL,,(C)|g*Jg=J} with

( 0 1,,,)

J = ,

—1, 0

and SO4C)={g=SL;(C)|g*g=1}. (* means the transposition.) Define G-
actions on V¥ and V" by (¢, g, g)v=t(gve¥) and (¢, g, g)v* =t (g¥ v gz )
for tEC*, g ESPou(C), g,€850,(C), vV and v'eV'. Let f()=f"'()=
—Tr((v*Jv)")/2 and ¢(t, g, g)=t*. Then for g=(t, g, g5), f(gv)=0(2)f(v) and

(g )=8(@ ' f"(v). Let v (1<i<3) be the column vectors of v& M,,, ;(C)
and (v'v)=(")*Jv". Then f(»)=("V22+(4°P+(Pv)%  Let
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/1000 00 - 0\*
v0=(01o---0 00---0)
0000 10 -0/

and
100 - 0 00 - 0\*
vlz(OOO---O 00 - 0).
000 --0 10 -0

Then £ =f"Y(C*) consists of two orbits O;=Gv, and O,=Gv,, where O, is open
in £ and O is closed. The morphism F=grad log f'is given by

F() = =2 Jw* vjf(v).
Hence
FYF(v) = —v(v* ()
and
v—FYF() = f(”—) (O ), O° ), (P )% (07, (), (* 1)) .
v
The fibre of F containing v, is
10 -+ 0 0 0 .- 0\*
'{ 0 Xy 7t X 0 Xmtz °°° x2m\)} .
\0 0 - 0 1 0 - 0|

This example will be taken up again in (3.24).

Remark 1.21. Although the open orbit O, is uniquely determined by the
prehomogeneous vector space (G, o, V), 2=2(f) and O,=0,(f) depend on
the choice of a relatively invariant polynomial f, as we have seen in (1.19).
Moreover, we can show the following fact. Let f; and f, be relatively invariant
polynomial functions on V. Then O,(f)=0:(f,) if and only if 2(f)=2(f,),
ie., f7(0)=f2%0).

Proof. Since Oi(f;) is the unique closed G-orbit in 2(f)), 2(f/)=2(f;)
implies O,(f))=0,(f,). Assume that 2(f)==2(f), i.e., [T (0)%+ f210). Let ¢;
be the character of f;, and f a relatively invariant polynomial on V" of char-
acter ¢7* (cf. (1.5)). As is seen from the proof of (1.5), f} can be obtained from
f; by the complex conjugation of the coefficients of f, (up to scalar multiple).
Hence fY~%0)==f2 ~}(0). Assume that fY~%0)d f¥~1(0). Then for any natural
number s, f¥*/fY is not a polynomial. Since f; (grad) f¥° and f¥°/fY
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correspond to the same character ¢; ¢7° and fi(grad) f,° is a polynomial,
fi(grad) fy*=0. Hence we can show, as in the proof of (1.8), that

figrad logf¥) = 0.

On the other hand, by (1.7) and (1.8),

fi(grad log fY) = 0.
Since (grad log fY) (0¢)=0,(f;) by (1.18,(2)), 0,(f) =+ O:(f2).

§2. D-modules

2.0. In this section, we review the theory of systems of differential equa-
tions.

2.1, Differential operators
2.1.1. Weyl algebra

For an affine variety ¥ over C, we denote the ring of regular functions on
V by A(V) or C[V].
Let V=C" and {x,, :--, x,} be its coordinate system., The Weyl! algebra

D(V) is the C-algebra defined by the following presentation:
(1) D(V) is generated by 27 elements x;, --°, X, i, oee, 4 .
0x, ox,
(2) These generators satisfy the commutation relations [x;, x;] =0,
[.2, i]:o, and [ 0 ,x,,}:a,.,,, where [P, Q]=PQ—QP and 3, is the
ax,- 3x,- ax,-
Kronecker delta.
For an affine open subset U of V, let D(U)=A(U)Q 4 D(V). Sometimes

we write 9; for ai, A for A(U), and D for D(U). We call an element P of D

a differential operator and define its order ord (P) in the usual way. Let D,=
{P=D|ord(P)<k}. Then {D,} gives a filtered ring structure in D. Let gr,(D)
=D,/D,_, and gr(D)=®P,cz gr(D). The gr(D(U)) has a natural ring structure
and is isomorphic to C[Ux V"] as a graded ring, where V" is the dual space of
V. Let o=a,: D,—D,/D,_, be the natural projection. For a differential oper-
ator P of order k, we call o,(P) the principal symbol of P. For a left ideal L of
D(U), let

gl) = @ LN Dy).
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Then gr(L) is an ideal of gr(D(U))=C[UxV"].

2.1.2. Define an anti-automorphism * of D by 0¥ =—9; and a*=a (a 4).
For PE D, we call P* the adjoint operator of P. Let 2 be the A-module 4 -dx,
A-+Adx, For a right D-module M, Hom,(2, M)=M Q27 has a left
D-module structure defined by P(mQ(dx; A ++* Adx,) ™) =mP*Q(dx; A\ -+ A\
dx,)™*. (As far as we deal with D-modules over an open set of C", ® 27 !is
not important. In such a case, we omit to write it if the notation becomes too
complicated.)

2.1.3. There are several kinds of ‘differential operators’. Let us con-
sider relations among them.

For a point veV, let 4, be the localization of A at v, and m, its maximal
ideal. Let (AA,,, ,) be the m,-adic completion of (4,, m,). Let 4, be the ring
of germs of holomorphic functions at v, and 7, its maximal ideal. Then the
,-adic completion of (4,, 7,) is also (4, m,). Since A, is noetherian, ff,, is
faithfully flat over 4, [3; Chap.3, §3, Prop.9]. Similarly, 4, is faithfully flat over
A4,. Hence A, is faithfully flat over 4, (cf. [3; Chap. 1, §3, no. 4, Remark (2)]).
Hence any 4,-module M can be regarded as a submodule of 4,® 4, M [3; Chap.
1, 83, Prop.9]. Since 4, is flat over 4 [3; Chap.2, §2, Theorem 1], 4, is flat over
A. Let D,=A,Q,D and D,=A4,Q,D. Since 4, is flat over 4, D, is flat over
D. For a point p=(v,v") of VXV, let E, be the ring of germs of microdif-
ferential operators (of finite order) at p. (See [15; 2.2.2] for the definition. Here
we consider ¥’ x V" as the cotangent bundle of V.) Since E, is flat over D,
[26; Chap. 2, 3.4, Remark 2], E, is flat over D.

2.14. Let V=vV'@V”, {x{, ---, x4} and {x!’, ---, x}’} be coordinate sys-
tems of ¥’ and V”/, and I (resp. I"’) the ideal of A(V) (resp. A(V"’)) generated
by xi’, -+, x4’. Let i: ¥V'—V be the inclusion mapping and

Dyry = (A(V)/D@ amy D(V) = D(V)/ID(V) = D(V)Q(D(V")/I" D(V")) .

Then Dy is a left D(V')-module and a right D(¥)-module. Let v=v'Pv”,
Dy .y =D -7 Q@ aw) Ao DV’—>V,1/=DV’-—>V®Au A:’ Dy=A4yQ 4y D(V') and Dv’
=4,Q,, Dy. Then Dy, is a left Dy-module, and Dy,y, is a left D,-
module. Let 4, D(V’) be the subring of D, generated by 4, and D(V’). Then

ox{’
Hence D, is a faithfully flat left 4, D(V’)-module. Since 4, D(V')/I A, D(V')=
D, and D,/ID,=Dy:_y ,, Dy, is a faithfully flat left D,~-module. Let 1y, =

D, is a free left A, D(V')-module generated by {(—a—-)Jl""(%)“UiZO}.
X
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(1o mod ID(V)). Since ID(V)={P&D(V)|PA,CIA,(P acts on A4, as a dif-
ferential operator)}, there do not exist elements P& D(V)—ID(V) and s€4,—
m, such that PseID(V) (multiplication of differential operators P and s).
Hence Dy, may be regarded as a subset of Dy/,y,. By (2.1.3), Dy,y, may
be regarded as a submodule of Dy, ,. Hence 1,.,, may be regarded as an
element of Dy,y, or Dys,y.,.

Lemma 2.1.5. Let M be a right Dy-module. For an element u of M, the
following conditions are equivalent:

(1) u®lyr,y=0in MQ3, Dyrsy .,

(2) The image of uD;®3, Dyrsy . in M @35, Dy sy, is zero.

(3) uDyQ®35, Dyrsy,,=O0.

4 u=0.

Proof. Since 1,7,y is a generator of the right D,-module Dy, ,, (1) (2).
Since Dy/,y, is a flat left D,-module, (2)<(3). Since Dyr,y, is faithfully flat
left D,-module, (3)< (4).

2.1.6. Let M be a D-module generated by a single element # and N another
D-module. Sometimes, we identify a D-module homomorphism ¢: M—N
with the element ¢(u) of N, and call ¢ or ¢(u) a solution of M (in N). Cf.
[15; 2.1].

2.1.7. Let M be a D-module and f€ A(U). Considering M as an A-
module, we can define its localization by f~!, whch we shall denote by M[f].
(An element of M[f~'] can be expressed as f~!u with uEM and an integer
>0, and /' u=0 if and only if fYu=0 for a sufficiently large N.) Then
M £~ has a natural D-module structure such that

8i(f ) = —lf 1 2Ly 40,4
ax,-
2.2, Characteristic variety

2.2.1. Support

Let ¥ be a smooth, irreducible, affine variety over C, A=A(V), and M
an A-module. For an element u of M, let

ann,(u) = {a=A4|au = 0}
and

supp(u) = {veV]a(v) =0 forany acann,(u)} .
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Let supp(M) be the union of supp(u) for u< M, and call it the support of M.
If M is finitely generated, supp(M) is Zariski closed in V.

2.2.2. Let M be a finitely generated 4-module, C an irreducible algebraic
set of V, r=codimy(C), I={a=A4|a=0 on C} and S=A4—I. Assume that
there is an affine open subset W of V such that W N C==¢ and

(1) W Nsupp(M)=9¢, or

2) WNsupp(M)=W NC.

Then S~ 4 is a regular local ring of dimension r, ™' M is a finitely generated
S~ A-module, and is annihilated by some power of the maximal ideal S~ I of
S™1 4. (Infact, A(W)®, M is already annihilated by some power of A(W) L)
Hence lengthg-1,(S~M) is finite, which we shall denote by m(C)=m(C,M) and
call the multiplicity of M along C. See [29] for regular local rings.

2.2.3. Characteristic variety

Let ¥=C" and U be an affine open subset of V. Let M be a (left) D(U)-
module, and F=(F, M), an increasing filtration of M by finitely generated
A(U)-submodules such that

U FkM == M and D[(Fk M)CF]H.[ M.

keZ

(Recall that {D,} is the order filtration of D.) Then gr(M) naturally becomes
a gr(D)-module, where gr,(M)=F, M/F,_, M and gr(M)=@® ez grs(M). Such
a filtration F is said to be good if gr(M) is finitely generated as a gr(D)-module.
A D-module M has a good filtration if and only if M is finitely generated as a
D-module.

If Fis a good filtration of a D(U)-module M, the support of gr(D)-module
gr(M) is an algebraic subset of UXx V", which is denoted by ch(M) and called
the characteristic variety. As is easily seen, ch(M) does not depend on the cho-
ice of a good filtration. A finitely generated D-module M is called holonomic
if dim ch(M)<n.

2.2.4. Characteristic cycle

Let C be an irreducible algebraic subset of Ux VY. Assume that there
exists an affine open set W of Ux V" such that W N C=¢ and

(1) W Nsupp(M)=9, or

) W Nsupp(M)=W NC.
Then we can consider the multiplicity of gr(#/) along C, which we shall call
the multiplicity of M along C and denote by m(C)=m(C, M).

Let i(M) be the set of irreducible components of ch(M) and consider the
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formal sum
ch(M) = > m(C, M) C,
osi(iL)

which we call the characteristic cycle of M. The characteristic cycle is also
independent of the choice of a good filtration.

Lemma 2.2.5. For a finitely generated D-module M and a point p=(v, v")
eVxVY, the following conditions are equivalent to each other:

(1) pech(M).

(2) For some us M, p<=ch(Du).

() For some ucs M, E,Q ,(Du)=£0.

4 E,QpM=+0.

Proof. (1)=(2) is obvious. Since E, is flat over D (cf. (2.1.3)), E,Q ,(Du)
can be regarded as an E,-submodule of E,Q, M for any u. Hence (3)<(4).
For a given element u& M, let I=annp(¥). In order to prove (2)«(3), it is
enough to prove the equivalence of the following conditions:

(a) pech(Du).

(b) pis a common zero of the ideal gr(Z) of gr(D)=C[V'xV"].

(c) pis a common zero of the ideal gr(4,Q1) of gr(D,)=4,Q¢ C[V"].

d) E,Qp(Du)=+0.

(In (c), the filtration of D, is given by D, ,=4,®, D, and gr(—) is defined as
before.) (a)«(b) is obvious. Since 4, is flat over 4, it follows that 4,® ,(Du)
=D,/(4,®1), Dp, N (4,Q1)=A4,Q(D;N1) and gr(4,@1)=A4,Qgr(I) [3; Chap.1
§2, Prop.6]. Hence (b)«(c). (c)(d) is proved in [15; 2.3.5].

Lemma 2.2.6. Let
O-M—->M—-M'—-0

be an exact sequence of D-modules. If M is finitely generated, then M’ and M"
are also finitely generated, and

m(C, M) = m(C, M")+m(C, M"")
Jor any irreducible component C of M.

Proof. Consider a good filtration of M and filtrations of M’ and M”
induced from it. Then

0 — gr(M") — gr(M) — gr(M") = 0
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is exact. By the exactness of the localization as a functor, and by the additi-
vity of the length, we get the assertion.

Lemma 2.2.7. For a D(U)-module M and ucs M, supp(u)=ch(Du)N
(Ux{0}).

The assertion follows from the equivalence (a)< (b) in the proof of (2.2.5).

2.3. In this paragraph, we study D-modules related to the complex power
f° of a polynomial function f(x). A main purpose of this paragraph is to give
(2.3.11).

2.3.1. Let V=C", f be a polynomial function on ¥V, B a connected, simply
connected open subset of £=f"Y(C*), f* a single-valued branch of f(x)° ((s, x)
€C X B), D[s]=DQ®¢ C[s] and D[s] f° the D[s]-module generated by f°. For a
given complex number «, let f*=(f° mod (s—a) D[s]f°). Then f® is a gener-
ator of the D-module D[s]f°/(s—ea) D[s]f°. Note that f* is only an element
of an abstract D-module D f*, and not a function.

2.3.2 ([14], [16]). Let M be a D-module and u an element of M. Con-
sider the left ideal 7 of D[s] consisting of differential operators P(s)& D[s] such
that

(f"*P(s)f)u=0

holds in C[s]®¢ M for a sufficiently large integer m. Note that /7~ P(s) f°
D[s] if m is large enough. Let N=D[s]/I and denote the element (1 mod I)
by f°u. Then N=D[s](f°u). By the definition of N,

(2.3.3) S™ P(s) (f°u) = 0, if and only if P(s) (f*u) =0, and
(2.3.4) P(s) (f* &) = 0, if and only if P(s--m) (f™f 1) =0,

for P(s)eD[s] and m>0. For a complex number a, let N(a)=N/(s—a) N,
and f® u=(f° u mod(s—a) N). Then N(a)=D(f* u).

Note that if M=4(V) and u=1, the D[s]-module D[s] (f* u) is naturally
isomorphic to the D[s}-module D[s] f* given in (2.3.1).

2.3.5. Let C[s, t] be the C-algebra defined by the relation ts=(s+1) ¢, and
D[s, t]=DQ®¢ C[s,t]. Then D[s] (f°u) has a D[s, t}-module structure defined
by

t(PG) [ u) = P(s+1) fof*u.
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This definition is well-defined by (2.3.4).
2.3.6. For a polynomial c¢(s)ECls], let
Ay = A (c) = {eeC|c(a+j)+0 for j=0,1,2,-+}, and
A_.=A.(c) = {aeC|c(a—j)*=0 for j=1,2,---}.

Henceforth, we assume that there exist a polynomial ¢(s)&C[s] and a dif-
ferential operator P(s)< D[s] such that

2.3.7 PE)(fffuy=c(s)fu.
(It is known [14] that such ¢(s) and P(s) exist if M is holonomic.)

Lemma 2.3.8 ([16; Lemma 2.3]). For a=A_(c), D(f* u) is naturally iso-
morphic to D(f*® u) [ f~"] with the natural D-module structure.

(See (2.1.7) for (—)[f~"]. Although we do not assume M to be holono-
mic, the proof of [16; Lemma 2.3] works if we replace ‘bijective’ in the line 14
of page 175 with ‘injective’.)

Lemma 2.3.9. If c(a—1)---c(e—10)=F0, then f*u—f'-f*'u gives an iso-
morphism D(f* u)—>D(f**u). Especially, if e A_(c), the assumption is sat-
isfied.

Proof. The inverse morphism is given by

fotu—(c(@—Dcl@—1)" (P(e—D-Pl@—1) (f*u).

Lemma 2.3.10. Assume that f is not a zero divisor of Du(CM). Then
Du is a quotient of N(0)=D(f° u).

Proof. Define the D-module homomorphism D[s] f° u—Du by

o) (f*w) > 0O u.

If Q(s) f° u=0, then (™~ Q(s) f°) u=0 for a sufficiently large integer m. Let
S 0(s)f*=X 5" Q;. Then Q; u=0. Since Qy=f" Q(0), /" Q(0) u=0. But
we are assuming that f is not a zero divisor of Du. Hence Q(0) #=0, and,
consequently, the above morphism is well-defined. Obviously, it is surjective
and its kernel contains sD[s] (f* u). Thus we get a surjective homomorphism

Dis] (f* w)/sD[s] (f* u) = Du..

Lemma 2.3.11. Assume that [ is not a zero divisor of Du. If 0A_(c),
then Du=(Du) [f~"].
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(See (2.3.6) for A, and (2.3.7) for ¢.)

Proof. By (2.3.8), N(0)=D(f°u) is isomorphic to D(f°u)[f~"]. Hence,
by (2.3.10), we get a surjective homomorphism ¢: (D f°u)[f~]—=Du. It is
enough to prove that ker(¢)=0.

If (0 f° u)=0 with Q= D, then Qu=0. If m is a sufficiently large inte-
ger, then, as elements of D[s], = Q f*=f" Q-+sR(s) with some R(s)< Dl[s].
Hence (f™* Qf°)u=sR(s)u. For a sufficiently large integer /, there exists
T(s)ED[s] such that f*~” R(s)=T(s) f*~*. Then as elements of D[s], /"~ Q f*
=f" Q+sfm T(s)f*~, and f"~(Qf'—(s+1) T(s+1)f =f"*"" Q. Hence
Qf'—(s+1) T(s+D) f° u=0 in D[s] (f* u), and (Qf")-(f' u)=0 in D(f~' u).
Since 0 belongs to 4., D(f° u)—=D(f " u) (f° u—f*-f "' u) is an isomorphism
by (2.3.9). Hence Q f° u=0.

In general, if o(f~"-0f°u)=0, then ¢(Qf°u)=0, Qf°u=0, and f~™-
Qf°u=0. Hence ker(p)=0.

2.4. In this paragraph, we recall known facts about the characteristic vari-
eties of D[s]f° and Df®. We include (2.4.3) and (2.4.4) here in order to make
[13] accessible.

241, Let VV={y=(y, '+, y,)} be the dual space of V=C"=
{(xy, ==+, x,)}, p: CXVX VY=V X V" the natural projection, 2=f~! C*,

W' = {(s, x, s grad log f(x))€C* x2xV"},
W = the Zariski closure of W’ in CxVx V",
W,= {0} xVxv)Nw,

W =pW"),
W = the Zariski closure of W’ in V'x V", and
Wo= A, NEW | f(X)yy = =+ =f(x) y, =0} .

2.4.2. Since W' is Zariski closed in C*x 2 x V",
W =WN(EC*x2xV")=W—{sf(x) =0} .

In an irreducible variety over C, a Zariski open set is everywhere dense with
respect to the classical topology. Hence the closure of W’ with respect to the
classical topology coincides with W. Similarly, the closure of W’ with respect
to the classical topology coincides with W.

Lemma 2.4.3. ([13; Lemma 5.5]). If (xo, y)EW and f(x,)=0, then there
exists a sequence (S, X;, Vi) EC* X W' such that y,=s,(grad log f) (x;), s,—0
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and (x;, y,)—> (%o, Yo)-

Sublemma. Let W be an algebraic variety over an algebraically closed
field k, W' an open dense subset of W, and p a point of W. Then there exists
an irreducible curve CC W such that p CE W\W'.

Proof of (2.4.3). Let CC W be an irreducible algebraic curve such that
pi=(xp, Y9 ECEW\W’, a: C'—=C the normalization of C, p’ a point of C’
lying over p, and b: C'—P" any branched covering. Put D={t=C| |¢| <1}
and d(x)=x%(x&D) for a given natural number e. If the ramification index
of b at p’ is e, then the branched covering b: C'— P! is analytically isomorphic
to d: D—D in a neighbourhood of p’. As the composition of the local iso-
morphism (D, 0)—(C’, p’) and the natural projection (C’, p')—(C, p), we get a
holomorphic curve ¢: D—C(C W) such that ¢(0)=p and c(t)& W’ for 0< || K
1. By a change of variable ¢, we may assume that c(z) is holomorphic and
lying in W’ for 0<|2#]| <2. Let c(t)=(x(¢), y(¢)). For t,= D\ {0}, let

x{(t)) = max |x(t)].
1#<2ltyl

Then lim,, x;(¢)=0 aad

1% - |X(t) | < max |x,(6)] <xi(t)
1841kl

by the Cauchy’s inequality concerning analytic functions of one variable. Let
SO =2z fi ' If fy=+++=f,-1=0 and f,,==0, then m>0,

fx(@) =fut"+0@™*Y), and 2t % fx(2)) = 2m f,, t" 0™ .
Hence

| FHO) < 120 L 7D <233 12115501 - | 2L (x(0)]
t i=1 ox;

<2 3150+ |- 2L ()| <21%(0) | < | (grad ) G0

0x;
for |z] 1. Take #,=D\{0} so that £,—0, put (x,, y,):=(x(t,), y(t)) (E W),
and take s,&C* so that s, (grad logf) (x,)=y;. Then
[sel+ |grad f(xp) | = |y fx) | 2] yil = | %(t) | - | grad f(x) .

Since f is locally constant on {grad f=0}, and since f(x,)==0 but f(x,)=0,
grad f(x,)==0 for k0. Hence |s,| <2| ] - | %(¢)| for k>0 and we get the
assertion.
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Proof of sublemma. We may assume that W is an irreducible affine variety.
By the Noether’s normalization theorem, there is a finite surjective morphism
z: W—k", where m=dim W. Put Z=z(W\W'). Then Z is a closed subset
of k" and dim Z<m. Let A=k[Ty, -+, T,;] (the polynomial ring), B=k[W]
(the ring of regular functions on W), and A4, (resp. B,) be the localization of 4
(resp. B) at #(p) (resp. p). Consider A4 (resp. 4,) as a subring of B (resp. B,) by
z*, Take an affine line L such that z(p)eLdE Z. Let P be the prime ideal
of 4 defining L, P, the prime ideal of 4, generated by P, Q, a prime ideal
of B, such that Q, N 4,=P, (going-up theorem of Cohen-Seidenberg), 0=0,N B,
and C the irreducible subvariety of W defined by Q. Then p& C and = induces
a finite surjective morphism C—L. Hence C is an irreducible curve with the
desired property.

Lemma 2.4.4. p(W)=W.

Proof. First, assume that f is quasi-homogeneous, i.e., there exist g;&

A(V') such that >3%.; a; of =f. Since
Xi

%) z 2
S pu =N =By e ]

holds on W, the finite C[V'x V" ]-module 3¥_; C[V'x V"] ﬁ is stable under
ox;

the multiplication by s. Hence s| is finite over C[V'x V" ] ‘ Hence p|# is a
finite morphism, p(W) is Zariski closed in V'x V", and p(W) /8
In the general case, let(xy, x) SC X V, fi(xq X)=x, f(x), and define W{, Wl,
{, W in the same way as I/?/', I;', W', W using f; instead of f. Then we have
the commutative diagram

W, > W
! V
W - w,

where the morphisms are natural projections. Since f; is quasi-homogeneous,
V’\I}I—J/V1 is surjective. Hence it is enough to prove that W,— W is surjective.
Let (x, y) be an element of W and let us find an element of W lying above it.
If f(x)==0, (x, y)=(x, s grad log f(x)) with some s&C. Then (1, x, s, s grad
log f(x)) is an element of W, lying above (x, y). Let us assume that f(x)=0.
Let (xz, ) =(xs, 5, grad log f(x,))€ W' and (x,, y,)—(x, y). By (2.4.3), we may
assume that s,—0. Hence
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W{B(Sk: Xe» 1, Sy grad Ing(xk)) g (Os X, 1: y) ]
and (0, x, 1, y) € W, whose projection to W is (x, »).
Lemma 2.4.5. p(W,)=W,.

Proof. For a given (x, y)& W,, we can find s such that (s, x, y)E W by
(2.4.4). If f(x)=0, then we may assume s=0 by (2.4.3). If f(x)=0, then y=0,
and (x, 0)=p(0, x, 0)= p(fV'o). Hence W,C p(ﬁ"(,). Since s grad f(x)=f(x)y
holds on W, p(ﬁ/u)c W,.

Lemma 2.4.6. (1) The characterisic variety of the D-module D[s|f* is W
and m(W, D[s] f*)=1.

(2 ch(Df*)=W,

Proof. By (2.2.5), (1) follows from [13] and (2) follows from [25; appendix].
(If f'is quasi-homogeneous, D[s] f =D f* is a finitely generated D-module. For

a general f, D[s]f* is also finitely generated as a D-module. See pages 49 and
50 of [13].)

2.5. b-Functions

2.5.0. There are several kinds of ‘b-functions’. Let us consider relations
among them. Here, in (2.5), we use the notation given in (2.1.3).

2.5.1. Let ¥=C", vV and R be one of the rings 4, 4,, A, or A,. For
a given f € R, we can find P(s)E R[s]Q 4 D such that

P() [ = c(s) f*

with some c(s)C[s]—{0}. (See [1] for the proof.) The totality of such poly-
nomials ¢(s) is an ideal of C[s], whose monic generator we shall denote by
B(s), B,(s), B,(s) or Bs) if R=A4, 4,, A, or A,, respectively.

Lemma 2.5.2. If f €A, B(s) is the least common multiple of {B,(s)|vEV}.

Proof. Let c(s) be the least common multiple of {B,(s)}. Then ¢(s) di-
vides B(s). Let us prove that B(s) divides c(s). Let P,f*"'=c(s)f" with
P,=A4,[51Q,D. Multiplying the denominator of P,, we get relations of the
form Q, f*t'=g;c(s) f° (Q;ED[s), g; €4, i=1, 2, -+, N) with (g;, -->, gy)=1. If
D1a; g;=1 with ;= 4, then 3] a; Q; f**'=c(s) f°. Hence B(s) divides c(s).

Lemma 2.5.3. If f is a homogeneous polynomial, B(s)=DB(s).
Proof. Let Py f*™'=Bys)f* with P,&A[s]Q,D. The coeflicients of P,



THEORY OF PREHOMOGENEOUS VECTOR SPACES 885

are regular in some neighbourhood U of 0. Hence B(s) is a multiple of B,(s)
for any veU. Since f is homogeneous, B,(s)=B,(s) for t&C*. By these
facts and by (2.5.2), By(s) is a multiple of B(s). Since By(s) divides B(s), By(s)=
B(s).

Lemma 2.54. Iff €A, B,=B,=B,.

Proof. Obviously, B, divides B,, and B, divides B,. Let
2.5.5) Pt =B, f°
with PEA[s]QD. Let P= >4, 0% and 9 f*V=c,f*7! with k,IE€Z, a, &
AJ[s]and c,e4,[s]. Here al:,(:zl, o, a,), @l =3 @, and 8% =0%..-8%. Then,
the linear equation

(2.5.6) S'x,c, =B, f!

1<k

is satisfied by (x,)=(a,). Since AJs] is faithfully flat over A,[s] (cf. (2.1.3)),
there is a solution of (2.5.6) in 4,[s]. (Cf.[3; Chap.1, §3, Prop.13].) Hence we
can find P 4,[s]Q D which satisfies (2.5.5). Hence B, divides 1§,,.

Lemma 2.5.7. Let V" be the dual space of V, and p=(v, v\)EW,. (See
(2.4.1) for the definition of W,.) If Q= 4,QD is invertible in E, and satisfies
Q [T =b,(s) f* with by(s)ECls], then by(s) is a non-zero constant multiple of
By(s).

Proof. Let E,[s]/*=E,®, Dls]f*. By (2.2.5) and (2.4.6, (2)),

o E®sDS ELsS
ORI = b o) DI G—a) E,51f°

for any e=C. (Recall that E, is flat over D.) Hence

(2.5.8) (s—a) Els]1f° S Es]f° forany a&C.
For any a(s)&C[s]— {0}, a(s) D[s] f*=Dl[s] f* as D-modules. Hence
(2.5.9) a(s) E,ls]1f° = E,[s]f°#0.
By (2.5.8) and (2.5.9), E,[s]/° is faithfully flat over C[s]. (See §2, Prop.3, (2)
and §3, Prop.1 of [3; Chap.1].) Let b,(s)=c(s) E’,,(s). If c(s)e=C*, then by(s)
C[s]1SB,(s) C[s] and

by(s) Els] f* S B,(s) Eyls) f*C EJls] f*+*.

On the other hand, since Q is invertible in E,,
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by(s) EJls] f* = E,[s] Q f** = E,[s]f**.
Hence c(s)eC*.

Corollary 2.5.10. If f is a relatively invariant polynomial of a prehomoge-
neous vector space, then by* b(s)=B(s)=Bo(s)=l§o(s)=1§’0(s). (See (1.6) for b,
and b(s).)

Proof. Since fis a homogeneous polynomial by (1.3, (2)), we have B(s)=
By(s) by (2.5.3). By (2.5.7), it is enough to prove that there exists a point v’ &
V" such that p=(0, v')< W, and f"(grad) is invertible in E,. (Cf. (1.6). Here
we use the notation in the first section.) Hence it is enough to prove that

(2.5.11) {0} xOY CW,.

For ve®, (ev, eF(ev)) =(ev, F(¥))— (0, F(v)), (¢—0). Hence we get (2.5.11).
(Cft. (1.18, (2)).)

Corollary 2.5.12. The b-function is of the form
d
b(s) = by Il (s+ey), d=degf,

where a;’s are positive rational numbers.
Proof. The assertion follows from [13] and (2.5.10).
2.6. Duality

Lemma 2.6.1. Let (R, m) be a regular local ring of dimension r, and M an
R-module of finite length. (See [29] for regular local rings.) Then

Exti(M,R) =0 for j=r
and
length o(Ext%(M, R)) = length(M) .

Proof. If lengthp(M)=1, i.e.. M=R/m, a free resolution of M can be con-
structed explicitly and Ext%(M, R) can be calculated. (Consider the complex
K(xy, >+, x,; M) given in [29; IV-4], where {x;, -*-, x,} is a regular system of
parameters of R [29; IV-40].) Our assertion follows from this special case by
an induction on the length of M.

Lemma 2.6.2. Let M be a finitely generated (left) D(U)-module, C an ir-
reducible component of ch(M), and s=codimyy«(C). Then
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m(C, Extp(M, D)®, 87") = m(C, M) .
(See (2.1.2) for @271, and (2.2.4) for m(C, —).)
Proof. Let (M, F) be a good filtration of M (cf. (2.2.3)), and
d d €
o> (My, F) —> (My, F) = (M, F) = 0
a filtered complex such that

d d € .
1 M,:.=(— M, - M, — M — 0) is exact,

2 - %@ gr(My) g_r(i) ar(M,) g—r(ﬂ gr(M) — 0 is exact,

(3) each M; is finitely generated free D-module, say, M;=@ <i</jy Dttj i
and

(4) F; M;=@1<k<rt) Di-s(,0 4, With some s(j, k).
Such a filtered complex exists for any (M, F) [1; Chap. 2, 3.11]. Let

F; Homy(M,, D) = {h&Homy(M,, D)|h(F, M.)C D,,, for any k} .
For each j, (Homp(M;, D), F) is a good filtration and
gr Homy(M;, D) = Homg,p)(gr(M}), gr(D)) .

Let (Ext)(M, D), F) be the filtration induced from (Hom(M.,, D), F). Consider
the spectral sequence (E2?) associated to the filtered complex (Hom(M,, D), F),
and let E; =@ ,.,-; E2. Then

E(’) = Homgr(D)(gr(Mt)s gr(D)) s
E} = Extg.(n)(gr(M), gr(D)), and
E* = gr Exty(M, D).

Let S={a=C[UxV"]|a=%=0 on C}. Then by (2.6.1),
ST E{ = Extl-14,0)(S™! gr(M), S~' gr(D)) =0

for t=s. (Note that S~! gr(D) is a regular local ring of dimension s.) Hence
the spectral sequence (S~! E2?) degenerates at E,-terms, and

Ext-14,0)(S7" gr(M), S~* gr(D)) = S~ gr Exty(M, D).

By definition, m(C, Ext5(M, D)Q£L7Y) is the length of the right hand side of
this equality. On the other hand, by (2.6.1), the length of the left hand side
is equal to that of S~ gr(M), which is m(C, M).
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2.6.3. If M is a left D[s, t]-module (cf. (2.3.5)), then we can define a left
DJs, t]-module structure of Homy(#M, D) by

(Pp) ) = o(u) P*, (sp) (W) = —¢(su) and (tp) () = ¢(tu) ,

for peHomy(M, D), ue M and P&D. (See (2.1.2) for P*. Note that our
definition of the D[s, t]-module structure here depends on the choice of the co-
ordinate system. In order to make the description free from the coordinate
system, it suffices to consider Homp(M, D)®Q , 2 * etc.) Hence Ext)(M, D) has
a left D[s, t]-module structure. Let N=D[s]f*, N(&)=D f* (cf. (2.3.1)), N*=
Ext} (N, D) and N(e)*=Exth(N(a), D). In general, set M*=Ext}(M, D) for
a holonomic D-module M. (See (2.2.3) for the definition of a holonomic D-
module.) Since N is a left D[s, t]-module by (2.3.5), N* is also a left D[s, t]-
module.

Lemma 2.6.4. (1) Exth(N, D)=0 for j+n—1.

(2) If a D-module M is holonomic, then Exth(M, D)=0 for j +n.

() Ifa,e4,(B),a_cA_(B)and a,+a_=0mod Z,then N(a,)*=~=N(a_)
and N(a)==N(a_)*.

(See (2.3.6) for A, and A_, and (2.5.1) for B.)

Proof. (1) and (2) are essentially proved in [13]. In order to prove (3),
it is enough to prove that

N(e,-+k) = N(a_—I)*

for some non-negative integers k and /. (Cf. (2.3.9).) We prove this in several

steps.

2.6.5. TFirst step. First, let us define a Dl[s, t]-module homomorphism
7: N*—N on the open set U=V—f~Y0). Here, in (2.6.5), 4 and D always
stand for 4(U) and D(U).

Let 0=,<;<, A{s] v; and define a free resolution of the D[s]-module A[s]

n 6 6 0 &
0 — D[s1® 43 /\ 0 = -+ = D[sIQ 4ra1/\ 0 — A[s] — 0
by

PRV N Aw) = gkl (=D PO;Q/A s AVt AVia A\ == A V)

and

e(P) = P-1.



THEORY OF PREHOMOGENEOUS VECTOR SPACES 889

Since N=D[s] /* is a free A[s]-module generated by f*, (D[s]Q/\* FQN, dQN)
gives a free resolution of the D[s]-module N in the following manner. The
D[s]-module structure of D[s]®/\* 0Q N is given by

(PRWRf*) = 09; PRWR f*+PRwRI(f°).

The set {IQV; A= Av;) )R [f°|1<i;<---<i<m} gives a free basis of the
D[s]-module D[s]®/\* 6Q N. Consider the complex

k
(Hom,(D[s]1Q /\0®N, D), 9),
where 0 is the morphism induced by 0QN. Let
W = V1/\'"/\Vn s
w; = Vl/\"'/\vi—l/\vi+1/\'"/\vn s
Wi = VA AV AVt A AV  AVig N A vy,

Wii = — W5

for i<j, and w;;=0. For a given ¢ € Homy(D[s]R/\* 6QN, D), let
Pl = ¢(1®W®Slfs) ’
0i = o(1Qw;Rs' ),
R; 1= ?(1®W;,,'®S’fs) s

and identify ¢ with P=(P,), 0=(Q;,), R=(R;;;) if k=n, n—1, n—2, respectively.
If we set f; =¥, then by the identities
X

0,Qw,Qs' 7 = 0,(1Qw;Rs' 1) —1Qw;R9,(s' f°) etc.,

we get

OOy = 2 (—=1F70; Qoa—(lf) Cris)
(2:66) (OR);s = 33 (=170 Ry —(filf) Rigin)
Ri,i,l+Rj,i,l - 0 .

The D[s, t]-module structure of N can be lifted to D[s]1Q/\* IQN;
tPEQWy A Av)®Q(5) f°) = P(s+ 1Ry A+ Av; )RQ(s+1) f+1° .

We give a left D[s, t]-module structure of Homp(D[s]Q/\* 6Q N, D) by (s¢) (x)
=—o(sx), (t9) (x)=0¢(tx) and (Pg) (x)=¢(x) P* for P& D. (See (2.1.2) for P¥*.)
Then
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(2.6.7) D = —0Qs111, (Do =S0io>

and 0’s are compatible with the left C[s, t]-module structures. Define a D-
module homomorphism 7: {Q} —D[s] f* by

r(Q) = 33 (~1y QNS

If 60 =0, we can show that r(sQ)=sr(Q), r(tQ)=¢tr(Q) and r(6R)=0 by using
(2.6.6) and (2.6.7). Hence we get a D[s, t]-module homomorphism
7: Exty (N, D)® 4 27 '—N. (Recall that D=D(V—f~(0)).)

2.6.8. Second step. Next, let us show that the morphism 7: N*—N con-
structed in the first step is not identically zero if f is quasi-homogeneous. We
continue to write 4 and D for 4(U) and D{U). Since fis assumed to be quasi-
homogeneous, there exist af €4 such that 3., f; al=f. Let (—1)alf'=a,.
(Note that fis invertible in A=A4(V—f~%0)).) Then >¥_..(—1)f; a,=1. Since

80=0 if and only if 31(—1) 8,0, ,= 31(—1)f; O; s for any />0 (cf.
i=1 i=1
(2.6.6)), and since >} (—1) f;-a; T=T for any T & D, the morphism ker 6—>D"
i=1
defined by O—(0Q; o)i<;<. is surjective. Hence 7==0.

2.6.9. Third step. Here, in (2.6.9), 4 and D stand for A(V) and D(V),
and we assume f to be quasi-homogeneous. Since N=D f°, N* is generated as
a D-module by a finite generator system, say u, -+, u,. (Actually, this is always
the case, even without assuming f to be quasi-homogeneous.) Their images by
7 can be expressed as 7(u;)=P,(s) f~"-f° with P;(s)ED[s] if m is a sufficiently
large integer. Then we can define a D[s, t]-module homomorphism 7;: N*—>N
by 7,(w)=P,(s+m)f°. Since r,=0 by (2.6.8), since ch(N*)=ch(N)=W by
(2.4.6) and (2.6.2), and since N does not have a holonomic submodule other
than O by [13; Theorem (2.12) and Corollary (5.12)], ker 7, and coker 7, are
both holonomic D[s, t]-modules by (2.2.6). Hence by [13; Prop. 5.11], #* ker
71=0 and #* coker r,=0 for a sufficiently large integer k. If t* ucker 7, N
t# N*, then t* 7;(u)=0. Since ¢: N—N is injective, r;(u)=0 and ¢* ust* ker r,
=0. Hence 7;: t* N¥*—t* N is injective. Since t* NC7r,(N*), we get injective
morphisms 1% N—t* N*¥*—¢* N, from which we get

2k N a 2 N b tk N* c N
— — — .
(s—a)i* N* (s—a)t* N (s—a)t*N* (s—a)t*N

Since
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t*N t* N
(s—a)t* N  t*(s—a—k)N

and cb can be identified with the natural morphism N(a-2k)—N(a-+k), cb is
an isomorphism if k is sufficiently large (cf. (2.3.9)). Hence b is injective.

= N(a+k)

t t
Since 0—N— N— N/tN— 0 is exact, and N/tN is holonomic, 0 — N* — N*—
t
(N/tN)*—0 is exact and, especially, N*— N* is injective. Cf. (2.6.4, (2)).
(Note that (N/tN)*=Extp(N/tN, D).) In the same way, we get an exact sequence
—s—a

0— N*.-——> N*— N(a)*—0. Hence

t*N* N*
(s—a) t* N*  (s—a—k) N*
and ba can be identified with the morphism N(—a—2k)*— N(—a—k)* induced
by N(—a—k)—>N(—a—2k). Hence ba is an isomorphism if k is sufficiently
large (cf. (2.3.9)), and b is surjective. Thus we get an isomorphism N{a-2k)

= N(—a—k)* s

b
— N(—a—k)*, assuming k to be sufficiently large. Hence by (2.3.9), we get
the assertion for quasi-homogeneous f.

2.6.10. End of the proof. Let x, be a new variable, D,=D(C) and D,=
D(C xV). Since D,(f x,)® is naturally isomorphic to D f*®¢ D, x4,
(2.6.11) (Du(f x)")* = (D f*)* @ (D x0)* .
By (2.6.9) and (2.6.11), we get an isomorphism
711 (D f* )@ (Do X3+*) — (D™ H)* @ o(Dy X5+¥)
if k is a sufficiently large integer. Since (x, bi——a —k) 1 (u®x3*)=0 for any

0
ue D f***, we can uniquely express r,(u®x5**) as r(W)@x5™* with r@we

(Df~*"¥)*. By this r, D f* t=(D f~* k¥,

Remark 2.6.12. As far as f~%(0)==¢, N* is not isomorphic to N as D[s]-
modules. In fact, if N*=N, the following two exact sequences coincide;

*(s—a)* * *
00— N*¥—> N*¥—> N(@@)* -0

I I I

0>N — >N —>N(—a)—0.

By (2.5.12) and (2.3.9), N(0)==N(k) for any positive integer k, and as their
dual, N(0)==N(—k). Since 4,Q , D(C) x"is not isomorphic to 4,Q , D(C) x~},
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N(0)=N(—1) implies /~1(0)=¢.
2.7. Fourier transformation

Definition 2.7.1. Let V'={(y, --*, y,)} be the dual space of V=C"=
{(x;, -**, x,)}. Define an algebra isomorphism &F: D(V)—D(V'") by

F(x;) =+ —1 o, and 9.‘7(6 i>=\/-1y,-.

For a D(V)-module M, define a D(V'")-module F(M) as follows. As an ad-
ditive group F(M)=M. Denote an element u of M by F(u) if u is considered
as an element of S(M). The D(V")-module structure of F(M) is defined
by F(P) F(u)=F(Pu) for PED(V) and ucM. The D(V")-module F(M) is
called the Fourier transform of M. If M has a D(V) [s]-module structure or a
D(V)[s, t]-module structure, we define the actions of s and ¢ on ZF(M) by
SFW)=F (su), t Fu)=F(tu). (See (2.3.5) for s and ¢.)

Lemma 2.7.2. ([12]). Let X=>Vi_1x; 0,€D(V), M be a D-module and u
an element of M such that Xu=cu with some c€C. Then ch F(Du)=—/_1
ch(Dy) (C VX VY).

2.8. Regular holonomic -module

2.8.1. For a smooth quasi-projective (algebraic) variety X of dimension r
over C,let O =0y be the sheaf of regular functions, £ =92y the sheaf of regular
r-forms, 9 =9, the sheaf of algebraic differential operators, O =% the sheaf
of holomorphic functions, and for any @-module H, H*"=0"RQe M. If X
is a Zariski open subset of C" and M is an A(X)-module, we denote the OF-
module O¥® 4xy) M by M. All the definitions and results concerning D-
modules given in (2.1)-(2.6) can be generalized to 9-modules.

2.8.2. As for the definition of the regularity of a holonomic 9-module, we
adopt the one given in [11; chap. 4]. (Because of the length, we do not repeat
it here.) Note that a 9-module % on an affine line C defined by a single
equation

(F) zp].(x)%)f u=0

is regular in our sense if and only if (F) does not have an irregular singularity at
any point of CU {0}, i.e., (F) is of Fuchsian type. In the case where X is an
affine open subset of C", we call a (left) D(X)-module M regular, if Ox® 4x) M
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is regular.
2.8.3. For a left 9*"-module %, let

Sol(H) = R Homg (.M, O*"), and
DR (H) = 2°°Q g JH[—n] = R Homg=(O™, H) .

Here Hom denotes the sheaf of local homomorphisms, and, R and L means the
right and left derived functors. See [33] for the generalities concerning the
derived categories. For a left 9-module .5, we write Sol(.%) (resp. DR(.H))
for Sol(HM™) (resp. DR(H™)). If X is a Zariski open subset of C", and M is
a left D(X)-module, then we write Sol(M) (resp. DR(M)) for Sol(M*") (resp.
DR(M™).

Lemma 2.8.4. (1) Let
0%&%1—’&%2—)@%3—)0

be an exact sequence of holonomic D-modules. Then M, and M, are regular if
and only if M, is regular.

(2) A holonomic D-module is regular if and only if its composition factors
are regular. (As is shown by (2.2.6), a holonomic D-module is of finite length.)

Lemma 2.8.5. Let Jl be a D[s, t]-module (cf. (2.3.5)) such that

(1) for any asC, JN(a)=T1/(s—a) Tl is holonomic,

) t: J1—T1 is injective, and

() J1/t Il is holonomic.
Then the composition factors (up to permutation) of Jl(&) depends only on
mod Z.

Proof. With some homomorphism ¢, the following diagram becomes

commutative;
s—a
0 N/ J— Jl(a@) —>0
Vi Vi Ve
0—J ——> Jl—> Jl(a—1)——0.
s—a-+1

By the snake lemma [3; Chap. 1, §1, Prop. 2],
0—kero — J1/tTl — T1/tT] — cokerp — 0

is exact. By (3), the composition factors of ker ¢ and coker ¢ coincide (up
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to permutation) with each other. Since
0 — ker ¢ — Jl(a) — Jl(a@—1) — cokerp — 0

is also exact, the composition factors of Jl(a) and Jl(«¢—1) coincide with each
other.

Lemma 2.8.6. Let M be a regular holonomic 9-module on a variety X
and u M. Then D(f* u) is regular holonomic. Especially, 9D f® is regular
holonomic. (See (2.3.1) for D and (2.3.2) for D(f* u).)

Proof. By [14; Theorem 2.5], D(f* u) is holonomic. By [14; Theorem 2.7],
(2.3.7) holds with some P(s) and c(s). Consider 4. of this polynomial c(s).
(See (2.3.6) for A,). Take an integer k so that a+kEA4_. By (2.8.4) and
(2.8.5), we may replace @ with @a+k. Thus we may assume a&=A4._ from the
beginning. By (2.3.8), D(f*w)=D(f*uw)[f}]. We have D-isomorphism
D w=D(f* W) [[TTHDf*®@o Du)[/7'] defined by P f*u—>P(f*Qu).
Since Df*R e Du=4*(D f*X| Du), where 4: X —X X X is the diagonal embed-
ding, it is enough to prove the regularity of @ f*. (Here we used [11; Chap. 4,
2.2.2] which asserts that the regularity is preserved by several functors.) Let X
be a smooth completion of X. It suffices to show that the D¥-module DY f*
can be extended to a regular holonomic 9%-module. (By [11; Chap. 4, 1.1.3
and 2.2.2], we can show that a holonomic Dz-module  is regular if U™ is
regular.) By a proper modification of X, we may assume that the rational
morphism f: X—/P" is regular on the whole X [10]. Then 9% f* is regular in
a neighbourhood of /~}(0) by [16; Theorem 2.2]. 1Itis also regular in a neigh-
bourhood of (o), since Dy [*=DF(f~1)"® and f~' is a regular function
there.

§3. D-meodules and Prehomogencous Vector Spaces

3.0. In this section, first we give a description of the Fourier transform
of the system of differential equations Df® satisfied by the complex power f*
of a relative invariant f of a prehomogeneous vector space, in (3.11). Next
we describe the sheaves of holomorphic solutions of Df* and its Fourier trans-
form, in (3.23). (See (2.3.1) for Df®.) In this section, we assume that a pre-
homogeneous vector space (G, o, V), its dual (G, 0", V"), relative invariants
fEC[V]and fYEC[V"] are given. We use the notation given in the previous
two sections.
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Lemma 3.1. Letr u=F(f*)eS(Df*) and consider the D[sl-module

DI[s1(fY*w). (Cf. (2.3.2).) In this D[s]-module, we have
J@O S f F(f) = (1) bla—s—1) [ F(f*).

Here 8 =grad=(8,, --*, 9,,).

Proof. For any natural number /,

(f-f"(@)—bla—I-1)) [ (®) f*
= ba—1)-b(a—D)(f-f @) —bla—I—1) /' =0.
Hence
(V=19 =1 —ble—I-1) f'/ —1y) F(f*) =0.

Since f'and /" are homogeneous polynomials of degree d,
G.1.1) (SO —(=1 bla—I-1) f"* F(f*) =0.

As differential operators in D[s], let

(S (FOF —(—1) bla—s—1) f** = z s P,
with some P;&D. By (3.1.1), P; F(f*)=0, i.e.,

(SO " —(—=1) bla—s—1)) f** F(f*)) =0.

Lemma 3.2. If € A.(b), then F(Df*)=F(Df*) [£¥ 1.
(See (1.6) for b, and (2.3.6) for As.)

Proof. First, let us show that, if u=Pf*e Df* satisfies f(8) u=0, then
u=0. By the definition of Df*, there exists Q(s)< D[s] such that fV(0) Pf*=
(s—a) O(s)f°. Let m be a sufficiently large integer. Then Q(s)f "’ (9)"=
£V () R(s) with some R(s)ED[s]. Hence

17 @) BfT(0)" foHm = b(s) b(s+1)-+-b(s+m—1) f7(8) Pf*
@3.2.1) = b(s)-+b(s+m—1) (s—a) Q(s) f* = (s—a) Q(s) £ (8)" f**"
=f"0@) (s—a) R(s) /™.

Let N=D[s]f°. For x4, (x, grad log f(x))€ W=ch N by (2.4.1) and (2.4.6).
Hence the principal symbol of f"(8) does not vanish identically on the charac-
teristic variety of N. Thus, if £V(8) v=0 for vEN, then Dv is a holonomic
submodule of N. Since N does not have a holonomic submodule other than
0 by [13; Theorem (2.12) and Corollary (5.12)], v=0. Thus (3.2.1) implies



896 AxrtHIKO GYOJA

PfY(0)" form=(s—a) R(s) f**" and
3.2.2,) PrY@)" ffe(s—a—m) N
Define a D-module endomorphism ¢’ of N by
t(T(s) ) = T(s—1)f @) f(= bls—1) T(s—1) /7).
Then st'—t's=t’, and s induces a D-module endomorphism of N/¢#'N. Since

bs—=1) T(s)f* =T(s)(ff (@) f)ELN,
the minimal polynomial of s&End(N/t'N) is a divisor of b(s—1). Let us show
3.2.2,)=>3.2.2,,) for m>1. By our assumption, b(e-+m—1)==0. Hence
s—a—m&End(N/t'N) is injective and

v(BfY @) f7) = Pf(8)" f* E(s—a—m) NNt'N = (s—a—m) t'N
=t'(s—a—m+1)N.

Since t'End N is injective, Pf'(0)" ! f*(s—a—m-+1) N. Thus inductively,
we get PfPe(s—a) N, ie., Pf*=0.

As we have shown above, f"(9) is not a zero divisor of Df®, and hence /"
is not a zero divisor of F(Df”). Since a4, (b(s)) if and only if 0
A_(b(e—s—1)), we get the assertion from (3.1) and (2.3.11).

Lemma 3.3. ch(Df*)N(V'x2") = (TOY)™.

Proof. Let (v, v") be an element of (TOY)™. By (1.4, (2)), s™'v'€0Y for
any sC*. Since

3. 1,v OF = Lie(G)-(s™'v") = s~ '-Lie(G)-v¥ =T, Oy ,
(33.1)  Tiyv OY = Lie(G)-(s™'v*) = s~'-Lie(G)-v" = T,v O}

we have vET,-1,v OY,ie., (v, s vV)E(TOY)". By (1.18), O(v, s~ v")=v+
FY(s~'v")=v+sFY(v") is an element of F~(s71v"), i.e., Fy+sF'(v"))=s"1v".
Hence (s, v-+sF'(vY),v") e W. By taking the limit s—0, we get (0, v, v')E W,
and (v, v") € W,=ch(Df*) by (2.4.5) and (2.4.6, (2)). Hence ch(Df*)N(V'x2")
D(TOY)™

Conversely, let (v, v¥) be an element of ch(Df*)N(¥'x£2"). By (2.4.5) and
(2.4.6, (2)), (0, v,v")E I/?/'O By (2.4.2), there exists a sequence (S, Vi, 5 F(v,))
in C*xX2xV" which converges to (0,v,v'). For any Ae&Lie(G),
| A5, F(v)>=—5,KAv; | F(v;)>=—5;8(4)—0 by (1.9, (1)). On the other hand,
the first member converges to {v|4-v"'>. Hence v is orthogonal to Lie(G)-v".
Since s, F(v,)=F(sz' v,)E0Y by (1.18), v €0Y. Since we are assuming v' &
2Y,vYe0yY. Hence Lie(G)-v'=T,w OY and v&(T,- 0y)". Thus we have
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proved that ch(Df*) N (V' x ") (TOY)™ .
Lemma 34. ch(F(Df*)N (VX 2")—=(TOY)*.

Proof. We have

0
ox;

éx,-—:—fszdsfs, S1x, 2 f*—daf®, and
i=1 x; i=1

0

da F() = SV =1 2 /=1y, F() = — 532

Ji ayi
By (2.7.2) and (3.3), we have

F(f*)—nI(f).

ch(FDfNNIFXLY) = —/ —1ch(Df)N(Fx L") = —/ —1 (TO)*.

Since it follows from (3.3.1) that s(T0Y)™=(T0y)™" for any s&C*, we get the
assertion.

3.5. D-modules Du, and Du.’
By (1.9.1), we have

<.,,-Z"=}1“"" i aix‘_—m (A))fs =0

for any A= Lie(G). (Here o(4)=(a;;).) By the definition of f* (cf. (2.3.1)),
and by the definition of the Fourier transformation (cf. (2.7.1)), we get

(3an 2 yi—estd) (=) =0.

i,j=1

Let ¢o(4)=Tr(o(4)) (=31 a;;), and Du}, be the D(V")-module defined by
(3.5.1) (._z":l(—a,,.) ¥ % —(apt-dy) (A)) W —0, for AeLie(G).
i,j= i

Since SF(f*) solves this system of differential equations, we get a D-module
homomorphism ¢: Dul,—DF(f®) such that e(ul)=S(f*). Let I be the set of
acsC[V"] such that a=0 on O0Y, and Du// the D(V")-module defined by (3.5.1)
(with u replaced by u;’) and

3.5.2) au,! =0, for aclI.
Let : Du,—Du/’ be the natural morphism.

3.6. Let J=anny(F(f*), J'=anny(u}), and J be the ideal of C[V'x V"]
generated by
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(Here ann,, denotes the annihilator.) Then JCgr(J')Cgr(J). See (2.1.1) for
gr(—). For an ideal a of C[V'x V"], let V(a) denote the algebraic set defined
by a. Then by the proof of (2.2.5), V(gr(J)))=ch(Du;) and V(gr(J))=
ch(DF(f*). Hence, by (3.4),

UN V()2 UNch(Du,)D U Nch(DF(f*) = UNTOY)*"

for any open subset U of V'x2". Let A=(TOY)". By (1.18), ¥(0,) is an
open G-orbit in 4. Let p=(v, v") be a point in ¥(0,). Then

dim{(—4v, Av")| A€ Lie(G)} = dim{(4v, 4v")| 4= Lie(G)}
=dim G:(v,v") =dim Z(0)) = n.

Since the differential at p=(v, v¥) of the generators —{y|Ax)> of J are
—LAv | dy>+-LAvY | dxD, since JCgr(J), and since V(gr(J))=ch(DF(f*)) coin-
cides with 4 in a neighbourhood of p by (3.4), gr(J) and gr(J’) are also the
defining ideals of 4 in a neighbourhood of p.

Lemma 3.7. (1) With the notation as in (3.5) and (3.6), E, u/, is a simple
E-module for pe¥(0,), i.e., it has no proper submodules.
) m(4, Dul)=1.
(Here and below, we write E, u;, etc. for E,&Qp Duj, etc.)

Proof. Assume first that dim OY =n(=dim V). Then AC {0} X V", and
p=(0,v)E¥(0)=0¢. Let AP=Lie(G) (1<k<n) be elements such that
{AD Y, oo, AM Y} are linearly independent, o(A®)=(a{?) and cu(y)=
—>¥_1a¥? y;. Then

(gﬂi‘. cin(y) ———(ad+ay) (A(k>)> u, =0 (1<k<n),

0

dy;
and (¢;)1<; 2<x i invertible in M, (4,v), where 4, is the localization of A=C[V"]
at vV. Assume that 33%7.; ¢;; ¢,;=0;; and let 33i_1 ¢() (@d+ o) (AD)=c,().
Then (0;—c¢,(»)) u;=0 (1<i<m). Foranyiand j, 8; 8; u,=09;(c; u;)=0,c;) u
+¢;(0; up)=0,(c;) us+c; c; u;. Hence (8,(c;)—0(c;)) u,=0. Since ch(Du;)D
ch(DF(f*)DADOY, d(c;)=08;(c;). Hence we can find cEA4,« such that
c;=0,(c). (See (2.1.3) for 4,v). Then 8 (e~° ul)=0 (1<i<n). Hence E,uj is
isomorphic to a quotient of the E;-module defined by 8, u=---=9, u=0. (In
the present case, Epzﬁ,v). Since the latter is a simple E,-module and p& Oy
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Cch(Du}), E, uf, is non-zero and is a simple E,-module.

Let us consider the case where dim OY <n. Then peE {0} x V. (In fact,
if pe {0} x V"V, ¥(0,) should be contained in 4N ({0} x V")={0} xOY). By
(3.6), E,u; is generated by a non-degenerate element u, [26; Chap. II, Def.
4.1.1]. Let p'=(x;, =*=, X4 V1, ***> Y)=(0, +++, 0; 1, 0, +--, 0) and, for BEC,
M(B)=Ey u be the E,-module defined by (x, 8,—f) u=0,u=--- =9, u=0.
Then by a suitable quantized contact transformation, E, u, can be transformed
into M(B) for some B [25; Theorem 8.2, (2)]. Since M(B) is a simple E,-
module, E, u, is also a simple E,-module.

The second assertion is proved in the same way. (In fact, (1) follows
from (2). In order to see the invariance of the multiplicity with respect to
quantized contact transformations, it is enough to note that our definition is
equivalent to [15; 2.6.1].)

Remark 3.7.1. The above lemma holds for any good Lagrangian variety
4 and its generic point p. Cf. [25].

Remark 3.8. By using the notation of [25; §8] and [26; Chap. II, §4.2],
the second assertion of [25; Theorem 8.2] is deduced from [26; Chap. II, Theorem
4.2.5] as follows. Let p be a point which does not belong to the zero section
of T*X, and M a holonomic system generated by a non-degenerate section u in
a neighbourhood of p. Since every canonical transformation can be ‘quantized’
locally [15; 2.4.16], we can ‘quantize’ Theorem 8.1 of [25]. Hence we may
assume from the beginning that M is supported by {(z; £)ET*X |z,=¢£,=E;=
«e=£,=0}, and p=(z; &) with &=F+0. Let ea=—ord(u)—%, and M’ be the
system (z,D,—a)y=D,y=--+=D,v=0. Then ord(v)=—a—4=ord(u). Hence
M is isomorphic to M’ in a neighbourhood of p by [26; Chap. II, Theorem
4.2.5].

Lemma 3.9. Let p be an element of ¥(0,). The morphisms ¢ and
in (3.5) induce isomorphisms ¢: Egu,—E,F(f*) and +r: Egu,—Eu}/’.

Proof. Since E,uj is a simple E,-module by (3.7), and since ¢ and v
are surjective homomorphisms, it is enough to prove that

(3.9.1) Eu)/#+0 and
(3.9.2) E,F(f*)=+0.

(3.9.2) is already proved in (3.4). Cf. (2.2.5). Hence it is enough to prove
that
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(3.9.3) ch(D(@Vyul/) = (TOY)™.

Since the algebraic subset of ¥'x 2" defined by the principal symbols of the
equations (3.5.1) and (3.5.2) is (TOY)™,

ch(D(2")u") C(TOY)™.

What is necessary for our purpose is the inverse inclusion, which will be proved
in the course of a detailed study of Du/’. A proof of (3.9.3) will be given in
(3.18). By (3.7, (2)), m((TOY)™*, Du,)=1. Hence it follows from (3.9.3) that
3.9.9) ch(D(2VYul)) = (TOY)™.

Together with (2.2.6), (3.9.4) implies that D(£2")u/’ is a simple D(£2")-module.
Before proving (3.9.3), let us prove our first main result of this section
assuming (3.9).

Lemma 3.,10. Let I be as in (3.5). Then aZ(f*)=0 for any a<L

Proof. For any a<I, aul’=0. By (3.9), a¥(f*)=0 as an element of
E,5(f*) for any pe¥(0,). By (2.2.5),

T(0p) Nch(DaF(f*) = ¢ .
By (3.4),
ch(DaF (f*)) N (V'x 2") = ch(DaF(f*)) N ch(DF(f*) N (V' x 2")
= ch(DaZ (f*) N AT A—-T(0) .

Hence for any irreducible component A’ of ch(DaSf(f®)) such that 4' N (VX
2YE¢, A/ N(VX2)CTA—%(0,). Hence dim A’ <<dim A=n. Since a charac-
teristic variety is known to be involutive [26; Chap. II, Theorem 5.3.2], dim 4’ is
at least n. Hence such an irreducible component does not exist, i.e.,

(3.10.1) ch(DaF(fHNITX2Y) =6 .

By (2.2.7), supp(@F(f*)NLY=¢, and aF(f*)=0 as an element of
FDFf[f'Y. By (3.2), if a€A4.(b), aF(f*)=0 as an element of F(Df%).
Hence, for a4, (b), a(d)f*=(s—a)D[s]f°. Recall that f(x)* is a holomorphic
function of (s, x)&C X B (cf. (2.3.1)). We can consider its restriction to {a} X
B, and a(9)f*| (,yxz=0 for a= 4,(b). Hence

(3.10.2) a@)f* =0 for aclI.

By the definition of f* and &F, we get the assertion.
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Theorem 3.11. Let

Ay = {ael|bla+j)+0 for j=0,1,2,--} and
A_ = {eesC|blea—j)*+0 for j=1,2, }.

(1) Df*=Df)If], ifec4-.

(2) Df*=((Df *)IfD* if aE4,.

GB) FDf)=ZDf)If" 7 if aEA4..

@) FDf)=EFDf If D ifec4d..
(5) Let Dul/ be the D-module defined by

<;.jﬁ=1 (—a;)y;

9 —~(€K¢-l—¢o)(A)) u,/ =0 for AesLie(G),
0y;

and
au)! =0 for aclI.

(Here o(A)=(a;;), do=Tr(0(A)) and I is the defining ideal of OY.) Then for any
a&C and for any integer k,

FOfIf = Dugh ).
(See (1.6) for b(s), (2.3.1) for Df*, (2.6.3) for *, and (2.7.1) for &.)

Proof. (1) follows from (2.3.8). (Cf. the remark at the end of (2.3.2).)
If e 4,, Df***=Df" for any non-negative integer k by (2.3.9). If k is suf-
ficiently large, —ae—k€A_ and Df*=Df*"*=(Df ¥ )*=((Df *)[/~P* by
(2.6.4, (3)). Cf. (2.5.10). (3) is already proved in (3.2). Let us prove (5).
By (3.10), ¢: Du,—DF(f*) induces a surjective morphism @: Du'—DIF(f*)
such that a(u,)=%(f*). By (3.5.1) and (3.5.2), the characteristic variety of
Du!/ is contained in the variety defined by <y|4|x>=0 (4= Lie(G)), and a(y)
=0 (aeI). Hence

ch(DuHN(VxLYCT(TOY)" = 4.

On the other hand ch(DZF(f*))N(V'x2")=4 by (3.4), and & induces an iso-
morphism Eu/'—E,SF(f*), (p€¥(0y) by (3.9). Hence ch(ker ) N (V'x2") is
contained in A—%(0,). Since a characteristic variety is involutive, ch(ker ) N
(Vx2Y)=¢. By (2.2.7), supp(ker )C V"' —2"=f"V"10). Hence (ker @)[ "]
=0 and (Du)[f¥ " =F(Df*)[f"~Y. Since the morphism Du/’,—Du’’ defined
by ul/,—f"ul’ induces an isomorphism (Dul’)[f"1=Du,)[f" ], we get
the assertion. Let us prove (4). Assume that a=A4._. For a sufficiently large
integer k, —a+k=A,. Hence
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(FDfF)IfD* = (FDfF *HIfD*, by (5),
= F(Df**4*, by (3),
= F((Df~****)
= F((Df*H[fY), by the dual of (2),
= F(Df).
Thus we get (4).

312, Letj: 2V, jV: 2=V, i:0,—8 and i': 0Y—2" be the inclu-
sion mappings. Let dim OY=m, v €0y, {y{, -, yu} be a local coordinate
system of OY at v, and

(3.12.1) x} = F¥p} .

0

Then {x{, ---, x,} gives a local coordinate system of O, at v=F"(v"). Let P
Xk

and aa—/ be the tangent vector field determined by these coordinate functions.
Yk

We sometimes write 8% for i, or 56—~ if there is no fear of confusion. We
Xk Vi

denote by 8% , the ‘value’ of 8} at a point p.

Denote by Fy ,+ the linear mapping 7,.0Y—T,0, induced by F". Define
a bilinear form B,. on T,+ Oy by
(3122) Bv"(p: q) = <F¥,v"(p) I ¢I>

for p, g€ T, 0. Here we regard 7,0, and T, Oy as subspaces of ¥ and V",
Since this bilinear form is nothing but the one defined in (1.16), B,. is G,v-
invariant, non-degenerate and symmetric. Let

@ 2(v") = det(B,« (84,0, 01,0 Disk,i<m* (VI N - Adyp)®?

and ®"? be the section of (2,y)% defined by v'—w"%(v"). (See (2.8.1) for 24.)
Note that »“? does not vanish at any point of Oy'.

Lemma 3.13. ©“? is G-invariant and does not depend on the choice of a
local coordinate system {y{, -+, yu}.

Proof. For gegG, let
ggl(a;'.gvv) = E Cij(vv)af.v” .

Then (g‘l)*dyfzjzz1 c;jdy}, and, hence,
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(3.13.1) XYL - Adyh)® = det(c;;) Adyi A+ Ady)®e.
Since

Fy o
T,0Y =25 T,,0,

8% l lgil

.FV v
T,,0Y 5 1,0,

is commutative, we have

Bgv\'(af.gu": a;‘.gvv) = <F>\lﬁ.gv“(a€.gv') af‘.gvV>
= <g*'F¥,,,v 'g;l(af.gvv) I a;'.gv">
= <F¥.u‘ -g;l(af,g,\,)lg;l(af,-'g,,v)>

= X Ci’i(VV)Cj'j(VV) <F¥,,v(6§/_ v

4

5"."">
Z.E :(V )c;’:(v )B,v(8ir,v, 0fr 4v)
and, hence,

(3.132)  det(B,yv(8% gov, 3% 4o )) = det(cy;)? det(B,« (8% ov, 35.,v)) .

By (3.13.1) and (3.13.2), we get the G-invariance. The independence of the
choice of a local coordinate system is obvious.

3.14. Let ®" be a local single-valued m-form on Oy such that " Q"=
"%, Although " is not necessarily single-valued on the whole of OY, but
there is a canonical two-fold covering =": 0)—0Y such that &":=z*w" be-
comes globally single-valued. This two-fold covering is constructed as follows:
Let (U™; z{", +--, z) be the local coordinate systems of OY. If @2 is given by

o'Vt = a(”)(zf'), ves, zf,f’)-(dz{v)/\ /\z},}'))®2,
we can define a two-fold (unramified) covering U™ of U™ by
T® = {(@§, 28, -, 2 | ) = a2, -+, z8)),
e, (2, -, 2 S UM},

Identify (2§, -+-, z#)€ U™ with (z§?, -+, z)€ T if (2, -+-, z28) € U™ and
(2, -+, Z@)E U™ correspond to the same point of Oy and

Zgﬂ) . dz§"‘)/\--' /\dzs,ﬁ") _

287 dz® N\ Ndzl
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Patching together U™’s in this way, we get a two-fold (unramified) covering
Oy of 0Y.

Define a two-fold covering z: £—2 as a pull-back of z": oY —0Y by
F: 90V, ie., §=0Y Xoy®. We define B,, w, @, : 0,—0, and z¥: 3’ —9"

in the same way as above.

Lemma 3.15. The isomorphism F: O,—0y can be lifted to an isomorphism
F: 01-—>0~I’, i.e., there is a commutative diagram

61 e 6¥
T 1 nvl
F
01 _— 0}/ .
Proof. 1t is enough to prove that
(3.15.1) F*o'? = o? .
By (3.12.1),
% 707 , 7] 7]
(3152) F dyk = dxk and F*( ) = .
Oxh 8y}

Hence for vE 0, and F(v)=v"' €0y,

Bg"(a;a,u", ?,v“) = <F¥,0V(a;¢,v")la§,v">
= <F¥.0VF*,1;(6;¢,0) | F*.v(a;.v)>
= <F*,uF>\k/.vVF*,v(a;€.v) | af,fl> .
2
(Recall that Fy, corresponds to the symmetric matrix (%l—ggi(v)).) Since
X .

i

F)\ - F, is the identity mapping,
BF(o)(a;t.v"s ;.v") = <F*,,,(af,.,,) | af,v> = B,,(afe,,,, a;,v) .
By this equality, together with (3.15.2), we get the assertion.

3.16. By (3.15), we may regard 51=5}’ X oy O;. Let 7: (~)1~—>!§(=51V X oy 2)
be the injection induced by i: O,—>2. Define i': OY—2" in the same way.
Let JCOpv be the defining ideal of OY. Recall that Dsy 5+ =0py ®iV1D;.
=(D5/ID;) | 5y, where, in the second member, the tensor product is taken
over i~z (cf. (2.1.4)).

3.17. Define a section f¥~*h of
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(3.17.1) gﬁv.%;f““ = (Y 25y R Doy .51 ) Q25
by

S e @y .5y

3.17.2 Voaf — .
¢ ) d z ¥ (dy, A -+ Ady,)

(See (2.8.1) for 24.) Here f'=z"*f". Let us show that there exists a non-
zero homomorphism

(3.17.3) z' Dol — S*v Doy f'

such that u,—f'~*h. Since f'~*h=0 by (2.1.5), it is enough to prove that
FY=*h solves (3.5.1) locally, i.c.,

G4 (0 Olope) (3 4y 3i-@d+89(4) = 0.

i,j=1 i

Since Oy is locally isomorphic to Oy, we may identify £~k with the local sec-
tion /¥ ~*h of [;« D" f'~* defined by

[0 ®loy o

Voap
/ dn N\ Ndy,

Let {z, -+, z,} be a local coordinate system of 2" such that {z,,,=++-=2z,=0}
=07, and zi=z;| oy 1<i<m). Then {z], -+, z};} gives a local coordinate sys-
tem of 0Y. Let

V%0 =e(z], -+, zi)dzi \ -+ Ndz},
and g(¢)=exp(t4) (t€C, A€Lie(G)) be a one-parameter subgroup of G. If
| ¢] is sufficiently small,

(3.17:3) g ~*0") = 6% (/' *w")

by (3.13). Let g(t)*dz,-=éci,-dzj(1£i£n), where c¢;;=c;;(¢t;z). Then
j=1

(3.17.5) can be written by using the local coordinate as
(3.17.6)  g(t)*e(z’)-det(c;;(t; z1, =+, Zm, 0, **+, 0))1<i.i<m = B*(8())e(2") .

Let E:,-,-=b,-,-(z)=a—act"—"— (0; z) and % (g(O)*z;)| ;=¢=4z;. Then by differentiating
(3.17.6), we get
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ae(z )

@3.17.7) 2 (4z,) +(Z ¢i)e(z’) = (ag)(d)e(z') ,

(f¥ ") (—2 2 z)+ 5 bu—(ad)(@) =0, and

(178 (f'*0"®los00) (3 2

i=1

(Az)+ 3} tu—(@B) (4)) = 0.

Let us show that (3.17.8) is nothing but (3.17.4). Let g(t)*z,=¢;(t; z1, >, 2,)-

Then ¢;j= ZSD" and Az;= a;;‘ (0;z). Hence

i

3

= ')+E cll
— _s 9 9 *o;
Eaz. o O )+Zlaa ©;2)
6’¢, 0
2 (0; )az .

i

For i>m, z;=0 on OY. Since O; is G-stable, g(t)*z,=0 and a;; (0;2)=0 on

Oy. Since lgy,ov is annihilated by the defining ideal of OY, (3.17.8) can be
written as
) —o0.

Let y;=yr(z, -, z,). Then g(t)*y;=v;(g(t)*z, -+, g(t)*z,), and

(G179 (0" ®lgov) (‘ZE o

3 0 0
—21 4y = —(g(t)*y,)l: — =2 7”’( 0;z)- "”’ .
Hence
99 o9 7] n 8
- 0 s —_— = JSS
'2‘ ot ¢ ) =1 0t ©; ) 62,- 6yj ij=1 a”’y‘ayj

n a ”
’_El ajiEZJ’j—?;l: a;; -

Hence (3.17.9) is nothing but (3.17.4).
Since 1oy,ov is annihilated by z,4,, ***, z,, it would be more impressive
to write
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fV—wh — fV—uQ,V/\(a(Zm_H, ) Z,,)dZm.H/\"'/\dZ”) .
dyi/\ - Ndy,

3.18. Proof of (3.9.3). Since 15,3 is annihilated by the defining ideal
g of 0Y, I(f'~*h)=0. Hence (3.17.3) induces a non-zero homomorphism

(3.18.1) z' Doy — S,V Doy f'—

such that u)’—f"~*h. Since Dgyf'~* is a simple D-module, [7+Dgyf'~ is
also simple by [11; Chap.1l, Theorem 5.1]. Hence (3.18.1) is a surjection. Since
D" ®(3.18.1) can be locally identified with a surjective, locally defined homo-
morphism

(3.182) D~ | Dy,
we get the desired inclusion

ch (D@ ) >eh (| Dgr =) = (TON)™

.V
1

(Note that ;v D5 f Y=# is locally isomorphic to D0(z,sy, ***, 2,) =D (I,

(%)% ";—-FELMH 49'"z,) in terms of a local coordinate system {z, -+, z,} such
Zk

that {z=++=2,=0}=0y.)
3.19. Regularity

As is noted in (3.9), (3.9.3) implies the simplicity of D(£2")u.’. Hence
(3.18.2) is a (locally defined) isomorphism. Hence (3.18.1) is an isomorphism.
Since Dy f¥~* is regular holonomic (cf. (2.8.6)), S7- D5y f*~*=z"""Dyvul/ is
also regular holonomic by [11; Chap. 4, Theorem 2.2.1]. Hence D(2")u} =
DO N=D(R")YF(f*) is a regular holonomic D(£2")-module. By
(3.11, (3)), F(Df*) is a regular holonomic D(V")-module, if e A4,. By (2.8.5),
the composition factors of F(Df*) and F(Df***) are the same for any kE Z.
Hence S (Df*) is a regular holonomic D(¥)-module for any e.

3.20. From the isomorphism (3.18.1), we get an injective homomorphism
(3.20.1) Dovul) —nir’ L H(a),
where

(3202) @) = | Dorf ==
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Since I'=Gal(0y/0Y) is a cyclic group of order two, =gz’ 1. H(e) decomposes
into a direct sum of I'-isotypic parts. Let .H(a) (resp. <H,(«)) be the part cor-
responding to the trivial (resp. non-trivial) character of I'.  Note that .H(a) is
the image of the canonical injection H(a)—>myx" ' H(e), and simple. Since
My(@)™ is locally isomorphic to H(a)*, ch(H;(a))=(TOY)" and Hy(e) is
simple. Since 9, u.’ is a simple submodule of zyz" . (@) =T (a) D M (),
and since ., (a) and H,(a) are simple,

(3.20.3) Dyoul) = Mfa) or ().
Lemma 3.21. 9, Q,F(Df*)=Dy-ul! = M,(a)=myx" "' H(c)] H(c).

Proof. The first isomorphism follows from (3.11, (5)).

If ®" is single-valued on the whole OY, then OV is a disjonit union of
two copies of Oy. Then the assertion is obvious.

Assume that Dy ul’ = M(a). Since M (a)=HM(a), we can find a global
holomorphic m-form @’ on Oy such that u/’ corresponds to

SV %0’ @loysgv
dyl/\ o /\dyn

Vo = vw(y) =

by the above isomorphism. (Cf. (2.1.5) and (3.17.1).) Let {z, -+, z,} be a local
coordinate system of 2" such that OY={z4=+"=2,=0}, z{=z,|o; (1<i<
m), and £V ~%w’'=e(z)dz{ \ -+ Adz},. Since v, solves (3.5.1), e(z") solves (3.17.7).
(Read (3.17) backward and apply (2.1.5).) Hence /' %o’ is (locally defined)
relatively invariant holomorphic m-form of character ¢® with respect to G.
Since Oy is a single G-orbit, such an m-form is unique up to non-zero scalar
multiple. Hence we may assume from the beginning that ®“?=0’'Qw’. Hence
®" is single-valued. Hence if »" is not single-valued, 9D,vu’ is not isomorphic
to My(a). Thus the assertion follows from (3.20.3).

3.22. Let L(e)=Cf® and L"(e)=C(f")* be the locally constant sheaves
of rank 1 on £ and £" generated by (local) single-valued branches of /* and
(f)*. Decompose the locally constant sheaf zyCy into I'-isotypic parts Cyy
and H", where Coy (resp. H Y} corresponds to the trivial (resp. non-trivial)
character of I". (Recall that I"=Gal(0y/0Y).) Then Homg(H", C)=H". By
(3.20.2),

Sol (myw " ' M(@)) = mym” ik LY (—a) [m—n] = iymyn” LY (—a) [m—n]

= i*(LV(—a)®crc,,\£nv"1C0;) [m—n].
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Here we have written LY(—a) for L'(—a)|oy. Hence

Sol(y(@)) = ix(L"(—a)®H")[m—n], and
DR(I\(@)) = ix(L"(0)@H ") [m—n] .

909

Theorem 3.23. Let j: 22—V, : ">V, i: 0,—2 and i¥: O —82" be

the inclusion mappings, n=dim V=dim V" and m=dim O0,=dim OyY'.
(1) Sol(Df*)=Rj.L(a), if a=A,.
Q) Sol(Df*)=j,L(a), ifecA._.
(3) Sol(F(Df*)=j)ix(L'(—a)@H")m—n], if e EA4,.
(4) So(F(Df*)=Rjxix(L" (—e)QH")[m—n], if aEA_.
(5) DR@Df*)=jL(—a), if aEA4,.
(6) DR(Df*)=Rj.L(—a),ifacA._.
(7) DR (Z(Df*)=Rjxix(L"(@)QH")[m—n)], if e E 4.
(8) DR(IFDf*)=j)ix(L"(@)@H")[m—n), if a€EA..

Proof. By (2.8.6) and (3.19), Df* and F(Df®) are regular holonomic.
Hence we can use the commutativity of DR with other functors (cf. [11; Chap. 5]).

Ifecsd._,
DR(Df*) = DR(Df?[f7]) , by (3.11, (1))
= R_]*L(-a) .
Ifas4,.
DR(Df®) = DR((Df)[f7'1%), by (3.11, (2))
=jl(—a).
Ifacsd,,
DR(Z(Df*)) = DR(EDf )", by 3.11, (3)
= DR(Dw)If" ™) by 3.11, (5))
= Rj}. DR(D¥'| 5)
= Rjy DR(J(@)) , by (3.21)
= Rjyix(L"(@)@H")[m—n], by (3.22).
Ifecsd_,

DR(Z(Df*)) = DRE D)), by (.11, (4))
= DR((DuZ) 7719, by (3.11, (5))
= ji' DR((DuZ,)* | o+)

= jYis(L (@@H")[m—n], by (3.21) and (3.22).
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Thus we get (5)-(8). The assertions (1)~(4) can be obtained from (5)-(8) by
the duality of DR and Sol. Cf. [11; Chap.5, 2.1. (ii) and 3.3.3i)].

Example 3.24. Let (G, o, V) be the prehomogeneous vector space consid-
ered in (1.20). Then V has ten G-orbits:

@ dp dm av) 4%
©0) E i t+E,tEpus 3 (Cu-aT) Upn-s 6m

1) EatEpngs 2 (CpaT) dm--2
@) EatiE st EpnstEns 3 (Caald) Uy om—1
(3) EtHiE st Eg, 2 (CaaT) Uy 4m—+1
@) EtEtEs, 3 (Cu-sAiTh) Usy-yy 6m—3
5) EatE, 2 (Cu-2T) Ugm-s dm—+1
(6) Ey +iE, 1 (Cu1T?) U 2m—+-1
() By tiE atEyps 2 (Ca-zT?) Upps-s 4m

®) E, 1 (Cu-1T2) Uz 2m+2
© o 0 (CudiTy) 0

Here the second column contains a representative element X; of each orbit
0; (0<j<9), where Ej; denotes the matrix unit and i=V/—1. The third
column contains the rank of X;. The fourth column contains the local structure
of the isotropy subgroup at X;, where A4, (resp. C,) denotes the simple Lie
group of type A, (resp. C;), T, denotes the torus of k£ dimension, and U, de-
notes a k-dimensional unipotent group. The last column contains the dimen-
sion of the orbit.

Let 4; be the Zariski closure in ¥’ x V" of the conormal bundle of 0;. To
each 4; associate a vertex j. Connect two vertexes j and k by a solid line if

s S
2 3 3 2m
| N L
s+ 5 )
NI ey
@_“_ Im+1 RN 3 am
3 5 3 3

1
(H— 3;;7) !

< 4m+2
4 6;71 9 _4;_T
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4;N 4, contains a G-orbit whose dimension is dim»’—1. Connect them by a
broken line if dim 4;N 4,=dim V—1 and 4;N 4, does not contain a G-orbit
whose dimension is dim ¥—1. Thus we obtain the following diagram, which
is called the holonomy diagram of (G, p, V). (See [25] for holonomy diagrams,
etc.)

Let (G, o, V) be a general prehomogeneous vector space, n=dim V,
{v, **+, v,} a basis of V and {v/, -+, v} its dual basis. For 4&Lie(G), let
o(4) v;=331.1 v; a;; and N'(¢)=Duj the D-module defined by

(3.24.1) (ijé‘la,-j % aiyc'_-aqb(A)) =0,

Now let us return to the above example. Then ch(N'(e))C U .o 4; (cf. [15;
5.1.12]). Since O, is the open G-orbit in V, 4,Cch(D f*). (See (2.3.1) for D f=.)
By [25; 6.6] and by the above holonomy diagram, we can show that 4;Cch(XN)
for even i. (See (2.3.1) for N=D[s]f".) Since scalar multiplications are con-
tained in o(G), we can find an element 4, €Lie(G) such that o(4,) is the identi-
ty. Then by (1.9, (1)),

® sd = {x|s-grad log f(x)y = <o(4,) x| s grad log f(x)> .

Here d=deg f=4. In the notation of [25; 4.2], (S) equals o (x, s-grad log f(x)).
Hence the pull-back of ¢ to W is equal to s-d. Hence

ch(D f*) = p(W,), by (2.4.5) and (2.4.6),
= p({(S, X, y)EW l g'(x’ y) = 0})
= {(x,y))EW|o(x,y) =0}, by (2.4.4).

Since ¢=0 on any 4; (cf. [25; 4.4]), 4;Cch(N) (=W)e A;Cch(D f*). Hence
A;Cch(D f*) for even i. The Fourier transform of N'(e) is the D-module de-
fined by

(a5 —G@dto0 () u =o0.

If A=(t, 4', A”)ELie(C* X Spau X SO;), then ¢(A)=4t and ¢,(4)=6mt=
(6m/4)p(A). Hence D f¥~*~6m/* s a quotient of F(N'(a)) and F(D fV-=-5m*) is
a quotient of N'(a). Since 4, is the conormal bundle of the open orbit Oy of
V", we can show that 4;Cch(D f~*~%"/%) for odd i by the same argument as
above. By (2.7.2), 4;,Cch(F(DfY-*"5"/%) for odd i. Since Df* and
GF(D f¥-=*-m/*) are both quotients of N'(e), we have the natural morphism
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N'(a) = D f*@ F(Df~~=-omlt)

By a direct calculation (cf. [25; 4.4]), we can show that every A4; is G-preho-
mogeneous. Hence, as in [25; 4.8], we can show that

m(A4;, N'(@)) = m(4;, Df*) =1 for even i, and

m(4;, N'()) = m(4;, D f¥~*"%"*) = 1 for odd i.
By considering the support, we can show that ch D f*=ch (D f*) D 4, (resp.
ch (D f¥ -2~y b A,), which implies that 4; for odd i (resp. even i) is not
contained in this characteristic variety. Hence

(3.24.2) N'(a) = Df*@D F(Df"-*om%) .
By (1.6) and (3.1),
(3.24.3) fY(8)f-f* = b(a)f*, and
(3.244) fYO)f-F(f¥ 2 = (—1)! b(—a—6m[4—1) F(fY~=~*nl).
The b-function appeared in (3.24.3) can be calculated using the right half of the
holonomy diagram (cf. [25; §7]):

bs) = 2(s+1) (52 (5+22) (s+ 2L

2 2 2

(See [30; Prop.2.7] for the way of calculation of the leading coefficient of b(s).)
The other ‘b-function’ appeared in (3.24.4) can be calculated using the left half
of the holonomy diagram:

m-+2
2

m—l—l).

(—1)* b(—s—ﬁzl—n - 24(s+37’”) (s+ 3’"2‘1) "2y st

The inclusion relations between closures of orbits O; (0< j<0) are given
by the following diagram:
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Here the vertex j lies under k if and only if O; is contained in the closure of O,.
For example

0,= U 0; = {XEV = My, {C)|rank(X)<2} .

740,2,4

§4. Relatively Invariant Hyperfunctions

4.0. The purpose of this section is to prove (4.19), which describes the
hyperfunction solutions of D f* and their Fourier transforms. (See (2.1.6) for
‘solution’.)

4.1. Hyperfunctions

Let X be an n-dimensional smooth algebraic variety defined over R. By
the implicit function theorem, X (R) is an n-dimensional real analytic submani-
fold of the complex manifold X (C). (Here and below, X (X) denotes the set of
K-rational points.) Let O“=0% be the sheaf of holomorphic functions on
X(C), C=Cy the constant sheaf, A= Ay=0%| x), and

B=DBy =R Home, (RI x(g)(Cx), RT 3 (OX) | x> -

Then B is locally isomorphic to RIym(O%) M| xm- It is known (cf. [17;
Chap.2, §2]) that H'($)=0 (i+0). Hence we can identify B with the sheaf
H°(P). A local section of B is called a hyperfunction. Since

A = Homg (Cx, OF) | xm) »

we have a natural homomorphism /—43, which is known to be injective (cf.
[17; Chap.2, §3]). By this injection, we regard a real analytic function as a
hyperfunction. It is also known that any distribution can be regarded as a
hyperfunction.

4.2. Real form

Let K be a real number field R or the complex number field C, G, a re-
ductive group scheme over spec(K), V=spec K[x;, -**, x,], and ox: Gx—GL,
=spec(K [x;;(1 <1, j, <n), det(x;;)7"]) a homomorphism of group schemes. We
denote the set of rational points of V etc. by Vi(K) or V(K)etc. If K is an
algebraically closed field, we sometimes identify V etc. with V' (K) etc., but oth-
erwise, we do not do such an identification. If (Gg, 0g, Vg)®C is isomorphic
to (Gg, o¢, V), we call (Gg, og, Vi) a real form of (Gg, o¢, V¢). (Here GRQC
=G X apecty sDEC(C) etc.)
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Let ¢¢ be a character of Gg. Then there exists a real form (Gg, 0z, V)
and a character ¢z: Gp—>GL, p=spec(R[t, t""]) such that ¢,QC=¢;. For
example take any split B-form of (Gg, o¢, V) [5].

4.3, Prehomogeneous vector spaces defined over B

Let (Gg, o¢, Vi) be a prehomogeneous vector space, f a relative invariant
of character ¢, and take a real form (Gg, 0z, V) such that Gg has a character
¢p such that ¢pQC=¢,. Henceforth, we omit the suffixes & and C if there
is no fear of confusion. Take vector basis {vy, ===, v, } of VY(R). Let x;=v;,
and

f(X) = E ;1o iy x§1°°°x:;" (a,'l,...,g"EC) .
Define its complex conjugate by
fix) =3 at,.i, xiteexin,

where © denotes the complex conjugation. Then f° is also a relative invariant
of character ¢. Hence if one of its coefficients is real, then f(x)=f"(x)E
R[x, -+, x,]. Hence by multiplying a suitable scalar, we may assume from the
beginning that f(x)eR[x, ---, x,]. Let {y, -, y,} be the dual coordinate
system of {x,, ---, x,} and f" a relative invariant on the dual prehomogeneous
vector space (G, 0", V") of character ¢~!. By the same reason as above, we
assume that fV(y)ER[y,, -+, y,] without loss of generality.

4.4. Let us consider 2(R), 2"(R), O,(R) and OY(R). (Recall that 2=
f7(C*) and 2Y=f"-YC*), and see (1.4) for O, and Oy.) Let F=grad logf
and F¥ =grad log f" as before. By (1.8),

O (R) = FFY(0) (R)) CF(O,(R)) C F(2(R))C 0y (R) .
Hence
(4.4.1) 0)(R) = F(O,(R)) = F(2(R)) .

Since 2(R)=+¢, OY(R)=+¢. Hence OY(R) is a real analytic manifold of di-
mension m(=dim Oy). Similarly, O,(&) is also a real analytic manifold of di-
mension m. Let

’/ l//
2R)=U 2; and 2'(R)=U 2}
i=1 ji=1
be the decomposition into connected components.

Lemma 4.5. 2;N0,=F"F(2,).



THEORY OF PREHOMOGENEOUS VECTOR SPACES 915

Proof. Let vE®;. By (1.18), F7'(F(v)) is an affine subspace of ¥ con-
taining v. Hence F Y F()NV(R)CL,. By (1.18), FF'F(y)=F(), ie.,
FYF(WEFY(F(). Since F'F(»)€0,(R) by (1.18), F'F(WEF Y (F»)N
O,(R)C£2;N0,. On the other hand, since F"F is the identity on O, by (1.18),
2,N0,=F"F(2;N0,)CF'F(2)).

Lemma 4.6. The decomposmon of O\(R) and OV(R) into connected com-
ponents are given by O,(R)= U (2;,N0), and 0Y(R)= U @ynoy).

Proof. By (4.5), 2,N 0, (1< j<!’) are connected and non-empty. Since
£; are open subsets of 2(R), 2;N O, are open subsets of 2(R)N 0,=0,(R).
Since the above union is disjoint, we get the assertion.

4.7. Since O,(R) is a homeomorphic to OY(R) by F, their connected
components are in natural one-to-one correspondence, i.e., I’=/". Let I=I'=
I’ and assume that

4.7.1) F(2;N0) =2{N0Y.

Since F(£2;) is connected subset of OY(R) and contains £7 N Oy by (4.7.1), we
have

4.7.2) F(8,)=2ynoY.

Lemma 4.8. Let G(R)* be the identity component of G(R). Then 2;N 0,
and 2 N OY are G(R)*-orbits.

Proof. For any vEO,(R), g—gv defines a submersion G(R)— O,(R).
Hence G(R)* v are connected open subsets of O,(R), and O,(R) is their disjoint
union. Hence each connected component £; N O, of Oy(R) is a G(R)™-orbit.

Lemma 4.9. (1) |fY(»)|® is a real analytic function on each 2;.
(2) ForgeGR)Y andv'e8;, | f7(gv*)|*=8(g)| /' (v")]".

Proof. By (1.8), by f¥(y)*=f(F"(»)) on Y. Since the signature of f is
constant on FY(2})=&;N 0, (cf. (4.7.2)), the signature of fV(y) on £2; is also
constant. (Note that b,#0 by (1.7).) Hence we get (1). The second asser-
tion is obvious.

4.10. Let ® be the holomorphic m-form defined locally on O; given in
(3.14). Since wQ is globally single-valued and does not vanish at any point
of 0,, |®| gives a real analytic m-form on O,(R). Hence |F'*w| gives a real
analytic m-form on 2"(R). (Here our use of the term ‘m-form’ is slightly abu-
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sive. The author hopes that it does not cause any confusion.)
Let {z, -**, z,} be a local coordinate system of VV(R) such that {z,,=
vve=z,=0} =0Y(R). Then the (n—m)-form

|0(Zmt1s **> Z4) DZma A\ =* N2y | 2 = 0(Z i1y =+, 2,) | dZmar A\ ++- N 2, |

determined by the delta function of Dirac does not depend on the choice of
a local coordinate system. See [17; Prop. 2.4.1] and the remark following it.
Define a hyperfunction #¥ on 2Y(R) by

B — IFV*w/\r?(zm.H, oo, 2,) Az N\ ---/\dz,,)l'
ayi/\ - A\dy,

Define a hyperfunction | /¥ [7%+4" on 2V(R) by

|fY|-2-h", on 2]

0, on 2V(R)—&2 .

(4.10.1)

Lf¥ 5% R ={

By (4.9, (1)), the product | f¥|~* k" has a meaning on 2.

Lemma 4.11. The hyperfunctions | f|7%-h" (1<j<I) on 2"(R) are so-
lutions of (3.5.1) and (3.5.2).

Proof. The numerator of A" is absolutely invariant with respect to
G(R)*. The denominator |dy; A -~ Ady,| is relatively invariant, and the cor-
responding character is det 0"(g)=¢,(g)™". Since | f¥|~* corresponds to the
character ag, | fV|7%-h" corresponds to a¢-+¢,, and hence solves (3.5.1).
Since 4" has the delta function as a factor, | f¥|7%-4" solves (3.5.2).

Lemma 4.12. Ifa=A_=A_(b), then
r(v*(R), Homy(F (D %), B))) = I'(2"(R), Homp(F(D f*), B)) ,
and their dimension is equal to [.
(See (1.6) for b=b(s), (2.3.6) for A.=A.(b), and [ for (4.7).)
Proof. We have

K: = R Homy(F(D f*), B)
== R Homy(F(D f*), RTyv gz O) []
= RTyv ) Sol(F(D %)) [n]
= RTyv(p) Rix ix(LY(—) @ HY) [m], by (3.23, (4).

@.12.1)

Since I'tyv-gvym* Iy *j =0, RI(yv —gvyyK=0. Hence K=RI'g\ (K and
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@122) RT(V(R), R Homy(F(D f*), B))
= RI(@"(R), R Homy(F(Df*), B)).

By comparing the spectral sequences determined by the both sides of (4.12.2),
we get the first assertion. By (4.12.1),

RI'(2"(R), R Homy(F(D f*), D))
(4.12.3) = RI'(2"(R), Rl g+ (g ix(L"(—2) @ H")) [m]
4
= 691 RI(87, igs R o} (m(LY(—2) Q@ HY)) [m].
i
Here we denote the injection OY(R)—2"(R) by ij. Since LY(—a)QH" is
isomorphic to the constant sheaf € in a neighbourhood of 2} N OY in 0Y(C),
RT gy p(LY(—@) @ H') = C[—m].

(Recall that m=dim OY). Hence (4.12.3) is isomorphic to
& RI(@Y, i} C) = ® RI(2N0Y, 0),
i=1 j=1

whose H® is of dimension /. (Recall that 27 N OY (1<j <) are the connected
components of 0y (R).)

As a consequence of (4.11) and (4.12), we get the following lemma.

Lemma 4.13. If a=A_(b), every hyperfunction solution of F(Df®) on
2V(R) can be uniquely extended to a solution on V'(R). Denote the extension
of | fY17% k" to a solution on V'(R) by the same letter. Then {|f"|7*h"
(I1Lj<D} gives a basis of the vector space of the hyperfunction solutions of
F(Df*) on VV(R).

4.14. Define a real analytic function | f|% on 2(R) by

1f]% = { 717, on g,

! 0, on 2(R)—2;.
Obviously | /|9 (1<j<I) are hyperfunction solutions of D f*. By the same
argument as above, we get the following lemma.

Lemma 4.15. If a= A4, (b), every hyperfunction solution of Df* on 2(R)
can be uniquely extended to a solution on V(R). Denote the extension of | f |5
to a solution on V(R) by the same letter. Then {| f |5 (1< j<D)} gives a basis
of the vector space of the hyperfunction solutions of D f* on V(R).
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Remark 4.16. The above lemma holds for any polynomial f, if b(s) is re-
placed by B(s) (cf. (2.5.1)). It is also possible to get an analytic version.

4.17. Let S=S&(V) be the set of C=-functions ¢(x) on V(&) such that
Po(x) is bounded for any PD(V), and §'=8'(V) its dual. An element
u=u(x) is called a tempered distribution on V(R). Cf. [4]. Denote the value of
uat oS by fu(x) ¢(x) dx. The D(V)-module structure of S’ is defined by
JPu(x)-o(x) dx=Ju(x)- P*p(x) dx (cf. (2.1.2)). Let 4 be a domain in C. A
family u,(x) (@ = 4) of tempered distributions is a said to be holomorphic (resp.
meromorphic) in e, if for any ¢(x) €S, a—[ u,(x) ¢(x) dx is holomorphic (resp.
meromorphic). If for any ¢(x)ES, [ u,(x) ¢(x)dx has a pole of order<p at
a=a,, we say that u,(x) has a pole of order<p at a=a, We can naturally
define a pole of order p etc. Define a Fourier transform % (p) of &S by

F@) )= | o e dr,

where dx is an Euclidean measure of V(R). Define the Fourier transform
F(u) of ueS'(V) by

[ 26 ) o) dy = | u») F(9) yax

for peS(V'Y). Then

@.17.1) F(Pu) = F(P) F(u)
(cf. 2.7.1).
418, Let
171%, if £>0in 2,
/3= {exp (@my/ D) 1%, if f<Oin 2,,

and

y_,,,z{lfvl?‘, if f¥>0in £
* " lexp (—amy/ D)1V 175k, if f¥<0in @) .

If the real part of «=C is non-negative, the real analytic function f% on
L(R) can be extended to a continuous function on V(R), which we shall con-
sider as a tempered distribution on V(&). Then f% is holomorphic in
{a|Re(@)>0}. If Re(a)> —m, fi=(b(a+m—1)---b(a))~ f¥(8)" f5T™. Hence
f5 is meromorphic on the whole complex plane €, and holomorphic on 4,=
A (b). (Cf. (2.3.6).)
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Let A=A(V), D=D(V) and P& D,s] (cf. 2.1.1)). If P(s)f*=a(s)f**
with a(s)EA[s]. Then P(a) fi=a(a) 5% on 2. If Re(a—k)>0, this equality
holds on V(R) as usual functions. Hence it holds also as tempered distribu-
tions. By an analytic continuation, the equality holds as meromorphic families
of tempered distributions. Hence if Pf*=0 in Df* (cf. (2.3.1)), then Pf5=0.
In other words, 7 is a solution of Df®. By (4.17.1) and (2.7.1), F(f9) is a
solution of SF(Df®).

Theorem 4.19. (1) By an analytic continuation, =% h" is extended to a
single-valued meromorphic family of tempered distributions on the whole complex
plane C which is holomorphic in A_(b).

(2) There exist meromorphic functions c;;(e) (1<i, j <I) such that

4
F(fD = ,Z‘; ci@fy . (1<Li<)),
and which are holomorphic in A.(b).

(See (4.13) and (4.18) for f7=*h", (4.15) and (4.18) for f%, b for (1.6),
A.(b) for (2.3.6) and & for (4.17).)

Proof. Letacs A, NA-. Asisshown in (4.18), F(f7) (1<Li<]) are solu-
tions of F(Df*) on VV(R), which are linearly independent. By (4.12), they
give a basis of the space of global hyperfunction solutions of (D f%). By
(4.13), f7~*h" (1< j <) also give a basis of the same space. Hence there exist
functions c;; (@) (1<i,j <) on 4, N A_ such that

F(fD) = 3 enl@ I h,

and det(c;;(@))==0. Since f}~*h" can be expressed as linear combinations of
tempered distributions & (f%), f;®h" are also tempered distributions. If the
support of ¢(y)ES(V"Y) is contained in 27,

JFUD D -ody
J (772 1Y) (n)-e(y)dy

Suitably choosing ¢(y), the denominator of the right member becomes an entire

c;j(@) =

function which does not take the value zero. As is shown in (4.18), /7 are
meromorphic on the whole complex plane and holomorphic in 4.(b). Hence
¢; (@) are also meromorphic on € and holomorphic in 4.(b). Thus we get (2).
In the same time, it follows that £} ~*4" are meromorphic on C. Let @, 4
and assume that /Y ~%k" has a pole of order o(>>0) at @=a,. Then u=u(y)=
(@—ap)’ ™ h"| y—a, gives a solution of F(Df*), which is a tempered distri-
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bution. If the support of ¢(y)ES(V") is contained in 27, [ o(») u(y)dy=0.

Hence the support of u(y) is contained in (V¥ —£2") (B). Hence u(y) is not a

linear combination of f7~% 4. This consequence contradicts (4.13). Hence
7® h" is holomorphic in 4_.

Remark 4.20. We can determine c;;(«) to the same extent as in [24], [28],
[30] by the same argument.

Remark 4.21. The theory of prehomogeneous vector spaces is originated
by M. Sato in 1961 in order to give a testing ground for investigating a ‘general
theory of linear differential equations’. Such a ‘general theory’ is realized as
the theory of D-modules, mainly by M. Sato, T. Kawai and M. Kashiwara.
We can see in [25] a deep relation between the theory of D-modules (especial-
ly, their microlocal analysis) and the theory of prehomogeneous vector spaces.

The original theory of prehomogeneous vector spaces is based on the in-
variance with respect to a very large group. An invariance with respect to a
connected Lie group is nothing but an invariance with respect to the correspond-
ing Lie algebra, which is also expressed as a system of linear differential equa-
tions of first order. This system is N'(e)=Dv, given by (3.24.1). Thus we
can also say that the original theory of prehomogeneous vector spaces is based
on the system N'(a) of linear differential equations of first order.

Since the defining equations of N'(a) are explicitly given, it is easy to de-
termine its Fourier transform. But for a further investigation, N'(«) seems not
to be good. For example, it seems inevitable to consider N(a)=Df® given in
(2.3.1) instead of N'(a) to get such consequences as (4.12), (4.13) and (4.15).
If we assume the regularity condition, the difference between N'(e¢) and N(«)
is not so large and sometimes negligible. But if we do not assume the re-
gularity condition, as is seen from (3.24.2), the difference is not negligible at
all. Thus it becomes essential to investigate N(a)=Df"*, especially to determine
its Fourjer transform. For this purpose, we needed the theory of D-modules,
which is, in a sense, a fruit of the original theory of prehomogeneous vector
spaces. (It would be worth noting here that N(a) is the main object of [25].
Although it might seem that N'(a) is exclusively studied there, N(a) comes
into the study as a study of N'(«) on a good Lagrangian.)
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