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§ 0. Introduction

0.0. Let G be a connected reductive group defined over the complex
number field C and (p, F) its finite dimensional rational representation. A
triple (G, p, V) is called a prehomogeneous vector space (abbrev. PV) if there
exists a Zariski open dense orbit in V. A polynomial function /(^O) on V is
called a relative invariant of character 0 if f(gv)=<f>(g)f(v) for any g^G and

OoL Roughly speaking, a main result of the theory of prehomogeneous
vector spaces [24], [28], [30] says that, if the regularity condition

is satisfied, the Fourier transform of a complex power f* is also a complex
power/"05 multiplied with certain factors. Thus it has been believed that, for an
application of the theory of prehomogeneous vector spaces, it is necessary to as-
sume the regularity condition.

0.2. A prehomogeneous vector space is called regular if it has a relative
invariant satisfying the regularity condition. By [27; §4] and [22], the following
conditions for a prehomogeneous vector space (G, p, V) are equivalent to each
other:

(1) (G, p, V) is regular.
(2) The isotropy subgroup of G at a point in the open orbit of V is reduc-
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tive.
(3) QG9G\, P9 F) is stable.

(A G-module V is said to be stable if there is an open dense subset of V con-
sisting of (/-orbits which are closed in V.)

0.3o The classification theory of prehomogeneous vector spaces presents
a strange contrast to the application of the theory; once we assume the reg-
ularity, classification results usually become much more complicated. For
example, assume the regularity in the first part of the theorem in [7; 1.13]. It
would be worth noting that, in the classification theory of representations of
reductive groups satisfying some properties other than prehomogeneity, analo-
gous phenomenon occurs; once we assume the stability, classification results
become complicated. For example, assume the stability in the second part of
the theorem in [7; 1.13].

0.40 Prehomogeneous vector spaces also appear in the Dynkin-Kostant
theory concerning the nilpotent orbits of complex semisimple Lie algebras
([31])5 which plays an important role in the representation theory. See [18].
The prehomogeneous vector spaces appearing in the Dynkin-Kostant theory
form a class (DK), which is contained in the class (R) of regular prehomogene-
ous vector spaces. Denote the totality of PV's by (PV). Among these three
classes (DK)d(R)Cl(PV), the author considers that (DK) forms a natural class,
since it has a natural characterization [7]. If we restrict ourselves to the case
where [G9G\ is simple and V is irreducible, (PV) is a class which 'corresponds9

to the class of Kac-Moody Lie algebras of finite type as is indicated in [7; 1.13],
neglecting a small deviation. (Similarly, the class of coregular (G, p, F)9s 'cor-
responds3 to the class of Kac-Moody Lie algebras of affine type.) At present,
the author can not find a proper place for (R) in the classification theory.

Oo5o Without assuming G to be reductive, it is possible to define the reg-
ularity of (G, p, V) by the existence of a relative invariant satisfying the regularity
condition. But it seems to the author that there is a room for doubt about the
naturality of this concept.

First, it was conjectured that, for a regular (G, p, V) in the generalized
sense, the open (j-orbit in V is an affine variety. But, recently this conjecture
turned out to be false [6].

Secondly, as is shown by Rubenthaler-Schiffmann [23] and Bopp-Rubenthaler
[2], some examples of regular PV's in the generalized sense can be treated
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and even better understood in the framework of PV's with reductive G. See
also [8].

§a6o By these reasons, we study prehomogeneous vector spaces assuming
the reductivity of G and without assuming the regularity. Roughly speaking,
our main result is that., even without assuming the regularity condition, the
Fourier transform of a complex power/* of a relative invariant/is also a com-
plex power /"* multiplied with a certain factor h. Unlike the regular case, h is
supported by a closure of an orbit whose dimension is, in general, not equal to
dim V. This phenomenon seems to fit naturally to a more general scheme in-
cluding the differential equations of Harish-Chandra [12].

Oo7. In our study of prehomogeneous vector spaces, we constantly rely on
the theory of D-modules, which is mainly developed by M. Sato, T. Kawai
and M. Kashiwara. In this regard, see (4.21).

0.8o This paper consists of four sections. In the first section we study
geometric structure of prehomogeneous vector spaces. The main result of this
section is (1.18). In the second section, we review the theory of systems of
linear differential equations. In the third section, we study a system of linear
differential equations Df* satisfied by /*. The purpose of this section is to
determine the Fourier transform of Df* and the sheaf of its holomorphic solu-
tions. The main results are (3.11) and (3.23). In the fourth section, we study
the hyperfunction solutions of Df* and their Fourier transforms. The main
result is (4.19).

Oo9. The present paper is partly based on the series of lectures given at
Tsukuba University in October 1988. The author would like to express his
thanks to those who attended at the lectures, in particular to Prof. T. Kimura.
The author is profitted much from the note [9] taken by Prof. T. Kimura and
his comments. The author would like to thank Prof. M. Muro and Prof. R.
Hotta for their careful reading and comments, which helped the author to
improve the paper to a great extent. It is a great pleasure to acknowledge the
valuable comments of the referee, by which the author could correct several er-
rors contained in the original manuscript.

§ 1, Structure of Prehomogeiieoiis Vector Spaces

1.0. The purpose of this section is to prove (1.18), which describes a
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geometric structure of a prehomogeneous vector space. Although (1.3) and
(L5)-(L9) are contained in [27], we include them here for the sake of the con-
venience of the readers.

1.1. Let G be a connected reductive group defined over the
complex number field C and p: G-»GL(F) a finite dimensional rational repre-
sentation. Such a triple (G, P5 V) is called a prehomogeneous vector space
(abbrev. PV) if there exists an open dense G-orbit, say OQ=G°vQ.> in F.

02o Let / be a polynomial function on V which is not identi-
cally zero and <£ eHom(G3 C?x)s where Cx =GL1(C). If f(gv)=<t>(g)f(v) for any

and ve F, then we calif a relative invariant and 0 the character of/.

Lemma O. Let (G, p, V) be a prehomogeneous vector space.

(1) If two relative invariants ft and f2 have the same character, then / is
a constant multiple off2.

(2) A relative invariant is homogeneous.

Proof. (1) Let/=/i//2. Then /is constant on OQ=G°vQ, which is open
and dense in V. Hence / is a constant.

(2) For c^Cx, 1st fc(v)=f(cv). Then /and fc have the same character.
Hence fc is a constant multiple of/.

Henceforth we fix a prehomogeneous vector space (G, p, V) and a relatively
invariant polynomial function /on F with character 0. Let n= dim F, d=degf

and Q=Q(f)=f~\C*). Note that the open orbit O0 is contained in <0.

Lemma 1.4. (1) There is a unique G-orbit O1=O1(f) inQ=Q(f) which

is Zariski closed in Q.
(2) For c e Cx and v e Ol9 cv^O^

Proof. (1) Let n\ ®-*Q\G be the projection onto the quotient space.

Since the Zariski closure O0 in Q is equal to Q, we get ̂ (^)=7r(O0)C7r(O0).
Hence Q\G consists of only one point Since the (closed) points of the quotient
space are in one-to-one correspondence with the closed orbits [21], Q has a
unique closed G-orbit.

(2) Since cOl is also a closed G-orbit of Q9 cO1=O1.

Lemma L50 Let pv: G->G/,(FV) be a rational representation and <|>:
Fv x V~^C a non-degenerate bilinear form such that <gvv | gv>^<vv | v> for any

veFv andv(=V.
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(1) The triple (G, pv, Fv) is a prehomogeneous vector space.
(2) The prehomogeneous vector space (G9 p

v, Fv) has a relatively invariant
polynomial whose character is 0"1, and whose polynomial degree is equal to

Proof. (1) Let IT be a maximal compact subgroup of G. If we fix a
basis of F, we can identify GL(F) with GLn(C) and Fwith Cn. The compact
subgroup p(K) of GLn(C) is contained in a conjugate of the unitary group.
Hence by taking a vector basis {vl3 ••- , vn} of V suitably, we may assume that
p(K) is contained in the unitary group. Let {vi, •••, v^} be the dual basis of
Fv. By this basis, we identify GL(FV) with GLn(C) and Fv with Cn. Then
pv(k)=p(k)*-l=p(k)c for any k^K. Here * means the transposition of a
matrix and c means the complex conjugation. Hence pv(K)>VQ=(p(K)vQ)c is
Zariski dense in the orbit (p(G)v0)

c=Oc
0. Hence pv(G)vo is Zariski dense in Fv.

(2) Let/v be a polynomial function on Fv defined by /v(vv)=/(vvc)c

for any vveEFv=C». Then

for any A: e AT and vv e Fv. Since K is Zariski dense in

for any g^G and vve Fv. Since any relative invariant of (G, pv, Fv) with
character 0""1 is a constant multiple of this particular /v, it is of degree d.

Henceforth we fix (G, p\ Fv)5 <|>: F v x F-*C, {vlf -5 vn}, and {vv
ly -,

v^} as in the above lemma. We also fix a relative invariant /v on Fv whose
character is 0"1. By convention, we set <vv | v>—<v| vv>. Let £v=£v(fv)

=f"-\C*) and 00
V (resp. O?=O?(fy)) be the unique open (resp. closed) G-orbit

Lemma L60 r/zerg e^wfj a polynomial b(s)=b0s
d±b1s

d~1-\-'~+bd^C[s]

of degree at most d such that both of the formal identities

rCgradJ/CXT1 = b(s)f(x)s

and

= b(s)r(y)s

o( o o v / o

- ? ...5 - j a^ grad.— ( - , •••,
d*i ^n; N0Ji
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{Sometimes, we write grad/or grad^ or gradr)

Proof, In order to prove the first identity, we may assume s to be a natural

number. By (1.3, (1)),

with some constant b(s) which depends on s but not on x. Obviously b(s) is a

polynomial In s. By the same argument, we get a similar identity

/(gracy/vOOs+1 = * WVGO'

with some polynomial bv(s)^C[s]. First, let us take as/v the polynomial con-

structed in the proof of (1.5, (2)). Then we can write f(x)==

.,^*°°4* with4,.,lMeC. Hence

is a positive real number. Similarly

A(ifi-l) = /v(grad)"/(*)" =

Hence bv(s)=b(s) for our special choice of /v. If we replace /v by c/v (ce

Cx), then i(j) and by(s) are replaced by cb(s) and c^v(5j, respectively. Hence

bv(s)=b(s) for any relative Invariant/V
0

Lemma L7o Z?0=NO, i.e., deg b(s)=d.

Proof, We may assume that /(^) = Syi-lf...fiJl^ilooo^n* and fv(x) =
^!1"0^11- Transforming the basis {vl5 ° o ° , VM} by a unitary matrix In

GLn(C), we may assume that /(I, 05 — , 0)4=0? I.e., /rf i0f...fo=NO. If deg 6(j) =

), then there exists a constant c such that 1 6(j) | <c(s+l)e for ^>0= Then

Since (md)l/(m!)d>l, (m!/-<(c/|/,p0,..s0|
2f. Hence d=e.

Lemma O. Let F=grad log /and Fv =grad log/v.
(1) For-

(2) For-

(3) F defines a regular morphism @->Q^, compatible with G-actions.

(4) Fv defines a regular morphism ®v —>J2, compatible with G-actions.

(5) For,
(6) F0r<
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Proof. By (1.7), it is enough to prove the first assertion. If z\H h4=^>

d

Hence

/v(grad)/(xy+1 =

Comparing the coefficients of sd, we get the assertion.

The character 0: G-»CX induces the character of Lie(G), which we shall
denote by the same letter 0.

Lemma 1.9. (1) For v e £ fl^rf 4 e Lie(G),

(2) For

. If p(A)=(aij)l^ij^H9 then by differentiating /(exp(L4)-v)=0(exp
at r-0, we get

(1.9.1) j x j — f ^ 0 ,

which is nothing but the first assertion. In the same way, we get

(1.9.2) ( £ (-«„);, *+0(X))/v = 0 ,
\ij=i dyi J

and the second assertion.

Lemma 1.10. (1) For v <= Q and A e Lie(G),

(2) F(O0) is an open dense subset of the Zariski closure F(&) of F(@) in

. (Recall that F(£)c£v by (1.8,(3)).
(3) If v e ^ fl»rf F(v) GE F(O0),

TPX denotes the tangent space of X at p, and (TFM(F(O0))-
L~ denotes the

orthogonal complement in V of TFMF(OQ) C TFM Fv = Fv.
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Proof. (I) By(L8,(3))and(1.9,(2)),

for v<=@ and A<=Lw(G). On the other hand, by (L93(l))s

By these equalitiesg we get the assertion.

(2) Since F(O0) is Zariski dense in F(Q)9 it contains a non-empty open set

of F(£) by the Hilberfs second theorem (cf. [32; 1.13]). Since F(O0) is ff-

homogeneous, it is open in F(Q).

(3) By(l)

(1.10.1) Fv F(v)

Since F(v)=F(v') for some v'eO0 by the assumption,

(1.10.2) Ue(G)-F(v) = rf(o)(G-F(v')) = TF

By (1.10.1) and (1.10.2), we get the assertion.

Lemma 1.11. (1) Let F(Q\ be the union of all the open sets of F(Q)

contained in F(Q). If a point v&£ satisfies

(1.11.1) F(v)GF(®\ and

then

(For the moment, F~lF(y) and Tv(F~lF(v)} should be understood scheme theoret-
ically.)

(2) Ifv^Oo, (1.11.1) is satisfied.

Proof. (1) The following conditions for a=(al9 - e e
5 a n ) are equivalent:

(«)
(b)

(d) SJ.y.1 b a ^ O for any &, ». , 6.).
dxfixj

(e)
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(2) Since the natural morphism G->G-F(v) is a submersion, F:G-v->
G°F(v) is also a submersion. Hence if veO0, by (1.10,(2)),

= (dF).(V) .

Lemma 1.12. The morphism F: OQ->F(O0) is smooth.

Proof. Since OQ is (/-homogeneous and F is compatible with G-actions,
it is enough to note that there is a point v e O0 such that F is smooth at v.

Lemma 1.13. For v e O0,

Proof. By (1.11), for a given v^OQ, the tangent space of O0nF 1F(v)
at any point is the same space (rF(v)F(£)0)^(TF(y)F(00))^. By (1.12), O0n
F-1F(v) is a union of open subsets of affine subspaces of V which are parallel to
(TF(v)F(OJj)^~. Thus we can find a non-empty open subset U of (TFMF(O0))^~

such that

(1.13.1) O0f}F~1F(v)'Dv+U.

If v'eF-lFOO, then by (1.8),

Hence, by (1.7), f=c on F-1F(v) for some non-zero constant c, i.e., f~\c)
IDF~lF(v). Since F-1F(v) is closed in *0, it is also closed in f~\c), which
implies that F-1F(v) is closed in V. By (1.13.1), F-1F(v) contains the Zariski
closure of v+t/in F, which is v+(rF(t;)F(O0))-

1-.

Lemma 1.14. The morphisms Fv: F($)->FV(<0V) and F: FV(<0V)-»F(«0) are

isomorphisms and the inverse of each other. (Here F(@) (resp. Fv(£v)) is the
Zariski closure in «0V (resp. «S).)

Proof. For any v e OQ,

F vF(v) e v+(rF(u)F(O0))-
L C F~!F(v)

by (1.10,(3)) and (1.13). Hence FFVF=F on O0, i.e., FFV is the identity on

F(O0). Since F(O0) is dense in F(£), FFV is the identity on F(0). Analo-

gously, FvFis the identity on Fv(^v).

Lemma 1.15. (1) F(^2) is a smooth affine variety and Zariski closed in

(2)
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By(1.14)and(L8,(4)),

Hence F(£) Is closed in ^v. Similarly, FV(^V)-FV(^V). As F(Q) is a closed
subset of the affine variety ^v =/v"1(Cx), F(Q) is an affine variety. By (1.14),

for vv eF(£). By these relations, we get the first equalities in (2)= The second
equalities can be proved in the same way. Let a(v")=dimTvvF(@). Then a
is upper semicontinuous on F(£), i.e., the values of a are not larger than
a (vv) in a small neighbourhood of vv. On the other hand, as a(vv) is the rank
of (rfF)Fv(pv)? it is lower semicontinuous. Hence a is locally constant, and
F(Q) Is smooth.

Lemma 1.16. For vv eF(£), the symmetric matrix

(*^/V))^^

defines a Gv* -invariant, non-degenerate, symmetric, bilinear form By-

Here Gvv denotes the isotropy subgroup ofG at vv.

Proof. If gv,/=2J_i V|£«/, then g~lv^ =S?/-i g|f-/vf
y/ and

Hence the bilinear form l^v on TvvF(@) is Gvv -invariant. Since Bv* Is also
given by

Its kernel is

which is, by (1.11) and (1.15, (2)), equal to
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(Note that, by (1.14) and (1.15), F(Q\=F(Q) and (1.11.1) is automatically
satisfied.) Since F(£) is a cross section of Fv: £V-»FV(£V) by (1.14) and
(1.15), and Fv'1Fv(vv) is a fibre,

r, vF(fl) n I;V(FV-IFV(VV)) - o .
Hence Bvv is non-degenerate.

Lemma 1.17 ([19]). Let X be a smooth affine variety and G a reductive
group acting on X. Suppose that a Gx-invariant, non-degenerate, symmetric bi-
linear form on TXX is given for each point x^X. Then there exists an open,
dense, G-stable subset U of X such that G'X is closed in X for any point x^U.

Theorem 1.18. (1) The G-orbit Ol is affine variety and the isotropy group
at a point of O1 is reductive.

(2) F(^=F(00)=OL
(3) The morphisms F: O^Oi and Fv:Ol->Ol are isomorphisms and

the inverse morphisms of each other.
(4) Let (TOi)^ be the conormal bundle of Oi, i.e.,

-1- = {(v, vv)

Let

0(v, vv) - v+Fv(vv) for (v, vv)E (Toft-1

Then 0 defines a G-isomorphism between fibre spaces x: (TOi^-^Oi (natural
projection) and F: Q-+Oi. The inverse of® is given by

W(v) = (v-FvF(v), F(v)) for ve£.

(Recall that F=grad log/, @=f~\Cx) and O0 (resp. O^ is the unique open
(resp. closed) orbit in &. The objects Fv, «0V, Oo and O\ are defined in the
same way starting from/v instead of/.)

Proof. (1) Since Ol is Zariski closed in the affine variety Q9 it is affine.
Hence the isotropy group at a point of Ol is reductive [20].

(2) By (1.15), (1.16) and (1.17), there exists a non-empty, G-stable open
subset U of F(Q) such that, for any x<= U, G-x is closed in F(Q). Since F(O0)
is dense in F(Q)9 UnF(O0)=^(f>. Since F(O0) is a G-orbit, F(O0)CC7. Hence

By (1.15), F(O0)=F(£) is a closed orbit in ^v. Hence

(3) This follows from (2), (1 . 14) and (1 . 1 5).
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(4) Let vve0iv. For any v^F'\vy)9 F(v) = vv^Oi =F(O0) by (2).
Hence by (1.10,(3)), v-FvF(v)e(rFWF(^))-1-. Hence

(1.18.1)

Since vv <=Oi =F(O0), we can write vv=F(v') with v'e00. By (1.13),

(1.18.2) F~\vy) = F-JF(v')=) V+^vFW)^.

Since Fy(vy)+(T9yF(GJ)-±- and v'+(rpVF(^))J- are affine spaces of the same
dimension, it follows from (2), (1.18.1) and (1.18.2) that

(1.18.3) F-J(vv) = Fy(vy)+(T9*F(0)r - Fv(vv)+(rfv01
v)-L-

Then, 0 defines an isomorphism K~\vy)-*F~l(vy) and W defines its inverse.

Infact,if(v, OeE^-VX

d>(v, vv) =

by (1.18.3). Hence F0(v, vv)-vv and VQ(v9 vv)-(^(v, vv)-Fv(vv)9 v
v)-

(v, vv). On the other hand, it is easy to see that 0W(v)=v. Thus we get the
assertion.

1.19. Let V= Fv =C2, <(^, y) \ (x'9 y'y>=xx'+yy' and G=(CX)2.

Define a (/-action on F by (gl9g2) (x9 y)=(g^g2y\ Let f(x9y)=x*yb. For
any a and 6, O0-Oo -C7X xCx.

(1) if fl=ft=o, then ^=C2, O! = {(D, 0)}, O^ = {(09 0)} and ^^(0, Q)=C2.
(2) If fl=0, Z?>0, then £=CxC\ ^-{0} xCx

9 O^-{0} xCx and

(3) If a>0,Z>>0, then J2=C7X xC7x, O1=CX xC7x, OiV=Cx xCx and

Example 1.20. Let F=Fv-M2w>3(C
r), <v| vv>-Tr(v*-vv) and (7-Cx x

Sp2m(C)xS03(C). HeieSp2m(C)=ig^GL2m(C)\g*Jg=J} with

/ o u
"U. oj'

and SO3(C)={g^SL3(C)\g*g=l}. (* means the transposition.) Define G-

actions on V and Fv by 0, ^i, ^2)v=r(g1vg-f) and (f, g1; g-2)v
v=r1(?ic~1vv^i"1)

for tGC*,g1GSplm(C),gaeSOJC),veV and vveFv . Let /(v)=/»=
-Tr((v*/v)2)/2 and 0(f, gl, g2)=f4. Then for g=(r, &, g2),/(gv)=0fe)/(v) and
/v(gv

v)=0(g)-7v(vv). Let v; (1 <z<3) be the column vectors of veM2m>3(£7)

and (v'vO=(v')*/vy. Then/(v)=(vV)2+(vV)2+(vV)2. Let
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y i o o — o oo-
v0 = I o i o — o 00-

\0 0 0 - 0 10-

and

. . 0 00-

. - 0 0 0 -

. . Q 1 0 -

Then Q=f~\Cx) consists of two orbits OQ=GvQ and Ol=Gv1, where OQ is open
in & and Ol is closed. The morphism F=grad log/is given by

F(v) = -2 /vv* /v//(v) .

Hence

F^F(v)= -v(v* Jv)2//(v)

and

v-FvF(v) = — ((v2 v3), (v3 v1), (v1 v2))*-((v2 v3), (v3 v1), (v1 v2)) .

The fibre of F containing Vj is

I 1 0 — 0 00 -

{I 0 x2 "e xm u xm+2 "

\ 0 0 - 0 1 0 - .

This example will be taken up again in (3.24).

Remark 1.21. Although the open orbit OQ is uniquely determined by the
prehomogeneous vector space (G, p, F), £=£(/) and O1=Ol(f) depend on
the choice of a relatively invariant polynomial/ as we have seen in (1.19).
Moreover, we can show the following fact. Let / and f2 be relatively invariant
polynomial functions on F. Then O1(fl)=Oi(f^ if and only if

Proof. Since O^fy is the unique closed G-orbit in

implies 01(/1)=01(/2). Assume that Q(fo*Q(f& i.e^/r^^/i-^O). Let 0,-
be the character of/-, and/)7 a relatively invariant polynomial on Fv of char-
acter 071 (cf. (1.5)). As is seen from the proof of (1.5),/^ can be obtained from
/- by the complex conjugation of the coefficients of / (up to scalar multiple).
Hence/r-^O)^^-1^). Assume that/y-^ct/y-^O). Then for any natural
number s, f^s/fi is not a polynomial. Since / (grad) f^s and /^//Y
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correspond to the same character fa 0i~s and ^(grad)/^s Is a polynomials
=0. Hence we can show, as In the proof of (1.8), that

On the other hand, by (1.7) and (1.8),

Since (grad log/V) (Ofi-OM) by (U8,(2)),

§ 2o B-modiiles

2.0. In this section, we review the theory of systems of differential equa-
tions,

2olo Differential operators

2.1.1. Weyl

For an affine variety V over C, we denote the ring of regular functions on

VbyA(V)oTC[V].
Let V=Cn and ixl9'°°,xn} be its coordinate system. The Weyl algebra

D(V) is the C-algebra defined by the following presentation:
/> o

(1) D(F) is generated by 2n elements xl9 • •« , xn9 - , •••, - .
dxl dxn

(2) These generators satisfy the commutation relations [xi9 Xj] = 0,

=^' where \P.G\=pQ-Qp and *u is the

Kronecker delta.
For an affine open subset U of F, let D(C/)=^(C/)®-4(7) D(F)0 Sometimes

we write 0, for — , ^4 for 4(C7), and D for D(J7). We call an element P of D
dXi

a differential operator and define its order ord (P) in the usual way. Let Dk =
{P<=D\ ord(P) < k} . Then {D*} gives a filtered ring structure in D. Let g^(D)
=Dk/Dk,1 and gr(D)=0Ae^ gr&(D). The gr(D(J7)) has a natural ring structure
and is isomorphic to C[Ux Fv] as a graded ring, where Fv is the dual space of
V. Let o=ak: DA— ̂ lyD^ be the natural projection. For a differential oper-
ator P of order k9 we call ^(P) the principal symbol of P. For a left ideal L of
D(U)9 let
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Then gr(L) is an ideal of gr(D(UJ)=C[Ux Vv].

2.1.2* Define an anti-automorphism * of D by df = —di and a* =a (aEiA).
For PeD, we call P* the adjoint operator of P. Let £ be the ^4-module A*dxl

A"'Adxn. For a right D-module Af, Hom^tf, M)=M®AQ~l has a left
J9-module structure defined by P(m®(dxl/\ ••• A^)"1) =mP*®(dx1/\-- A
dx^"1. (As far as we deal with D-modules over an open set of CT, (S)^"1 is
not important. In such a case, we omit to write it if the notation becomes too
complicated.)

2.1.3. There are several kinds of 'differential operators'. Let us con-
sider relations among them,

For a point ve F, let Av be the localization of A at v, and mv its maximal
ideal. Let (AV9 mv) be the mv-adic completion of (AV9 m0). Let Av be the ring
of germs of holomorphic functions at v, and mv its maximal ideal. Then the
my-adic completion of (AV9 mv) is also (AV9 mv). Since Av is noetherian, A0 is
faithfully flat over Av [3; Chap.35 §3, Prop.9]. Similarly, Av is faithfully flat over
A,. Hence A, is faithfully flat over A, (cf. [3; Chap. 1, §3, no, 4, Remark (2)]).
Hence any ^-module M can be regarded as a submodule of Av®AvM[3; Chap.
1, §3, Prop.9]. Since Av is flat over A [3; Chap.2, §2, Theorem 1], Av is flat over
A. Let £,=4,®,! D and DV=AV®A D. Since ^ is flat over A9 Dv is flat over
D. For a point /?=(v, vv) of Fx I/v, let ^ be the ring of germs of microdif-
ferential operators (of finite order) at p. (See [15; 2.2.2] for the definition. Here
we consider Vx Fv as the cotangent bundle of F.) Since Ep is flat over Dv

[26; Chap. 2, 3.4, Remark 2], ̂  is flat over D.

2.1.4. Let F-F0F", {jc{, -, 4} and {*{' , •», xj7} be coordinate sys-
tems of V and F"3 and /(resp. //x) the ideal of A(V) (resp. A(V"J) generated
by x'i9 • •• , x^. Let /: F'-»Fbe the inclusion mapping and

1W ^ (4(V)IT)®A<n D(V) = D(V)IID(V) = D(V')®C(D(V")1I" D(V")) ,

Then Dy^v is a left D(F')-module and a right D(F)-module. Let v=v'0v7/.

Dy^Vt9=D V'-*v®A(v) A» DV'-*V,V=®V'-»V®AV 4, Dj=Aj®A(v) D(W) and 5^
=^/®ilp/Dl,/. Then Dv^ViV is a left D^-module, and DV'+ViV is a left Dv'-
module. Let Av D(F') be the subring of Dv generated by A, and D(V). Then

D, is a free left ^D(K>modiile generated by

Hence A is a faithfully flat left A, D(F')-module. Since A, D(V')IIAVD(V') =
/V and DjIDv=DV'_>ViV9 Dy-»VtV is a faithfully flat left IV-module. Let 1V'+Y=
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(1D(V) mod ID(VJ). Since ID(V) = {P^D(V) \PAvc:IAv(P acts on A, as a dif-
ferential operator)} , there do not exist elements PeD(F) — ID(V) and s^Av—
mv such that Ps^ID(V) (multiplication of differential operators P and s).

Hence DV'+V may be regarded as a subset of /V-»v>- BY (2.1.3), Dv^VtV may
be regarded as a submodule of DV'+VtV. Hence lv^y may be regarded as an
element of DV'+VtV or Dv^VjV.

Lemma 2810§0 Let M be a right D-module. For an element u of M, the

following conditions are equivalent:

(1) u®lV'+v=Q in M®D/ DV'+V.*-
(2) The image 0/W/V&5/ Dv'-*vtv ^n M®DV* DV'->v,v is zero.
(3) uDj®39, Bv'+Vt9=Q.
(4) w=0.

Proof. Since 1V'+V *s a generator of the right ^-module 6V'+V>V, (!)<=> (2).
Since DV'-*v,v is a flat left /V-module, (2)«(3). Since DV'+ViV is faithfully flat
left ZV-module, (3)«*(4).

2.1<,6o Let M be a D-module generated by a single element u and TV another
D-module. Sometimes, we identify a D-module homomorphism <p: M->N

with the element <p(u) of TV, and call <p or 9(1*) a solution of Af (in JV). Cf.

[15; 2.1].

2olo7e Let M be a D-module and f^A(U). Considering M as an A-
module, we can define its localization by/"1, whch we shall denote by M[f~1},
(An element of M[f~l] can be expressed as /"' u with u^M and an integer
/>0, and/~ J^=0 if and only if fNu=Q for a sufficiently large N.) Then
M[f~l] has a natural D-module structure such that

2o20 Characteristic variety

2o2.1o Support

Let F be a smooth, irreducible, affine variety over C, A=A(V), and
an y4-module. For an element u of M, let

\ au = 0}

and

supp(w) = {ve F|a(v) = 0 for any
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Let supp(M) be the union of supp(w) for u&M, and call it the support of M.

If M is finitely generated., supp(M) is Zariski closed in V.

2.2.2. Let M be a finitely generated ./4-module, C an irreducible algebraic

set of V, r=codimF(C), I={a^A\a=Q on C} and S=A~L Assume that

there is an affine open subset W of V such that Wf] C4=0 and

(1) ^nsupp(M)=0, or

(2) W H supp(M) = W n C.

Then S~l Aha regular local ring of dimension r, S~l M is a finitely generated

S~* ^-module, and is annihilated by some power of the maximal ideal S'11 of

S~l A. (In fact, A(W)®A M is already annihilated by some power of A(W) /.)

Hence lengths-\A{S~1M) is finite, which we shall denote by m(C)=m(C,M) and

call the multiplicity of M along C. See [29] for regular local rings.

2o2.3o Characteristic variety

Let V=Cn and U be an affine open subset of V. Let M be a (left) D(U)-

module, and F=(Fk M)k<=z an increasing nitration of M by finitely generated

^4(t/)-submodules such that

U Fk M = M and D,(Fk M)dFk+l M.
k^Z

(Recall that {D/} is the order filtration of D.) Then gr(M) naturally becomes
a gr(D)-module, where grk(M)=Fk M/Fk^ M and gr(M) = (&kt=z gr^(Af), Such

a filtration F is said to be good if gr(M) is finitely generated as a gr(Z>)-module.
A D-module M has a good filtration if and only if M is finitely generated as a

D-module.

If F is a good filtration of a D(£/)-module M, the support of gr(D)-module

gr(Af) is an algebraic subset of Ux Fv, which is denoted by ch(M) and called

the characteristic variety. As is easily seen, ch(M) does not depend on the cho-

ice of a good filtration. A finitely generated D-module M is called holonomic

if dim ch(M)<n.

2.2.4. Characteristic cycle

Let C be an irreducible algebraic subset of UxVv. Assume that there

exists an affine open set W of Ux Vv such that W n C4=0 and
(1)
(2)

Then we can consider the multiplicity of gr(M) along C3 which we shall call

the multiplicity of M along C and denote by m(C)=m(C, M).

Let i(M) be the set of irreducible components of ch(M) and consider the
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formal sum

= S m(C9 M) C ,
'

which we call the characteristic cycle of M. The characteristic cycle is also
independent of the choice of a good filtration.

2.2.§o For a finitely generated D-module M and a point p=(vf vv)
GE Fx FV

3 the following conditions are equivalent to each other:

(1) p<EEch(M).
(2) For some u<=M,p^ ch(Du).
(3) For some u<=M, Ep®D(Du) =t= 0.

(4) EP®

Proof, (1)«*(2) is obvious. Since Ep is flat over D (cf. (2.1.3)), Ep®D(Du)

can be regarded as an JS^-submodule of £^0^ M for any u. Hence (3)»(4).
For a given element u^M, let J^ann^w). In order to prove (2)<=>(3), it is
enough to prove the equivalence of the following conditions :

(a) p^ch(Du).
(b) p is a common zero of the ideal gr(J) of gi(D)=C[Vx Fv].
(c) p is a common zero of the ideal gr(4i®/) of &(DV)=AV®C C[VV].

(d) Ep®D(Du)*0.
(In (c), the filtration of Dv is given by DktV=Av®A Dk and gr(— ) is defined as
before.) (a)<=>(b) is obvious. Since ^ is flat over A, it follows that Av®A(Du)

=DVI(AV®I\ DkiV n (Av®I)=Av®(Dk n /) and gr(4®/)=4®gr(/) [3; Chap.l
§29 Prop.6]. Hence (b)*>(c). (c)«(d) is proved in [15; 2.3.5].

Lemma 2o2060 Le^

be an exact sequence of D-modules, If M is finitely generated, then M' and M
are also finitely generated, and

m(C, M) = m(C, M')+m(C, M")

for any irreducible component C of M.

Proof, Consider a good filtration of M and filiations of M' and Mrf

induced from it. Then

0 -> gr(Af ') -> gr(M) -* gr(M/x) -> 0
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is exact. By the exactness of the localization as a functor, and by the additi-
vity of the length, we get the assertion.

Lemma 2.2.7. For a D(U)-module M and u^M, supp(u)=ch(Du)f]

The assertion follows from the equivalence (a)<=>(b) in the proof of (2.2.5).

2.3. In this paragraph, we study D-modules related to the complex power
fs of a polynomial function f(x), A main purpose of this paragraph is to give
(2.3.11).

2.3.1. Let V=Cn,fbe a polynomial function on V, B a connected, simply
connected open subset of @=f~1(Cx)9 fs a single-valued branch of f(x)s ((s, x)
^CxB), D[s]=D®c C[s] and D[s]fs the D|>]-module generated by/s. For a
given complex number a, \Qtf<*=(fsmod(s—a)D[s]fs). Then/* is a gener-
ator of the D-module D[s]fs/(s— a) D[s]fs. Note that/* is only an element
of an abstract D-module D/*5 and not a function.

2.3.2 ([14], [16]). Let M be a D-module and u an element of M. Con-
sider the left ideal / of D[s] consisting of differential operators P(s)^D[s] such
that

(f~-P(s)f)u=0

holds in C[s]®c M f°r a sufficiently large integer m. Note that/w~s P(s)fs^
D[s] if m is large enough. Let N=D[s]/I and denote the element (1 mod /)
by fs u. Then N=D[s] (f u). By the definition of N,

(2.3.3) fm P(s) (f u) = 0, if and only if P(s) (f$ u} = 0 , and

(2.3.4) P(s) (fs u) = 0, if and only if P(s+m) (fm »/s u) = 0 ,

for P(s)&D[s] and m>Q. For a complex number a, let N(a)=N/(s—a) N,
and /* u=(fs u mod(s-a) N). Then N(a)=D(f* u).

Note that if M=A(V) and u=l, the D[s]-module D[s](fsu) is naturaUy
isomorphic to the D[s]-module D[s]fs given in (2.3.1).

2.3.5. Let C[s9 1] be the C-algebra defined by the relation ts=(s+l) t, and
D[s, t]=D®c C[s9 1]. Then D[s] (fs u) has a D[s, /]-module structure defined
by

t(P(S)f
su)=P(s+V)f»fsu.
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This definition is well-defined by (23.4).

2.3.6. For a polynomial c(s)&C[s], let

A+ = A+(c) = {a^C\c(a+j)^Q for j = 0, 1, 2, — } , and

for 7 = 1 ,2 ,—}.

Henceforth, we assume that there exist a polynomial c(s) e C[s] and a dif-
ferential operator P(s)&D[s] such that

(2.3.7) P

(It is known [14] that such c(s) and P(s) exist if M is holonomic.)

Lemma 2.3.8 ([16; Lemma 2.3]). For a^A-(c), D(f* u) is naturally iso-
morphic to D(f* u) If'1] with the natural D-module structure,

(See (2.1.7) for (— ) [ f ' 1 ] . Although we do not assume M to be holono-
mic, the proof of [16; Lemma 2.3] works if we replace 'bijective' in the line 14
of page 175 with 'injective5.)

Lemma 23.9. If c(a—l)—c(a—I)=tQ, then f* u-+f'-f*-' u gives an iso-

morphism D(f* u)->D(f*~l u). Especially, if a^A-(c), the assumption is sat-
isfied.

Proof. The inverse morphism is given by

/-' u -> (C(a-l)^c(a-l))-i (P(a-I)~.p(a-iy) (f- u) .

Lemma 2e3e10e Assume that f is not a zero divisor of Du(dM). Then
Du is a quotient ofN(G)=D(f° u).

Proof. Define the D-module homomorphism D[s]fs u->Du by

Q(s)(fsu)-*Q(Q)u.

If Q(s)f w=03 then (fm~s Q(s)fs) u=0 for a sufficiently large integer m. Let
f™-sQ(s)fs=^sjQj. Then fiy n=0. Since Q0=fm 2(0), fm fi(0) i/=0. But
we are assuming that / is not a zero divisor of Du. Hence 2(0) u=Q9 and,
consequently, the above morphism is well-defined. Obviously, it is surjective
and its kernel contains sD[s] (fs u). Thus we get a surjective homomorphism

D[s] (fs u)/sD[s] (fs u)-»Du.

Lemma 2.3.11. Assume that f is not a zero divisor of Du. If
then Du=(Du) [f1].
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(See (2.3.6) for A., and (2.3.7) for c.)

Proof. By (2.3.8), N(0)=D(f° u) is isomorphic to D(f° u) [f~1]. Hence,
by (2.3.10), we get a surjective homomorphism <p\ (Df°u) [/""I]->DM. It is
enough to prove that ker(9?)=0.

H>(6/° w)=0 with gel), then Qu=Q. If m is a sufficiently large inte-
ger, then, as elements of D[s]9f

m~g Qfs=fm Q+sR(s) with some R(s)GD[s].
Hence (fm~s Qfs) u=sR(s) u. For a sufficiently large integer /, there exists

T(s)GD[s] such that/5-"* R(s) = T(s)fs~l. Then as elements of D[s]9f
m'3 Qf

=fmQ+sfm-sT(s)f*-1, and fm~s(Qfl-(s+l) T(s+Pj)fs =fm+l Q. Hence

(fi/'--(*+/mJ+0)/'K=0 in />[*] (/'u), and (g/O-C/"1")^ in />(/-' K).
Since 0 belongs to A.., D(/° n)-*D(/"/ M) (/° u-*fl-f~l u) is an isomorphism
by (2.3.9). Hence g/° w=0.

In general, if <p(f~m'QfQu)=0, then ?(e/°ii)=0, e/0w=0, and /-"•
«=0. Hence ker(9)=0.

2.4» In this paragraph, we recall known facts about the characteristic vari-
eties ofD[s]f and Df«. We include (2.4.3) and (2.4.4) here in order to make
[13] accessible.

2.4.1. Let Vv ={y = (yl9-5yn)} be the dual space of V=Cn =
{(;q, • • - , *„)}, p: CxVx Fv->Fx Fv the natural projection, Q=f~l Cx,

W' = {(j, x, s grad log/(x))eCx x^ x Vv} ,

^ = the Zariski closure of Wr in C X Fx Fv ,

PF = the Zariski closure of W in Fx Fv, and

^F0 = {(%, ̂ e^l/W^i ^ - =f(x)y*=0}

2.4.2. Since IF' is Zariski closed in Cx X & X Fv,

In an irreducible variety over C, a Zariski open set is everywhere dense with
respect to the classical topology. Hence the closure of W' with respect to the
classical topology coincides with W. Similarly, the closure of W with respect
to the classical topology coincides with W.

Lemma 2.43. ([13; Lemma 5.5]). If (xQ,y0)^W and f(x0)=Q, then there
exists a sequence (sk,xk,y^^C*xW such that yk=sk(grad logf)(xk), sk->0
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and (xk, yk)-*(x0, yQ).

Sublemma* Let W be an algebraic variety over an algebraically closed
field k, W an open dense subset of W, and p a point of W. Then there exists

an irreducible curve CdWsuch thatp^Ctt W\W.

Proof of (2 A3). Let CdW be an Irreducible algebraic curve such that
p:=(xQ9y^C^W\W9 a: C'->C the normalization of C? p

f a point of C"
lying over p, and b: C'-*Pl any branched covering. Put D={t^C\ \t\ <!}
and d(x)=xe(x^D) for a given natural number e. If the ramification index
of b at p' is e, then the branched covering b: C'-^P1 is analytically isomorphic
to d: D->D in a neighbourhood of p'. As the composition of the local iso-
morphism (D, 0)->(C",/?') an(i the natural projection (C'9p')-*(C9p)9 we get a
holomorphic curve c: D->C(C W) such that c(G)=p and c(t)& W for 0< 11 \ <
L By a change of variable t, we may assume that c(t) is holomorphic and
lying In W for 0 < \t \ < 2. Let c(t)=(x(t\ y(tj). For /0 (E D\ {0}, let

Then lim^0 a,(0=0 and

I max

by the Cauchy's inequality concerning analytic functions of one variable. Let

/WO)=2^/« t*. If/0=-.=/il.1=0 and/w^03 then m>03

/WO) =/- r-+0(/«+1) , and 2r - /(x(0) -
at

Hence

I /(^(O) I < 1 2t f /WO) I £2 S W • I i,(0 1 • I ̂  (*
* ' = 1 dXf

<2 ± ^(0- 1|^ WO) I ̂ 2|x(OI • Iferad/) W0)l1=1 d*,-

for | r | < L Take ^eD\{0> so that tk-Q9put(xk9yk):=(x(tk)9y(tk))(^Wf\
and take sk^Cx so that 5^ (grad log/) (jcjk)=jjk. Then

| Jjk | - 1 grad/fe) | = | ykf(xk) \<2\yk\«\ x(tk) \ - 1 grad/fe) | .

Since / is locally constant on {grad/=0}9 and since f(xk)=£Q but f(xQ)=Q,
grad/(^)=t=0 for ^>0, Hence |^| <>2\ yk\ - \x(tk)\ for k>0 and we get the
assertion.
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Proof of sublemma. We may assume that Wis an irreducible affine variety.
By the Noether's normalization theorem, there is a finite surjective morphism
TZT: W->km, where m=dim W. Put Z= n(W\W). Then Z is a closed subset

of km and dimZ<m. Let A=k[Tl9 — , TJ (the polynomial ring), B=k[W]
(the ring of regular functions on PF), and ^40 (resp. BQ) be the localization of A

(resp. B) at TrQ?) (resp. /?). Consider A (resp. j40)
 as a subring of 5 (resp. BQ) by

TIT*. Take an affine line L such that 7r(^)eLctZ. Let P be the prime ideal
of A defining L, P0 the prime ideal of AQ generated by P, QQ a prime ideal
of BQ such that Q0 fl A0=PQ (going-up theorem of Cohen-Seidenberg), Q=Q0r\B,
and C the irreducible sub variety of W defined by Q. Then p^ C and n induces
a finite surjective morphism C->L. Hence C is an irreducible curve with the
desired property.

Lemma 2A4. p(W)=W.

Proof. First, assume that/ is quasi-homogeneous, i.e., there exist

A(V) such that S;_ifl,-^-=/. Since
9*,

holds on W, the finite C[Fx Fv]-module S?-i C[Fx Fv] is stable under
^^,-

the multiplication by s. Hence s \ w is finite over C [Vx Fv]. Hence /? | ̂  is a

finite morphism, /?(FF) is Zariski closed in Fx Fv, and p(W)=W.

In the general case, let(*0, ̂ )eCx F,/! ,̂ ̂ )^^0/(^), and define W{9 Wl9

W'i, Wl in the same way as W'9 W, W, W using ̂  instead of/. Then we have
the commutative diagram

&! -* W

I I
W^ -> PF,

where the morphisms are natural projections. Since/ is quasi-homogeneous,

Wl-^Wl is surjective. Hence it is enough to prove that Wl->W is surjective.
Let (x, y) be an element of W and let us find an element of W1 lying above it.
If f(x) =1=0, (x, y)=(x, s grad log /(%)) with some s^C. Then (1, x, s, s grad
log/W) is an element of Wl9 lying above (x, y). Let us assume that/(^:)=0.
Let (xk, yk)=(xk, sk grad log/(^)) e FF' and (xk, yk)-^(x, y). By (2.4.3), we may
assume that ^->0. Hence
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W{=>(sk, xk9 1, sk grad log/fo)) -> (0, x, 1,

and (09 A;, 1, j)e WKl9 whose projection to fF is (x, y).

Lemma 2.4.5.

Proof, For a given (X j/)e FF0, we can find s such that (5-, x,y)^W by

(2.4.4). If /(*) =0, then we may assume j =0 by (2.4.3). If /(*) =f= 0, then y=0,

and (jc,0)=XO,x, 0)^(^0). Hence ^o<=X^o)- Since

holds on

Lemma 2.4.6. (1) 77ze characterisic variety of the D-module D[s]f8 is W

andm(W,D[s]fs) = l.

(2)

Proof. By (2.2.5), (1) follows from [13] and (2) follows from [25; appendix].

(If/is quasi-homogeneous, D[s]fs=Dfs is a finitely generated D-module. For

a general /, D[s]fs is also finitely generated as a D-module. See pages 49 and

50 of [13].)

2.5o00 There are several kinds of 6b-functions'. Let us consider relations

among them. Here, in (2.5), we use the notation given in (2.1.3).

2o5.L Let V=Cn, v<=V and R be one of the rings A, Av, Av or Av. For

a given/e J?, we can find P(s)^R[s]®A D such that

P(s)fs+l = c(s)fs

with some c(j)eC[j] — {0}. (See [1] for the proof.) The totality of such poly-

nomials c(s) is an ideal of C[s], whose monic generator we shall denote by

B(s), Bv(s)9 Bv(s) or Bv(s) if R=A, Ay, Av or A0, respectively.

Lemma 2e5020 Iff e A, E(s) is the least common multiple of {Bv(s) \ v e V} .

Proo/o Let c(5-) be the least common multiple of {-#/.?)} . Then c(s) di-
vides ^(.y). Let us prove that £(s) divides c(s). Let Pvf

s+l=c(s)fs with
Pv^Av[s]®AD. Multiplying the denominator of Pv, we get relations of the

form QJs+1=gic(s)fs (fi,e=D|>], fte^, i=l, 2, -, ^) with (gl3 -, gN)=L If

1] a,- ft =1 with a,-e^3 then S ag- Qifs+l=c(s)f\ Hence J?(j) divides c(j).

Lemma 285030 If f Is a homogeneous polynomial, B(s)=B0(s).

Proof. Let PQfs+1=B0(s)fs with P0<EJ0[s]<guD. The coefficients of P0
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are regular in some neighbourhood U of 0. Hence BG(s) is a multiple of Bv(s)
for any veC7. Since /is homogeneous, Bv(s)=Btv(s) for ?eCx. By these
facts and by (2.5.2), BQ(s) is a multiple of B(s). Since BQ(s) divides B(s), BQ(s) =
B(s).

Lemma 2.5.4. Iff e A, 5, = £„ =^.

Proof. Obviously, J§y divides BV9 and J?y divides $„. Let

(2.5.5) Pfs+1 =

with PeAj[s]®D. Let P= 2 a* d* and d°&fs+l=cc6f
s-1 with fc,

!*!<*

4,|>] and c^AJis]. Here a=(al9 •-, as), \a \ =2 a. and 0*=^?i--9J». Then,
the linear equation

(2.5.6) 2*, *,=£/'
i»i^*

is satisfied by (x^=(a^. Since [̂5] is faithfully flat over Av[s] (cf. (2.1.3)),
there is a solution of (2.5.6) in Av[s]. (Cf. [3; Chap.l, §3, Prop. 13].) Hence we
can find P&Av[s]®D which satisfies (2.5.5). Hence Bv divides Bv.

Lemma 2.5.7. Let Vy be the dual space of V, andp=(v, vy)^WQ. (See
(2.4.1) for the definition of W0.) If Q^AV®D is invertible in Ep and satisfies

Qfs+1=bp(s)fs with bp(s)^C\s\f then bp(s) is a non-zero constant multiple of

Bv(s).

Proof. Let EJ.s]f'=Ep®B D[s]fs. By (2.2.5) and (2.4.6, (2)),

Ep®D(s-a)D[s]fs

for any a^C. (Recall that Et is flat over D.) Hence

(2.5.8) (s-a)EJis]f£Et[s]f for any a

For any a(s) <=C[s]- {0} , a(s) D[s] f—D[s] f as D-modules. Hence

(2.5.9)

By (2.5.8) and (2.5.9), Ep[s]f is faithfully flat over C[s]. (See §2, Prop.3, (2)

and § 3, Prop. 1 of [3 ; Chap. 1].) Let bp(s)=c(s) B,(s). If c(s) $ Cx , then bp(s)

On the other hand, since Q is invertible in Ep,
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bp(s) Ep[s]fs = Ep[s] 2/5+1 = Ep[s]f^ .

Hence c(s)<=Cx.

Corollary 2.5.10o Iff is a relatively invariant polynomial of a prehomoge-

neous vector space, then bo1 b(s) = B(s)= B0(s)= BQ(s)=B0(s), (See (1.6) for b0

and b(s),)

Proof, Since /Is a homogeneous polynomial by (1.3, (2))9 we have B(s) =
BQ(s) by (2.5.3). By (2.5.7), it is enough to prove that there exists a point vv e
Vv such that p=(0, VV)<EE W0 and /v(grad) is invertible in Ep. (Cf. (1.6). Here
we use the notation in the first section.) Hence it is enough to prove that

(2.5.11) {0}x0rcFF0.

For v<=@9 (£V5 £F(ev))=(ev9 F(v))->(0, F(v))5 (e-»0). Hence we get (2.5.11).
(Cf. (1.18, (2)).)

Corollary 2.5.12. The b-function is of the form

b(s} =bQfl (s+aj) , d = deg/3
y=i

where a.'s are positive rational numbers.

Proof, The assertion follows from [13] and (2.5.10).

Lemma 206oL Let (R, m) be a regular local ring of dimension r, and M an

R-module of finite length, (See [29] for regular local rings,) Then

Exti(M5 R) = 0 for j 4= r

and

lengthje(Exti(M, R)) = length^(M).

Proof. If length^(M) = l, i.e., M=Rjmy a free resolution of M can be con-
structed explicitly and Exti(M, R) can be calculated. (Consider the complex
K(xl9 • • • , xr; M) given in [29; IV-4], where {x1? ••-, xr} is a regular system of
parameters of R [29; IV-40].) Our assertion follows from this special case by
an induction on the length of M,

Lemma 20602o Let M be a finitely generated (left) D(U)-module, C an ir-
reducible component 0/ch(M), and ^=codim^XFv(C). Then
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m(C,

(See (2.12) for ®®-\ and(22A)for m(C, -).)

Proof, Let (M, F) be a good filtration of M (cf. (2.2.3)), and

•••-* (M15 F) -> (M0, F) -^ (M, F) -> 0

a filtered complex such that

d d e
(1) Mo: =(— -> M! -> M0 -> If -> 0) is exact,

(2) ... gr(Mx) gr(M0) gr(M) -> 0 is exact,
(3) each M$ is finitely generated free D-module, say, MJ-=®l^k<r(^ Dujtk,

and

(4) F{ Mj = ©!<;*<r0-) A-.O-.W «y,ik with some s(/, fc).
Such a filtered complex exists for any (M, F) [1 ; Chap. 2, 3.11]. Let

Ff Hom0(M., D) - {AeHom^M., D) | h(Fk Ma)dDi+k for any k} .

For each 7, (Hom^My, D), F) is a good filtration and

gr HomD(Mj9 D) = Homgr(z?)(gr(MJ.),

Let (Exti(Af, D), F) be the filtration induced from (Hom(M8, D), F). Consider
the spectral sequence (Ep

r
q) associated to the filtered complex (Hom(Me, D), F),

and let E\ = ®p+q=t Ep
r
q. Then

El = Homgr(z»(gr(M,), gr(D)) ,

E[ = Ex4r(z?)(gr(M), gr(/») , and

El = gr Ext{,(Af, D) .

Let S={a^C[Ux Fv]|a^0 on C}. Then by (2.6.1),

S-1 E[ = ExtS-i^CS-1 gr(M), 5'1 gr(D)) = 0

for t^s. (Note that S'1 gr(Z>) is a regular local ring of dimension s.) Hence
the spectral sequence (S'1 Ep

r
q) degenerates at Frterms3 and

ExtJ-i^S-1 gr(M), ^S-1 gr(D)) = S'1 gr Exti(M, D) .

By definition, m(C, Exti,(Af, D)®^'1) is the length of the right hand side of
this equality. On the other hand, by (2.6.1), the length of the left hand side

is equal to that of S'1 gr(Af), which is m(C, M).
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2.6.3. If M is a left D[s, r]-module (cf. (2.3.5)), then we can define a left
D[s, £]-module structure of HomD(M, D) by

(P<p)(u)=<p(u)P*9 (s<p)(u) = -9(su) and (ty) (u) = <p(tu) ,

for <p<=HomD(M,D), u^M and PeD. (See (2.1.2) for P*. Note that our
definition of the D[s, ?]-module structure here depends on the choice of the co-
ordinate system. In order to make the description free from the coordinate
system, it suffices to consider Hom^M, D)®A ®~l etc.) Hence Exti>(M, D) has
a left D[s, r]»module structure. Let N=D[s]f\ N(a)=Df« (cf. (2.3.1)), N* =
Extn

D-\N, D) and N(a)*=Extn
D(N(a), D). In general, set M*=Extn

D(M, D) for
a holonomic D-module M. (See (2.2.3) for the definition of a holonomic D-

module.) Since JV is a left D[s, ^-module by (2.3.5), N* Is also a left D[s9 1]-
module.

Lemma 2.6A* (1) Exts
D(N, D) =Qforj3=n—l.

(2) If a D-module M is holonomic, then Ext{>(M, D)=Q for j =£n.

(3) Ifa+^A+(B), a_^A_(B) and a++a__ = Qmod Z9then N(a+)* ~N(a_)

(See (2.3.6) for A+ and A-, and (2.5.1) for B.)

Proof. (1) and (2) are essentially proved in [13]. In order to prove (3),
it is enough to prove that

N(a++k) — N(a_-l)*

for some non-negative integers k and /. (Cf. (2.3.9).) We prove this in several
steps.

2o6o50 First step. First, let us define a D[s9 ^-module homomorphism
r: N*->N on the open set U=V—f~\Q). Here, In (2.6.5), A and D always
stand for A(U) and D(U).

Let 0 = @i£i£n ^ls] vi anc^ define a free resolution of the Df^-module A[s]

0 - D[s]®AU A 9 -1 -. -1 D[s]®AW A e ̂  A[s\ - 0

by

and

e(P) =
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Since N=D[s]f* Is a free A[s]-modu\Q generated byf\ (D[s]®/\k 0®N, d®N)

gives a free resolution of the D[sf]-module N in the following manner. The
Df^-module structure of D[s]®/\k 6®N is given by

di(P®w®fs) = 9; P®w®fs+P®w®di(f
s) .

The set {l^O^A-- A vik)®fs\ 1 <il<-~ <4</?} gives a free basis of the
D[>]-module D[s]®/\k 6®N. Consider the complex

(HomD(D[S]®/\6®N, D), 5) ,

where d is the morphism induced by 8®N. Let

Av M ,

for /<y, and w,.f.=0. For a given 9eHomD(D[j](g)A* 0®N, D), let

and identify 9 with P=(Pt)9 Q=(Qn)9 R=(Riit) if k=n, n—l, n—2, respectively.

If we sQtf.=—J-9 then by the identities
dX;

d&w&s'f = di(l®wi®slfs)~l®wi®di(s
!fs) etc.,

we get

(*0, = s (-i)'-^ Qt.i-(fiif) a.»+i) ,
(2.6.6) (5 ,̂, = 2 (-l)'-1^ RiM-UJf) Ru,l+]) ,

The D[s, r]-module structure of TV can be lifted to

- A vj® g

We give a left D[j, ^-module structure of HomD(Z>[j]®/\* ^®VV, D) by (jp) (x)
= -9>(jx), (?p) (x)=p(tt) and (P<p) (x)=<p(x) P* for PeZ). (See (2.1.2) for />*.)
Then
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(2.6.7) (sQ)u = -Qu+l , (?0,,0

and eTs are compatible with the left C[s9 r]-module structures. Define a D-

module homomorphlsm r: {Q}-*D[s]fs by

If dQ=Q9 we can show that r(sQ)=sr(Q\ r(tQ)=tr(Q) and r(«9=0 by using
(2.6.6) and (2.6.7). Hence we get a D[s, £]-module homomorphism

r : Extn
D-\N, D)®A Q-^N. (Recall that D=D(V-f'\0)).)

2e6o8o Second Next, let us show that the morphism r : N*-^>N con-

structed in the first step is not identically zero if / is quasi-homogeneous. We

continue to write A and D for A(U) and D(U). Since /is assumed to be quasi-

homogeneous, there exist a^A such that 27- 1./} a'i=f- Let (—I)1' a/
if~

l=ai.

(Note that/is invertible in A=A(V-f-\Q)).) Then S?.i(— I)1' /•«,• = !. Since

S2-0 if and only if £ (-!)• 0, &.,= 2 (-!)'/, fi,i/+1 for any />0 (cf.
« '=1

(2.6.6)), and since 2 (— l)'/;.-^ r=T for any TeD3 the morphism ker d-*Dn

1=1
defined by 2-K(?t-,o)i£i^n i§ surjective. Hence

20609e step0 Here, in (2.6.9), A and D stand for A(V) and

and we assume /to be quasi-homogeneous. Since N=Df\ TV* is generated as

a D-module by a finite generator system, say ul9 °", M^. (Actually, this is always

the case, even without assuming /to be quasi-homogeneous.) Their images by

r can be expressed as r(ui)=Pi(s)f~m°fs with Pf-(j)eD[j] if m is a sufficiently

large integer. Then we can define a D[X ?]-module homomorphism r\* N*^»N

by ri(Ui)=Pi(s+m)f3. Since ri^O by (2.6.8), since eh(N*)=ch(N)=W by
(2.4.6) and (2.6.2), and since N does not have a holonomic submodule other

than 0 by [13; Theorem (2.12) and Corollary (5.12)], ker r\ and coker r\ are

both holonomic D[s, r]-modules by (2.2.6). Hence by [13; Prop. 5.11], tk ker

7*1 =0 and tk coker ri=0 for a sufficiently large integer /c. If tk u^ ker 7*1 H

fA 7V*9 then f* ri(«)=0. Since t: N-*N is injective, n(u)=0 and /* ̂ er* ker r\

=0. Hence ri: ^ N*->tk N is injective. Since tk Ndri(N*), we get injective

morphisms t2k N~>tk N*->tk N, from which we get

a 2k b

(s-a)t2k N* (s-a) t2k N (s-a) tk N* (s-a) tk N

Since
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t*N tkN = N(a+k)
(s-a)tkN tk(s-a-k)N

and cb can be identified with the natural morphism N(a+2k)-*N(a+k), cb is
an isomorphism if k is sufficiently large (cf. (2.3.9)). Hence b is injective.

t t
Since Q-*N->N->N/tN-*Q is exact, and N/tNis holonomic, Q-*N*->N*-*

(N/tN)*->0 is exact and, especially, N*-*N* is injective. Cf. (2.6.4, (2)).
(Note that (N/tN)*=Extn

D(N/tN, D).) In the same way, we get an exact sequence

0 _> N* ~-^> N* -> N(a)* -> 0. Hence

**N* N* „ _ TVY—a— fc)*
(s-d)t*N* (s-a-k)N*

and ba can be identified with the morphism N(~a—2k)*->N(—a—k)* induced
by N(—a—k)-+N(—a—2k). Hence ba is an isomorphism if k is sufficiently
large (cf. (2.3.9)), and b is surjective. Thus we get an isomorphism N(a+2k)
b

->TVr(—a— &)*, assuming k to be sufficiently large. Hence by (2.3.9), we get
the assertion for quasi-homogeneous/.

2.6.10. End of the proof. Let XQ be a new variable, DQ=D(C) and D1 =

D(C x F). Since A(/*o)* is naturally isomorphic to Df«®c DQ x%9

By (2.6.9) and (2.6.11), we get an isomorphism

if k is a sufficiently large integer. Since (XQ —a— k) Ti(u®x%+k)=Q for any
dx0

k, we can uniquely express ri(u®x%+k) as r(u)®x*+k with
(/)/—*)*. By this r, /)/-+*— (

Remark 2.6.12. As far as /"^O) =1=0, TV* is not isomorphic to TV as
modules. In fact, if N*~N, the following two exact sequences coincide;

0

0 _> TV "— TV -> 7V(-a) -> 0 .

By (2.5.12) and (2.3.9), N(Q)~N(k) for any positive integer k, and as their
dual, N(Q)~N(—k). Since ^(g)^ Z)(C) x° is not isomorphic to A0®A D(C) x~\
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N(0)^N(-1) implies /-1(0)=#.

2o7e Fourier transformation

Definition 2.7.1. Let Vy = {(y1, — ,}>„)} be the dual space of V=CH =
{(xl9 •••, xn)}. Define an algebra isomorphism 3: D(F)— >D(FV) by

and

For a Z)(F)-module M, define a D(Fv)-module 3(M) as follows. As an ad-
ditive group 3(M)=M. Denote an element u of M by 3(u) if u is considered
as an element of 3(M). The D(Fv)=module structure of 3(M) is defined
by 3(P) 3(u)=3(Pu) for PeD(F) and u^M. The D(Fv>module £F(M) is
called the Fourier transform of M. If M has a D(V) [/[-module structure or a
D(V) [s, ̂ -module structure, we define the actions of s and t on 3(M) by
s3(u)=3(su), t3(u)=3(tu). (See (2.3.5) for s and t.)

29702o ([12]). Let X=^n
i=1 xs d^D(V\ M be a D-module and u

an element of M such that Xu=cu with some c^C. Then ch 3(Du) = —\/ — 1

298ol0 For a smooth quasi-projective (algebraic) variety X of dimension r
over C,let 0—0^ be the sheaf of regular functions9 Q=QX the sheaf of regular
r-forms? S)^S)X the sheaf of algebraic differential operators, Oan=Ox the sheaf
of holomorphic functions, and for any 0-module JK, <5Han=Oan®o <^i- If X
is a Zariski open subset of Cn and M is an A(X)-modulQ9 we denote the 0iw-
module Oax®A(X)M by MCM. All the definitions and results concerning D-
modules given in (2.1)-(2.6) can be generalized to ^-modules.

2oOo As for the definition of the regularity of a holonomic ^-module, we
adopt the one given in [11; chap. 4]. (Because of the length, we do not repeat
it here.) Note that a ^-module M on an affine line C defined by a single
equation

(F)

is regular in our sense if and only if (F) does not have an irregular singularity at
any point of <CU {°°}? i.e., (F) is of Fuchsian type. In the case where X is an
affine open subset of C*9 we call a (left) D(X)-module M regular, if OX®A(X) M
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is regular.

2.8.3,, For a left .ST-module JM, let

Sol(c5H) = & Honuzr-GaK, Oan) , and

DR(c5K) - 0"®{fc« c5K[-n] = R

Here Horn denotes the sheaf of local homomorphisms, and, R and L means the
right and left derived functors. See [33] for the generalities concerning the
derived categories. For a left ^-module JH, we write Sol(c5}f) (resp. BR(c5ff))
for Sol(c5fO (resp. DR(JJT)). If X is a Zariski open subset of C\ and M is
a left D(A>module, then we write Sol(M) (resp. DR(M)) for Sol(M*B) (resp.

Lemma 2.8.4. (1) Let

0 ~> cjf ! -> JJ/ -* cj/s -* 0

Z?e aw exacr sequence ofholonomic ^-modules. Then Jtt^ and JM3 are regular if

and only if JM2 is regular.
(2) A holonomic S)-module is regular if and only if its composition factors

are regular. (As is shown by (2.2.6), a holonomic ID-module is of finite length.)

Lemma 2.8.5. Let 31 be a 3)[s, t]-module (cf. (2.3.5)) such that
(1) for any a^C, 32(a)=32/(s—a) Jl is holonomic,

(2) t: 32->3l is infective, and

(3) 32/t32 is holonomic.
Then the composition factors (up to permutation) of 31(0) depends only on a

mod Z.

Proof. With some homomorphism 9, the following diagram becomes
commutative;

o — »m -^» m — > m(a) — »o
\t ±t \<p

o — >m - > m — >m(a~i) — >o.
s— a+l

By the snake lemma [3; Chap. 1, §1, Prop. 2],

0 -> ker 9 -* 32/t3l -*yi\lJl-> coker 9-^0

is exact. By (3), the composition factors of ker 9 and coker <p coincide (up
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to permutation) with each other. Since

0 -> ker 9 -> 37 (a) -> 37(a—1) -> coker 9 -> 0

Is also exact, the composition factors of 37(a) and 32(a — 1) coincide with each
other.

Lemma 2o8o60 Let Jtt be a regular holonomic 3)-module on a variety X
and u^JA. Then 3)(f* u) is regular holonomic. Especially, S) f* is regular
holonomic, (See (2.3.1) for S)f« and (2.3.2) for 3)(f* «).)

Proof. By [14; Theorem 2.5], <£(f* u) Is holonomic. By [14; Theorem 2.7],
(2.3.7) holds with some P(s) and c(s). Consider A± of this polynomial c(s).
(See (2.3.6) for A±). Take an Integer k so that a+k^A^. By (2.8.4) and
(2.8.5), we may replace a with CK+/C. Thus we may assume a^A- from the
beginning. By (2.3.8), 3)(f* u) = 3)(f« u) [/-1]. We have ^-isomorphism

^(/*w)=^(/-ii)[/-1]->(^/lll®(5^K)[/-1] defined by Pf«u->P(f<«®u).
Since 3)fc&®o 3)u=A*(<Df*^<Du\ where J: X-*XxX is the diagonal embed-
ding, it is enough to prove the regularity of 2)f*. (Here we used [11; Chap. 4,
2.2.2] which asserts that the regularity is preserved by several functors.) Let X

be a smooth completion of X. It suffices to show that the 3)™'-module 3)™ f*
can be extended to a regular holonomic ^f-module. (By [11; Chap. 4, 1.1.3
and 2.2.2], we can show that a holonomic .Si-module <3tt Is regular if <3Vlan Is
regular.) By a proper modification of X, we may assume that the rational
morphism/: Z-^F1 is regular on the whole X [10]. Then ^j/°* is regular in
a neighbourhood of/'^O) by [16; Theorem 2.2]. It is also regular in a neigh-
bourhood of/'^oo), since ^J"/*=^J"(/-1)-* and/"1 is a regular function
there.

3oOo In this section, first we give a description of the Fourier transform
of the system of differential equations Df06 satisfied by the complex power /*
of a relative invariant/ of a prehomogeneous vector space, in (3.11). Next
we describe the sheaves of holomorphic solutions of Df* and its Fourier trans-
form, in (3.23). (See (2.3.1) for D/05.) In this section, we assume that a pre-
homogeneous vector space (G, p, F), its dual (Gv, pv, Fv), relative invariants
f^C[V] a n d / v ^ C [ V y ] are given. We use the notation given in the previous
two sections.
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Lemma 3.1. Let u=3(fa)^3(Df<&} and consider the D{s]-module

D[s](fVsu). (Cf. (23.2).) In this D[s]-module, we have

) = (-1)" b(a-s-l)f*

Here d=ff3.d=(dl9 — , On).

Proof. For any natural number /,

= b(a-l)-b(a-l).(f'fy(d)-b(a-l-l))f-' = 0 .

Hence

Since/ and /v are homogeneous polynomials of degree d9

(3.1.1) (/(9)/v_(_iyr 6(a_/_1))/v/ ff(/«} = 0 _

As differential operators in D[s], let

(fvY-'(fWr-(-iYK*-s-iy)fy' = 23 jyP/
J = 0

with some PyeD. By (3.1.1), P, ff(/*)=0, i.e.,

302e Ifa^A+(b), then S(Dfot)=S(Dfa) [/v-1].
(See (1.6) for 6, and (2.3.6) for ̂ +.)

Proof. First, let us show that, if u=Pf*<=Df* satisfies fv(d)u=Q, then
M=0. By the definition of D/*, there exists Q(,y)eD[j] such that /v(6>) P/s =
(s—a) Q(s)f. Let m be a sufficiently large integer. Then Q(s)fy(d)m =

/v(6>) jR(,s) with some R(s) e D[j]. Hence

d)mfs+™ = b(s) b(s+l)-b(s+m-l)r(d) Pf*

(3.2.1) = 6(J).-6(J+m-l) (s-a) Q(s)fs = (s-a) Q(s) f (d)m

Let N=D[s] fs. For x e ^, (^, grad log/(;c)) e FF-ch 7^ by (2.4. 1) and (2.4.6).
Hence the principal symbol of /v(d) does not vanish identically on the charac-
teristic variety of N. Thus, if /v(d) v=0 for v^N, then Dv is a holonomic
submodule of ^. Since N does not have a holonomic submodule other than
0 by [13; Theorem (2.12) and Corollary (5.12)]? v=0. Thus (3.2.1) implies
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Pfv(dTfs+m=(s-<*)R(s')fs+m and

(3.2.2J Pfv(d)mf^(S-a-m)N

Define a D-module endomorphism t' of N by

t\T(s)f
s) = T(s-r>r(d)f\= b(s-\} rc^-i)/-1) .

Then st'—t's=t', and s induces a £>-module endomorphism of N/t'N. Since

the minimal polynomial of s^End(N/t'N) is a divisor of b(s—l). Let us show
(3.2.2 J=i> (3.2.2^) for m>L By our assumption, b(a+m — 1)=|=0. Hence
s—a—m^End(N/t'N) is injective and

N = (s-a-m) t'N

= t'(s-a-m+l)N.

Since r'eEnd TV is injective, Pfv(d)m~lfs^(s—a—m+l) N. Thus inductively,
we get Pf'G(s-a) N, i.e., P/*=0.

As we have shown above, fv(d) is not a zero divisor of Df*, and hence /v

is not a zero divisor of 3(Df*). Since ae^+(Z?(^)) if and only if Oe
A-(b(a— s— 1)), we get the assertion from (3.1) and (2.3.11).

33, ch(/>/*) n (Fx ̂  v) -

Let (v, vv) be an element of (TO^. By (1.4, (2)), s~l vv e Oiv for
Since

(3.3.1)

we have v<=Ts-ivv (ft, i.e., (v, ̂ ~1 v v) e (TOi7) -1-. By (1.18), ^(v, .T1 vv)-v+
FV(J-X vv)-v+^Fv(vv) is an element of F'1^"1 vv), i.e., F(v+sFy(vy))=s'1 v\

Hence (s9 v+sFv(vv), vv)e W. By taking the limit j->0, we get (0, v, vv)e FF0,
and (v, vv)GE »F0=ch(D/fll) by (2.4.5) and (2.4.6, (2)). Hence ch(D/-)

Conversely, let (v, vv) be an element of ch(Df*) n (Fx Q v). By (2.4.5) and

(2.4.6, (2)), (0, v, vv)<E iro. By (2.4.2), there exists a sequence (sk, vk, sk F(vk))
in C7 x x^xF v which converges to (0, v, vv). For any ^eLie(G),
<v, | A-skF(vky>= -sk<Avk | F(vjk)>= -sk<f>(A)->Q by (1.9, (1)). On the other hand,
the first member converges to <V|^4°vv)>. Hence v is orthogonal to Lie((j)°vv.
Since skF(vk)=F(s^1 vk)^Oi by (1.18), vveO^. Since we are assuming vve

Hence Lie(G)°vv-Tyv O^ and ve(T,v O^. Thus we have
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proved that ch(D/«) n (VxSv)C(TOX)^-.

Lemma 3.4. ch(3(Df«)) n (Vx G v) =(TO^.

Proof, We have

£Xi--r = daf, and

*=i oyi

By (2.7.2) and (3.3), we have

Since it follows from (3.3.1) that s^O^^TO?)-^ for any s<=Cx, we get the
assertion.

3.5. .0-raodeles DU'* and
By (1.9.1), we have

for any ^eLie(G). (Here p(A)=(aij).) By the definition of/" (cf. (2.3.1)),
and by the definition of the Fourier transformation (cf. (2.7.1)), we get

( £ (-«/,•) -j- y,-«*(4} 3(n = 0 .
v,y=i ajz- /

Let 00(^)=Tr(p(^)) (=S7.i af-f-), and DM^ be the D(Fv)-module defined by

(3.5.1) (±(-a/i)y^-(a<t>+^(A))u^==0, for ^eLie(G).

Since £F(/*) solves this system of differential equations, we get a D-module
homomorphism <p: Dui~+D3(f*) such that <p(u£=3(f*'). Let / be the set of
aeC7[Fv] such that a=Q on OX, and Dw^ the D(Fv)-module defined by (3.5.1)

(with u# replaced by u^) and

(3.5.2) fli/i7=0, for

Let V • Du'a-^Du" be the natural morphism.

3A L^r /=annz,(a
r(/*)), J^ann^wi), and J be the ideal of C7[Fx Fv]

generated by
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(Here an% denotes the annlhilator.) Then /Cgr(/')Cgr(/). See (2.1.1) for
gr(— ). For an ideal a of C[Vx Fv]3 let F(a) denote the algebraic set defined
by a. Then by the proof of (2.2.5), V(&(J'))=ch(Du£) and F(gr(/))=

)). Hence, by (3.4),

i/ n F(/) ID u n ch(D<) D £/ n Ghcoax/*)) - 17 n (rciy-
for any open subset £7 of Fx^v. Let ^(STO} .̂ By (1.18), F(O0) Is an
open G-orbit In A. Let />=(v, vv) be a point In F(O0). Then

= dim (j°(v3 v
v) = dim F(00) - /i .

Since the differential at p=(v, vv) of the generators — (y\Ax)> of / are

-<Av\dy>+(Avv \dx\ since /Cgr(/)? and since F(gr(/))-ch(D£F(/a})) coin-
cides with ^( In a neighbourhood of ^ by (3.4), gr(/) and gr(J') are also the
defining ideals of A in a neighbourhood of p.

Lemma 3070 (1) With the notation as in (3=5) and (3.6), Ep u^ is a simple
Ep-moduleforp^W(O^), i.e., it has no proper submodules.

(2) m(A3Du£ = L

(Here and belows we write Ep u# etca for EP®D Du# etc.)

Proof. Assume first that dim O^ =7i(=dim Fv). Then A C {0} x FV
3 and

/?-(03v
v)eF(O0)-O^. Let Aw^LiQ(G) (l<k<n) be elements such that

{A(1) vv, °°°,AM vy} are linearly Independent, p(^c*))=(flJ5)) and cik(y) =

-Sy-ifl^^. Then

dyi

and (c^X^i^^j, Is invertlble In Mn(A0v), where Av* is the localization of A=C[Vy]

at vv. Assume that 2I-i crt c^=^y and let SLi %(j) («0+00) (^
c*})=^).

Then (0,-c,00) «i=0 (1 <z <«)• For any i and 7, 9, 9y «i=0|.(^ ifi)=9I-(cy) ifi
+cy(^Ki)=^(cy)i^+c |.Cytti. Hence (6>,(c,.)-^-(c,))^-0. Since ch(D^)=)
ch(D3!(f(*))lDAiDOy,di(cj)=dj(ci). Hence we can find ce^v such that

Ci=df(c). (See (2.1.3) for ^4pv). Then d^e'0 u£=Q (l<i<ri). Hence Ep < is
Isomorphic to a quotient of the ^-module defined by d1 u=°°°=dn u=0. (In
the present case, EP=DV^}, Since the latter Is a simple E^-module and
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W0), Ep u'a is non-zero and is a simple ^-module.
Let us consider the case where dim O^<n. Then p<£ {0} X Fv. (In fact,

if p<= {0} x Vy, W(O0) should be contained in A n ({0} X Vv) = {0} x Oft- By
(3.6), jE^W0 is generated by a non-degenerate element i/£ [26; Chap. II, Def.
4.1.1]. Let p'=(xl9 -, *„; J1? -, ^)=(0, -, 0; 1, 0, -, 0) and, for £e=C,
M(P)=EP'U\)Q the ^/-module defined by (^ dl— ft) u= d2u= — =8n u=0.
Then by a suitable quantized contact transformation, Ep uf

a can be transformed
into M(p) for some p [25; Theorem 8.2, (2)]. Since M(/0) is a simple £/-
module, Ep u# is also a simple E^-module.

The second assertion is proved in the same way. (In fact, (1) follows
from (2). In order to see the invar iance of the multiplicity with respect to
quantized contact transformations, it is enough to note that our definition is
equivalent to [15; 2.6.1].)

Remark 3.7.1. The above lemma holds for any good Lagrangian variety
A and its generic point p. Cf. [25].

Remark 3.8. By using the notation of [25; §8] and [26; Chap. II, §4.2],
the second assertion of [25; Theorem 8.2] is deduced from [26; Chap. II, Theorem
4.2.5] as follows. Let p be a point which does not belong to the zero section
of r*Z, and M a holonomic system generated by a non-degenerate section u in
a neighbourhood of p. Since every canonical transformation can be 'quantized'
locally [15; 2.4.16], we can 'quantize' Theorem 8.1 of [25]. Hence we may
assume from the beginning that M is supported by {(z; S)^T^X\z1=S2=S3=
• *«=£n=Q}y and /?=(z;f) with ^4=0. Let a=— ord(w)— i, and M1 be the
system (z1Dl—a)v=D2v=-~=Dnv=Q. Then ord(v)=— a— |=ord(w). Hence
M is isomorphic to M' in a neighbourhood of/? by [26; Chap. II, Theorem
4.2.5].

Lemma 3090 Let p be an element of ^(O0). The morphisms (p and

in (3.5) induce isomorphisms <p: Epu
f
a-^Ep3(flA) and^r: Epu'a-+Epu

fa '.

Proof. Since Epu'a is a simple jE^-module by (3.7), and since <p and
are surjective homomorphisms, it is enough to prove that

(3.9.1) EpuX*® and

(3.9.2)

(3.9.2) is already proved in (3.4). Cf. (2.2.5). Hence it is enough to prove
that
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(3.9.3) ch(D(£

Since the algebraic subset of Fx$v defined by the principal symbols of the
equations (3.5.1) and (3.5.2) is

What is necessary for our purpose is the inverse inclusion, which will be proved
in the course of a detailed study of Du'a

f . A proof of (3.9.3) will be given in
(3.18). By (3.7, (2)), m((TOXY~9 Du'*) = l. Hence it follows from (3.9.3) that

(3.9.4)

Together with (2.2.6), (3.9.4) implies that D(J3VX/ is a simple D(J2v)-niodule.
Before proving (3.9.3), let us prove our first main result of this section

assuming (3.9).

Lemma 30100 Let I be as in (3.5). Then aE£(f*)=Q for any 0e/.

Proof. For any a e/, au/
0&

/=0. By (3.9), aEF(fa&)=0 as an element of
Ep3(f«) for any p e V (O0). By (2.2.5),

By (3.4),

n (Kx ̂  v) = ch(DaEF(f«)) H ch^ffC/"-)) n (Kx ^v

- ch(z)flff(/-)) n A c ̂  -
Hence for any irreducible component A' of ch(Z>o9r(/£*)) such that yi'
^V)4i05 J'n(Fx^v)Cyl-F(O0). Hence dim ̂ '<dimJ=72. Since a charac-
teristic variety is known to be involutive [26; Chap. II, Theorem 5.3.2], dim A' is
at least n. Hence such an irreducible component does not exist, i.e.,

(3.10.1) ch(Da2r(/QJ))n(Fx^v) = 0 .

By (2.2.7), supp(a£F(/a5))n^v-05 and o3r(/<*)=0 as an element of
3r(^/*)[/v"1]. % (3.2), if a^A+(b\ aEF(f«)=0 as an element of 3(Df<&).
Hence, for a<=A+(b)5 a(d)fs<=(s—a)D[s]fs. Recall that f(x)s is a holomorphic
function of (s, x)^CxB (cf. (2.3.1)). We can consider its restriction to {a} x
B, and a(d)fs | U} XB = 0 for a e ^4+(6). Hence

(3.10.2) a(6>)/s-0 for

By the definition of/* and 3, we get the assertion.



THEORY OF PREHOMOGENEOUS VECTOR SPACES 901

Theorem 3.11. Let

A+ = {a&C\b(a+j)±0 for j=Q, 1,2, —} and

^. = {aeC|ft(a-7)4=0 /or 7=1, 2, •••}.

(1) Df*=(Df*){f-l]9ifa^A-.
(2) D^^Df'^lf-1])*, if aSEA+.
(3) 3(Df*)=3(Df*)\fv-1], ifa^A+.

(5) Le? Dw^ Z?^ rte D-module defined by

(^(-arfyrj-—(«0+00)(^)) <7 - 0 /o

awe/

fl"i7 = 0 /or

(£fere p(y4)=(%), (f>0=Ti(p(AJ) and I is the defining ideal ofOi.) Then for any
' and for any integer k,

or

(See (1.6) for b(s)9 (2.3.1) for D/*5 (2.6.3) for *, and (2.7.1) for 3.)

Proof. (1) follows from (2.3.8). (Cf. the remark at the end of (2.3.2).)
If a<=A+, Df«+k=Df" for any non-negative integer k by (2.3.9). If k is suf-
ficiently large, -a-k^A, and £>/* =Df*+k =(£/-*-*)* =((/)/"*) [/-1])* by
(2.6.4, (3)). Cf. (2.5.10). (3) is already proved in (3.2). Let us prove (5).
By (3.10), <p:Du!t-*D3(f*) induces a surjective morphism *p:Du!S-+D3(f")
such that (?(u'a')=$(f"). By (3.5.1) and (3.5.2), the characteristic variety of
Du* is contained in the variety defined by ^y\A\x)>=Q (A e Lie(G)), and a(.y)
-0 (ae/). Hence

On the other hand ch(Dff(/*))n(Fx£v)=^ by (3.4), and $ induces an iso-
morphism EpuV-*E£E(f*\ (p e y(O0)) by (3.9). Hence ch(ker 9) n (Fx ^ v) is
contained in yl— F(O0). Since a characteristic variety is involutive, ch(ker 9) fl
(Fx^v)=0. By (2.2.7), supp(ker ̂ )C Kv-i0v=/v-1(0). Hence (ker ^[f'1}

-0 and (i>wi/)[/v"1]— 3rW)[/v"1]- since the morphism Du^-^Du'*' defined
by wi'-i->/X' induces an isomorphism (D^/_1)[/

v-1]— (D«i/)[/v"1]> we get
the assertion. Let us prove (4). Assume that a^A-. For a sufficiently large
integer fc, — a+k&A+. Hence
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(9(Df-*)lfy-lJ>* = (3W-«+k)ir-l]r, by (5),
, by (3),

)

-1]), by the dual of (2),

= 3(Df«).

Thus we get (4).

3.12. Let j: ®-*V, f: £V-^FV
9 i: Ol-^Q and iv: 0iv-^v be the inclu-

sion mappings. Let dim O\=m, vveO^5 {j(9 •••, j£J be a local coordinate
system of O\ at vv

9 and

(3.12.1) x'k=F*y'k.

Then {x{, — , %^} gives a local coordinate system of Ol at v=Fv(vv). Let — -

and - be the tangent vector field determined by these coordinate functions.
Qy'k

We sometimes write df
k for - or - if there is no fear of confusion. We

8x'k d/k

denote by d'ktP the Value' of Q'k at a point p.
Denote by F*tV v the linear mapping T^Oi-^T^ induced by FV

0 Define
a bilinear form Bv* on Ty«Oi by

(3.12.2) Bv,(p,q}=<Fl,

for p, q^TvvOi. Here we regard r.Oj and T^O^ as subspaces of F and Fv.
Since this bilinear form is nothing but the one defined in (1.16), Bv* is Gv*-
invariant, non-degenerate and symmetric. Let

o>V2(vv) =

and o>V2 be the section of (^Ol
v)®2 defined by vv-^o>V2(vv). (See (2.8.1) for Qx.)

Note that a>V2 does not vanish at any point of Oi.

Lemma 39130 o>V2 is G-invariant and does not depend on the choice of a
local coordinate system {y{, ••-, y'm}.

Proof. ForgeG3let

Then (g~l)*dy'i=^ c^dyj, and, hence9
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(3.13.1) g*(dy{ A- A«W)* = detfa,)-2(rfrt A

Since

*~i Is1Ts,0,
_i I

g*

r.vO?

is commutative, we have

= S ^(V>y/y(vv)</'j;.fv(0j/ifv)|8}/if.>
i',/=l

^S^^V^y/Xv^vW'..'^}'..*)

and, hence,

(3.13.2) detC^X6!^, 0}.,,v)) = det(clV)2 det(5t,v(6>/
>1,v, 0J i l F v)) .

By (3.13.1) and (3.13.2), we get the G-invariance. The independence of the
choice of a local coordinate system is obvious.

3.14. Let cyv be a local single-valued m-form on Oi such that cyv®o>v =
tyvz. Although &>v is not necessarily single-valued on the whole of O^, but

there is a canonical two-fold covering ?rv: Oi-^Oi such that SV:=TT*Q)V be-
comes globally single- valued. This two-fold covering is constructed as follows :
Let (£/(v); zp°, ••- , z£°) be the local coordinate systems of Oi. If cyv2 is given by

we can define a two-fold (unramified) covering C/(v) of C/(v) by

Identify (zi«, -, zff})e C/w with (z^v), -, zLv))e U™ if (z^, -, z^)e U™ and
(ziv), •••, z^)e C/(v) correspond to the same point of Ol and

- 1 .
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Patching together £/(v)'s in this way, we get a two-fold (unramified) covering

or of or.
Define a two-fold covering x: &-*Q as a pull-back of rcv: O¥-*O¥ by

F: £-»Oiv, i.e., ®=O\ X0^. We define B9, a, 3, TT: Ol-^Ol and ;rv: £v->£v

in the same way as above.

Lemma 36159 The isomorphism F: O^Oi can be lifted to an isomorphism

F: Oi->Oi, i.e., there is a commutative diagram

~ F _
O, - »0

•i •
Proof. It is enough to prove that

(3.15.1) F*a)"2

By (3.12.1),

(3.15.2) F*dy'k=dx'k and

Hence for v^Ol and F(v)=vveOiv,

(Recall that F* v corresponds to the symmetric matrix ( — ^Hv)).) Since
V dxflXj /

F^v °FV is the identity mapping,

By this equality, together with (3.15.2), we get the assertion.

3016e By (3.15), we may regard Ol=d]!x0- Ov Let 7: O1-»^(=Oiv X0v£)

be the injection induced by z: O^-*®. Define jv: Oj/->^v in the same way.

Let c5c0£V be the defining ideal of Oiv. Recall that <Dd*+Q* =Od? ®1V~1S)^

=(3)Q^lc3^)Q^)\o^ where, in the second member, the tensor product is taken

over7v-1(?5v (cf. (2.1.4)).

3ol?8 Define a section / v -°7i of
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(3.17.1)

by

(3.17.2)
^ } A

(See (2.8.1) for @x.) Here/v=rcv*/v. Let us show that there exists a non-

zero homomorphism

(3.17.3) *v-i^fl-i<:-
such that w«i->/v~*/z. Since /v-*/z4=0 by (2.1.5), it is enough to prove that
/v-*/i solves (3.5.1) locally, i.e.,

(3.17.4) (T-®v® I0>flv) . S ^ / y - ^ 0 + 00)^) ^ 0 .

Since <5iv is locally isomorphic to Oi, we may identify fy~"h with the local sec-

tion/v—A of Jr5%"v/v— defined by

Let {zl5 • • - , ZM} be a local coordinate system of «0V such that {zw+1 = ---=zM=0}

=OT? and z'i=Zi\0v (l<i<m). Then {z{, ••-, z«} gives a local coordinate sys-

tem of OX. Let

and ^(r)=exp(M) (t^C, ^4eLie(G)) be a one-parameter subgroup of G. If

| r | is sufficiently small,

(3.17.5)

by (3.13). Let g(t)*dzt = 2 ciy <fey (!</<«), where cw=c,X/;z). Then

(3.17.5) can be written by using the local coordinate as

(3.17.6) g(OMz')-det(c,.X*; z,', -, zi, 0, -, O)) ,̂.̂ . = 0"(g(0)«(«') •

Let cw=cw(z)=-^tf. (0; z) and 4- fe(0*z,) I ,-o=^z{. Then by differentiating
9; OT

(3.17.6), we get
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(3.17.7) 2] (Az,)

(/V-^V) (-2 /-Wz,)+2 *«-(«*)(>*)) = 0 , and
\ ''"I 0Z,- •• = ! /

(3.17.8) (/v--o>v®l0 lv^v)-2.(^z l)+2cw-(a0)(^) =0.
'

Let us show that (3.17.8) is nothing but (3.17.4). Let g(t)*zi=yi(t; zl9 — , z,).

Then c< , =^L and ^zf- =-^- (0 ; z). Hence
dz dt

For i>m, z,- = 0 on Oiv. Since Oi is G-stable, g(0% = 0 and ̂ ^ (0; z) = 0 on

Oi, Since I0j^flv is annihilated by the defining ideal of Oi, (3.17.8) can be

written as

(3.17.9) (/v-*o>v® I0v^v) -13 (0; Z) -- («0)(^) = 0 .
8=1 at ozi

Let j,- =^(z1; • • • , z,). Then g(r)*^ =^(g(0% - , «(0**.). and

-SW,=|feW^)l,.. = ±*(o:Z)A.

Hence

m \ d ^i d9 m(0;z) - = — >] — — (0:J 8Zi 1^1 v

= 2 %-

dt

Hence (3.17.9) is nothing but (3.17.4).

Since I0l
v^^v is annihilated by zm+1, • • • 9 z n 9 it would be more impressive

to write
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3.18. Proof of (3.9.3). Since IO^Q- is annihilated by the defining ideal

S of Oi, <3(fy~*h)=Q. Hence (3.17.3) induces a non-zero homomorphism

(3.18.1) ^-^

such that u'*'-*fy-*h. Since £)olfv~* is a simple ^-module, !i^d^fv~a is
also simple by [1 1 ; Chap.l, Theorem 5.1]. Hence (3.18.1) is a surjection. Since
.2)flW®(3.18.1) can be locally identified with a surjective, locally defined homo-
morphism

(3.18.2) g?vKi'

we get the desired inclusion

(Note that J,-v g^f-" is locally isomorphic to ̂ raa(zM+1, -, z)l)=
o

_g)CM - +2ft-w+i -2)°%) in terms of a local coordinate system {zl5 • •- , zn} such

3.19. Regularity

As is noted in (3.9), (3.9.3) implies the simplicity of D(£v)u#'. Hence
(3.18.2) is a (locally defined) isomorphism. Hence (3.18.1) is an isomorphism.

Since ̂ diT'06 is regular holonomic (cf. (2.8.6)), /TV^ f'-*=ny-l£)a*uL' is
also regular holonomic by [11; Chap. 4, Theorem 2.2.1]. Hence D(£y)u'a' =

(JD(Fv)w^/)[/v"1]=^(^v)2'(/05) is a regular holonomic D(£v)-module. By
(3.11, (3)), 3(Df*) is a regular holonomic D(Fv)-module, if a<=A+. By (2.8.5),
the composition factors of 3(Df*) and 3(Df*+k) are the same for any k^Z.
Hence <3!(Df*) is a regular holonomic D(Fv)-module for any a.

3.20. From the isomorphism (3.18.1), we get an injective homomorphism

(3.20.1)

where

(3.20.2)
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Since r=Gal(div/00 is a cyclic group of order two, wJ^v"1
t3K(a) decomposes

into a direct sum of F-isotypic parts. Let JMQ(®) (resp. JM^aJ) be the part cor-
responding to the trivial (resp. non-trivial) character of F. Note that JM0(&) is
the image of the canonical injection JH(a)-^7u^7uy~1^/S{(a)5 and simple. Since

3Hi(aT is locally isomorphic to JU(a)M, dh(c^1(a))=(roO"1" and -%(a) is

simple. Since S^Q-U'^ is a simple submodule of n*nv~1JM(a)=<3M0(®)(& <3tti(a),
and since <3U0(a) and 3Hi(a) are simple,

(3.20.3) 4W— *%(«) or <%(<*) .

Lemma 3.21. &D*®D3(Df*)^D*tf^^i(*)—^

Proof, The first isomorphism follows from (3.11, (5)).

If o>v is single-valued on the whole Oi9 then 0^ is a disjonit union of
two copies of Oi. Then the assertion is obvious.

Assume that -2)^*4'— ̂ oO*)- Since ^0(aO— <-5ff(o05 we can find a global
holomorphic ra-form cof on Oi such that t^7 corresponds to

by the above isomorphism. (Cf. (2.1.5) and (3.17.1).) Let {zl3 • • - , zn} be a local
coordinate system of ^v such that Oi={zm+1 = "">=zn=0}, z'— z f-|0j (!</<

m), and/v— ffl'=g(z')&{ A - A&t. Since v., solves (3.5.1), ^') solves (3.17.7).
(Read (3.17) backward and apply (2.1.5).) Hence /^"o/ is (locally defined)
relatively invariant holomorphic m-form of character 0* with respect to G.
Since Oi is a single (/-orbit, such an m-form is unique up to non-zero scalar
multiple. Hence we may assume from the beginning that &>V2=cy'(g)a>'. Hence
o>v is single- valued. Hence if o>v is not single-valued, QQVU* is not isomorphic
to JH0(a). Thus the assertion follows from (3.20.3).

3,22. Let L(d)=Cf& and Ly(d)=C(fv)« be the locally constant sheaves
of rank 1 on @ and <0V generated by (local) single-valued branches of/* and
(/v)flj. Decompose the locally constant sheaf n*Co* into T-isotypic parts €0^
and Hv, where C0^ (resp. J^v) corresponds to the trivial (resp. non-trivial)

character of r. (Recall that r=Gal(Or/0D.) Then Homc(H
y, C)=HV. By

(3.20.2),
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Here we have written Lv(— a) for Lv(— a) | 0*. Hence

Sol(«5Ki(a)) = il(L?(-a)®Hv)[m-n\, and

Theorem 3.23. Let j: Q-*V,f\ £V->VV, i: O^Q and iv : Oi-*Q" be
the inclusion mappings, «=dim F=dim Vv and m=dim O1=dim OX.

(1) So\(Df«)=RUL(a), if
(2) Sol(X>/")=7,L(a), z/
(3)
(4) Sol(S:(JD/'«))=JR/^^(Lv(-a)®^v) [m-»], i/o e J_.
(5)
(6)
(7) DR

(8) DR(ff(D/-))=/7ij:(I,v(a)®ffv) [«-«], i/

Proo/. By (2.8.6) and (3.19), £>/* and 3(Df") are regular holonomic.
Hence we can use the commutativity of DR with other functors (cf. [1 1 ; Chap. 5]).

DR(Z>/«) = DR^t/-1]) , by (3.11, (1))

DR(D/«) = DRaDy-Ot/-1]*) , by (3.11, (2))

If

DR(3-(D/")) = DR(3-(D/«)[/v-1]) , by (3.11, (3))

LT-1]) , by (3.11, (5))

by (3.21)

) [«-«] , by (3.22).

DR(2W»)) = DR(2^(D/-«)[/v-1]*) , by (3.11, (4))

LT-1]*) , by (3.11, (5))

= J?i*(Lv(a)®Hv) [m-n] , by (3.21) and (3.22).
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Thus we get (5)-(8). The assertions (l)-(4) can be obtained from (5)-(8) by
the duality of DR and Sol Cf. [11; Chap.5, 2.1. (ii) and 3.3.(i)].

Example 38240 Let (G, p, V) be the prehomogeneous vector space consid-
ered in (1.20). Then V has ten G-orbits:

(I) (II) (III) (IV) (V)
(0) Elfl+E2i2+Em+1>3 3 (C^T,) U2m.3 6m

(1) Ei,i+Em+1>3 2 (Cu-yTd 4m+2
(2) ^4+^1,3+^+1,2+^+2,3 3 (C^TJ U2m.2 6m~l
(3) Eltl+iElf3+Em+1>2 2 (C.-iTDOi 4m+l

(4) ^4+^,2+^3,3 3 (C^Ii) J/e..,, 6m~3
(5) ^4+^,2 2 (C,_2r2) Z74._5 4m+l
(6) E^+iEu 1 (C^r^C/^ 2m+l

(7) ^4+^1,2+^2,3 2 (C.-tTjU^-t 4m
(8) ^4 1 (C^r2) C/,̂  2m+2

(9) 0 0 (C^r,) 0

Here the second column contains a representative element Xj of each orbit

Oj (0<j<9)5 where Ejk denotes the matrix unit and i=\/ — I. The third
column contains the rank ofXj. The fourth column contains the local structure
of the isotropy subgroup at X{, where Ak (resp. Q) denotes the simple Lie
group of type Ak (resp. Q), Tk denotes the torus of k dimension9 and Uk de-
notes a ^-dimensional unipotent group. The last column contains the dimen-
sion of the orbit.

Let Ai be the Zariski closure in F"x Vy of the conormal bundle of Oj. To
each Aj associate a vertex j. Connect two vertexes j and k by a solid line if
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k contains a (/-orbit whose dimension is dimF— 1. Connect them by a
broken line if dim Aj fl ̂ =dim V—\ and Aj f| Ak does not contain a G-orbit
whose dimension is dim V—l. Thus we obtain the following diagram, which
is called the holonomy diagram of (G, p, F). (See [25] for holonomy diagrams,
etc.)

Let (G, p, V) be a general prehomogeneous vector space, n=dim V,
{vi, *", vn} a basis of V and {viv, • • - , v^} its dual basis. For ./4eLie((j), let
p(A) Vj-=27-i vf- a,-y and N'(a)=Duf

(6 the D-module defined by

(3.24.1) ( 2 a,, x, ̂ L-a#(A)\ vj = 0 .
v.j=i 0jt| /

Now let us return to the above example. Then ch(N'(aJ)c: U?.o 4- (cf. [15;
5. 1 .12]). Since O0 is the open G-oibit in V, A0 c ch(D/*). (See (2.3. 1) for £/*.)
By [25; 6.6] and by the above holonomy diagram, we can show that Afc:ch(N)
for even i. (See (2.3.1) for N=D[s]fs.) Since scalar multiplications are con-
tained in p(G), we can find an element A1^LiQ(G) such that p(Al) is the identi-
ty. Then by (1.9, (1)),

(S) sd = <x| j-grad log/(x)> - <P(^) x| j-grad

Here rf=deg/=4. In the notation of [25; 4.2], (S) equals a(x, s
Hence the pull-back of a to W is equal to S'd. Hence

ch(D/-) = p(WQ) , by (2.4.5) and (2.4.6) ,

= {(x, y)^W\ o(X} y) = ®}, by (2.4.4) .

Since a = 0 on any Ai (cf. [25; 4.4]), ^Cch(N) (=W)<^Aidch(Dfa). Hence
AiC.ch(Df*) for even /. The Fourier transform of N'(a) is the D-module de-
fined by

(A)) U^=Q.

If A^A'tA'^U^xSptoXSOJ, then <f>(A)=4t and <f>Q(A)=6mt=
(6m/4)<f>(A). Hence Df*'*-**1* is a quotient of 3(N'(a)) and £F(D/v-*-6^4) is

a quotient of N'(a). Since yi9 is the conormal bundle of the open orbit OQ of
Fv, we can show that yi,-Cch(D/v"a!~6lM/4) for odd / by the same argument as
above. By (2.7.2), ^8-Cch(£F(D/v-Q5-6wz/4)) for odd L Since D/«* and
£F(D/v~0>~6w/4) are both quotients of JV'^), we have the natural morphism
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N'(a) -* Df*

By a direct calculation (cf. [25; 4.4]), we can show that every Ai is G-preho-
mogeneous. Hence, as in [25; 4.8], we can show that

m(Ai9 N'(a)} = m(Ah D/05) == 1 for even i, and
*-W4) = i for odd t a

By considering the support, we can show that ch Df*=ch 3*(Df*)3>Ag (resp.

ch£F(D/v~aJ~6m/4)J)^o)s which implies that Ai for odd /(resp. even /) is not
contained in this characteristic variety. Hence

(3.24.2) N'(d) = Df«

By (1.6) and (3.1),

(3.24.3) f\9)f-f=b(a)r9 and

(3.24.4) /v(9)/-ar(/v-—6«/4) = (~1)4 b(~a~6m/4~l

The 6-function appeared in (3.24.3) can be calculated using the right half of the
holonomy diagram (cf . [25 ; §7]) :

b(s) = 2\

(See [30; Prop.2.7] for the way of calculation of the leading coefficient of b(s).)

The other fiZ?-function' appeared in (3.24.4) can be calculated using the left half
of the holonomy diagram:

The inclusion relations between closures of orbits Oj (O^j^O) are given
by the following diagram:
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Here the vertex j lies under k if and only if Oj is contained in the closure of Ok.

For example

Ql = U Oj = {X €= V = M2m 3(C) | rank(JT)<2} .

§4. Relatively Invariant Hyperfunctions

4.0. The purpose of this section is to prove (4.19), which describes the
hyperfunction solutions of Df* and their Fourier transforms. (See (2.1.6) for
'solution'.)

4.1. Hyperfunctions

Let X be an ^-dimensional smooth algebraic variety defined over R. By
the implicit function theorem, X(R) is an 71-dimensional real analytic submani-
fold of the complex manifold X(C). (Here and below, X(K) denotes the set of
J£-rational points.) Let Oan=Of be the sheaf of holomorphic functions on

X(C), C=CX the constant sheaf, JL=JLx=Oax\X(R^ and

Then 3$ is locally isomorphic to Rrx(R^(Oa/) [n]\xM. It is known (cf. [17;
Chap.2, §2]) that H*(&)=Q (i4=0). Hence we can identify <B with the sheaf

A local section of *B is called a hyperfunction. Since

we have a natural homomorphism o?->.3, which is known to be injective (cf.
[17; Chap.2, §3]). By this injection, we regard a real analytic function as a
hyperfunction. It is also known that any distribution can be regarded as a
hyperfunction.

4.2. Real form

Let K be a real number field R or the complex number field C, GK a re-
ductive group scheme over spec(iT), F^=spec K[xl9 • • • , xn], and PK\ GK-^GLn>K

=spec(^[^-(l<f, /', <«), det^-y)"1]) a homomorphism of group schemes. We
denote the set of rational points of VK etc. by VK(K) or V(K) etc. If K is an
algebraically closed field, we sometimes identify VK etc. with V(K) etc., but oth-
erwise, we do not do such an identification. If (GR, PR, VR)®C is isomorphic
to (Gc, pc, Vc\ we call (GR, pR, VR] a real form of (Gc, pc, Vc). (Here GR®C
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Let (f>c be a character of Gc. Then there exists a real form (GM, PB) VM)

and a character <t>Ri GR-^GLliR=spQc(E[t, r1]) such that <I>R®C=<I>€. For
example take any split jR-form of ((?c, pC9 Vc) [5].

4o30 Prefaomogeneoiis vector over .R

Let (Gc, p€, V€) be a prehomogeneous vector space? / a relative invariant
of character $c, and take a real form (Gjg, pM9 VR) such that Gjg has a character
0jg such that $R®C=<l>c. Henceforth, we omit the suffixes R and C if there
is no fear of confusion. Take vector basis {viv, • •« , VM

V} of FrV(.S)= Let xt=v?9

and

/(*) - 2] fl^.-..,. xii-xi- (^.....LeC) .

Define its complex conjugate by

where c denotes the complex conjugation. Then f is also a relative invariant
of character 0. Hence if one of its coefficients is real, then f(x)=fc(x)^

-R|X •••,#„]. Hence by multiplying a suitable scalar, we may assume from the
beginning that f(x)^R[xl9 '"9xn]. Let {ji9

o o e
9 jK} be the dual coordinate

system of {xl9
 B ° ° , xn} and/v a relative invariant on the dual prehomogeneous

vector space (G, pv, Fv) of character 0""1. By the same reason as above, we
assume tha,tfy(y)^R[yl9 °°a

9yn] without loss of generality.

4.4. Let us consider Q(R\ @V(R), O^R) and Oi(M). (Recall that Q =
f~l(CK) and 0v=/v-1(Cfx), and see (1.4) for O^ and Ojv.) Let F-grad log/
and Fv =grad log/ v as before. By (1.8),

Hence

(4.4.1)

Since J3(/8)=t=0, Oft/8) =1=0. Hence Oft/Z) is a real analytic manifold of di-
mension m(=dim Oi). Similarly, O^R) is also a real analytic manifold of di-
mension m. Let

Q(R) = U Q* and ^(R) = U ̂ Y
/=i y=i

be the decomposition into connected components0

4.5. ^y n Ol =
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Proof. Let vetf,.. By (1.18), F~\F(vJ) is an affine subspace of V con-
taining v. Hence F-\F(v))^\V(R)c:Qj. By (1.18), FFvF(v)=F(v\ i.e.,
F*F(v)t=F-\F(v)). Since f^FOOeO^JZ) by (1.18), FvF(v)eF-1(F(v))n

j n 0i- On the other hand, since FVF is the identity on Ol by (1.18),

Lemma 4.6. The decomposition of Oi(R) and Oi(R) into connected com-

ponents are given by 0^) = U (Q, PI 00, 0«rf O"((R)= U (£/ n 0iv).
/=i y=i

Proo/. By (4.5), fiy n Ol (l< j </') are connected and non-empty. Since
0y are open subsets of 0(/2),0,-n0i are open subsets of ^(R)^\Ol=Ol(R).
Since the above union is disjoint, we get the assertion.

4.7. Since O^R) is a homeomorphic to 0 (̂12) by F, their connected
components are in natural one-to-one correspondence, i.e., //=///. Let /=/' =
//x and assume that

(4.7.1)
Since F(£y) is connected subset of OX(K) and contains «0y n O^ by (4.7.1), we
have

(4.7.2) F(0,) = 0yno)' .
Lemma 4.8. Ler G(l^)+ fee rte identity component of G(R). Then Qj (1 01

and QY n 0^ are G(R)+-orbits.

Proof. For any veO-^JR), g->gv defines a submersion
Hence G(jR)+ v are connected open subsets of 0iOR), and O^R) is their disjoint
union. Hence each connected component Q^ n Ol of 0x(li) is a (r(l£)+-orbit.

Lemma 409. (1) |/v(j)|°5 M a re^r/ analytic function on each £/.
(2) F0rgeG(«)+^vve^., |/v(gvv)|-=#(gr-|/v(vv)|-.

By (1.8), bQfv(y)~1=f(Fv(y)) on ^2^. Since the signature of /is
constant on Fv(^/)=^ n 0X (cf. (4.7.2)), the signature of/v(j) on ^y is also
constant. (Note that Z>0^0 by (1.7).) Hence we get (1). The second asser-
tion is obvious.

4.10. Let Q) be the holomorphic m-form defined locally on Ol given in
(3.14). Since CO®CD is globally single-valued and does not vanish at any point
of 0l5 | Q) | gives a real analytic m-form on O^R). Hence | Fv*o> | gives a real
analytic m-form on @V(R). (Here our use of the term 'm-form' is slightly abu-
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sive. The author hopes that it does not cause any confusion.)

Let {zl9
 B B %Z B } be a local coordinate system of VV(R) such that {zm+1=

... =Zn =Q} = OV!(R). Then the (n-m)-form

\d(zm+1) —9zn)dzm+1A — /\dzu\ : = d(zm+l9 '-,zn)\dzm^.l/\"-Adzn\

determined by the delta function of Dirac does not depend on the choice of
a local coordinate system. See [17; Prop. 2.4.1] and the remark following it.

Define a hyperfunction Av on QV(R) by

(4.10.1) hv = | —

Define a hyperfunction |/v Ij*'^ on

/v | "°5eAv , on

9 on

By (4.9, (1)), the product | /v | "* Av has a meaning on

Lemma 4.11. 17ze hyper/unctions | /V |J --AV (1<7^/) o/i
lutionsof (3.5.1) anrf (3.5.2).

Proof. The numerator of Av is absolutely invariant with respect to
(j(J?)+. The denominator I^A •"• A^Vnl is relatively invariant, and the cor-
responding character is det Pv(g)=00(g)"1. Since |/v |~* corresponds to the
character «0? i /v l7 a j°/zv corresponds to «0+005 and hence solves (3.5.1).
Since hv has the delta function as a factor, | /v | J«»hy solves (3.5.2).

Lemma 4e12e Ifa^A^=A-(b)s then

r/ze/r dimension is equal to L

(See (1.6) for b=b(s\ (2.3.6) for ^±=^[±(Z>)5 and / for (4.7).)

Proof. We have

K: = R HomD($(Df«), j2)

( 4 1 2 1 } D 9 RFy,w 0an) [ n ]

[m] , by (3.23, (4)).

Since /V-sv)(jg)e^v(jg)0J*=0> Hr(7v_flv)(Jl)A'=0. Hence K=Rr
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(4. 12.2) Rr(Vv(R), R HomD(3(Df«),

= Rr(Q\R), R HomD(3(Df«), SS)) .

By comparing the spectral sequences determined by the both sides of (4.12.2),
we get the first assertion. By (4.12.1),

), RHomD(3(Df«),

(4.12.3) ^. RT(Q\K), ST0*M il(L\-a) ® ff v)) [m]

= © STffl, %. Rr0;(R)(L
v(-a) ® Hv)) [m] .

Here we denote the injection O¥(R)-*£y(R) by i%. Since Lv(-a)®Hv is
isomorphic to the constant sheaf C in a neighbourhood of &/ n O\ in Oi(C)9

(Recall that ra^dim Oi). Hence (4.12.3) is isomorphic to

0 Rr(®y, & o = @ Rr(®J n or, C) ,
/=i y=i

whose J^0 is of dimension /. (Recall that &J n Oi (l<j </) are the connected
components of Oi(R).)

As a consequence of (4.11) and (4.12), we get the following lemma.

Lemma 4.13. If a<=A-(b), every hyperfunction solution of 3(Dfa) on
£y(R) can be uniquely extended to a solution on VV(R). Denote the extension

of \f\Tti* to a solution on V\R) by the same letter. Then { | /V |J -AV

(1<J</)} gives a basis of the vector space of the hyperfunction solutions of
3(Df«) on

4.14. Define a real analytic function | / 1 * on @(R) by

l-, on Q
I f I* =y ' on Q(R)-S*..

Obviously | / |y(l<j</) are hyperfunction solutions of Df06. By the same
argument as above, we get the following lemma.

Lemma 4.15. If a^A+(b), every hyperfunction solution of Df* on

can be uniquely extended to a solution on V(R). Denote the extension of \ f \ ° l

to a solution on V(R) by the same letter. Then {\f\* (1<J</)} gives a basis
of the vector space of the hyperfunction solutions of ' Df* on V(R).
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Remark 4.16. The above lemma holds for any polynomial/. If b(s) Is re-
placed by B(s) (cf. (2.5.1)). It is also possible to get an analytic version.

417o Let S=S(V) be the set of C°°-functions <p(x) on V(R) such that
PV(X) is bounded for any PeD(F)9 and <S'=<S'(V) its dual An element
u=u(x) Is called a tempered distribution on V(R). Cf. [4]. Denote the value of
u at (p^S by fu(x) <p(x) dx. The D(F)-module structure of S1 Is denned by
$Pu(x)*<p(x)dx=$u(x)*P*<p(x)dx (cf. (2.1.2)). Let A be a domain In C. A
family uj(x) (a^A) of tempered distributions is a said to be holomorphic (resp.
meromorphic) In a3 if for any <p(x)^S, «->/ u*(x) 9(x) dx is holomorphic (resp.
meromorphic). If for any <p(x)^<S, / uj(x) <p(x)dx has a pole of order <p at
a=aQ9 we say that wrf(x) has a j7o/e o/ order <p at a=a0. We can naturally
define a pole of order p etc. Define a Fourier transform £?(9>) of <p^S by

where tfo Is an Euclidean measure of V(R). Define the Fourier transform
y

J 3(u) (y) <p(y) dy = j u(x) 3(9) (x)dx

). Then

(4.17.1) 3(Pu) = 3(P) 3(u

(cf. 2.7.1).

8. Let

I / I ? ,

and

{ I f v I -«*I / I i *
(—ax /'

If the real part of a ̂ C is non-negative, the real analytic function/* on
Q(R) can be extended to a continuous function on V(R\ which we shall con-
sider as a tempered distribution on V(R). Then f" Is holomorphic in

{a|Re(a)>0}. IfRe(a)>-/«,/y=(ft(a+ifi-l)---6(a))-1/v(^r/r">- Hence

/* is meromorphic on the whole complex plane C, and holomorphic on ^4+ =
A+Q>). (Cf. (2.3.6).)
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Let A=A(V), D=D(V) and Pe/)J>] (cf. (2.1.1)). If P(s) fs =a(s) fs~k

with a(s)^A[s], Then P(a)f°-=a(a)f*j-k on £. If Re(a-A;)>0, this equality
holds on V(R) as usual functions. Hence it holds also as tempered distribu-
tions. By an analytic continuation, the equality holds as meromorphic families
of tempered distributions. Hence if P/"=0 in Df* (cf. (2.3.1)), then P/?=0.
In other words, /? is a solution of Df*. By (4.17.1) and (2.7.1), 2F(/y) is a
solution of 3(Df*).

Theorem 419, (1) By an analytic continuation, /J"05 /zv is extended to a

single-valued meromorphic family of tempered distributions on the whole complex
plane C which is holomorphic in A-(b).

(2) There exist meromorphic functions Q/a) (l<i,j<l) such that

= S

w/zz'c/z are holomorphic in A+(b).

(See (4.13) and (4.18) for /y-*/zv, (4.15) and (4.18) for /?, 6 for (1.6),
for (2.3.6) and 3 for (4.17).)

Let a e ^+ 0 ^ _ . As is shown in (4. 1 8), £?(/?) (1 < i < I) are solu-
tions of £?(/>/*) on FV(.K), which are linearly independent. By (4.12), they
give a basis of the space of global hyperfunction solutions of £?(!)/*). By
(4.13),//~Q5/zv (1 < j </) also give a basis of the same space. Hence there exist
functions cij(d) (1 <i,j </) on A+ f| A- such that

and det(Ci/a))^0. Since /y~*/iv can be expressed as linear combinations of
tempered distributions 2r(/?),//~°5/zv are also tempered distributions. If the
support of 9(j)e(S(FrV) is contained in £/ ,

Suitably choosing <p(y), the denominator of the right member becomes an entire
function which does not take the value zero. As is shown in (4.18),/? are
meromorphic on the whole complex plane and holomorphic in A+(b). Hence
csV(a) are also meromorphic on C and holomorphic in A+(b). Thus we get (2).

In the same time, it follows that//~*/7v are meromorphic on C. Let a0e./4_
and assume that//~05Av has a pole of order p(>0) at a=a0. Then u=u(y) =
(a— a0)p=/y~05 /?v |OJ=a5o gives a solution of £?"(/)/*), which is a tempered distri-
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bution. If the support of 9(j)GcS(Fv) Is contained in £/, / <p(y) u(y)dy=Q.
Hence the support of u(y) is contained in (Fv—$v) (jR). Hence u(y) is not a
linear combination of/y~*o/jv . This consequence contradicts (4.13). Hence
fj06 h? is holomorphic in A-.

Remark 4.20. We can determine 0^(0) to the same extent as in [24], [28]5

[30] by the same argument.

Remark 4.21. The theory of prehomogeneous vector spaces is originated
by M. Sato in 1961 in order to give a testing ground for investigating a 'general
theory of linear differential equations9. Such a 'general theory9 is realized as
the theory of D-modules, mainly by M. Sato, T. Kawai and M. Kashiwara.
We can see in [25] a deep relation between the theory of D-modules (especial-
ly, their microlocal analysis) and the theory of prehomogeneous vector spaces.

The original theory of prehomogeneous vector spaces is based on the in-
variance with respect to a very large group. An invariance with respect to a
connected Lie group is nothing but an invariance with respect to the correspond-
ing Lie algebra, which is also expressed as a system of linear differential equa-
tions of first order. This system is N'(a)=Dv^ given by (3.24.1). Thus we
can also say that the original theory of prehomogeneous vector spaces is based
on the system N'(a) of linear differential equations of first order.

Since the defining equations of N'(a) are explicitly given, it is easy to de-
termine its Fourier transform. But for a further investigation, N'(a) seems not
to be good. For example, it seems inevitable to consider N(a)=Df* given in
(2.3.1) instead of N'(a) to get such consequences as (4.12), (4.13) and (4.15).
If we assume the regularity condition, the difference between N'(a) and N(a)
is not so large and sometimes negligible. But if we do not assume the re-
gularity condition, as is seen from (3.24.2), the difference is not negligible at
all. Thus it becomes essential to investigate N(d)=Df*9 especially to determine
its Fourier transform. For this purpose, we needed the theory of D-modules,
which is, in a sense, a fruit of the original theory of prehomogeneous vector
spaces. (It would be worth noting here that N(a) is the main object of [25].
Although it might seem that N'(a) is exclusively studied there, N(a) comes
into the study as a study of N'(a) on a good Lagrangian.)
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