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On the Reconstruction Theorem of
Holonomlc Modules In the Gevrey Classes

By

Naofumi HONDA*

§ 0. Introduction

The notion of holonomic systems entails a natural generalization of or-
dinary differential equations to higher dimension. A holonomic system is,
by definition, a left coherent 8 (or 3)) module whose characteristic variety is
Lagrangian. It enjoys many good properties (see Kashiwara [Kl], [K2] and
Kashiwara-Kawai [K-K]): for example, all cohomology groups associated with
its solution sheaf are constructible. As special functions satisfy systems of
ordinary differential equations with regular singularities, a holonomic system
with regular singularities introduced by Kashiwara-Oshima [K-O] and [K-K]
is particularly important. It is well known that the category of holonomic
modules with regular singularities is equivalent to that of perverse sheaves
through Riemann-Hilbert correspondence (Kashiwara [K3] and Mebkout
[Me]). Moreover the regularity of holonomic modules are stable under many

operations (integration, restriction, etc.). For holonomic modules with irre-
gular singularities, Kashiwara-Kawai obtained the following remarkable theo-
rem.

Theorem ([K-K; Theorem 5.2.1]). Let X be a complex manifold and JM
a holonomic Qx module. Then there exists a holonomic £x module 3ttres with
regular singularities such that

(o.i) Sz®9zJK=ex®,zJur.g •
This implies that all holonomic modules are transformed into holonomic

modules with regular singularities by use of micro-differential operators of in-
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finite order. In this paper, we show that this transformation can be achieved
by a smaller class of operators (micro-differential operators of Gevrey growth
order) corresponding to irregularity of modules.

Main Theoremo Let JM be a holonomic Sx module with irregularity at

most o. Then there exists a holonomic Sx module <3Vlreg with regular singulari-

ties such that for all s£=\ 1,
L a — U

(0.2) 6(x}®sx<3tt—8(
x>®sx<3ttreg.

Refer to Section 1 and Section 2 for the definitions of irregularity and
the sheaf 6(

x\ Remark that restricting this result to the zero section., we
obtain the same result for holonomic S)x modules.

The plan of our paper is as follows. In Section 1, we prepare some nota-
tion and give a review of operators of Gevrey class and also of regular singulari-
ties of modules. In Section 2, we define irregularity of modules. In Section
33 we first review holonomic modules of D type, and study multi-valued holo-
morphic functions of Gevrey growth order. Section 4 and 5 will be devoted
to the proof of the main theorem.

The author would like to express his gratitude to Prof. N. Tose for val-
uable advice. He is also grateful to Prof. H. Komatsu for encouragement.

§ 1. Preliminary

I.I. Micro-differential operators faoIomorpMe microfunctions of Gevrey

We recall the definition of micro-differential operators of Gevrey growth
order (refer to Aoki [A 1] for details).

Let X be a complex manifold of dimension n and n: T*X-*X its cotan-
o

gent bundle. Set T*X=T*X\T$X and denote by k the restriction of ?r to
o

T*X. We choose a local coordinate system of X as (xl9 •••, xn) and that of
T*X as (xl9 •••,*„; <f l3 °"5 fn). T*X is endowed with the sheaf <Sx of micro-
differential operators of infinite order constructed by Sato-Kashiwara-Kawai

[S-K-K].

.1. For an open subset U of T*X, a formal sum S;ez^ifo 0
belongs to £x(U) if and only if the following conditions (1) and (2) are satisfied,

(1) Pf(xt <?) is holomorphic on U and homogeneous of order i with respect
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tot.
(2) For any compact set K of U and any positive real number e, there

exists a positive constant C^tK, and for any compact set K, there exists

a positive constant CK such that

(i.i)

(1 .2) sup K | P_,-(x, 0 1 < CK'i\ (i >

We denote by Gx (resp. Sx(ni)) the subsheaf of <Sx consisting of micro-
differential operators of finite order (resp. micro-differential operators of order
at most m). For the theory of £x, refer to [S-K-K] and Schapira [S]. Now
we define the subsheaf 8(

x
} of micro-differential operators of Gevrey growth

order (s) for any

Definition 1.2. For an open subset U of T*X, a sum 2,.ezP,.(x,
belongs to £x\U) if and only if {Pil^N satisfies the following estimate (1.3) in-
stead of (1.1); for any compact set K of U, there exists a positive constant CK

such that

(1.3) sup*|P,.(*,Ol<|f (*>0).

For convenience, we set S(P'-=£°x and 8(^:=6X> Moreover restrict-
ing the sheaf G$ to T$X, we obtain the sheaf <D$ on X. 3)$ is nothing but the
sheaf of differential operators of Gevrey growth order (s),

Next we review briefly the definition of the sheaf of holomorphic micro-
functions. Let Y be a complex submanifold of X and TYX its conormal bundle.
We choose a local coordinate system (xf, x") ofX so that Y= {x"=Q}, and then
(xf; 5") is the corresponding local coordinate system of T$X. A section of the

sheaf Cr^zC^tl., °°)) of holomorphic microfunctions of Gevrey growth order
(s) on T$X is a formal sum Sf-ezP,-(^', f ") which satisfies conditions (1.2) and
(1.3). If ,$=1, we replace the estimate (1.3) to (1.1) and denote it by CY\X-

The sheaf CY*\*X is the subsheaf of CY\X consisting of sums S,-ezA w^h Pf-=0
for f>0 and denoted by CY\X. Remark that C(

Y
s\x is an G^ mudule for any

s'^[s, oo].
It is known that (cf. [S-K-K])

(1.4) 5i-)=

and
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Here we denote by ®x the sheaf of holomorphic n forms. In Section 49 the
sheaf C?\x on T$X plays an important role. It is defined by

(1.6) C^x:=vY(Ox)[codimY]

where /%(°) is Sato's microlocalization functor (for its definition and properties,
see Kashiwara-Schapira [K-S 1] and [K-S 2]).

Io20 off for

The notion of regular singularities for modules has been introduced and
studied in [K-O] and [K-K]. We recall its definition and make several im-

o o

portant remarks. Let V be an involutive analytic subset of T*X and p^T*X.
Kashiwara-Oshima introduced the Noetherian subring 6V of Sx to define
regular singularities. For the definition of 6V9 refer to [K-O] and see Section
2 in the case that V is smooth.

Io3o ([K-O]). A coherent Sx module <3M, has regular singulari-
ties at p along V if and only if the following equivalent conditions are satisfied.

(1) There are a neighborhood U of p and an <SV module <^M0 of JH defined
on U which is coherent over SX(Q) and generates <3tt as an 6X module.

(2) Any coherent <5V submodule of <3& defined in a neighborhood of p is
coherent over £X(Q).

o

We say a holonomic 8X module <3& on U(dT*X) has regular singularities if it
has regular singularities along supp <3tt at all points p^U.

On the other hand, Kashiwara-Kawai Introduced the notion of R.S.,
seemingly different from regular singularities given In the above definition.

1.4 ([K-K]). A holonomic Sx module <3tt on U(dT*X) has
R.S. if it has regular singularities at all points in an open dense subset of U.

One of the deepest results of [K-K] Is the fact that two regular singularity
conditions in Definition 1.3 and 1.4 are actually equivalent for holonomic mo-
dules. The notion of Irregularity at most (1), to be Introduced in the next
section? also coincides with them under the condition of holonomicity.

§ 2o The &ty and of

The aim of this section is to define irregularity of coherent 8X modules
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and investigate its properties. Although there exist several definitions of ir-
regularity (cf. [A2], [Kol], [L] and [Ml]), we give, in this paper, its definition
using the sheaf Sffi).

Let X be a complex manifold, n: T*X-~*X its cotangent bundle, and V a
regular or maximally degenerate involutive submanifold of codimension d > 1

o

in T*X. To define the sheaf £$?), we introduce the following notion.

Definition 2.1. We say micro-differential operators (P1} °°8
9P r f) are involu-

tive coordinate operators of V at p^V if and only if
(1) all Pg's are strictly of order one (i.e. Pg-e <&*(!), $<?z(0)),
(2) [P,,PyHO/0ra//l<U<^
(3) the principal symbols (p(Pi), S B O , °(Pd)) form a base of the defining

ideal Iv of V in a neighborhood of p.

Remark that involutive coordinate operators of V always exist.
o

Now we define the sheaf of rings <S{v\ on T*X for a rational number
0 e[l, oo). In case a = l, this sheaf coincides with the sheaf 8V defined in [K-O]

and [K-K].

2,2e A sheaf <5(v] is defined in the following way.

(1) On the outside of V, Gffi \ f*z\F : =SX\ T*X\V-
(2) On V, a micro-differential operator P belongs to G$) at p^V if and

only if there exist involutive coordinate operators (Pi,"',Pd) at p
satisfying

(2.1) P€E S ej!(a))Pb-PS* at p.
0^*;

Here I(OL) is the largest integer satisfying I < - 1 a | .
a

Remark that this definition does not depend on the choice of involutive
coordinate operators. In fact, if (Pl9 **a,Pd) be other involutive coordinate
operators of V at p, then there exist micro-differential operators of order zero

Qi9J9 Ri(l<iJ<d) such that

Then it is easy to see for (Pl9 ••-, Pd)9 (2.1) holds.
From this observation, we find that S[v\ is stable under quantized contact

transformations. We list up the main properties of the sheaf <3{v}.
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(1) £{v] is a subring of Gx.
(2) Sx(0) c£$, and €$> is a left and right £z(0) module.
(3) <5$?) is a sheaf of Noetherian ring, and any coherent Sx module is

pseudo-coherent over <?[??).
(4) If Pe£f?}, then its formal ajoint operator P* belongs to <?[$.

Since the proof of (l)-(4) is the same as [K-K; Chapter 1], we omit it. For a
holomorphic function f^OT*x,p, we denote the vanishing order of/ along V at
p by m(F)>j> (/) (i.e. m(v)ip(f)=k if and only if

Example 2.3. Let X = Cn with a coordinate system (#1, ""s *«), V =

{(*i, -, *„; £1, -, f,)eT*Jlf; ^=f2= - =£r=0, ^0} and ;>=(0; ^)< In
this case, we may choose Oqo^ 82) —, 9r) as involutive coordinate operators,
and Definition 2.2 is equivalent to the following condition with the above co-
ordinates; P^GX (m) belongs to <S[v] atp if and only if the symbol expansion

P(x, E)=PM(x, £)+ JViO, f )+ — of p(x* ^) satisfies the condition

(2.2) mw.p(Pi(x, ?))>** (i<™)-

Moreover if a=-%- with q>p positive integers and prime to each other,
P

we have

Here ^(fc) is the smallest integer satisfying s > ok.
o

Let V be a regular or maximally degenerate involutive subvariety in T*X
o

and p e T*X. We first define irregularity of a coherent <?z module in case V
is smooth. Form now on, we always assume <r(e[l, °°)) is a rational number.

Deimtion 2A« A coherent 8X module JM has irregularity at most a along
V at p if and only if <3tt satisfies one of the following equivalent conditions.

(1) There exist an open neighborhood U of p and a coherent <SX(Q) module
c5K0 on U which is an <£{v\ module and generates <3& over Sx.

(2) Any coherent <?$?) submodule of<3tt in a neighborhood ofp is a coherent
<£z(0) module.

Next we define irregularity in the general case. Denote by Vreg the smooth
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part of V.

Definition 2=5. (i) A coherent Sx module <3A, has irregularity at most o
along V at p if and only if for some open neighborhood U ofp, JM has irregularity

at most o along Vreg at any point p^. Vreg fl U.
(ii) A holonomic 8X module <3tt has irregularity at most a if and only if

it has irregularity at most o along supp (c5Jf) on the outside of T$X.
(iii) A holonomic 3)x module 32 has irregularity at most o if and only if

37 has irregularity at most o.

We give several lemmas about properties of irregularity.

Lemma 2.6. Let V be a regular or maximally degenerate involutive sub-

manifold of T*X. Assume a coherent Qx module <3tt has irregularity at most
o along V. Then supp ( JK) C V.

Lemma 2,7. Let O^c^f^c^^^-^O be an exact sequence of coherent
8X modules. Then <3tt has irregularity at most a along V if and only if <3^il and
c_5Jf2 have irregularity at most o along V.

The above two lemmas can be proved in the same way as [K-K; Lemma
1.1.13 and Lemma 1.1.14].

Lemma 2,8. Let V C V^ be regular or maximally degenerate involutive
o

submanifolds of T*X. If a coherent <5X module JH has irregularity at most o
along V, then it has irregularity at most o along V±.

Proof. Since 6?^, c£$, it is clear. M

We give two examples.

Example 2.9.

(1) Let X=Cn with a coordinate system (xl9 •••5^w), V={(xl, •••, xn;

fi, -,£„)€=£**; £1==0, £,=1=0} and/7-(0; dxn\ Let P(x9D)=D1!t+Pm.1(x}D
f)

Df~1+...+P0(x.,Df) be a micro-differential operator of Weierstrass type with
respect to Dl satisfying ord(P^, £ 'J)<m— k (Q<k<m— 1). We define a ra-
tional number IrrF,p (P) by

(2.3) Irr7,/P) = max {1, - m~k } .
m—k—oiA(Pk(x, £'))



930 NAOFUMI HONDA

SThen it is easy to see an Sx coherent module — — has irregularity at most
8XP

lTTVsp (P) along V, Conversely we obtain the following lemma.

Lemma 20W0 Let <M be a coherent Sx module which has irregularity at
most a along V at p. Then for any u^<3H, there exists a micro-differential
operator P of Weierstrass type with respect to Dl such that Pu=Q and lnVip

Proof. We may assume <3tt=2)xu and a =-3- with q>p positive integers
P

and prime to each other . Then <5MQ: = 6ffi) u is a coherent 8X(G) module,, and
6i=DlDp

n-
9 belongs to <?$. Thus the increasing sequence c5KA=S*-o£jr(0)0yK

is locally stationary, and we can find an operator Q=Om+QM-i(x, D)6m~l+°- +
Q0(x, D) with <2,.(jc, D)^SX(G) such that 2^=0. Finally we apply the Weier-
strass division theorem to the operator Q, 03

(2) LetX=C5 V=TfQ]X=i(x;S);x=Q^^O},q=Osindp=(0;dx), Let
P(x,D)=xdDm+am-1(x)Dm-1+°°*+aQ(x) be a differential operator of order m.
In the same way as the above example, we define a rational number
InVip(P) by

(2.4) IrrF ,(P) = max{l,
m— k

Q
Then an 8X coherent module — ̂ - has irregularity at most liiVtp(P) along V.

SXP

Lemma 2.11. Let <3tt be a coherent Sx module which has irregularity at
most a along V at p. Then for any u^JM, there exists a differential operator
P such that Pu=Q and Inv>p(P)<o. (Remark that although Jtt is an 8X mod-
ule, we can find such an operator in the category of differential operators,)

Proof, Since <5fi is holonomic9 a coherent <?z(0) module 8(^u is a finitely
generated Oq module by the result of Malgrange [M2] and Bjork [B]. Thus
employing the same argument as Lemma 2.10, we can find a desired differential
operator P. H

At the end of this section, we investigate the functoriality of irregularity
by the inverse image and the dual. Let /: F^> X be an inclusion of two com-
plex manifolds. We associate the morphisms & and p as usual;

(2.5) T*Y- T*XxYY> T*X.
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Lemma 1.12. Let V be a regular or maximally degenerate involutive sub-

manifold of T*X and <3tt a coherent 8X module which has irregularity at most a

along V. If V and Y are symplectically orthogonal, then t3ttY
=P*(&Y+x®u-l£x

has irregularity at most a along pw~\V).

Lemma 1.13. Let V be a regular or maximally degenerate involutive sub-

manifold of T*X and Jtt, a coherent 8X module with irregularity at most o along
V. Then all cohomology groups of RJfomQx (JK, Sx)®®!1 are coherent Sx

modules with irregularity at most a along V.

Since the proofs of above two lemmas are easy, we leave them to the rea-
ders.

§ 3, Multi-valued Holomorpfak Functions of Gevrey Growth Order

In this section, we investigate the properties of multi-valued holomorphic
functions of Gevrey growth order which we need in- the next section. First we
briefly recall the definition of Nilsson class functions and that of Holonomic
D type modules. For details, refer to [K-K; Chapter 2].

Let X be a complex manifold of dimension n, S a complex hypersurface of
X, L a local system over C on X\S with rank m and j: XXS^X an open inclu-
sion.

A holonomic 3)x module of D type -C(c:jx(Ox\s®cL)) is characterized
by the following three conditions (1), (2) and (3).

(1) char (£)CLT$X \lK-\S).
(2) Jl is a holonomic 3)x module with R.S.
(3) c^

We give, however, more explicit expressions for holonomic systems of
D type. Fix a nonsingular point q^S and choose a local coordinate system
(xl9x')=(xi, "a,xn) in a neighborhood U of q so that q=Q and that UdS

is defined by xl=0. Set U± = {x^U; ±3txl> — |S*il}- Then L is a con-
stant sheaf on U± and we have the isomorphism /+: L\u±-*Cu±. Then the
morphism/±>z- ( l<z<m) denotes the composition of /+ and the f-th projection:

Definition 3.1. (i) A section u^.j^(Ox\s®c^) at Q belongs to the Nilsson
class at q if and only if there exist positive constants I, C and e with the estimate

(3.1) l/±»
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for x^U± and \x\ <X
(11) The subsheaf J2nn is defined in such a way that for an open subset U,

~Cnil(U) = iu^j*(Ox\s®cL)(U);u belongs to the Nilsson class at all

points q<=SregnU}.

The fact that X=Xnil was proved In [K-K; Chapter 2], Moreover the
following theorem was also obtained.

Theorem 3S20 ([K-K; Theorem 2.2.4]). There exists a Sf* isomorphism

(3.2) 0 : 3)X®$)ZJ:^J*(OX\S®CL) .

Since the ring 3% is faithfully flat over the ring 3f£> (je[l, oo]), _£«: =
~£ is considered as a submodule of -C°°:=£)X®3)X-C. Then we have

the following lemma.

Lemma 303e We have a 3)(f isomorphism

(3.3) 0: 3)^®^XX^^J: (dMOx\s®cL)) .

By (3.3), we identify £%>®<DX-C with Sf$£ inM0x\s®cL).

From now on, we assume S is a smooth complex hypersurface. Let r be
a generator of the fundamental group nl(X\S) and Exp (—27uiL)^GL(m, C)

a monodoromy matrix of the local system L with respect to r. We may as-
sume the matrix L Is upper diagonal and its eigenvalues &N. Now we define

the subsheaf of j*(Ox\s®cL) consisting of multi- valued holomorphic func-
tions of Gevrey growth order. Assume se(l9 oo).

3o40 (i) A section u^j*(Ox\s®GL)q belongs to the Gevrey
Nilsson class of order (s) at q^S if and only if there exist positive constants /, C
and e satisfying the estimate

(3.4) l/±>)

for x^U± and \x\<e.

(ii) We define the subsheaf £$i by assigning
-Cnsi)i(U)={u^j^(Ox\s®cL)(U);u belongs to the Gevrey Nilsson class
of order (s) at all points

It is easy to see that .££?/ is a tff£ module. We need the following pro-
position in the next section which clarifies the relations between J?£?/ and -£„,-/.



ON THE RECONSTRUCTION OF HOLONOMIC MODULES 933

Proposition 3.5. In the above situation, we have

(3.5) -a?/=^i?)®5?jrf.f-/-

To prove this proposition, we prepare some notation. We take a local
coordinate system (xl9 x')=(xl9 x2, — ,xn) of X so that ^={^=0} and q=Q.
Set

O^: = {f^(j^Ox\s)q'9 there exist a neighborhood U of q and con-
stants /, C so that the function / satisfies the estimate

Remark that/eO(s) if and only if there exist an open disk U centered at
0, positive constants C and /, the Laurent expansion of /with respect to xl on U

(3.6) f(x) =/0
05>0

with /0(;c)e 0(^0 satisfying the estimate

(3.7) \L(x'

To reduce the local system L to be trivial, we consider a C linear morphism

f - >Exp(log(x1)L)f.

This is apparently an injective C linear morphism (but not 3)x linear). More-

over for/e(O(sT5 we have

o/ Proposition 3.5. By Lemma 3.3, it is enough to show -C$t =

x}-Cmi' Let f(x)^O(s} and *y be a (y,;) component of the matrix L. The
function / has the Laurent expansion (3.6) to which we associate differential

operators (of infinite order) f(j\D) and/(y)(D) as
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By direct calculations, we deduce the following facts,

(i) fM(D)e£%\ and for any g

(3.8)

(ii)

(3.9) /">(/>) -i- =

r ° )

0

Y~

0

, 0 ,

— -

<h\
h,
f(
0

( o
where A^JC), ° ° ° 9 /^(j^

Since /=5r"1(g) belongs to (Ow)m for any ge-Tift.^ we can find
.£„.,,, and differential operators P/G^?'), (!</<m) so that

mod

This completes the proof, ffl

§ 48 Embedding of Holoeomlc Modules

Let X be a complex manifold of dimension n+l and Y a smooth complex

hypersurface of X. Set A-r?X\r$X? V=YxT*X and /?eA, and fix a
generator r of the fundamental group ^(ZXF). We prove the following
embedding theorem which is analogous to [K-K; Theorem 4. LI] in case of
smooth Y.

Theorem 4eL Let <3tt be a holonomic Gx module at p with supp(c5K)C
A. Assume <3tt has irregularity at most a along V at p. Then there exists a
holonomic 3)x module ~C with R.S. at q=n(p) which enjoys the properties ;

(1) for any s^[l, - ], there exists an injective J%s) linear morphism
a — I

(2) E(s) can be extended to an injective S(x} morphism
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Remarks. (1) _£ is isomorphic to the quotient of a holonomic D type
over a de Rham type module.

(2) The irregularity condition along V is weaker than that along its sup-
port A.

To prove this theorem, we make full use of the technique of [K-K]. Since
the problem is local, we may assume X=CK+1= (t, xl9 — ,*,,), Y={t=Q}, p =
(0; dt) and q=Q. Let BStX (resp. BSit) be open balls with radius e and center at
0 in Cl (resp. C,), Be=BSitxBs>x and Ts an open sector {ttEC; \t\<e,e\$t\>

^t}. Set C:=(C9 izV
The (<6x)p module C plays an important role and has expression as the

boundary values of holomorphic functions

(4.1) C = li .
-» 0(B.)
s->o

Let c5f/ be a holonomic 8X module at p. Since HkR<^&wsz(<3tt, C?\x) is a
constructible sheaf for any fc, we obtain

(4.2) dimc(^^(JK, C) - <^?~(c5ir, C))<oo .

Here we quote the following theorems of [K-K].

Theorem 4.2 ([K-K; Theorem 4.5.2 and Theorem 4.5.3]). Let M be a
holonomic 8X module with supp(c5K)cA. Let $ e ^^^(J^, C), u^^ip and

P^Sx- Then a holomorphic representation (j)(Pu) of <f>(Pu) can be extended as
a multi-valued holomorphic function over BB\Y with finite determination for some

From now on, we denote by $(u) a holomorphic representation of <f>(u).

If Y has singular points, the proof of this theorem is very difficult. In case
Y is smooth, however, we have an easier proof, which we give after the next

proposition.
Before stating the next proposition, we make several preparations.

Let ft: X\Y-*X\Y be a universal covering space. We define a class of

multi-valued functions of growth order (s1). Set
O(s)=lim {f&0(ft-\Bt\Y))i there exists />0 such that for 'any branch of

E->0 _

/on Vs:=Bs\(R
+xBE>x), we can find C>0 satisfying the estimate \f(t,z)\<
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Next we consider a restricted class of G$ which acts on the space O(s)/Ox,q-

Set £$Y = {P^£¥; [P, Xj]=0 for 1< j<n} and £$Y:=£)xg®Y- Then in-

tegro differential operators associated with S(X)Y act on the space O(s)IOx,q> and
the actions are realized as follows (see also Bony-Schapira [B-S] and [K-K;

Chapter 3]). For any P e <5$r and / e 0 w,

where P0e^s) and ^ is the holomorphic kernel function associated with P.

Moreover it is easy to see that for any re^(X\F), P^S(j)Y and w<E0~(s)/0*,g5

we have

(4.3) T(Pu) = PT(U) .

Now we show if <3& has irregularity at most a along V and supp(c_5K)C A, the
multi-valued holomorphic function <f>(u) defined in Theorem 4.2 belongs to

Proposition 430 Lef 0 e ~fa*eW(<3W*\ C) and u^3tt(
p

s\ If 3tt has irregu-
larity at most a along V 'with supp(c^f)C A? then any holomorphic representation

$(u) o/0(t/) belongs to O(s)/or all s<=[l, — °— 1.
L a— 1J

Proof. We first consider the case u<=^Mp. Set 32=<Sxu. Then 32 has
irregularity at most o along K and supp(32) is contained in A. We need the
following lemma.

Lemma 4040 There exist a differential operator Q(t, x, dt) and micro-dif-
ferential operators Pt(xf t, dt, dXf) (!</<«) which satisfy the conditions (1)9 (2)
and (3).

(1) All Q and P;'s annihilate u (i.e. Qu=Piu=Q).
(2) The differential operator Q has the form

(4.4) Q = td°d™o+ sW*, t)t*"dkt
k = 0

where dk^N satisfies

(4.5) maxki^
mQ—k
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(3) The micro-differential operators Pf. have the forms

(4.6) P,. = 9?/+"sX*(*, /, 8,) 8*.

M are micro-differential operators satisfying oid(Pitk)<mi—k

and [Pith9 Xj]=0 for a

Proof. Set 32Q=Gffi)U. Then 320 is a coherent <?z(0) module by definition.
Moreover on account of [B; Lemma of p. 53], 3?0 is a finitely generated Ox,q
module. By the same argument as Lemma 2.11, we can find a differential oper-
ators g. Since supp(JK) is contained in A, we find, for any /, an integer m{

such that d™fdjmi+1u^3lQ. Then employing the same argument as Lemma 2.10,
we find the operators Pi satisfying (4.6). H

Continue to the proof of Proposition 4.3. Since Qu=Piu=Q, there exists
e>0 so that

(4.7)

By (4.4) and (4.7), it is easy to see $(u) is extended over Be\Y. Moreover
on account of the condition (4.5) and GronwalTs inequality, 0(w) belongs

F a ~1
to <9(s) for s<=\ 1, - . In general case, let Pe£is). Then dividing P by

L G— 1J
PI, • • • > Pn, we can find the operator R^8(x]y such that Pu=Ru. Thus we ob-
tain

$(Pu) = $(Rti) = R$(u) mod Ox,q,

and R$(u)^O(s) by the previous remarks. B

Now we enter into the proof of Theorem 4.1.

Proof of Theorem 4.1. Let c be the subset of C[r] consisting of
with the property that r(^) is holomorphic in a neighborhood of q=x(p) for
any 0 e <*y<wsx(3tt, C) and any representative 9 of any element of $(JMP).

Then by (4.2), c^0. Moreover for any <t>^^^Qt£(Ms\ C), any representa-
tive 0 of any element of 0(J?45)) and r e c, T($) is holomorphic at q on account
of (4.3). Let X be a holonomic system of Z> type with monodoromy type

a:=(r-l)c, &=lm(Oq®c ~#«*g)z(O, X}q-^X^ and 0 e ^**e~(,SMr , C). Set
-32=-—. We define the morphism E(0) by
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u -* $(«) mod 5* .

Since we have £(0)(JKi,s))c32^) by Proposition 3.5 and Proposition 4.3, we
obtain the .SJ& morphism E(s)(0): ̂ s)-^>37^. Using £(0) (resp. £(s)(0))9 we
can construct the Sfi (resp. .S)^) morphism F(0) (resp. F(s)(0)) as follows.

Since ~4W£X(JK, C) is finite dimensional over (C7, we can choose a base
(0i5 °°% 0r) of ^MMgx(t3tt, C) and obtain the commutative diagram

Fis an injective Sx linear morphism by [K-K; Proposition 4.6.2 and Proposi-
tion 4.7.1]. The morphisms of the first and second columns are injective on
account of faithful flatness. Thus F(s) is an injective 8(x} morphism. This
completes the proof of Theorem 4.1. H

Using Theorem 4.1 and applying the same argument as [K-K; Theorem
5.2.1], we obtain the following corollary.

Corollary 40§0 Let <3tt be a holonomic Sx module at p with supp(c_5ff)cA.
We assume JH has irregularity o along V, Then there exists a holonomic Sx

module matp with R.S. such that G&®ezJk^&®ezm for jefl, -?-~L
L G — U

Moreover by employing quantized contact transformation,, we obtain the
following general result.

Corollary 4=6, Let W be a maximally degenerate involutive submanifold of
o

T*X, A its singular locus and c5K a holonomic 6X module with supp(JK)cA.
Assume 3tt has irregularity at most a along W, Then there exists a holonomic Sx

module matp with R,S. such that 8$®ex3tt^e$®ezm for j<=["l, -°— 1.
L a— 1J
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§ 5, Proof of the Main Theorem

The aim of this section is to prove the main theorem. To obtain the
same result as Corollary 4.6 on the singular points of supp(c5K), we need the
following vanishing theorem.

Theorem 5.1 (cf. [K-K; Theorem 1.2.1]). Let <3ttbe a coherent 8x module
and Z a closed analytic subset of T*X (not necessarily homogeneous). Then we
have

forj<codimT*x Z— projdim JU and l<s<s'<°°.

Proof. We use the idea of [K-K; Theorem 1.2.1].
o

(I) The case where ZdT*X and Z is homogeneous. By the induction
on projdim Jtt, we may assume JH is a free 8X module. Thus it is sufficient
to show

(5.1) HJZ = ° 0'<codimr*z Z).

Moreover since G$=C$x*x, we will show

o

for a closed subset ZdT$(XxX) and j<codimr*z Z= coding (ZxjO Z. Em-
ploying a quantized contact transformation, we may replace Cx\xxx to CY\XXX
for a nonsingular hypersurface Y of XxX. From now on, we denote XxX

by the same letter X. Moreover since Z is homogeneous, (if we regard

C(y]x and C^y?x as sheaves on 7), it suffices to show

for a closed analytic subset Z of Y and j<codimr(Z).
Next we shall show that we have only to consider the case that Z is non-

singular. But since the proof of this part goes in the same way as [K-K; The-
orem 1.2.1, p. 839], we omit it.

Now we assume Z is nonsingular, and we are in the following situation.
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X = CxC!xCd = (t,y,z)5

Y={t=0}9 Z={t=y=Q}.

By the edge of the wedge for the sheaves C^}x (See [L; Theorem 1.1.4
and p. 47])3 we have

(5.3) Hl(C$z) = H^C^x) = 0

Considering the long exact sequence

we have HJ
Z=Q for j< 1-2. To obtain Hl

z-
l]=^ it is enough

\CY\X' ^CY\X '
to show Hlz(C$&) ->H!

x(C$z) is inj'ective. Set Bs = {w e C ; | w | < s} and

T5 - 5e- {0} cC, C/e = ^e
/+<f C F, FFe = 5s

rf CZ9

V{ = TtX

For an open set U of Y and F of Z, we define two spaces by

)i VK&J, 3C

Since Fe and F^' are holomorphic domains, we have Hl(Vt, C^}x)=Hi(Vi, C(y\x)
v

=0 for i>0 by [L; Theorem 1.1.3 and p. 47]. Thus we have Cech representa-
tion

Moreover we have the morphism

0: £
(5.4)
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The morphism (5.4) is isomorphic by the property of Laurent expansions. In
the same way for s'9 we have the commutative diagram

The morphism of the second row is a natural inclusion. Thus we have proved
the injectivity of Hl

z(C^x}-^Hl
z(C^ }x).

(II) For a general case, using the technique of dummy variable, we can
easily reduce it to the case (I) (see the final part of the proof of [K-K; Theorem
1.2.1]). •

Remark that we have H*z(Jtt^)=Q for j<codimr*z Z— projdim <!M by
the same proof.

As a corollary of this theorem, we have

Corollary 5.2. Let Q be an open subset of T*X and Z an analytic subset of
® with codimr*z Z>dimJSf+l. Let <3tt be a coherent Gx module on Q and
u<=r(®, c5K°°). Assume u belongs to c5K(s) outside of Z. Then u<=r(Q, JK(s)).
Moreover if codimr*z Z>dim Jf+2, any section of c5f(s) defined on Q—Z is
uniquely extended to a section of <3tt(s} defined on &.

Now we give the proof of the main theorem.

Proof of the Main Theorem. By [K-K; Theorem 5.2.1], there exist a

holonomic module *3Hreg with R.S. and an c?5 isomorphism 0: Jff°—>c5JC^-
Then it is sufficient to show

0G5ff(s))cJ!f% and 0-K«5H&)Cc5K(<> .

Thereby we will show for holonomic 8X modules 3^ and J12 with irregularity
at most a and any <Sx linear morphism/: S^r-^SZ",

(5.5) .
(7—1

Let Aj^supp^^j A2=supp(5f22) and A=A1UA2 . Set Al>r=(A1)f>rU
(Aa),.rr. First we work at p<=A\Airr. If p^T$X, 37j and 322

 are both de

Rham systems. Thus there is nothing to prove. Next we assume p^T^X.
Then by Corollary 4.6, there exist holonomic Qx modules 32iireg9 3^2,reg with
R.S. and 8^ isomorphisms

(5.6) 0i: m['\.g -> 32is) and (Z>2: m^ -> JVf\.g .
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We extend morphisms (5.6) to <Sx Isomorphisms by id® O. (/=!, 2) and obtain

an Sz morphism f=(id®®£f(id®®& 3lT,reg-^31>?,reg. By [K-K; Theorem
6.1.3], we obtain an Sx morphism/': <31i,reg~:>3T-2,reg such that f=id®f. Thus
we have the following commutative diagram:

Then easy diagram chasing shows /(37is)) c 3?£s) at /?. Now we show the
claim at p^Airr. Let i/e32^}. By the above argument, we know f(u) be-

longs to JlP outside of Af>r. Since codimr*^(A.rr)>dim X+l, we obtain /(«)
e^s) on account of Corollary 5.2. This completes the proof. H

At the end of this section, we give an application of the main theorem.
We say a holonomic £x module <3VL is in a generic position at p if and only If

Theorem §030 Let <3tt be a holonomic Qx module with irregularity at most a
at p. Assume JA is in a generic position at p. Then there exists a holonomic

3)x module 3 with R.S. at q=n(p) such that for S& 1, —?— L
L a — 1J

Proof, Given a R.S. holonomic 8X module 37 with supp^) In a generic
position. Then by [K-K; Theorem 5.1.4], there exists a holonomic 3)x module
£F with R.S. such that <3lp=8x®g)z3r Thus combing this with the result of
the main theorems we obtain the desired result. II
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