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An Algorithm for Computing a
Nondegenerate Hysteresis Point

By

Hisashi OKAMOTO*

Abstract

We propose an algorithm for computing nondegenerate hysteresis points arising in bi-
furcation problems with two parameters such as G :R2 X R^-^R-^. A combination of methods
in [5] and [7] requires finding zeros of an extended system of 4N+3 variables. Shintani and
Kanda [6] proposes another algorithm, in which computation of extended system of 3N+3
variables is sufficient. On the contrary, in our algorithm, we should find zeros of another
extended system of 37V+2 variables.

§ 1. Introduction

In this paper, we consider a problem to find zeros of the equation
G(A, p., .x)=0, where X and ju are real parameters, x^RN and G is an ]V-vector,
i.e., G: R2xRN-*RN. We assume that G is three times continuously difleren-
tiable. We want to compute numerically a hysteresis point, the most elementary
example of which is provided by the origin in a one-parameter bifurcation
equation

Turning points are generic objects in bifurcation problems with a parameter.
The hysteresis point above either splits into two turning points or disappears
leaving only ordinary points. The situation is illustrated by a simple example :

(1.1) G(l, UL9X) = Z-X3-JUX.

The bifurcation diagrams for /*>0, #=0 and #<0 are shown in Figure 1, 2
and 3, respectively.
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Figure 1 Figure 2 Figure 3

In a vague fashion we call (A, £, x) a hysteresis point if GQ>9 j", ̂ )=0 and
the bifurcation diagram Dp={(A, x); G(A, JJL, x)=Q} has only ordinary points
(like Figure 1) for ^ in one side of 71 and two turning points (like Figure 3)
for fj, in another side of 71. We give a numerical algorithm for computing a
"nondegenerate" hysteresis points. This is possible, since a nondegenerate
hysteresis point is structurally stable in two parameter systems. Rigorous de-
finitions are given in §2. Theorem and its proof are presented in §3.

We first assume that there exists a (^, ju9 x)^HxMxI$N satisfying

G(l, J5, jc) = 0 .

Throughout this paper, derivatives are denoted by subscripts and overline in-
dicates that the mapping is evaluated at (I, 5, x). For instance, we write G
and Gx instead of G(5, 71, x) and GXQ>9 71, x), respectively.

Secondly we assume that the null-space of Gx is one dimensional and
spanned by $^MN\{Q}. Note that the corank of Gx is also one. Letting
< 3 > denote the Euclidian inner product, we assume that

(2.1) Range Gx = {y^MN; <#, j> = 0} .

We normalize 0 and & by <<? , 0> = 1 and <^9 i^> = l. We put g(^, x) =
G(/l, A«, x). We wish to find a point at which the bifurcation diagram of g(/l, x)
looks like Figure 2. After [7] we make the following

([7])0 We call (^, %) a nondegenerate turning point of g if
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and <V% ixx^dy^Q, where gxx is the bilinear operator representing
the second order derivative of g and g xx$$ is the value of gxx taken at (<?, <?).
It is called a nondegenerate hysteresis point if <^, f^^O, <^, gxx$$y=^ and

the condition (3.3) of the next section holds.

We can understand the meaning of this definition by the example g(A, x) =
a0X+a2x

2+a3x
3-] — , where x is a scalar. Since we are dealing with bifurcation

equations, the term which is linear in x does not appear. The condition

(&> fA>=l=0 corresponds to a03=Q and <^? £,*#?> =1=0 to a24=0. Such a bifur-
cation diagram as a0a2=t=0 produces a diagram containing a turning point
(=limit point) and is a generic object in one parameter problems. On the other
hand, there appears g with a2 = 0 if g is perturbed by JUL. In this case it is
natural to adopt the assumption a34=0 as a nondegeneracy condition. This
corresponds to the condition (3.3) below. Accordingly we assume that

(2.2) <#, Gxx$$y = 0 .

Since <?^0, there is a fce{l, 2, — , N} such that the k-th component
O. We fix this k hereafter. We define a projection P by

, X29
 0 8 ° , XN) = (Xi, •••, Xfg-li 0, Xfr+i, ma'9 XN) .

In an obvious way, we identify the range of P with RN'1. We now consider
the following mapping:

F: R2 xRN xRN x R* -> R3 xRN xRN

(2.3)

where ^, /^ e 12, x, 0, ^ e /Z^ and the superscript f implies the transposed
matrix. We see that F=F(A, Jj,, jc, 0, ij5;)=0. Thus we should compute zeros
of F. The point of the definition of F is the use of P. If we use Gx(l, #, x) ty
instead of PGX(A, ju, x)*i/r in the definition of F, then F is a mapping from
R2xR3N into R3xR3N and becomes formally over determined. Since we need
to have ^ such that G,(^, ^, x)V=0 (see (2.1)), the reader might think that in-
formation about ^ is lost if we adopt (2.3) as the definition. The following
lemma guarantees that we do not lose the information.

Lemma. I f F ( t , v, x, <f>, ^)=0, then GX(Z, fi9 x)^=0.

Proof. We put y = Gx(l, ju, x)*^. By the assumption, all but the Jt-th
component of y vanish. By 0=<G,(^, ju, x)$, ^>=<#, J^^&J* and 0^4=0,
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we obtain yk=Q, H

This lemma shows that finding zeros of F is equivalent to finding
(*, V, x, 03 V) such that <0, 0>=1, <>, ^>=1, G(Z5 ju, x) = ®, Gx(2., JUL, x)0 = 0,
G,(*9 v, x)fir=Q and <V% (?«(J, ^ x)00>=0.

The algorithm which we propose in this paper is to apply a Newton method
to F. We are now in a position to compare the algorithms in [1,5,7] with
ours. In order to compute turning points of G, [1,5] uses the following ex-
tended system:

where y = (A, x, <f>) and / is an appropriate linear functional on MN. Let
Y=M xMN xRN. Then H is a mapping from R x Y into Y. Note that this
extended system H has 27V+1 variables, while G has TV variables. They proved
in [1,5] under a reasonable assumption that a nondegenerate hysteresis point
(I, ft, x) with respect to X corresponds to a nondegenerate turning point (/*, j)
of //" with respect to /*. Therefore, if we trace the curve of H = Q, e.g0, by
Keller's method ([4]), and if we find a turning point of H, then we will obtain a
nondegenerate hysteresis point of G. In order to get a precise location of the
hysteresis point (i.e., the turning point of H=G), we should utilize the technique
in [5]. Their algorithm is as follows: after getting a good approximation to the
turning point to H=0 we consider an extended system of H. Namely,

*> y, 0) = (if*Z>-l, #(/*, y),

They proved in [5] that a nondegenerate turning point of H is an ordinary
point of T. Using the approximation as an initial value to a Newton iteration
to T, we get a very accurate approximation to the turning point of H. Con-
sequently, we have to solve T, which, as an extended system of H, contains
2°(27V+l)+l=47V+3 variables. On the other hand, our algorithm is more
direct and contains only 3AH-2 variables. Therefore we propose to perform
the computation as follows :

First, trace the curve of H=Q and get approximate locations of hysteresis
points (= turning points of H). If we need more precise information, then solve
F=Q by the Newton method,

Remark 1. In the case where N=l, the last term of the right hand side
of (2.3) disappears and no difficulty arises (see [2]). The use of the projection
jP, which depends on <j>, may cause a problem in some cases. We thereby
propose to use our algorithm when we already have an approximation 0* to
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0. In this case, the Index k arising In the definition of P can be taken as the
one where the maximum of the absolute values of the components is attained.
Thus, if our aim is to get a very accurate approximation from a rough appro-
ximation, the use of P seems to cause little difficulty.

Finally we compare our method with the one in [6]. They consider the
following map : S: R2 X R2N X R x RN-*R2N xRxRNxR2;

S(ju, J, x, 0, 11) = (E(ju, I, 0), D(fi9 y, 0, u\ <(0, 0),t/>, <(1, 0), n

where y=(*9 x), ne/8 xRN,

, J, 0) = (G(*, v, x\ G,0,<0, 0>-l)

and D(#, y9 0, u)=Gxx4>^-\-G(^iX^u. The number of variables in the equation is
37V+3, which Is almost the same as that of ours. Furthermore, their method
can be applied to the Infinite dimensional case while our method is applicable
only to the finite dimensional case. We do not know which method is better
in actual computations. We leave the comparison in the future works.

§30 Theorem and Proof

Our aim in this paper is to show that the derivative DF is nonsingular
under a certain assumption. We define several quantities. First,

v is defined at a solution to

Gxv = -<^, ^>GA+<^5 Gx>^ , <05 v> = 0 .

u is defined as a solution to

Gxu = -Gxx$$ , <0, w> - 0 .

The vector u is well-defined by (2.2).
We assume that the following (3.1-3) hold true:

(3.1) d = N O ,

(3.2) <#,G«?y>=*= d,

(3.3) <^, Gm$$$>+3<&, Gxx$uy =*= 0 .

Theorem, Suppose (3.1-3) Ao/dy rrae. Then the (3N+2)x(3N+2) matrix
DF is nonsingular.
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Proof. We show the injeetfvfty. Suppose that DF(dl9 dju, 3x, d<fi, di/r)=Q.
We observe that DJF Is represented as follows:

( 0 0 0 2<09 °> 0

0 0 0 0

GA G,* G, 0 0

where a^=^, Gxxx$$y, a^^=^, Gnxx$$y, L is a linear map from RN to RN~l

defined as

Accordingly, we have

(3.4) <?

(3.7) d^G^+d^G^+G^dx+G^ = 0 ,

Taking inner product of (3.6,7) and ^, we have

0

We putj??=<^? Gxx$dxy. Then, 8^=p^9 G^y/d, dv = —p<T/r9 GA>/rf, since we
assume (3.1). Now 5% Is characterized by

Gfdx =(p/d) (-<^, G^>

Consequently, there is a constant a such that dx = (p/d)v + a$. This and

(2.2) yields

By the assumption (3.2), we have p=0, hence dA=dja=Q. Also, dx=a$. By
(3.4) and (3.7), (50 satisfies aGxx$$+Gxd<f>=Q and <<?, ^0>-00 Therefore we
have d$=au. (3.8) is now written as
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On the other hand, a<o/?s Gxx$$y+(di/s, Gx$y=® obviously holds. Therefore,

a<&> Gxx$wy+<d,/r, Gxwy = 0 (we

It is easy to see that there is a unique fa such that

6» = 0 (ive/Z") , and

We now have d-^=afa by (3.4). We then consider (3.5), which is written
as

= 0 .

By the definition of u and fa, it holds that

<fa, Gxx$$y = -<^1? Gxu> = <fa G

By the assumption (3.3) we obtain a=0. Thus we have proved the injectivity.

H

Remark 2. The condition (3.3) implies that the order of contact is exactly
three and is assumed in [7]. The condition (3.2) is, however, different from
their (3.5) in [7]. Ours does not include theirs and theirs does not include
ours.

Remark 3. Progressing is a numerical experiment in a problem of Kol-
mogorov flows ([3]). In this problem we are concerned with stationary solu-
tions to the Navier-Stokes equations defined in two dimensional flat tori with
different aspect ratios. The Reynolds number and the aspect ratio parameter
correspond to /I and ju in the present paper. The results will be reported in
the future.
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