
PubL RIMS, Kyoto Univ.
27 (1991), 953-994

Application of Fusion Rules to
Classification of Subfactors
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Abstract

By the technique of Longo's sector, the following two results are obtained. (1) A proof
is given to Ocneanu's announcement about the non-existence of paragroups for Coxeter gra-
phs E7 and A>dd- (2) Subfactors of the type IIIj AFD factor with index 3 are classified.

§1. Introduction and Main Results

V. Jones theory of index [J] for subfactor of type l\ factors suddenly arous-
ed people's interest on classification of subfactors. A. Ocneanu [Ol, O2] has
announced complete classification of subfactors of type l\ hyperfinite factor
with index less than 4 in terms of the concept of paragroups associated with
Coxeter graphs. While his announcement has not been fully published, some
further analysis and classification has been obtained by S. Popa [PI, P2].

While these results are about subfactors of the type l\ factors, the notion
of index by Jones has been extended to subfactors of infinite factors by H.
Kosaki [Kl] and by a further work of F. Hiai [H].

About 10 years before Jones' first definition of his index, S. Doplicher, R.
Haag, and J.E. Roberts [DHR] developed the notion of statistical dimension of
sectors in connection with quantum field theory or, more precisely theory of
local observables. It turns out that this notion corresponds to the square root
of the index of the subfactor, given by the localized morphism for the sector
concerned. In recent works of R. Longo [L15 L2] this connection between
the statistical dimension and the Jones index has been clarified and a new defini-
tion of the index of subfactors of infinite factors has been given. Moreover
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R. Longo introduced the notion of sectors of an infinite factor M, denoted
Sect(M), and an involutive map called conjugation in Sect(M)3 both in analogy
with the case of quantum field theory. These and their properties? as describ-
ed in Section 23 will be our basic tools.

Among the announcements of A, Ocneanu9 one curious feature is the non-
existence of paragroup for Coxeter graphs E7 and Dodd, one of the two main
results of the present work is a proof of this non-existence result (Corollary 3.9),
based on Longo's theory of Sect(M). While the non-existence of E7 paragroup
follows from a simple consideration on the statistical dimension of sectors3

the non-existence of Dodd paragroup follows from the fusion rules of sectors.
In Section 3 we calculate fusion rules of sectors associated with Coxeter graphs
An and Dn. If we assume the existence of DQdd paragroups, the calculated
fusion rules are found to be inconsistent with the Perron-Frobenius eigenvectors
of incidence matrix of the Coxeter graphs, thus proving the result.

The other main result of present work is a complete classification of subfac-
tors of type 11^ AFD factors with index 3 (Theorem 5.1). If M and N are type
III]. AFD factors3 N being a subfactor of M with index 33 then we show in
Section 5 that there exists a pair of type IIj AFD factors R and P, P being a
subfactor with index 3 and MuN is isomorphic to R®M0'DP®MQ for the
type IIIj AFD factor MQ. This has been conjectured for a general case of
finite index by H. Kosaki and R. Longo [K23 KL]. Our result implies that
the classification of subfactors of the type 11^ AFD factor with index 3 is exac-

tly the same as the classification for the type IIj AFD factor, namely, if the
principal graph is D4 then N is the fixed point algebra of M under the unique
outer action of Zz and, if the principal graph is A5 then there exist a subfactor
L of N and an outer action of S3 on L satisfying

As a technical tool for the above-described classification, we give in Sec-
tion 4 a characterization (Theorem 4.1) of fixed point subalgebras of infinite
factors under outer actions of finite groups. As a kind of generalization of this
result, we give a characterization (Proposition 4.2) of depth 2.

After this work was completed, we received the paper of Y. Kawahigashi
[Ka]. He proves the non-existence of E7 and Dodd paragroups and the existence
of Deven paragroups by the argument of Ocneanu's connections of graphs.

This paper is a revised version of preprint Some results on classification of
subfactors.
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§2. Technical Preliminaries

Throughout this paper we assume that von Neumann algebras have sepa-

rable pre-duals and Hilbert spaces are separable. Let M be a von Neumann

algebra and N be its von Neumann subalgebra. We denote by End(M) the

set of unital normal endomorphisms of M and by E(M, N) the set of faithful

normal conditional expectations from M to N. If M and N are factors and

E<=E(M, N), Index E denotes the Kosaki index of E [Kl]. If Ml)Nl)L are

inclusions of factors and E1^E(M9 N), E2^E(N, L), then

Index E2oEl = (Index Ei) (Index E2) . (2.1)

We denote by [M: N]Q the minimal index of F. Hiai [H], namely the minimum

of Index E for E eE(M, N)9 which exists. If peEnd(M) such that p(M) =

N, we define the statistical dimension dp by dp=([M: N]Q)1/2.

2.1. Sectors and Conjugate Sectors. Almost all results quoted in this and next
subsections are in [LI, L2]. Let M be a type III factor and pl9 p2^End(M).

pl and p2 are said to be unitarily equivalent if and only if there exists a unitary

u&M such that

Pi = Adu°p2 ,

We denote by Sect(M) the quotient of End(M) by unitary equivalence. We

call elements in Sect(M) sectors. If peEnd(M), we denote by [p] its class in

Sect(M).

Sect(Af ) can be equipped with sum and product which satisfy associativity

and distributivity. For given pl9 /o2eEnd(M), we define the sum [pJStpJ
and the product [pj [p2] as follows. Since we assume M to be a type III f actor ,

there exist non-zero projections pl9p2^M and isometries vl9 v2eM such that

Pi+P2 = 1, vf- v? = pi9 i = !92.

We define peEnd(M) by

and

[Pi]©[p2] = M? [Pi] [Pj = [P! Pj .

These sum and product do not depend on the choice of pl9 p2 in their classes

and on the choice of v1 and v2. They satisfy associativity and distributivity.

We say that peEnd(M) is irreducible if and only if M r\p(M)'= C. If
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dimM np(Af)'<oo we can perform irreducible decomposition as follows.

Let ip;} be minimal projections in Mr\p(M)' with ^pt = l and {v,-} CM be

isometrics with vi vf=pt. If we define p,.eEnd(M) by

p.(x) = vf p(x) vi9 x^M9

then [p] = @[pi] and pi is irreducible. This decomposition does not depend on
*

the choice of {pt} and {vj. Note that dimAf np(M)'<oo is always satisfied
if Jp<oo.

To define conjugate sector., we need the notion of M—M correspondences
[P3].

A (separable) Hilbert space H is called an M—M correspondence if and
only if H is an M—M bimodule and left and right actions of M are o weakly
continuous. M—M correspondences Hi and H2 are said to be equivalent if and
only if there exists a surjective isometry u: HI->H2 commuting with left and
right actions. Let H be an M—M correspondence and H be the conjugate
Hilbert space of If, i.e. there exists a surjective conjugate isometry from £&H
to £e/7. We define the conjugate correspondence of H by H in which the
M—M bimodule action is defined by

**<?«> j=j*°f°;c* for

On the set of unitarily equivalent classes of M—M correspondences, we define
the involution by the conjugate correspondence.

Let H be a standard Hilbert space of M and / be a modular conjugation.
Let p^End(M). We define the M—M correspondence Hp by

x*£*y = p(x)Jy*J( for £e#, x,y<=M,

In [L2, Corollary 2.2], R. Longo shows that p-*Hp induces natural bijection
between Sect(M) and the set of unitary equivalence classes of M—M correspon-
dences, and he defines conjugation in Sect(M) by conjugation in the latter. If
peEnd(M), we denote by [p] the conjugate sector of [p] and3 for simplicity,

by p one of representatives of [p]. The conjugation defined above satisfies
the following relations.

= ©w,
i i

[Pi] [P2] = [fly] Kl »

R = [a-1] if
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We call peEnd(M) self-conjugate if and only if [P]=[P]. Note that ae
Aut(M) is self-conjugate if and only if a2 is inner.

Remark. If M is a type IL factor, we can define Sect(M) in the same way,
and if p^End(M) with c/p<oo? we can also perform the irreducible decompo-
sition. To see this, it suffices to show that every non-zero projection in M fl
p(M}' is infinite. See Appendix for the proof.

2-2. Canonical Endomorphisms and Implementations of Conditional Expecta-

tions Let M and N be properly infinite factors, N being a subf actor of M, and
& be a cyclic and separating vector simultaneously for M and N. (Such a vec-
tor always exists). R. Longo defined the canonical endomorphism r®'- M-*N

by

where /^ =/§•/& is the product of modular conjugation operators /M, JN f°r

M and TV with respect to Q. TQ depends on Q only up to unitaries in N [L35

Theorem 1.1]. He shows in [L23 Theorem 3.1] that if r : M-*p(M) is the can-

onical endomorphism for ^eEnd(M), then [P~I°T}=[P}. This formula gives p

explicitly.
In [LI, Proposition 5.1], R. Longo also shows the following important fact

about implementation of conditional expectations by canonical endomorphisms.
Let MID TV be a pair of properly infinite factors, r°. M->N be the canonical
endomorphism, and EeE(M, N). Then there exists an isometry u^N satisfy-
ing

ux = r(x) u ,
E(x)=u*r(x)u,

We recall the construction of u. Let <p be a faithful normal state defined by

Then there is a unique vector f0^L2(M, £)+ satisfying

?(*) = <*£«,» *o>

We define an isometry u^N' as follows.

Note that the range projection of w0 is e^ in the sense of Kosaki [Kl, page 130].
If we define an isometry u by u=J^uQ /§, then u belongs to J^N' J^=N and
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satisfaies the above conditions.
If M is isomorphic to N and p^End(M) with p(M)=N, then there exists

an Isometry v^M satisfying

vx = pp(x) v , E(x) = p(v*p(x) v), x^M.

Let 0 be a norma!9 unital, completely positive map on M, We can con-
struct a natural M—M correspondence as follows. Let H be a standard Hil-
bert space of M and @ be a cyclic and separatig vector for M. Then @ Is a cy-
clic vector for the opposite algebra M°=JMJ, i.e.

= JMJQ = H ,

We define positive semi-definite sesquillnear form on M®alsM by

(2 *,®tt, 2 K,-® vy) = g

Like G.N.S. construction, we can construct an M—M correspondence out of
this sesquillnear form and3 by using the bijection between Sect(M) and correspon-
dences9 we obtain p^eEnd(M) and fe/f satisfying

^ f> =

If 0=£ and $ Is a cyclic and separating vector for M and N, then

So9 If r(M) uQM=H, we obtain [pE]=[r]. We prove r(M) u®M=H as fol-

lows. Let p be the projection onto r(M) uQM^. Then p belongs to M fl r(M) '
and puQ =0. Since J2 Is a separating vector for M9 pu=Q and pwu* =/
=0. SoQ

JQ
NPJQ

N^JQ
N MJ% n /fi MVfi - /« M/J? n M .

Since <?0 is a separating vector for M, we obtain p=0 and so r(M) u@M=H.
Moreover if M Is isomorphic to N and p^End(M) with p(M)=N, then

[^j?]=M=[p^]. In Sections 4 and 53 we calculate [pp] from the conditional
expectation by the above formula.

2.3. Minimal Expectations and the Basic Construction. Let M" be a properly
infinite factor and peEnd(Af) with 4><°°- The tower associated with
p(M) is [L25 Corollary 4.14]
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This formula enable us to analyze the index theory by sectors. By decompos-
ing [(pp)n] and [(pp}np\, we get new sectors, which we call descendant sectors.

To calculate statistical dimensions of descendant sectors, we use Hiai's mi-
nimal expectation [H].

If MuN are a pair of factors with a finite index and E^E(M, N), the
following are equivalent [H] [LI]:

(i) E is the minimal expectation.

(ii) E\MnN* and E~I\MKN' are traces and E'l\M^Nf= (Index E)E\MnN'.
(E~l is a map from N' to M', canonically defined from E [C, Ha].)

(iii) Index Ee=E(e)2 (index E) for all projections e^N'r\M where Ee=
E(e)-iE(')e\Me.

By (iii), if {et} is a family of mutually orthogonal projections in Mf}N'
with S ei = l, then

S (Index £e.)
1/2 - (Index E)1/2 2 £(*,) = (Index £)1/2.

'

This means that if [p] = ®[pj, then rfp=S 4- for P, p^eEnd(M). This is the
* i *

reason why we use dp instead of the index.
H. Kosaki and R. Longo show the mutiplicativity of the minimal index in

case of the basic construction [KL], and using this, R. Longo shows the multi-
plicativity in general case [L4]. Let M ID TV ID L be inclusions of factors with
finite indices and E1^E(M, N), E2^E(N, L) be the minimal expectations.
Then EloE2 is also the minimal expectation from M to L and so [M: N]0 [N: L]0

=[M: L]0 by (2.1). This means that if pl9 p2eEnd(M) with dPl, dp2< °°, then

®PlP2 = <*Pi ®p2'

Let

M = N^IDN^N^N^"

be the tower associated with the inclusion of factors MnN0, and £i^E(Ni-1, Ns)
be the minimal expectations. If we define En by

then En turns out to be the minimal expectation from M to Nn, and [M: Nn]Q=

[M: NJR+1.
Since En is a trace on M fl Nn by (ii),

is a trace on V M fl N'm . Moreover, if depth of M D NQ is finite, it is well-known
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that <p is the unique trace and values of <p on minimal projections of M fl Ni
are determined by the Perron-Frobenius eigenvector of the principal graph.
[GHJ]

Let p<EEnd(M) with p(M)=N and [(pp)m] = ®[pj] be the irreducible de-
i

composition with {/?,-} the corresponding minimal projections in Mfl
(pp)m(M)r. Then

4, - (Index (^-Op,)"2 = ^^(A) (Index E2m^2 = <p(Pi) (dp)
2™,

A similar calculation holds for [(pp)mp]m So we can calculate dp. from the
Perron-Frobenius eigenvector.

2.4. Characterization of conjugate sectors The most important tool of this
paper is the following theorem.

Theorem 2.1. Let M be a properly infinite factor and plf p2^End(M)

with dPl,dp2<°°. If PI and p2 are irreducible, then the following conditions
are equivalent:

& [PI] [%1 °r [PZ\ [PI] contains the identity sector [id],

(ii) l>J=[Sl.
If P! and p2 satisfy the above conditions, [pj [p2] and [p2] [PI] contain [id]

with multiplicity one,

This theorem is essentially due to R. Longo [L2, Theorem 4.1]. The only
improvement over his theorem is in the condition (i), in which we demand
that one of [pj [p2] and [pj [pj contains [id], instead of both. For the proof
of (i)«=^(ii), we may assume that [pj [p2] contains [id] and also assume that

dPl^dp2 (if not? we can consider [p2] [pj instead). Then his proof for (i)==>(ii)
applies to our case.

Before closing this sections we would like to pose the following question.

Question 2a20 Let M be a properly infinite factor and N be a given subf actor of
M which is isomorphic to M, Can we find a self-conjugate p G End(M) such

that p(M)=Nl

In general, the answer is no. We will show an affirmative case in Section
3 and a negative case in Section 4.

§3o Fusion Rules off Sectors

Let MlDN be a pair of factors with [M: N]<4. Then it is well-known
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that the principal graph is one of the Coxeter graphs An)Dn, E6, E7, E& [GHJ,
Corollary 4.6.6]. Moreover, A. Ocneanu states in [Ol, page 162] that Dodd

and E7 do not appear, but no complete proof has been published until now.
In this section, we compute the fusion rules of sectors, which is the rules of the
irreducible decomposition of sectors, associated with the above graphs and
prove the non-appearance of Dodd and E7.

Let M be a properly infinite factor and p^End(M) with dPl< <x>. Since

M ID Pi(M) ID PjPiCM) Z> P&P^M) ID • • •

is the tower associated with M'Dp^M) as quoted in Subsection 2.3, the Brat-
teli diagram of

is decided by the principal graph of MlDp^M). We saw in Subsection 2.3
that minimal projections in M f! (P\Pif(M}f and M fl (PiPiY Pi(M)' correspond
to descendant sectors. This means that the Bratteli diagram gives fusion rules
of descendant sectors of pl. We show this more precisely.

Let p, ej6=End(AO and \p}= 0 m(i) [p,]5 [P,-] [a]= 0 n(ij) [aj\ be the ir-
ieJ yeJ"

reducible decompositions of [p] and [p,-] [o], where m(i) and n(i, j) are the mul-

tiplicities and n(i,j) may take 0. Then there are isometries {S(i)k}ieltkssit2,...,mi

iT&Miei.se/.i-ij.-Mi.j) in M satisfaying the following.

SS 5(0*5(0? = !, (3-0.1)
iel *=i

nCi.D
S S T(i,j), T(i,j)f = 1 , (3.0.2)
yej" /=i

»CO

P(X) = S S 5(0* />,(*) 5(0? , (3-0.3)
t'eJ A = i

p,-^W = s"csr(U')/ »yW T(tjyf , (3.0.4)
jejr / = i J

mCO nCi,/5

^oa(^) = s is 2 S 5(0* row)/ «>/*) n».7")f -SCOH • (3-0.5)
yej- iei ft=i /=i

Due to (3.0.3) and (3.0.5), the central decompositions of Mf}p(M)' and MR
poo(M)' are as follows.
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Note that {S(i)klS(i)f2}kl,k2 and {S&^T&J^T&J)?^^ are
the matrix units of A(i) and B(j). Thanks to (3,0.2), a minimal projection
S(i)k S(i)$ in A(i) is also written as follows.

e/;\ c/v\* X1 F "Sb(J)k &(l)k — 2j L 2

This means that in the Bratteli diagram of© A(i)d © B(j)9 there are n(i,j)
iei ysr

edges between >4(i) and UQ"), where n(i,j) is the multiplicity of [a.] in [pg-] [a].
We assume that the principal graph is one of An9 DK9 EG9 E7, EB and explain

the details of computations one by one.

3.1. The Case of A2n For An, the corresponding subfactors are constructed
in [J, Thoerem 4.3.2]. The Bratteli diagram is as in Fig. 1.

A/f |Af=C

Fig. 1. The Bratteli diagram in the case of A2n.

First we look at the level of M fl PiPl(M)'=C®C. Since there are two points
in this level, [p^H is decomposed into two sectors. One of these is [id] by the
characterization of the conjugate sector in Subsection 2.4 and call the other
sector as [p2]. The next question is which of two points corresponds to [id].

The answer is the left one. Indeed, since

[PiPiPil = [PiPi] [Pi] = ([id] © fr>J) fa] = [id] fa] © [p2] fa]

we see from the diagram that one of [id] [PI] and fa] [PI] is decomposed into
two sectors. But [id] fa]=[pj is irreducible and then the left one corresponds
to [id],

Next we look at the level of M fl PiPiPi(M) r^M2@C. By the above argu-
ment, we know that fapipj contains fa] twice and hence [p2] [PI] contains fa].
We call the other irreducible component of [p2] [PI] as fa]. By repeating such
an argument, we get Fig. 2? where each sector is mutually different in each row,
and the following basic fusion rules. ([p0]=[id] in k=® equation.)

K+il [PI] = fa*] © fai+J , k = 09 1, .-, n-2 , (3.1.1)

[P2n-2], (3.1.2)

= lP2k-l] 0 lP2k+l] , k = 1, 2, .», 71-1 . (3.1.3)
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[id]

[PiPi] -- [id]

[PiPiPJ - :

[id] "•

Fig. 2. The diagram of fusion rules in the case of A2tt.

We can also compute the products of other pairs :

Lemma 3.1.

IA*+J b J ^ [%-J © lfo*+J © [?»+ J , fc = 1 , 2, • • • , /i -2 , (3.1.4)

(3.1.5)

= fe-s] , (3.1.6)

= I>2»-J © IflaA © !>»+ J 9 fc = 1 , 2, - , » -2 , (3.1.7)

= I>*.-J © I>*.-J - (3-1.8)

Since [PiPi]=[id]@[p2], we may compute [pzk+1] [PiPi] and
[Pipj instead of the above products because of the uniqueness of the irreducible
decomposition. [p2k] [PiPi] is easily obtained by going down from the level
(p\Pi)k to the level (piPi)k+l (namely by 2 levels), starting from [p2k]. To com-

pute [p2k+i] [PiPi] we use fusion rules of descendant sectors of [pj. It is easy to
see that if dPl<2 the principal graphs of MlDp^M) and MlDp^M) coincide
because MZ)/o1(M) is isomorphic to M^M where MI is the extension of M by

[L2, page 296]. (Or more directly, due to [(PiP^f P^=[(PiP^n ft], dimZ
(Mr\(PiPi)n P1(MY)=dimZ(M n(PiPi)M Pi(M)') and so the principal graph of

), which is one of An, Dn, E6, E7, and ES9 must coincide with that of
Let {[A-]}?-"!1 cSect(M) be the descendant sectors of [ft]. Since

KftPi)* ft] =[(PiPi}k Pil we get [p2k+l] =[^2*+J. And we can compute [p2k+l] [pxft]
from the diagram of {/$,-} fl!1- Q.E.D.

The Perron-Frobenius eigenvector (vj)f=i of A2n is given by v^— (sin — ̂  — )/

(sin * ) (see Fig. 3).
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Fig. 3. The Perron-Frobenius eigenvector of A2n-

As we saw In Subsection 23, we can compute dp. from the Perron-

Frobenius eigenvector:

- -2n+l

sin-'2n+l
Note that dp2n_l=l. This means p2n-l^Aut(M) and we write a=p2«-i

and 6 2 in End(M) have the same image 01(M)=02(Af), there is a

such that 0i=0 2° ft- In other word, if we analyze subfactors by endomorphisms,

we have the ambiguity of multiplying automorphisms from right in the choice

of the endomorphlsm representing the subfactor. In the following proposition,
we see that we can use this ambiguity to cancel a to make all [pk] self-conjugate.

Thus the answer to the Question 2.2 in Section 2 is yes in this case.

Proposition 3020 In the case of A2n, a self-conjugate pl can be chosen such

that [Pk] — [P2n-i-kl ana aH descendant sectors [pk] are self-conjugate. The dia-
gram of fusion rules is as in Fig, 4.

Proof. We go back to Fig. 2. It is easy to see that [02J is self-conjugate

by induction because [id] and [(0i0i)*] are self-conjugate. Since [a] [0i]=[02ii-i]

[ft]=[02»-J by (3.1.2), we get [pj [a"1] =[0211-2] by conjugation. We now show

l>2*-J=l>2ii-2*] W or equivalently [P2k-i]=ia~1} [02«-2*] for k=l* 2
? ° ° ° 9

 n- For

k=\ we know [0J=[a"1] [02n-J by the above argument. By using Lemma 3.1

and induction, we obtain the desired equality.

Due to [0J [«""1]=[02»-2]> we have p2n^2(M)=pl(M) so that we can take
02«-2 instead of 0X. Then [0J is replaced by [0J [a""1]=[0ia"1] and hence

l"fl - [id]

[Pi] - [Pil

[A3]

[pf-1] - ^tpJ - [p2] ^;[/
\Pln] - ['4 ^[p2] ••• ^fPi]

Fig. 4. The diagram of fusion rules in Proposition 3.2.
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[(PiPi)k Pi] turns into [(piP^k PI] [a""1], while [(PIP^] does not change. So we
complete the proof. Q.E.D.

In principle, we can compute every principal graph of MZ)pf(M) from
fusion rules, because

M => pAAf) z> PiPi(M) ID PtPiP&M) =) —

is the associated tower. For example, due to (3.1.7) and (3.1.8) that of M ID
P2(M) is as in Fig. 5.

flh

<m

<j

«% «k t?L . . . — ̂ » ^

Fig. 5. The principal graph of Mz)p2(M) in the case of A2n.

3.2. The Case of A2n+1 The diagram of fusion rules is as in Fig. 6 and the
basic fusion rules and the statistical dimensions of descendant sectors are as
follows.

[id] - [id\

Fig. 6. The diagram of fusion rules in the case of A2n+1.

[P2k+i] [Pi] = [P2k\ 0 Loa+J fc = 0, 1, -, n-l (3.2.1)

[Pa*] bil = [P2k-i] 0 [ft*+J fc = 1, 2, .", n-l (3.2.2)

[P2n] [Pi] = [P2n-l] (3.2.3)

2/2+2

sin-
2^+2

As in Subsection 3.1, p2n^Aut(M) and we write a=p2n- Difference from
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the case of A2n is that a Is self-conjugate and an invariant of the subfactor
Pi(M). [a] plays essential role in Theorem 5.1.

Proposition 13. (i) [p2«-d=M I>J and especially [pn]=[a] [pn]>
(Ii) We can take representatives a and pn such that a is a Z2 action and

where M* is the fixed point algebra under a.

Proof. (I): This is easily shown by induction, (ii): Since [pM]=M [pn],
we can take a representative a such that Pn

=aoPn- As we mentioned at the
end of Subsection 2.1, a2 is Inner and az°pn=pn> Since pn is irreducible so
Mf\ pn(M)' = C and then a2=id. pn(M)dMc6 follows from a°pn=Pn.

Q.E.D.

For later use? we show the following lemma.

Lemma 3.4. If M is the type ///i AFD factor, then we can take pl satis-

fying [Pi][a]=[a}[Pil

Proof. By the work of Y. Kawahigashi, C.E. Surtherland and M. Takesaki
[KST? Theorem 20] , an outer action of Z2 on the type IIIx AFD factor is unique
as a cocycle conjugacy class. As in the proof of Lemma 3.1, If {[AlH-i are

descendant sectors of ̂  then [p2i+i]=[P2i+i] an^ we mav assume that /32ll is
 a ^2

action. So there exists a 0eAut(Af) such that

= [0] M tn -

Since [p2»-i]=:[a] [PI] and [p2n~i]=[^2n] [PI] from Lemma 3.3, we have

[«] [0"1]

and [«] [PI°^]=[PI°^] [«]. We can take ^00 instead of PJ. Then [p2J are un-
changed and in particular [a] remains the same. So we have [pj [<*]=[«] [pj
for new px. Q.E.D.

The principal graph of Ml^p2(M) is as in Fig. 7.

n+\

Q ff\ /r\ ^

© JJ (S F•3 . . . tf \.__ , , n

Fig. 7. The principal graph of Map2(M) in the case of A2n+i-

In [Wl], subfactors with index (sm (/i://) *}* (1=3,4, -, fc=l, 2, »•) appear
V sin w// /
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twice, once in page 360 and once in page 380. Note that the former for k=3
and our MlDpz.(M) have the same principal graphs. Since the graphs in Fig. 5
and Fig. 7 do not coincide with the principal graphs of the latter [W2], for
k=3 the above two subf actors are different. The author would like to thank
Y. Kawahigashi who suggested the author the above difference and showed him
the note of Wenzl's lecture at the Mittag-Leffler Institute in 1988.

3.3. The Case of E6, E7, and EB. Suppose that the principal graph of
Pi(M) is E7. The descendant sectors are as in Fig. 8 where we write only the
principal part.

W\—\Pi\—\p2\—\P*\—\pA—\p,\

(Pel

Fig. 8. The descendant sectors in the case of E7.

We can compute dp. from the Perron-Frobenius eigenvector as before and we
obtain

sn

5 , o TU . TU 18 44 cos2 sin
18 18

This value is not admissible as a statistical dimension [J, Theorem 4.3.1]
[Kl, Theorem 5.4] and hence we have a contradiction.

If we take E6 and Es, we can confirm that there is no problem. Suppose
that the principal graph of AfDp^M) is E6. The descendant sectors are as
in Fig. 9.

[id]—[pj—Ip2J—L^JFpil—l«l

Fig. 9. The descendant sectors in the case of E6.

The statistical dimensions are as follows.

sin TU
i ~ TU j 12 T ~ TU j *dp =2 cos--—, dp2 = , dPz = 2 cos — , da = 1 .

12 TC 4sin
12

As in the case of A2n+l, a is a Z2 action. This is a reflection of the Z2 sym-
metry of bicolored labelled E6. Fusion rules of descendant sectors are as fol-
lows.
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(3.3.2)

[P2] = [f>3Pi] = \PiPj , (3.3.3)

(3.3.4)

(3-3.5)

(3-3.6)

(3.3.3) shows the existence of the following inclusions of factors.

= [M: p3(M)]0 = 2 .

These inclusions suggest the way to construct an inclusion with the principal
graph E6. In [I], we construct p2 on the type llll/(l+^} AFD factor by using
Cuntz algebra O4. From [pi(M)i p2(M)]Q=2, the relation between p\(M) and
P2(M) is the crossed product by a 2T2 action. Using this fact, we also construct
an inclusion of factors with the principal graph E6. The principal graph of
Ml)p2(M) is as in Fig. 10.

Fig. 10. The principal graph of Mz>p(M)2 in the case of E6.

Suppose that the principal graph of M'Dp^M) is £"3. The descendant
sectors are as in Fig. 1 1 .

[p7]
Fig. 11. The descendant sectors in the case of E8.

The minimal statistical dimension of the descendant sectors is given by

min{dp.; i = I, 2, ••- , 7} = dpf. = 2 cos — .

Note that dp.>2 for i =)= 1,6. By computing fusion rules of descendant sectors,
we have the following relations.

(3-3.7)
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= foft] , (3-3.8)

lfls] = beft] • (3-3.9)

From dp(,=2 cos — , the principal graph of MDp6(M) is v44. In analogy with

the case of E6, it is possible to say "EB has A4 symmetry". The principal graph

of Ml)p2(M) is as in Fig. 12.

© J

„ 1

& 1

, ^

1 *»

Fig. 12. The principal graph of Mnp2(M) in the case of E8.

3.4. I7ze Ca.se of D2n+3- Suppose that the principal graph of M~Dpi(M) is
The descendant sectors are as in Fig. 13.

[iff]

Fig. 13. The diagram of fusion rules in the case of D2n+3.

The basic fusion rules are given by

, k = 0, 1, .», n-1 , (3.4.1)

[ft.] , (3.4.2)

I] , k = 1,2,-, n-1, (3.4.3)

»+J © [ft«+23 • (3.4.4)

The statistical dimensions are given by

=_
7T

sm
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_

2sm
4n+4

We note that [pJ3 i=Q, 1, ° ° ° 3 2n+l, 2n+2 must be mutually different, for
example due to the difference values of their statistical dimensions. [p2«+J
[p2n+2l also must be different because if not, the principal graph changes.

4 sin2

4/2+4

Proof. Due to rfp = Jp = - and the multiplicativity of the
2 2 2 _

4«+4
statistical dimension, the equalities hold. Q.E.D.

Lemma 3.6, (i)

fen- J [ft] = [ft*- J ® [ft*+J ® [ft** J , k = l,2,-",n-2, (3.4.5)

[Pj[ft] = [ft]®[ft], (3A6)

[ft.- J [ft] = [ft.-J © [ft.-J ® [ft.+J 0 [P2»+2] , (3.4.7)

[ft.+J [ft] = tft»-i] © [ft»+2] , (3.4.8)

[P2n+?] [ft] = [ft.- J 0 [ft,+ J , (3.4.9)

[ft*] [ft] = [ft*-J © [ft*] © [ftA+2] , fc = 1, 2, -, fi-1 , (3.4.10)

[ft.][ft] = [ft.-J®2lftJ. (3.4.11)

(ii)

[ft«+i] [ftft+i] = [ft«+2] [ft»+J
= [ft(.-«l® [ft(.-»+i)]®-® [ftj , * = 0, 1, -, n-1 , (3.4.12)

[ft»+i] [ft.+J © [ft»+i] [ft»+2] = [id] © [ft] ® - © [ft.] - (3.4.13)

(iii)

[ft»+i] [ft.+ J [ft] = [ft] © [Pj © ' ' ' [ft.1 © [ft»+i] [ft.J , (3-4. 14)

[ft»+i] [ft,+J [ft] = [ft] © [ft] © -[ftj © [ft»+i] [ft.+J • (3.4.15)

Proo/. (i) : This can be obtained in the same way as the proof of Lemma
3.1.
(ii): For k=0, we already have frwj [/Oi]=[ft»+2] [ft]=[ft«]- For A:=l, the
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equality holds from [p2n+i][Pi][P2]=[P2n+2][Pi][p2]=[P2n][P2] and (i). In the
same way, general case holds by induction.
(iii) : From (i) and (ii), we obtain

L°2«+J [P2n+l] [P2] = [P2n+l] ([fyn-l] 0 [p2n+2\)

= [P2\ © [Pj ffi- ffi [P2n] ffi [P2n+l] [P2n+2] -

Second equality is shown in the same way. Q.E.D.

Theorem 3,1, Let M~DN be a pair of properly infinite factors with M^N
and [M: N]< oo . Then the principal graph of M"^>N is neither E7 nor Dodd.

Proof. In subsection 3.3, we have seen that E7 can not appear. Suppose
that the principal graph ofMnN=pl(M) is D2w+3. In (3.4.13), [id], [p2], — , [p2n]
divide into two groups. By characterization of the conjugate sector in Sub-
section 2.4, [p2n+i] [P2n+i\ contains [id]. So, the right hand side of (3.4.15) con-
tains [id]. Then, [p2n+i] [^+2] on the left hand side must contain [p2]=[p2].

We now investigate the balance of the [p2] term in (3.4.14). On the right

hand side, [p2] appears twice, once as [p2] and once in [p2n+i] [p2n+2\ as we have
seen. On the left hand side, [p2n+i] [fyn+i] is a partial sum of the terms on the
right hand side of (3.4.13), among which only [id], [p2] and [p4] can produce [p2]

after being multiplied by [p2] from right. Since [p2] is in [p2n+i] [p2n+2\, it can

not be in [p2n+i] [p2«+i]- Therefore [p2n+i] [p2n+i] must contain [pj.
By repeating the same type of arguments, we get the following equations.

The case of odd n:

[P2n+l] [P2n+l] = Ud] © [P4] ffi- © [p2n-2] ,

[P2n+l] [P2n+2\ = [P J © I>J © ' ' ' © \P»A -

The case o/even n:

[P2n+l\ [P2n+l] = [M\ © |>J ffi- ffi [P2n] ,

[P2n+l] [P2n+2\ = M ffi- ffi I/>2»-J -

By Lemma 3.5, dp2n+l p2n+l=dP2n+1 p2w+2. But this is impossible because of dp.=

sin((i+l)/(4n+4))* i=l 2 a> ^ and tfae additivity of the statistical dimen-
sin(7r/(4n+4))

sions. (Note that dPk<dPl if k<l<2n.) Q.E.D.

To obtain the result in general case, we need the following lemma.

Lemma 3.8. (R. Longo [L4, Lemma 2.3]) Let MI3N be a pair of factors.
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Then there exists a factor L such that M®L is isomrophic to

Corollary 3B90 Let M ID N be a pair of any factors with [M : N] < °o . Then
the principal graph of Mil N is neither E7 nor Dodd.

Proof. Since the principal graph dose not change after taking tensor pro-
duct, we may assume that M and N are properly infinite and M is isomrophic
to N due to Lemma 3.8. Then Theorem 3.7 applies. Q.E.D.

3.5 The Case of D2n+2. Suppose that the principal graph of M"Dpi(M) is
An+2- The diagram of fusion rules is as in Fig. 14 and the basic fusion rules
and the statistical dimensions of the descendant sectors are as follows.

[id]
[PJ

[P-PI\

[(piPif'Pil - [PI! •«• "Myj>2n-i]
KPi7>iT\ - k/T^ \[p2] ... \p2n-2\ [AiJ^^rP2n+iJ

[(/>iA)nPil - ^[Pil ••• ^[p^-J

Fig. 14. The diagram of fusion rules in the case of D2n+2.

[P2k+i] [PI] = [P2k] 0 K+2] , k = 03 1, ..-, n-2 , (3.5.1)

[P2w-il [PI] = [P2»-J ® [P2n] ® IA.+J , (3.5.2)

l>a] [Pi] = l>a*-J ® l/fc+J , ^-1,2, »., n-1 , (3.5.3)

[P2J [PI] = [P2,+i] [Pi] = [P2«-i] - (3-5.4)

*«~~ ;rsin-

: 2sin-
"K - 2 cos — /i = 2

>2 TI > 2.

By a similar argument as in the proof of Lemma 3.6, we get the following fu-
sion rules
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[P2n] [P2k] = [P2n-2k] © [ton-2k+A ©-0 b2w-2] ' (3.5.5)
0 [P2n] for even k ,

[P2n+l] [P2k\ = [P2.-2*] 0 [P2-2W*! 0-0 [Pa-J I

© [p2n] for odd k ,

© [P2»+J for even k ,

for

j 0[P*] [Pan-i] = [id] 0 [P2] 0- © [P2K-2 l
© L^2n] for even n ,

I © [P2n+l] [P2n+l] = [id] © [p2] © '' • ffi [P2n-^ . ^
. © LP2n+J for even

(3.5.7)

© [p2B] for •

(3.5.8)

Proposition 30108 ^T n is odd, then [p2n+i] is the conjugate sector of [p2n]

and the following fusion rules hold.

[ton] lP2n] = [P2] © [Pj ffi-bzn-J © [P2.+J , (3-5.9)

[P2«] [Pa,+J = M © [P4] ©-[P2i.-al © !>2.-2] - (3.5.10)

!/*« is even, then [p2n] and [p2«+i] are self-conjugate and the following fusion rules

hold.

[P*n] [ton] = [id] © [Pj ©- © [P2.-J © [P2.1 , (3-5.11)

[ton] [P2n+l] = [pj © K] ©- © [P2.-J • (3-5.12)

Proof. Suppose that n is odd and [p2n] is self-conjugate. As in the proof

of Theorem 3.7, the following fusion rules hold.

[P2J [ton] = Pfl © [PJ ©- © [P2.-J © [P2.-21 ,

[P2.1 [P2.+J = [PJ © K] 0- © [P2.-J © [P2.+J -

Since we assume that [p2n] is self-conjugate, [j02»+J is a^so self-conjugate. By

conjugating the second equality, we obtain

[P2.+J [P*.] = [PJ ©be] ©•••©[Pa.-J

On the other hand, from the symmetry between [p2H] and [p2»+i]> we also obtain

[P2»] [P2»+J = bd © be! ffi- © b2«-4] © [P2»l •

But this is impossible because [p2n] and b2»+i] are different sectors. (If b2n] =

[p2»+i], the principal graph is not D2n+2.)

Next, suppose that n is even and [p2»+i]=[p2ll]. In the same way, we have
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lP2n] [P2n] = L°J 0 foj 0- © [ ,̂-J ,

- © [02.-J © [ftJ •

By conjugating the second equality, we obtain

[P2n] [P2n+l] = W] © [pj ffi"' 0 l>2«-

And we get a cotradiction. By the same argument as in the proof of Theorem
3.7, we have the fusion rules. Q.E.D.

The difference between D4n and D4n+2 we saw above is stated by A. Ocneanu
in [Ol, page 157], but no proof has been published until now.

We compute the statistical dimensions of the right hand sides of fusion
rules in Proposition 3.10.
The case of odd n:

^4k-l „
C«-D/2 C»-D/2

^C~1 J i J 'V"!

k=l 4*~ H+1 k=l ^ ^sm 2sm-
4n+2 4n+2

. 4^-3sin -
Cfi+i5/2

. 7ZT
sm-

It is easy to show

*=i \ 4^+2 4/2+2 / 2

case o/even n:

. . .
01 j-l

It is also easy to show
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4n+2

Then there is no contradiction.
The principal graph of Mnp2(M) is as in Fig. 15.

Fig. 15. The principal graph of MDp2(M) in the case of D2n+2 n>2.

§4. Characterization of Fixed Point Algebra and Stibfactors with Depth 2

First we prove a theorem of H. Kosaki, A. Ocneanu, M. Pimsner and S.
Popa [K3] [PP1, Corollary 1.1.6] by using sectors.

Theorem 4.1. Let M~DN be a pair of properly infinite factors with [M:N]
and M fl N'=C. The following conditions are equivalent.

(i) There exists a finite group G and its outer action a on M such that
N=M« and \G\=[M:N]0.

(ii) If r: M-*N is the canonical endomorphism and [r] = 0[p,-] is irreducible
i

decomposition, then dp.=l, i.e. [r] is decomposed into automorphisms.
If the above conditions are satisfied, then

[r] =!£[«,].

Proof, (i) ̂  (ii): We assume (i) and define E e E(M, N) by

- ——- 2 aJx) for

In Subsection 2.3, we saw that from E we can construct an M—M correspond-
ence and, by using the bijection between Sect(M) and the set of unitary equiva-
lence classes of M—M correspondences, we obtain p^^End(M) such that
[pj=[r]. We show [PE]= © [orJ. Let & be a cyclic and separating vector for

£€E£

M (and equivalently M') and {Sg}geGc.M be isometrics satisfying S SgSf = l.
We define p' e End(M) by
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fl'(x) = ^Sgae(x
&&G

Then

^ <ag(x) Oy
*e<?

It suffices to show p'(M)£M=H. Since a is an outer action,
0 £75. Sj, and the projection p onto p'(M) £M belongs to © CSg Sf. From

jreff 1 S^G
SgSf£ = —7==SgQ3=Q, p can not be orthogonal to Sg Sf for any

which implies /?=!. Hence we obtain p'(M)5M=H and so we have [PE] =

® [«j.
*e<?

(ii) =^> (i): First we assume (ii) and M—N. We take p, p^End(M) such that
p(M)=N. From Subsection 2.2,

[r] = D*?] = 0 b,] . (4.1.1)

Since [pp] is self-conjugate, {[pj} is a self-conjugate set, i.e. {[>;]} is invariant
under inverse because conjugation and inverse are equivalent on Out(M).
Multiplying both sides of (4.1.1) by [py] from left, we get

[PJ P] IP] = 0 [PJ] [Pil

and, from above observation, it follows that the right hand side of this equality
contains [id]. Since [PJ p] is irreducible because [p] is irreducible and [PJ] is
an automorphism, this means that [p. P]=[P] by the characterization of the con-
jugate sector in Subsection 2.4 and hence

0 Ipjl iPi] = ® \flA -

Since [pp] contains [id] with multiplicity one, every [pJ is different and {[pj}2-
is a subgroup of Out(M). We write G=i[pi]}={[o^g]}geG.

Once we fix representative peEnd(M), we can take o^eAut(M) such that
agop=p. This choice makes {ag} an outer action of G. Indeed, agoag/oajg,
is inner for g, g' e G, and

agoag,oajg,op = agoag,op = agop = p .

Since p is irreducible, this means ag°ag,oajg/=id. So {<o }̂ is an action of G
and MGZ)p(M). By comparing indices, we get p(M)=MG and have (i).
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In a general case (where M^N does not necessarily hold), we define /3e
End(M®N) by

p(x®y) = y®r(x) for x<=M, y^N . (4.1.2)

It is easy to see that p is irreducible. /3 is self-conjugate because

r = r®r\N: M®N-> N®r(M)

is the canonical endomorphism and the equality r—P2 holds. By the charac-

terization of conjugate sector in Subsection 2.4, [p]2=[r]®[r ltf] = ©L°i]®[7' \N\
i

must contain [idM]®[idN] with multiplicity one. Therefore one of [p{] is [idM]
and, [r\N] contains [idN] with multiplicity one. By the same argument as
in the case of M—N, we see that G={[p{]®[idN]} is a group and we get an
outer action {ag} cAut(M) such that {[ag]} ={[Pi]} and (ag®idN)op=fi. Due
to (4.1.2), we obtain NdMG. By comparing indices, we get N=MG. Q.E.D.

In a sense, the following proposition is a generalization of Thoerem 4.1.

Proposition 4.2. Let M be a properly infinite factor and peEnd(M) with

dp<oo and Mftp(M)'=C. If [pp]= 0 n{[at] and [pp]= © ma[fta] are irre-
i «

ducible decompositions "where nf and ma are the multiplicities, then the following
conditions are equivalent.

(i) The depth of M D p(M) is two.
(ii) The depth of Ml3p(M) is two.
(iii) M n PPp(Mj is a factor.

(iv) M n ppp(M)' is a factor.
(v) ni=d06.for alii.
(vi) ma=d$afor alia.
(vii) [a .] [p] =d*. [p] for all i.

Wa}[p}=dpa[p}foralla.

Proof. (i)<=>(iii) and (ii)<^(iv) are obvious from the definition of depth 2

and (iii)<^>(iv) follows from [ppp]=[ppp]. It is enough to show
because (iv)<^(viii)«=>(vi) is shown in the same way.

(iii) =^> (vii) : (iii) means that [ppp] is a multiple of an irreducible sector.
Since [pp] contains [id], [ppp] must be a multiple of [p]. Then

and hence [^i][p]=da.[p]s where the multiplicity d^. has been determined by
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the relation da.op=da. dp due to the multiplicativity of the statistical dimension.
(vii) =^> (v): Multiplying [PP]= 0 n^a.] by [ffij from left, we have

because [ay] must be an element [aj of the self-conjugate set {[a{]} and d^.^d^^
This means that the right hand side contains [id] with multiplicity dc6j and so

(v) =^ (iii): Since [cey] [PP]:= 0 ^.[a/] [«J contains [zW] with multiplicity rf-y,

[ffiy] [p] must contain [p] with the same multiplicity. But we have daj.op=dajdp

from the multiplicativity of the statistical dimension. Therefore, [&J][P] =
daj[p] Q.E.B.

The relation [p,-] [P]=[P] means that p(M) is included in Mpi for some rep-
resentative pi of [pj. So if p satisfies the conditions of Proposition 4.2, in
particular (vii), p(M) is a kind of generalized fixed point algebra. In fact9 A.
Ocneanu announced that depth of M ID N is 2 if and only if the relation of
MuNis the crossed product by a Kac algebra action.

For more detailed analysis, we need intertwiners= Let pl3 p2GEnd(M).
We define H(p1? p2) as the set of inter twiners from pl to p2:

H(pl3 P2) = {veAf; vp^x) = p2(X) v for

If Px is irreducible, H(pls p2) is a Hilbert space with (vl9 v2) = vf8 vl9 vl9

H(PI, P2). Indeed, since vfeH(p2, p^,

V? Vj PiW = V? P2(X) Vj = PiW V? Vi

and so v? VjGC. We write H(p) = H(iW, p).
When [PP]= 0 [a ] i.e. 66[pp] is decomposed into elements of G'\ it is natu-

g<=G

ral to ask what [pp] is. The answer: "[PP] is decomposed into elements of G'\
We show this more precisely. Since we assume the conditions of Theorem 4.19

p satisfies the conditions of Proposition 4.2. So the irreducible decomposition
of [pp] is as follows :

[PP] = ©4r[Ar] where dff = d^

and [^J [p]=<4[p] is satisfied. By conjugating [ag] [p]=[p], we have [p] [<*g] =
[p] and this means that there is a unitary Ag^M such that /^eH(p, poag). In
fact, a stronger statement holds. From the duality of the fixed point algebra
and the crossed product [J, page 7],
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Ml = MXIG
a

where Ml is the extension of M by p(M). On the other hand, there exists
x), an extension of p, which satisfies p(M1)=M [L2, page 296], and so

XI G.
oOJo p"1

Then there exists a unitary representation {Ag}geGCLM sucn that

P°ag(x) = (poo^op

Let {W(X)C} be an orthonormal basis of H(p, #r°p) and we define matrix
elements P,(x)ab=W(a)* J9v(x)W(a)b. By the definition of H (p, fop),

P<r(p(x))ab=®abP(x), i-e. p(M} is diagonal. Since

P&,\i P(X) = 2 /?

= 2 ^flc

b is proportional to ^ and we write

It is easy to see that the matrices ^<- ,a> form a unitary representation of
G. Moreover, it is irreducible for each G and if o^o29 then ^<( e

5^i> and
^•j a2^ are disjoint. Indeed, if ro<-, a> were reducible, by changing the basis
of H(p, #r°p), we would have

/ J

By easy computation, we can check

S w(o\ w(o)^^^a.(xG)9 pj(p(M))y n M = #T(M)' n -

Since pv is irreducible, this implies 2 W(a)a W(o)% = l and / must be empty.

If rc<- , ax> and TC<- , a2)> are equivalent, we may assume that TC<- , (71>=7c<-, a2>
by a change of basis. We define i7=2 W^Oi)* FT(cJ2)*. Then Z7 is unitary and

U P<r2(x)=Pa-fa) U, i.e. [^oJ^lAJ.
Note that dim7r<», ay=da. is the multiplicity of [#J in [pp] and 2 ^J= I G|.

(7

This means that 0rfo.-^<-, ^> is equivalent to the regular representation of G.
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In fact we see the coaction of G. We write [PP}=
°"e<9

Proposition 43* Let M be a properly infinite factor and p GE End(M ) with

[pp] = © [a ] where a is an outer action of a finite group G. Let ft^, dff and
SS=G.

™^g, °y be as above. Then,

(i) Each tf<% <7> is an irreducible unitary representation,

(ii) If a 1 4= 02> then K < • , o^> and rc< - , ^ ®re disjoint.
(lii) Ifoi(S)02—@ni

aoi is the irreducible decomposition where n{ is the mul-
i

tiplicity ofot, then [/3ffl] [A

Proof. It suffices to show (lii). Since depth of Ml)p(M) is 2, the irre-

ducible components of [/^J [^J belong to {[/flo.]} .̂ We start from [flj

©w/[^o-] and prove ^i®^^1^©^0^/- F°r simplicity we sometimes omit 6V5.
i z i

Since [&] [^J [p]=4 4[p]? dimHO, ̂ 0^0^)=^ 4. We have two different

basis of H(p, AO^OP). Let {£/(*,-),}, be a basis of H(^,A0A)- Then

{^(ff,-)i ^(^/X}!,*.* i§ a basis °f H(p3 A°A°P). On the other hand it is easy to
check that iPi(W(o^b) W(a1)a}a>b is another bais of H(p9 A°/?2°p)« Since

and

U(o.\ W(a.)f

we obtain ffi®^—©^0^-- Q.E.D.i

CoroHary 4 A* Let M be a properly infinite factor and N be the fixed point

algebra of M under an outer action of a non-commutative finite group G. Then

there exists no self-conjugate endomorphism p such that p(M)=N.

Proof. From Proposition 4.3, we get [PP]^F[PP] because <4> 1 for some a

if G is non-commutative and hence M=l=[^]. Q.E.D.

For later use, we generalize Proposition 4.3. Let M" be a properly infinite

factor and peEnd(M). Assume that p satisfies the conditions of Proposi-

tions 4.23 i.e. the depth of MZ)p(M) is two. Then the irreducible decomposi-
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tions of [f>p] and [pp] are

\pp] = ®dg[ag] , \pp\ =

Let {V(g)t}t and {W(a\}a be basis ofU(p, p°ag} and H(p, p,°js\ and p£x\t =

W(a)* fox) W(a\ as before. Then &<Kfe),).. tfx)=poat(x) ^(V(g\^ and
hence PJ(V(g)^at is a linear combination of {V(g\}t. We write

S *«*<& °y V(g)j. We use the following convention.

Note that [agl] [a J and [AJ [/ffffj are always decomposed into {[ag]} and

{[̂ ]>-

Proposition 4.5. Let M be a properly infinite factor and peEnd(M) such

that the depth of MlDp(M) is two. If {V(g\}i9 {W(a\}a and <|<g, d> are as

above, the following statements hold.

(0 «£> °y is unitary.

(ii) If KJK2] = ©^-KZ-] ^« SC<gi^>®^<g2*ff> « unitarily

equivalent to (Bx'^g., o^® ln.. Moreover, there is a unitary which
i l

induces the above equivalence simultaneously for every pair (a, b).

(iii) //[^J^J-em,^.], then 2 *?'<g,*i>® *."<&*«> is unitarily

equivalent to @n{k(g, ^,-^® 1m,- Moreover, there is a unitary which

induces the above equivalence simultaneously for every pair (j, k).

(iv) For fixed a, g-^n[ r<(g, a> w a representation of the fusion rules of

{[a$> i"e- [ag]~^7Ulr<\S> °y preserves the sum and the product.
(v) For fixed g, a-*nm

tr(g, a> is a representation of the fusion rules of

M.
(vi) M is generated by p(M) and {V(g\}gti.

Proof, (i): Since

= S (2 **i
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=2 ^&a> *'cl<g, °> V(gft V(g),

= 2 3J<^> <#<?,*>•

(ii) and (iii) can be proved in the same way as the proof of Proposition 4.3.

(iv) and (v) are direct consequence of (ii) and (iii). (vi): Let N be a von

Neumann algebra generated by p(M) and {F(g)J^. Let v be an isometry in

H(pp) and/= vv*. Then M is generated by p(M) and /, (/is the conditional

expectation from p(M) to pp(M) [L2]), and it suffices to show that v^N. Let

{S(g)i} be a basis of H(o^, pp). By comparing dimension, we see that

ip(S(g\) V(g)j}gti,j is a basis of H(p, PPP), Since H(pp)c:H(p, PPP\ we get
the desired result.

§ So The Classification of the Snbf actors of the Type IR1

Factor with Index 3

Let Rn P be a pair of type H AFD factors with [J? : P]=3. The classifica-

tion of such pairs is well-known [Ol, page 161], [PI]. If the principal graph is

D4, P=Rzz and, if the principal graph is A5, R=QXIS3^P=QX\S2 where Q

is a subfactor of P. The following theorem states that in the case of type IIIj

AFD factors the situation is the same.

Theorem 5.1. Let M be a type ///j AFD factor and N be a subfactor of

M with [Mi N]0=3. Then there exists a pair of type 11^ AFD factors Rl)P such

that R®M01)P®MQ is isomorphic to Ml)N where M0 is a type 7//i AFD factor,

Proof. By a theorem of P. H. Loi [Li, Corollaire 2.4], N is also a type

Illi AFD factor and there exists p^End(M) such that p1(M)=N, If the

principal graph is D4, by Theorem 4.1 N=MZ* and we get the stated result by

the classification of group actions [KST, Theorem 20]. We now assume that

the principal graph is A5. Our aim is to look for a subfactor with index 6 and

an S3 action. The descendant sectors and fusion rules are as follows (see Fig.
16):

[(piPi)2pil - ^[Pi]^ l«][pil^

Fig. 16. The diagram of fusion rules in the case of A5.
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= [«/]© [«

^P! = V 3 , dpa = 2, */„ = 1 .

By Proposition 3.3, [a] is lifted to £~2 action. By Lemma 3.4, we may assume
[fll] [«]=[«] fo].

We consider the following inclusions :

Let E^E(M, Pi(M)). By Subsection 2.2, there exists an isometry veM such
that E(X)=PJ(V* piO) v). Since p1(M

<*)-:p1(M)piofl5opr1
5 there is a unique

A

), p^M05)) and £" is given as follows;

E(x) =

We can define E^E(M, p^M*)) by

Let p0eEnd(M) with p0(M)=p1(M*). We saw in Subsection 2.2 that [POPO]
is calculated from El by using an M—M correspondence and the above relation
means that [POPO] is contained in

[PiPi] © [PI°<X°PI] = [PiPi] © M [PiPi]
= [id]®[a}@2[p2}.

Since this contains [id] with multiplicity one, PO is irreducible and El is the
unique expectation. Then

[M: PQ(M)]Q = Index El = (Index E) (Index £) - 6 .

By comparing statistical dimension, we have

Due to did=l, da=l,dp2=2, pQ satisfies the condition (v) of Proposition 4.2,
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and a possible decomposition of [PQPO] is one of the following.

[POPO] = [id] 0 [ftd 0 2 [ft] where dPl = 1 , </ft = 2 ,

or

[PQP0] = 0 [rj where Jv. = 1 .

In the second case, the relation between M and PQ(M) is given by the crossed

product by a non-commutative group of order 6 due to Theorem 4.1 and Prop-

osition 4.3, i.e.

To reject the first possibility, we need the following two lemmas.

Lemma 5.20 Let p e End(M) with dp = \/~6~- If p is irreducible and [pp] =

[id]@[(%i](&2[a2] is the irreducible decomposition such that dai=l, dc&2=2, then

al and a2 are self-conjugate and the fusion rules are the following.

(5-2.2)

. (5.2.3)

Proof. Self-conjugacy of [aj and [a2] follows from that of [pp]. Since p

satisfies the conditions of Proposition 4.29 [a^ [p]=[p] and [a2] [p]=2[p] hold.

From the first equality, we have

[pp] = K] [pp] = K] [id] 0 [aj K] 0 2[a J [a J .

So, we see that [aJ2=prf| and [aj [«2]= [a2]5
 and by conjugation [a2] [^i]=[^2].

From the second equality, we obtain

2[pp] = K] [pp] = [a2] [id] 0[a2] K] 02[a2] [a2]

Therefore, [aJ2=Pd]©[ai]®[aJ- Q.E.D.

Lemma 5*3,, 7f f/ze assumptions of Lemma 5.2 are satisfied, then [pp] =

@[rt]such that di=l.

Proof. Suppose [Fp]=[W]0[ft]02[ftl such that d?1=l9dp2=2. Since
the depth of MDp(M) is two, we define

W(id) = 1,
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*'.i<*,P>,

etc. as in Section 4. By definition

*<&, tdy = n<fll9 tdy = *<id, fay - 1 , (5.3.i)

* °

We may assume faop=p and a1oa2=a2. Then a\=p\=id as in the proof
of Theorem 4.1. From (5.3.1), (5.3.2), Lemma 5.2 and Proposition 4.5 (iii),
we obtain

*<«i,Pi?=*<"i,id> = l, (5-3.3)

*X«* A>2 = x<<*2, "> = ' (5'3'4)

By changing the basis {K(a2),-},-, we may assume that K\a2, A> is diagonal.
First, we show n<a1,piy= — l. If w<al5 ^>= + l, from Proposition 4.5

(iv) and Lemma 5.2 we obtain

*'r<«2, A>2 - *<W, A>+«<«i, A>+^r<«2, A> - (5.3.5)

From (5.3.1) and this, we also obtain

So, w'r<a2, /ff1>= — 1 or 2. Since w"<a2, &> is diagonal and unitary, this and
(5.3.4) imply

This and 7u^al9 ^)>= + l mean

(«2),) = V(a2)i .

We have also taken fa out of [£J such that fa°p=p. Since p(M) and
{V(aj)i}ij generate M by Proposition 4.5 (vi), we obtain fa=id. This is impos-
sible and we conclude ^<«i, &>= —1.

Second, we show

-1 0~
(5.3.6)

0 OJ V '

From eq. (5.3.5), we now have rc*r<a2> Piy2=Ktr^&2> A> and so ^ir^^ fay=0
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or 1. Since n°(a2, J3^ is unitary and diagonal, this and (5.3.4) imply ntr(®2* fti>
=0o We may assume

'1 0"

o -i •' <5-">
By Proposition 4.5 (v) and [02] [&]=[&] [&]=[&],

Therefore,

Also, the relation [/?2]
2^[^]®[A]®[A] implies

i 01 ri o
o iJ+Lo -i
2 0

_0 0

So a=2 or —1.
In the same way as ^°<0% &X we obtain

*.<«!, A? =

By changing basis { W(J32)a}, we may assume

1 0

.0 -lj ' (5.3.8)

b 0

0 0

where b=2 or —1, as before. Since ^Xa2» ft2} is unitary9 if a or b is 29 then

rl 0 0 On

0 1 0 0
0 0 1 0

L0 0 0 -1 J

Since p(M) and {V(a.).}.. generate M, this and eq. (5.3.8) mean
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This is impossible because /?2 is irreducible. Therefore we obtain (5.3.6). By
the above argument, we may aslo assume

1 0

-1 0

0 0

But we do not make this assumption because we will make a further change

of the basis {^C#2)cK=i,2< Instead of this assumption, we use the information
that rcfr<a2> /?2> is Hermitian, Spx*r(a2, A>={0, —1} and ntr<al9 ^2y=Q.

Finally we derive a contradiction. By [/0J L#2]=[AJ and Proposition 4.5.

(iii), we obtain 2 ^X0^ A>®7r^<\tt2J A^^S ^f'*<a2» Pi> ̂ X0^ A> is unitarily

equivalent to nij(a29 /32y. Due to (5.3.7), this means that there exists a unitary
t/<EM(2) such that

By changing the basis {W(fl2)a}a=lt2, we may assume

"(»! 0

0 cy9

(if a)!^^, ̂ X0^ A)>=;rf2<Ca2j ^2/>==0 an(i 7r°Xa2j A^ can n°t be unitary.) and

so

'a, 0~

_0 a2_

'b, 0"

_0 b2_

"0 d"

_c2 0_

~o 4~
_4 o_

'

'

'

'

rax 0 hi 0-|

0 ^2 0 62

0 d 04
L c2 04 0-J
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_ r

*."<°i. A> =

From (5.3.6), we obtain ai+a2=—l and Z^+Z^O. Since ^fr<(a29 Pi> *s Her-
mitian and Sp7zrf<(<% /?2>={03 1}? we obtain

2, 4 = 4, a^— |rf1 |2 = 0.

We write as follows.

i 0 b

L c2 0 d 0 J

= |rf |2 ,«i+fl2=-l .

From [A2f=[zW]®[/91]©[/92] and Proposition 4.5 (iii), we obtain that

is unitarily equivalent to

^<^2, id> © ̂ <aa, A> © <y<A, A> -

For i=l, j =2

^X^ A> ® ̂ 0
12<«2? A>+^0

12<«25 A> ® ̂ !2<«2, A> ̂  o © o © ̂ 0
12<«25

This means

'a, 01

_0 a2 \

~b 0~

_0 -6_

~6 0"

0 —6

"0 dl

_d®\-

- 0 0 0 O n

000 0
0 0 6 0

L 0 0 0 -b -

If 6=1=0, we divide by b and obtain

- G! a

0 0
- 0 0

u u -
0 0

a2 —d
ja u%

- u u u u-
0 0 0 0
0 0 1 0

- 0 0 0 - 1 -

Due to a1a2=\d\2, a1+a2=—l,
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Sp

ral d 0 0-,
d —a! 0 0
0 0 a2 — d

L0 0 — d —a^

So al or a2=Q, and rf=0. But this is impossible because n'.(a29 /92> must be

unitary and ai+a2= — 1. We are now left with the alternative fc=0. But this

is also impossible because, b=Q implies |ai| =|i%| =1 due to the unitarity of

«a2, fi2y> while al and a2 are real and a1+fl2= — 1- Thus we reached a con-

tradiction. Q.E.D.

Completion of proof of Theorem 5.1. By Lemma 5.3, we obtain [PO] [pQ]

= © [rj- By Theorem 4.1 and the remark after Proposition 4.2, we obtain

Since [PI(M) : P0(^)l =2, there exists a Z2 action 6 on M such that

Pi(M) = P0(M) XI Z2 .
Po°0°Po~

By the definition of crossed product, there exists a unitary u^M such that

This means [pQ°0]=[p^ and by conjugation, [6] [PQ]=[PQ]. Multiplying both

sides of the equality [PO pj = ©[r J by [6] from left, we have

Therefore [0]e{[rJ} i.e. {id, 6} is cocycle conjugate to a subgroup of {rg}.

Then

From the classification of group actions on the type llli AFD factor [KST,

Theorem 20], we obtain the desired conclusion of Theorem 5.1. Q.E.D.

Corollary 5.4, Let MuN be a pair of factors with [Mi N]$=6 and Mfl

JV"'=C. If the depth of MlDN is two, the relation between M and N is one of

the following.

(i) There exist a group G and its outer action on M such that N=MG.

(ii) There exist a group G and its outer action on N such that M — JVXI G.
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Proof. Suppose the contrary. Due to Lemma 3.83 we may assume that
M and N are properly Infinite and M is Isomorphic to N, because the principal
graph does not change after taking tensor product. (Note that the above two
conditions are characterized by the principal graph of M~DN or the principal
graph of JI/iCAf, where Ml is the extension of M by N [K3] [PP1, Corollary
1.1.6].) Let ^eEnd(M) with N=p(M). Thanks to Theorem 4.1 and Prop-
osition 4.23 [p] and [p] must satisfy the condition of Lemma 5.2. But this
is impossible because of Lemma 5.3.

6.1. In the theory of Ocneanu's string algebra construction., there is no cri-
terion for the distinguished point in the case of general graphs. (In the case of
Coxeter graphs, the following (i) was announced by A. Ocneanu [Ol, page
161-162].) By the arguments of Subsection 2.39 we have the following criteri-
ons for the distinguished point and the existence of a flat connection.

Theorem 6.1. (i) The distinguished point must be the point with the mini-

mal component of the Perron-Forbenius eigenvector.

(ii) If we normalize the Perron-Frobenius eigenvector such that the mini-

mal component is one, all components must belong to {2 cos —; N=39 45 •••} U
[2, oo). »

These criterions essentially follow from the local index formula in [PP2, Corol-
lary 3.2]. D59 E7 and the two graphs of U. Haagerup and J.K. Schou [HS] shown
in Fig. 17 do not have a point satisfying these criterions and hence can not ap-
pear as a principal graph.

Fig. 17. Two graphs in the list of [HS].

6.2. As we saw in Section 3 and just above5 the properties of the statistical
dimensions such as the restriction of the values, additivity, and multiplicati-
vity9 are very powerful for rejecting non-flat graphs. But we can prove Theo-
rem 3.7 solely on the basis of algebraic calculation of fusion rules. We omit
the detail.

6.3. In [Ka] Y. Kawahigashi proves the non-existence of Dodd and E7 para-
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groups and the existence of Deven paragroups by the argument about flatness
of graphs. He also shows the numerical evidence for flatness of E6 and E8.
His method is constructive and this is the strong point of his method. But
it seems very hard to show flatness for general graphs.

The existence of a flat connection of a graph implies indireclty the existence
of consistent fusion rules associated with the graph, through the theory of ope-
rator algebras. But Lemma 5.3 shows that the converse is not true, i.e. the
consistency of the formal calcuration of fusion rules does not necessarily im-
ply the existence of a flat connection. The graph in Fig. 18 is also a counter
example. Indeed, suppose the principal graph of Ml)p(M) is as in Fig. 18.
Then we can take pl such that

Pl(M) = P(M\ [Plf = [id] e [Pl] e bj,
as in the case of A2n. This implies that we can construct pl using the Cuntz
algebra O3 [I]. But direct computation shows that this is impossible.

Fig. 18. An example of a non-flat graph which has consistent fusion rules.

We must clarify the relation between flat connections and fusion rules to
simplify the axiom of flatness,

6.4. It is not hard to calculate fusion rules for Coxeter graphs with the Perron-
Frobenius eigenvalue two such as D£\ E£\ E^ and E^. (Aj^ is not interest-
ing because the corresponding sector is reducible and is a sum of two automor-
phisms.) The method in Section 5 is also applicable to the case of D^ and E$\
But more complicated calculation is needed for the step corresponding to
Lemma 5.3.

6.5. In the theory of the H AFD factor, the counterpart of the notion of the
canonical endomorphism is the canonical shift, and that of self-conjugate endo-
morphism is Choda's roots of the canonical shift [C]. She shows in [C] the
following fact.

Fact 6.20 LetR^Pbea pair of 7/i factors, If[R:P]<4orP is the fixed
point algebra under an outer action of a finite abelian group, then there exists

such that p(R)=P and pz is the canonical shift.

In [I], for every finite abelian group G of order n, we construct self-con-
jugate endomorphism on type IIIi/n AFD factor, whose image is the fixed point
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algebra under an outer action of G, by using Cuntz algebra On. Since an outer
action of any finite abelian group on the type IIIx AFD factor is unique [KST,
Theorem 20], by taking tensor product with the type IIIj factor,, we have the
following fact.

Fact 6o3e Let M be the type 77/j AFD factor and N be the fixed point

algebra of M under the outer action of a finite abelian group. Then there exists

a self-conjugate pGEnd(M) such that p(M)=N.

In analogy with the case of the H AFD factor we make the folloiwng con-
jecture.

Conjecture 6.4. Let MID N be a pair of type THi ASD factors. If [M: N]
<4, then there exists a self -conjugate peEnd(M) such that p(M)=N

In the case that the principal graph of M~D N is /4even3 we saw in Section
3 that this conjecture is true.

§7o Appendix In the Case of Type EL Factors

Proposition 7oL Let M 1)N be a pair of a type II „ factors with [M:7V]0<
oo . Then every non-zero projection in MCiN' is infinite.

Proof. Let rl9 r2 be the canonical traces on M and N9 and let E be the
minimal expectation from M to N. We define a faithful nomral semi-finite
weight by T2oE. Then there exists a unique positive self-adjoint operator h

affiliated with M such that

Due to a\$E=°r*=idN9 aE=idMuN' and ar*°E=Adhi*9 h is affiliated with Z(M n
N'\ and in fact h belongs to Z(M n N') because of dim M f| N' < oo . Let p be
a minimal projection in M n N'. Then hp=cp for some scalar e>0. So

ri(/0=-ri0P)=-*»(£GO).
c c

Since E(p) is a positive scalar we obtain T1(p) = oo. Q.E.D.

The author would like to thank H. Araki for introducing him to the theory
of operator algebras and discussions. He is grateful to M. Choda, Y. Kawa-
higashi and in particular H. Kosaki for stimulating discussions. He is also
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grateful to I. Ojima for introducing him to the theory of superselection sectors
and R. Longo for suggesting him Lemma 3.8.
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Note added in proof: After submitting this paper the author received a preprint of
V.S. Sunder and A.K. Vijayarajan "On the non-occurrence of the Coxeter graphs E7 and D2n+i
as the principal graph of an inclusion of 11^ factors" on the non-existence of Dodd and E7 para-
groups=


