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Application of Fusion Rules to
Classification of Subfactors
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Masaki Izumr*

Abstract

By the technique of Longo’s sector, the following two results are obtained. (1) A proof
is given to Ocneanu’s announcement about the non-existence of paragroups for Coxeter gra-
phs E; and Dogq- (2) Subfactors of the type IIT; AFD factor with index 3 are classified.

§1. Introduction and Main Resuits

V. Jones theory of index [J] for subfactor of type II; factors suddenly arous-
ed people’s interest on classification of subfactors. A. Ocneanu [O1, O2] has
announced complete classification of subfactors of type II; hyperfinite factor
with index less than 4 in terms of the concept of paragroups associated with
Coxeter graphs. While his announcement has not been fully published, some
further analysis and classification has been obtained by S. Popa [P1, P2].

While these results are about subfactors of the type II, factors, the notion
of index by Jones has been extended to subfactors of infinite factors by H.
Kosaki [K1] and by a further work of F. Hiai [H].

About 10 years before Jones’ first definition of his index, S. Doplicher, R.
Haag, and J.E. Roberts [DHR] developed the notion of statistical dimension of
sectors in connection with quantum field theory or, more precisely theory of
local observables. It turns out that this notion corresponds to the square root
of the index of the subfactor, given by the localized morphism for the sector
concerned. In recent works of R. Longo [L1, L2] this connection between
the statistical dimension and the Jones index has been clarified and a new defini-
tion of the index of subfactors of infinite factors has been given. Moreover
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R. Longo introduced the notion of sectors of an infinite factor M, denoted
Sect(M), and an involutive map called conjugation in Sect(#/), both in analogy
with the case of quantum field theory. These and their properties, as describ-
ed in Section 2, will be our basic tools.

Among the announcements of A. Ocneanu, one curious feature is the non-
existence of paragroup for Coxeter graphs E, and D4, one of the two main
results of the present work is a proof of this non-existence result (Corollary 3.9),
based on Longo’s theory of Sect(M). While the non-existence of E, paragroup
follows from a simple consideration on the statistical dimension of sectors,
the non-existence of D44 paragroup follows from the fusion rules of sectors.
In Section 3 we calculate fusion rules of sectors associated with Coxeter graphs
A, and D,. If we assume the existence of D4 paragroups, the calculated
fusion rules are found to be inconsistent with the Perron-Frobenius eigenvectors
of incidence matrix of the Coxeter graphs, thus proving the result.

The other main result of present work is a complete classification of subfac-
tors of type III; AFD factors with index 3 (Theorem 5.1). If M and N are type
III, AFD factors, N being a subfactor of M with index 3, then we show in
Section 5 that there exists a pair of type II; AFD factors R and P, P being a
subfactor with index 3 and M DN is isomorphic to R M,D PR M, for the
type III; AFD factor M, This has been conjectured for a general case of
finite index by H. Kosaki and R. Longo [K2, KL]. Our result implies that
the classification of subfactors of the type III; AFD factor with index 3 is exac-
tly the same as the classification for the type I} AFD factor, namely, if the
principal graph is D, then N is the fixed point algebra of M under the unique
outer action of Z; and, if the principal graph is 45 then there exist a subfactor
L of N and an outer action of S; on L satisfying

M = LXS;DN = LXS,.

As a technical tool for the above-described classification, we give in Sec-
tion 4 a characterization (Theorem 4.1) of fixed point subalgebras of infinite
factors under outer actions of finite groups. As a kind of generalization of this
result, we give a characterization (Proposition 4.2) of depth 2.

After this work was completed, we received the paper of Y. Kawahigashi
[Ka]. He proves the non-existence of E, and D44 paragroups and the existence
of D,,., paragroups by the argument of Ocneanu’s connections of graphs.

This paper is a revised version of preprint Some results on classification of
subfactors.
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8§2. Technical Preliminaries

Throughout this paper we assume that von Neumann algebras have sepa-
rable pre-duals and Hilbert spaces are separable. Let M be a von Neumann
algebra and N be its von Neumann subalgebra. We denote by End(M) the
set of unital normal endomorphisms of M and by E(M, N) the set of faithful
normal conditional expectations from M to N. If M and N are factors and
EcE(M, N), Index E denotes the Kosaki index of E[K1]. If MDNDL are
inclusions of factors and E, €E(M, N), E,€E(N, L), then

Index E,o E; = (Index E,) (Index E,) . 2.1

We denote by [M: N], the minimal index of F. Hiai [H], namely the minimum
of Index E for E €E(M, N), which exists. If o=End(M) such that o(M)=
N, we define the statistical dimension d, by d,=([M: N])*2.

2.1.  Sectors and Conjugate Sectors. Almost all results quoted in this and next
subsections are in [L1, L2]. Let M be a type III factor and p,, 0,€End(M).
0, and p, are said to be unitarily equivalent if and only if there exists a unitary
uE M such that

0, = Aducp,.

We denote by Sect(M) the quotient of End(M) by unitary equivalence. We
call elements in Sect(M) sectors. If p=End(M), we denote by [p] its class in
Sect(M).

Sect(M) can be equipped with sum and product which satisfy associativity
and distributivity. For given o;, 0,€End(M), we define the sum [0,]P[0,]
and the product [0,] [0,] as follows. Since we assume M to be a type III factor,
there exist non-zero projections p;, p,& M and isometries v;, v,& M such that

ntp=1, vv¥=p, i=12.
We define p €End(M) by
() = vy p1(x) Vv, o) vE
and
[0]DBled =[0], [0l [0g] = [0, 04] .

These sum and product do not depend on the choice of o, 0, in their classes
and on the choice of v; and v,. They satisfy associativity and distributivity.
We say that o €End(M) is irreducible if and only if M N (M) =C. If
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dimM N p(M)' <oo we can perform irreducible decomposition as follows.
Let {p;} be minimal projections in M N (M)’ with 33 p;=1 and {v;} CM be

isometries with v; v¥=p;. If we define o, =End(}) by
0;(x) =v¥p(x)v;, xeM,

then [0]=&[p,] and p; is irreducible. This decomposition does not depend on

the choice of {p;} and {v;}. Note that dimM N o(M)'<<oco is always satisfied
if dy<<oo.

To define conjugate sector, we need the notion of M — A correspondences
[P3].

A (separable) Hilbert space H is called an M —M correspondence if and
only if H is an M —M bimodule and left and right actions of M are o weakly
continuous. M —M correspondences H; and H, are said to be equivalent if and
only if there exists a surjective isometry u: Hy,—>H, commuting with left and
right actions. Let H be an M—M correspondence and H be the conjugate
Hilbert space of H, i.e. there exists a surjective conjugate isometry from é € H
to E&H. We define the conjugate correspondence of H by A in which the
M —M bimodule action is defined by

x.EoyEy*ofax* for EEH, x’yEM‘

On the set of unitarily equivalent classes of #/—M correspondences, we define
the involution by the conjugate correspondence.

Let H be a standard Hilbert space of M and J be a modular conjugation.
Let o€End(4/). We define the M —M correspondence H, by

x-E-y=p(x) Jy* JE for é€H, x,yeM.

In [L2, Corollary 2.2], R. Longo shows that o—H, induces natural bijection
between Sect(/) and the set of unitary equivalence classes of M —M correspon-
dences, and he defines conjugation in Sect(#/) by conjugation in the latter. If

o €End(M), we denote by [o] the conjugate sector of [e] and, for simplicity,

by @ one of representatives of [0]. The conjugation defined above satisfies
the following relations.

@[pi] = @m s

[o1] [05] = [0l [o4]
[@] =[e™] if ecAut(M).
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We call p=End(M) self-conjugate if and only if [0]=[o]. Note that ac
Aut(M) is self-conjugate if and only if @ is inner.

Remark. 1If M is a type Il. factor, we can define Sect(}/) in the same way,
and if o €End(M) with d,<<co, we can also perform the irreducible decompo-
sition. To see this, it suffices to show that every non-zero projection in M N
p(M)' is infinite. See Appendix for the proof.

2-2. Canonical Endomorphisms and Implementations of Conditional Expecta-
tions Let M and N be properly infinite factors, N being a subfactor of M, and
£ be a cyclic and separating vector simultaneously for A and N. (Such a vec-
tor always exists). R. Longo defined the canonical endomorphism 7,: M—>N
by
r7o(x) =Ty xI'y, x€M

where I';=J% J# is the product of modular conjugation operators Ji7, J% for
M and N with respect to 2. 7, depends on £ only up to unitaries in N [L3,
Theorem 1.1]. He shows in [L.2, Theorem 3.1] that if 7: M— (M) is the can-
onical endomorphism for o< End(M), then [0~ 'or]=[0]. This formula gives 7
explicitly.

In [L1, Proposition 5.1], R. Longo also shows the following important fact
about implementation of conditional expectations by canonical endomorphisms.
Let M DN be a pair of properly infinite factors, 7: M—N be the canonical
endomorphism, and £EESE(M, N). Then there exists an isometry # & N satisfy-
ing

ux =r(x)u, xEN,
EXx)=vu*r(x)u, x=M.

We recall the construction of u. Let ¢ be a faithful normal state defined by
o(x) =<EX)2,82> x&=M.
Then there is a unique vector &= LA(M, £), satisfying
o(x) =<xE, Ep xEM.
We define an isometry u,& N’ as follows.
Uy x2 =x€, xEN.

Note that the range projection of u, is ey ia the sense of Kosaki [K1, page 130].
If we define an isometry u by u=J% u, J§, then u belongs to J% N’ J§=N and
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satisfaies the above conditions.
If M is isomorphic to N and p=End(M) with o(M)=N, then there exists
an isometry ve& M satisfying

vx = pp(x)v, EX)=p(*o(x)v), xEM.

Let ¢ be a normal, unital, completely positive map on #4. We can con-
struct a natural M —M correspondence as follows. Let H be a standard Hil-
bert space of M and £ be a cyclic and separatig vector for M. Then £2 is a cy-
clic vector for the opposite algebra M°=JMJ, i.e.

oM =JMJ2 =H.
We define positive semi-definite sesquilinear form on M Q.M by
(OIP AP0 ; u;Qv;) = 2, <o x;) Ly, 2v;) .

Like G.N.S. construction, we can construct an M —M correspondence out of
this sesquilinear form and, by using the bijection between Sect(4/) and correspon-
dences, we obtain o4 EEnd(M) and & € H satisfying

<,o¢(x) Ey, E> = <¢(x) ‘Qy’ ‘9>5 p¢(M) EM=H.

If §=F and £ is a cyclic and separating vector for M and N, then
Kog(x) €y, &> =<E(x) 8y, 2> = u*r(x) uy, 2> = {r(x) uly, u> .

So, if WzH, we obtain [oz]=[r]. We prove 7(M)ul2M=H as fol-
lows. Let p be the projection onto 7(M) u2M~. Then p belongs to M N 7(M)’
and pu2=0. Since 2 is a separating vector for M, pu=0 and puu*=pJ§ ey J§
=0. So 0=J§ pJ§ ey Eg=J% pJ% &, DuetopsMNr(M)

JGpI§ETJg MISNJIG M' TG =J8 MISN M .

Since &, is a separating vector for M, we obtain p=0 and so 7(M) u2M=H.

Moreover if M is isomorphic to N and o EEnd(M) with o(M)=N, then
[eg]=[r]1=[pP]. In Sections 4 and 5, we calculate [o@] from the conditional
expectation by the above formula.

2.3. Minimal Expectations and the Basic Construction. Let M be a properly
infinite factor and o €End(M) with d,<oo. The tower associated with M D
o(M) is [L2, Corollary 4.14]

M D p(M)Dpo(M)Deve(M)D--- .
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This formula enable us to analyze the index theory by sectors. By decompos-
ing [(0?)"] and [(0P)"p], we get new sectors, which we call descendant sectors.
To calculate statistical dimensions of descendant sectors, we use Hiai’s mi-
nimal expectation [H].
If MDN are a pair of factors with a finite index and EEE(M, N), the
following are equivalent [H] [L1]:
(i) E is the minimal expectation.
(i) E|yny and E7Y| 404 are traces and E7!|y,yv=(ndex E) E| yq 57
(E7'is a map from N’ to M’, canonically defined from E [C, Ha].)
(iii) Index E,=E(e) (index E) for all projections e N’ N M where E,=
E@©) " E(-)elu,
By (iii), if {e;} is a family of mutually orthogonal projections in M NN’
with 2 e;=1, then

>) (Index E,)"? = (Index E)¥* 3] E(e;) = (Index E)Y2.

This means that if [,o]=€19[,o,-], then dp=; d,, for p, o;EEnd(M). This is the
reason why we use d, instead of the index.

H. Kosaki and R. Longo show the mutiplicativity of the minimal index in
case of the basic construction [KL], and using this, R. Longo shows the multi-
plicativity in general case [L4]. Let M DN DL be inclusions of factors with
finite indices and E,€E(M, N), E,€E(N, L) be the minimal expectations.
Then E,oE, is also the minimal expectation from M to L and so [M: N],[N: L],
=[M: L], by (2.1). This means that if o;, p,€End(M) with 4, , d,,< oo, then
Ao y0, =0, o,

Let

M = N_IDNO:DNIDNz“‘

be the tower associated with the inclusion of factors M D N,, and ¢; EE(N,_;, N;)
be the minimal expectations. If we define E, by

En = €,0€,_,0:°°0&;,

then E, turns out to be the minimal expectation from M to N,, and [M: N,],=
[M: NJg*t.
Since E, is a trace on M N N} by (ii),

p=lm E.|\pnn;

is a trace on VM N N;. Moreover, if depth of M D N, is finite, it is well-known
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that ¢ is the unique trace and values of ¢ on minimal projections of M NN}
are determined by the Perron-Frobenius eigenvector of the principal graph.
[GHJ]

Let p€End(M) with o(M)=N and [(0)"]=[p;] be the irreducible de-

composition, with {p;} the corresponding minimal projections in M N
(0?)"(M)'. Then

dp; = (Index (Ez»z—l)p,-)w = Epn-1(p;) (Index Eyy, 1) = ¢(p;) (d,)™.

A similar calculation holds for [(05)"p]. So we can calculate d,, from the
Perron-Frobenius eigenvector.

2.4. Characterization of conjugate sectors The most important tool of this
paper is the following theorem.

Theorem 2.1. Let M be a properly infinite factor and p,, 0,< End(M)
with dp, dp,<oo. If 0, and p, are irreducible, then the following conditions
are equivalent:

() [od Loyl or [o,] [e1] contains the identity sector [id].

() [e] = [og)-

If o, and p, satisfy the above conditions, [o,] [0,] and [04] [0,] contain [id]
with multiplicity one.

This theorem is essentially due to R. Longo [L2, Theorem 4.1]. The only
improvement over his theorem is in the condition (i), in which we demand
that one of [o,] [0,] and [0,] [0;] contains [id], instead of both. For the proof
of (i)=>(ii), we may assume that [o,] [0,] contains [id] and also assume that
d,, =d,, (if not, we can consider [0, [o4] instead). Then his proof for (1) = (ii)
applies to our case.

Before closing this section, we would like to pose the following question.

Question 2.2. Let M be a properly infinite factor and N be a given subfactor of
M which is isomorphic to M. Can we find a self-conjugate p & End(M) such
that p(M)=N?

In general, the answer is no. We will show an affirmative case in Section
3 and a negative case in Section 4.

§3. TFusion Rules of Sectors

Let MDN be a pair of factors with [M: N]<4. Then it is well-known
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that the principal graph is one of the Coxeter graphs 4,, D,, Ey, E,, E; [GHI,
Corollary 4.6.6]. Moreover, A. Ocneanu states in [Ol, page 162] that D44
and E; do not appear, but no complete proof has been published until now.
In this section, we compute the fusion rules of sectors, which is the rules of the
irreducible decomposition of sectors, associated with the above graphs and
prove the non-appearance of D44 and E,.

Let M be a properly infinite factor and o, EEnd(M) with d, <oo. Since

M2 (M) 015(M)D 0,8,0,(M)D -+

is the tower associated with M D p,(M) as quoted in Subsection 2.3, the Brat-
teli diagram of

MNM =CcMNp(M)CMNpo(M) CMN o o0,(M) C -

is decided by the principal graph of M Dp(M). We saw in Subsection 2.3
that minimal projections in M N (0;2,)" (M)’ and M N (0,8,)" p,(M)’ correspond
to descendant sectors. This means that the Bratteli diagram gives fusion rules
of descendant sectors of p,. We show this more precisely.

Let o, 0 €End(M) and [p]= QEBI m(i) [0;], [0;] [6]= l_eealn(i, 7) [o;] be the ir-
reducible decompositions of [e] and [o;] [¢], where m(i) and n(i, j) are the mul-
tiplicities and (i, j) may take 0. Then there are isometries {S())s};er b=1,2,,m;
{TG Di}ier,jer -1, » in M satisfaying the following.

55 s S0 = 1, 3.0.1)
ST TG =1, (3.02)
o0) = 33 37 50 0,0 SOOF (3.0.3)
pr00() = 3331 TG, 1) 0,09 TG, (3.04)

poo() = SIS S 3T S0, TG, 0,00 TEHF SOF. (309

JjET il k=1 !

Due to (3.0.3) and (3.0.5), the central decompositions of M N (M)’ and M N
poa(M)' are as follows.

M0 o) =@ AG),

M N peo(M) = D B(j),

jer
A@@) = CH(SWry Sty by »
B(j) = C*(S(i1)k1 TGy, j)i, Ty, j)?ezs(iz);zkg)il,iz,kl,kz,ll,lz .
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Note that {S(i)lq S(l)ikz} PN and {S(il)h T(inj)ll T(iz’j)ﬁs(iz);i} i1sin.kykoaly I QL€
the matrix units of A() and B(j). Thanks to (3.0.2), a minimal projection
S(@), S@F in A(F) is also written as follows.

#Ciudd
S@), SQYE =jEZ;_[ 21 8@ TG, ) T @ ¥ SO -
This means that in the Bratteli diagram of @ 4(G) < @ B(j), there are n(i, j)
H= jer

edges between A(7) and B(j), where n(F, j) is the multiplicity of [¢,] in [0,] [0].
We assume that the principal graph is one of 4,, D,, E;, E,, E; and explain
the details of computations one by one.

3.1. The Case of A,, For A,, the corresponding subfactors are constructed
in [J, Thoerem 4.3.2]. The Bratteli diagram is as in Fig. 1.

MNOM=C _
MOp,My=C —
Mmplﬁx(M)’ e
MO p (M) .
an]—ﬁlpl/_Jl(M), -

Fig. 1. The Bratteli diagram in the case of 4,,.

First we look at the level of M N 0,0,(M)'=CEPHC. Since there are two points
in this level, [0,7,] is decomposed into two sectors. One of these is [id] by the
characterization of the conjugate sector in Subsection 2.4 and call the other
sector as [0,]. The next question is which of two points corresponds to [id].
The answer is the left one. Indeed, since

[o12101] = [0101] [01] = ([id] D [03]) [01] = [id] [0:1] D [05] [1]

we see from the diagram that one of [id] [o,] and [0,] [0;] is decomposed into
two sectors. But [id] [e;]=[e,] is irreducible and then the left one corresponds
to [id].

Next we look at the level of M N o,0,0,(M)'=M,PC. By the above argu-
ment, we know that [0,2,0,] contains [e,] twice and hence [0,] [0,] contains [o,].
We call the other irreducible component of [0,] [0,] as [e;]. By repeating such
an argument, we get Fig. 2, where each sector is mutually different in each row,
and the following basic fusion rules. ([o,]=[id] in k=0 equation.)

[o2+1] [01] = [02] P ogpsal s, & =0,1, -, n—2, (3.1.1)
[020-1] [P1] = [020-2] 5 (3.1.2)
[o] [01] = [02-11 D [0l , k=1,2,--,n—1. (3.1.3)
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Lid) — lid]

N — lpl

1pipi] — .

_ \ ~ ~

[pip11] — [p.] [ps]
l(/?1731)n¥1] —_— [I{/J\ i /[pzn-z]\
[(plf)l)nA]pl] — [p] [P2n-s] /[p2n~!]
Wpp  —— Lia” lpd - TP ]

Fig. 2. The diagram of fusion rules in the case of 4,,.

We can also compute the products of other pairs:

Lemma 3.1.

[Oa41] [05] = [P2-1] D [P 1] D [Popasl , kK =1,2,+-,n—2, (3.1.4)

[21] [0,] = [21D[73] , (3.1.5)
[2n -1 [05] = [Ppn-3] , (3.1.6)
[02:] [05] = [02-2] D [02] D [0gs42], k=1,2, -, n—2, (3.1.7)
(02021 [05] = [024-4] © [024-3] - (3.1.8)

Proof. Since [0,7,]=[id] D [0,], we may compute [Dy+1][017] and [oy]
[0,0,] instead of the above products because of the uniqueness of the irreducible
decomposition. [0,] [0,2,] is easily obtained by going down from the level
(0,2, to the level (0,5,)*™* (namely by 2 levels), starting from [py]. To com-
pute [D,,41] [012:] we use fusion rules of descendant sectors of [o;]. It is easy to
see that if d, <2 the principal graphs of M D (M) and M D p,(M) coincide
because M D py(M) is isomorphic to M; D M where M, is the extension of M by
o,(M) [L2, page 296]. (Or more directly, due to [(0,8,)" 01]=[(710))" 23], dimZ
(M N (0,0)" 0(M)")=dimZ(M N (7,0,)" 5,(M)") and so the principal graph of
M D p, (M), which is one of A4,, D,, E;, E;, and Eg, must coincide with that of
MDp(M)). Let {[4;]} 7' CSect(M) be the descendant sectors of [7,]. Since
[(@101)* Bi]=[(0101)* p1], we get [bye11]=[Ppe+1]. And we can compute [Dy41] [0171]
from the diagram of {6} #"7". Q.E.D.

The Perron-Frobenius eigenvector (v;)3%; of 4, is given by v;=(sin j—”)/

2n+1

(sin 2n7—rl—1) (see Fig. 3).
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6t V2 V3 e Van-1 Van
o o O— e —— 5

Fig. 3. The Perron-Frobenius eigenvector of 4,,.

As we saw in Subsection 2.3, we can compute d,, from the Perron-

Frobenius eigenvector:
. I41
sin %-I—l T
sin—~

2n+1
Note that d,, _,=1. This means p,,-; EAut(M) and we write @=p,,, If 6,
and 0, in End(M) have the same image 0,(M)=0,(M), there is a & Aut(M)
such that 6,=60,08. In other word, if we analyze subfactors by endomorphisms,
we have the ambiguity of multiplying automorphisms from right in the choice
of the endomorphism representing the subfactor. In the following proposition,
we see that we can use this ambiguity to cancel @ to make all [0,] self-conjugate.
Thus the answer to the Question 2.2 in Section 2 is yes in this case.

d,, =

Proposition 3.2, In the case of A,,, a self-conjugate o, can be chosen such
that [0,)=[03n-1-2] and all descendant sectors [o,] are self-conjugate. The dia-
gram of fusion rules is as in Fig. 4.

Proof. We go back to Fig. 2. It is easy to see that [o,] is self-conjugate
by induction because [id] and [(0,2,)*] are self-conjugate. Since [¢] [7,]=[02,-1]
[o]=I[05,-5] by (3.1.2), we get [o,] [¢~Y]=[0,.-5] by conjugation. We now show
[02-11=[02n-z] [@] Or equivalently [By,—1]=[a¢""] [04s-z] for k=1,2, ---,n. For
k=1 we know [p,]=[a""] [0;,-,] by the above argument. By using Lemma 3.1
and induction, we obtain the desired equality.

Due to [o1] [~ ]=[03,-5], We have 0,,_,(M)=p,(M) so that we can take
Oz instead of p,. Then [o;] is replaced by [o)] [@¢~Y]=[p,e™"] and hence

lidl —— {id]

~
T — pi]
Pl —— [if/J< tos
P — el py
(P2 —— L] _ - [p]

/ 1

i1 —— I e o St
P —— o] e ol

Fig. 4. The diagram of fusion rules in Proposition 3.2.
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[(0,20)% 01] turns into [(0,8))* o,] [¢~"], while [(0,7:)*] does not change. So we
complete the proof. Q.E.D.

In principle, we can compute every principal graph of M D p;(M) from
fusion rules, because

M>Dp0(M)D p;p{(M)D p;p;0(M)D -+

is the associated tower. For example, due to (3.1.7) and (3.1.8) that of M D
0,(M) is as in Fig. 5.

Ve
P
@

@ & e D
@ %

Fig. 5. The principal graph of M Dp,(M) in the case of A4,,.

3.2. The Case of Ay,; The diagram of fusion rules is as in Fig. 6 and the
basic fusion rules and the statistical dimensions of descendant sectors are as
follows.

L) — )

~
[pxj —_— [Pl]
Bl —— [u/< \lm\
[Pif11] _ [Pll/ [ 5]
[P, PV ] — [1] [P2n-1]
lpp)  —— U el el lewd
pp el ——  lpd [Pan-1]

Fig. 6. The diagram of fusion rules in the case of Azy+1.

[o2+1] [21] = [02] D [0242] k& =0,1, -, n—1 3.2.1)
[oz] [01] = [02-1] D [ozera] k =1,2, -+, n—1 3.2.2)
[024] [01] = [02n-1] 3.2.3)

sin 2i+ 12 T
g - ot
sin——
2n-+2

As in Subsection 3.1, p,, E Aut(M) and we write @=p,,. Difference from
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the case of A,, is that « is self-conjugate and an invariant of the subfactor
0,(M). [e] plays essential role in Theorem 5.1.

Proposition 1.3. (1) [0z.-z]1=[@] [0,] and especially [0,]=[c] [0.].
(ii) We can take representatives o and p, such that a is a Z, action and
0,(M)C M® where M® is the fixed point algebra under c.

Proof. (i): This is easily shown by induction. (ii): Since [o,]=[a] [0.],
we can take a representative « such that o,=aop,. As we mentioned at the
end of Subsection 2.1, ¢? is inner and a%p,=p,. Since p, is irreducible so
MNp,(M) =C and then a®?=id. p,(M)C M* follows from acp,=0p,.

Q.E.D.

For later use, we show the following lemma.

Lemma 3.4. If M is the type III, AFD factor, then we can take p, satis-
Jying [o1] [e]=[a] [o4].

Proof. By the work of Y. Kawahigashi, C.E. Surtherland and M. Takesaki
[KST, Theorem 20], an outer action of Z, on the type III; AFD factor is unique
as a cocycle conjugacy class. As in the proof of Lemma 3.1, if {[4;]} %%, are

descendant sectors of 7, then [8;+,]=[2y;+,] and we may assume that 4,, is a Z,
action. So there exists a 6 & Aut(M) such that

[620] = [0][] [077] .
Since [02,-1]=[@] [01] and [8y,-1]=[b5,] [01] from Lemma 3.3, we have
[@] [o1] = [620] [21] = [01] [824] = [04] [0] [] [677]
and [a] [0,00]=[0,06] [@¢]. We can take p,08 instead of p;. Then [o,] are un-
changed and in particular [@] remains the same. So we have [o] [@]=[c] [0i]
for new o,. Q.E.D.
The principal graph of M D p,(M) is as in Fig. 7.
n+1
Q— D— - aee e
@—i——l—l: e IJ———O
Fig. 7. The principal graph of M D p,(M) in the case of Ayy+;.

sin (k/l) =
sin 7/l

2
In [W1], subfactors with index < ) ({=3,4, ---, k=1,2, ---) appear
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twice, once in page 360 and once in page 380. Note that the former for k=3
and our M D p;(M) have the same principal graphs. Since the graphs in Fig. 5
and Fig. 7 do not coincide with the principal graphs of the latter [W2], for
k=3 the above two subfactors are different. The author would like to thank
Y. Kawahigashi who suggested the author the above difference and showed him
the note of Wenzl’s lecture at the Mittag-Leffler Institute in 1988.

3.3. The Case of E;, E,, and E,. Suppose that the principal graph of MD
0y(M) is E,. The descendant sectors are as in Fig. 8 where we write only the
principal part.

[“”—]pJ——lpzl—lsz—,/% I"—[ps]

[ P6]
Fig. 8. The descendant sectors in the case of E;.

We can compute d,, from the Perron-Frobenius eigenvector as before and we
obtain
.6
sin— =

d,. = =2cosi7r<2cos£.
s s T . T 18 4
4 cos®* — sin——
18 18

This value is not admissible as a statistical dimension [J, Theorem 4.3.1]
K1, Theorem 5.4] and hence we have a contradiction.

If we take F; and E;, we can confirm that there is no problem. Suppose
that the principal graph of M Dp,(M) is E;. The descendant sectors are as
in Fig. 9.

Lidl—1pi]—Ip.}—lallp:]l—|«]

[/2s]
Fig. 9. The descendant sectors in the case of Eg.

The statistical dimensions are as follows.

.3
sin—r=

T T
d,, =2003~12—, dpzzf—~, dp, :2cos?, d,=1.
sin——
12
As in the case of A4,,,,, @ is a Z, action. This is a reflection of the Z, sym-
metry of bicolored labelled E;. Fusion rules of descendant sectors are as fol-

lows.
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[o121] = [id] D [ei] » 3.3.1)
[0:01] = [0,]D [03] D [@p1] (3.3.2)
[05] = [03p1] = [0123] , (3.3.3)
[of = [id] D[] D 2[0,], (3.3.4)
[0205] = [0] B [@py] , (3.3.5)
[os03] = [id] D[] . (3.3.6)

(3.3.3) shows the existence of the following inclusions of factors.

M D p(M)D (M),
[01(M): 0(M)]y = [M: Bs(M)], = 2.

These inclusions suggest the way to construct an inclusion with the principal
graph E;. In [I], we construct o, on the type Il ;q..3) AFD factor by using
Cuntz algebra O,. From [0,(M): p,(M)],=2, the relation between o,(M) and
0,(M) is the crossed product by a Z, action. Using this fact, we also construct
an inclusion of factors with the principal graph E;. The principal graph of

M D py(M) is as in Fig. 10.
Q—:

Fig. 10. The principal graph of M D p(M), in the case of E;.

Suppose that the principal graph of M Dp,(M) is E;. The descendant
sectors are as in Fig. 11.

[ ft/J-—lﬂl]—[/)z]—[Pﬂ—[P o]—[psj_[pe]

[p2]

Fig. 11. The descendant sectors in the case of E;.

The minimal statistical dimension of the descendant sectors is given by
min{d, ;i =1,2,, 7} =dp, = 2 cos jSi .

Note that d,, >2 for i=1,6. By computing fusion rules of descendant sectors,
we have the following relations.

[03] = [0 , (3.3.7



APPLICATION OF FusioN RULES 969
[04] = [0s02] = [0721] , (3.3.8)
[05] = [o01] - (3.3.9)

From d, =2 cos %, the principal graph of M Dpg(M) is 4,. In analogy with

the case of Ej, it is possible to say “Eg has 4, symmetry”. The principal graph
of M D py(M) is as in Fig. 12.

Sl

Fig. 12. The principal graph of M Dp,(M) in the case of E;.

3.4. The Case of D,,.;. Suppose that the principal graph of M Dp,(M) is
D,,.5, n>1. The descendant sectors are as in Fig. 13.

[id] — i)

[pi] I 2

P11 — [ \[/32]

f/J17)1/3:] - : [/-71] [/33]
[(/7:731)"'1/)1] —_— [4] ..

P —— 1] Slpd . [pz""]\”f”]\

[P :Y'pi] - >.r/31] [P2n-i] [Poni] "lP2nsz]
() 'l —— LA™ Nip) L )

Fig. 13. The diagram of fusion rules in the case of Dy, +3.

The basic fusion rules are given by

[oae+1] [21] = [0l D [o2g+2] , k& =0,1,++,n—1, (3.4.1)
[02n+1] [21] = [O2n2] [P1] = [024] , (34.2)
[o2] [01] = [02p-1] Ploggsa]l, k& =1,2,++,n—1, (3.4.3)
[025] [01] = [024-1] D [020+1] D [0zn-+2] - (3.4.4)

The statistical dimensions are given by
sin4l+_ 14 T
dP,' = —‘ﬁj_——a i=0,1,--,2n,
sin

T
4n-+4
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1
Pon+1 Pons2 ~
2sin

T
4n-+4
We note that [o,], i=0, 1, -, 2n+1, 2n+2 must be mutually different, for

example due to the difference values of their statistical dimensions. [0,,+,] and
[024+2] also must be different because if not, the principal graph changes.

Lemma 3.5.
o . o . 1
p2n+1P2n+1 - dp2n+292n+2 - dp2n+1p2n+2 - dp2n+292n+1 -
4 sin®
n+4
Proof. Due to af,,z”ﬂ:aﬂ,zn+2 1 and the multiplicativity of the
2sin— ="
4n-+4

statistical dimension, the equalities hold. Q.E.D.

Lemma 3.6. (i)

[Pog+1] [02] = [P2p—1] D [Oop1] B [Ogpsal , k=1,2,-.,n—=2, (3.4.5)

[0:] [02] = [A1] D [o:] (3.4.6)
[B2n-1] [05] = [B2n-3] D [P2n-1] D [220-+1] D [Pan+2] » (3.4.7)
[Pan+1] [02] = [P20—1] D [P2n+2] » (3.4.8)
[P2n+2] [02] = [Bpn-1] D [P2n+1] 5 (3.4.9)

[02] [02] = [02s—2] Dlon) Blozssa], k=1,2,--,n—1, (3.4.10)

[024] [02] = [020-2] D 2[04] - (3.4.11)

(ii)
[02n-11] [Bor+1] = [O2n+2] [Bo1]
= [02tn-] B [P2n-rin)] B+ DBloza] , k =0,1, -, n—1, (3.4.12)
[020+1] [O2n-+1] D [02n+1] [O2n+2] = [id] D [02] B+ D 03] - (3.4.13)
(iii)
[02n-+1] [D2n+1] [02] = [02] D 0] D+++[020] D [O2011] [Prsal ,  (3.4.14)
[02n+1] [P2n+2] [02] = [02] D[0,] D+-[03s] D lo2nt1] [Oonra] . (3.4.15)

Proof. (i): This can be obtained in the same way as the proof of Lemma
3.1.
(ii): For k=0, we already have [0,,+] [01]1=[02s+2] [P1]=[0:.]. For k=1, the
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equality holds from [0z+1] [31] [02]=[02442] [21] [02]=[024] [0;] and (i). In the
same way, general case holds by induction.
(iii): From (i) and (ii), we obtain

[02n+1] [P2n41] [02] = [02041] ([P2n-1] B [Brn+2])
= [02] D [0,] D++* D [024] D [0g5+1] [P2n2] -

Second equality is shown in the same way. Q.E.D.

Theorem 3.7. Let M DN be a pair of properly infinite factors with M=—=N
and [M: N]<oo. Then the principal graph of M D N is neither E, nor D q,.

Proof. In subsection 3.3, we have seen that E, can not appear. Suppose
that the principal graph of M D N=p;(M) is Dy,+3. In (3.4.13), [id], [0s), ***, [024]
divide into two groups. By characterization of the conjugate sector in Sub-
section 2.4, [03,+1] [P2s+1] contains [id]. So, the right hand side of (3.4.15) con-
tains [id]. Then, [0s4.+1] [P2n42] On the left hand side must contain [7,]=[0,].

We now investigate the balance of the [o,] term in (3.4.14). On the right
hand side, [0,] appears twice, once as [0,] and once in [0,,4,] [P2.42] @S We have
seen. On the left hand side, [05,41] [@24+1] i @ partial sum of the terms on the
right hand side of (3.4.13), among which only [id], [0,] and [0,] can produce [o,]
after being multiplied by [0,] from right. Since [0,] is in [05,41] [Pent2), it can
not be in [05441] [G2p41]- Therefore [0;,+1] [02,41] must contain [o,].

By repeating the same type of arguments, we get the following equations.
The case of odd n:

[02141] [B2nt1] = [id] D [0 B+~ D [024-2]
[02041] [Pans2] = [02] D06l B+ D [024] .

The case of even n:

[02141] [Bens1] = [[d] Do D+~ D02l ,
[02041] [Pan12] = [02] D+ D [020-] -

By Lemma 3.5, dy, . 55,1 =05, 11 Pops2:

sin ((+D/(nt4) 7 ;) 5
sin (z/(4n+4))

sions. (Note that d,,<d,, if k</<2n.) Q.E.D.

But this is impossible because of d, =

-, 2n and the additivity of the statistical dimen-

To obtain the result in general case, we need the following lemma.

Lemma 3.8. (R. Longo [L4, Lemma 2.3]) Let MDN be a pair of factors.
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Then there exists a factor L such that M QL is isomrophic to NQL.

Corollary 3.9. Let M DN be a pair of any factors with [M: N]<<oo. Then
the principal graph of M D N is neither E, nor Dyq.

Proof. Since the principal graph dose not change after taking tensor pro-
duct, we may assume that A/ and N are properly infinite and M is isomrophic
to N due to Lemma 3.8. Then Theorem 3.7 applies. Q.E.D.

3.5 The Case of D,,,,. Suppose that the principal graph of M D (M) is
D,,.,. The diagram of fusion rules is as in Fig. 14 and the basic fusion rules
and the statistical dimensions of the descendant sectors are as follows.

[id] — ]

N
] — p:]
ppl —— T iy
o] —— el N
[Pl —— [id] AR [Oan_s]
[(pl—ﬁl)n—lpl] . >[pl]<... Pan-2 \[pzn_]]\
[(Plﬁl)"J —_— [Itﬂ [/.):_,] “ee [pzn—2] [pzn] [/)anJ

[P )] _— \[Pll/"' \[/_I)M_I]/

Fig. 14. The diagram of fusion rules in the case of Dy 4.

[o21] [01] = [02] Bloggsal , k=01, 0,02, (3.5.1)
(02011 [P1] = [02n—2] D [024] D [02041] » (3.5.2)
[026] [01] = [Ppp-1] Dlogpsa], k=1,2,,n—1, (3.5.3)
[020] [01] = [0241] [01] = [P2a—1] - (3.5.4)
sin i+1 T
d,,,. — _‘M i=1,2,,2n—1,
sin— "
4n-+2
sz,, = d92n+1
1 =5 n = 1
= . . T = 2 cos = n=2
2 sin 5
ant2 5, n>2.

By a similar argument as in the proof of Lemma 3.6, we get the following fu-
sion rules
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[020] [028] = [020-24] @ [02n-2442] @+ D [020-2] { Olown] forodd £, (3.5.5)
DB [0,,] forevenk,
[02n41] [02] = [020-26] D [O2n—2p42] D+ D [024-2] { O lewl for odd k, (3.5.6)
@ [o2n41] forevenk,
for 1Zk<n—1.

@ [02441] for odd n,
@D [02s] forevenn,

3.5.7)
@ [0] foroddn,
@D [o3441] forevenn.

(3.5.8)

[024] [02] D [024] [02041] = [id] D [05] D+~ D [024-2] {

[02n41] [020] D [02041] [02n41] = [{d] D [02] D+ D [024-2] {

Proposition 3.10. If n is odd, then [p;,.1] is the comjugate sector of [0,,]
and the following fusion rules hold.

[020] [020] = [02] D [06] D++*[021-4] D [02441] (3.5.9)
[02] [02041] = [id] D [0,] D-+*[021-6] D [020-2] - (3.5.10)

If n is even, then [0,,] and [04,.1] are self-conjugate and the following fusion rules
hold.

[,02”] [pZn] = [ld] @ [p4] @"' EB [p2n—4] GB [pZn] : (3511)
[024] [02041] = [02] D [06] D++* D [0g0-3] - 3.5.12)

Proof. Suppose that n is odd and [p,,] is self-conjugate. As in the proof
of Theorem 3.7, the following fusion rules hold.

[024] [02a] = [id] D [0 D+ D [020-6] P 02421 »
[024] [02041] = [05] D 0] D+ D [020-4] D [02041] -

Since we assume that [0,,] is self-conjugate, [0,,4:] is also self-conjugate. By
conjugating the second equality, we obtain

[o2n+1] [02s] = [02] D [06] B+ D [020-1] DO2441] -
On the other hand, from the symmetry between [0,,] and [0,,..], we also obtain
[024] [02041] = [02] D [06] D+ D [020-4] D [024] -

But this is impossible because [0,,] and [0,,4,] are different sectors. (If [0,,]=
[02441], the principal graph is not D,,,,.)
Next, suppose that z is even and [0,,4,]=[0,,]. In the same way, we have
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[024] [02a] = [02] D [06] B -+ D [024-2] »
[020] [02041] = [id] D [o,] D+ D [030-4] D02i] -

By conjugating the second equality, we obtain
[pZn] [p2n+l] = [ld] @ [,04] @ o @ [pZn—4] & [pzn+1] .

And we get a cotradiction. By the same argument as in the proof of Theorem
3.7, we have the fusion rules. Q.E.D.

The difference between D,, and D,,,, we saw above is stated by A. Ocneanu
in [O1, page 157], but no proof has been published until now.

We compute the statistical dimensions of the right hand sides of fusion
rules in Proposition 3.10.
The case of odd n:

. 4k—1
(n-1)/2 (=1/2 s 4n+2 T 1
2 dP4h—2+d92n+1 = 2 +
=1 k=1 . T . T
sin 2 sin
4n+2 4n+2

(n+1)/ __
=——~—1 [ ﬁzsin4k 1 n:—i],
T k=1 4n—+-2 2

sin
4dn+2
. 4k—3
(+1)/2 (+1)/2 S 4n+2 z
=1 dp”"‘ - kz=}1 . T )
sin
4n-+2

It is easy to show

n+1)/ . .
% ’ <sin4k 1 7r——sin4k 3 77:) =
k=1

1
4n+2 4n—+2 27

The case of even n:

n/ n/ _
2d +d, =;[Ezsin4k 37E—|—i:|,
T

= Psk—-4 P2p+1 sin =1 4n+2 2
4n-+4-2
n/2 1 n/2 4k —1
d =————|: sm——n].
4n-+-2

It is also easy to show
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n/ _ —
22 (sin 41 T —sin 4k—3 7:) _1 .
k=1 4n+2 4n+-2 2

Then there is no contradiction.
The principal graph of M D p,(M) is as in Fig. 15.

® ® —
1
® < —

Fig. 15. The principal graph of M D p,(M) in the case of D,,+, n>2.

§4. Characterization of Fixed Point Algebra and Subfactors with Depth 2

First we prove a theorem of H. Kosaki, A. Ocneanu, M. Pimsner and S.
Popa [K3] [PP1, Corollary 1.1.6] by using sectors.

Theorem 4.1. Let M DN be a pair of properly infinite factors with [M:N]
<oco and MNN'=C. The following conditions are equivalent.
(i) There exists a finite group G and its outer action « on M such that
N=M" and |G|=[M: NJ,.
(i) If r: M—N is the canonical endomorphism and [r]=®D[e;] is irreducible
decomposition, then d, =1, i.e. [r] is decomposed intc; automorphisms.
If the above conditions are satisfied, then

] = @]

Proof. (i) = (ii)): We assume (i) and define EEE(M, N) by

1
E(x) = m gzegag(x) for xeM.
In Subsection 2.3, we saw that from E we can construct an M—M correspond-
ence and, by using the bijection between Sect(M) and the set of unitary equiva-
lence classes of M—M correspondences, we obtain pozEEnd(M) such that
[egl=[r]. We show [og]= D [@,]. Let £ be a cyclic and separating vector for
e
M (and equivalently M’) and {S,},cc CM be isometries satisfying >} S, S5 =1.
e
We define o’ €End(M) by ©
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p'(x) = gz(};Sg @ (x) S¥ .

Then
KE(x) 2y, 2> = W 2] <ag(x) 2y, 8> =<p0'(x) €y, &>,
where £ = \/IGI f:‘_(;;

It suffices to show o’(M)EM=H. Since @ is an outer action, M N p’(M) =
@ €S, S¥, and the projection p onto o' (M) EM belongs to EB CS, S¥. From

& EGS* E 1
Nl
which implies p—l. Hence we obtain o’(M)éM=H and so we have [pE]z
D [a,].
£e@

(ii) = (i): First we assume (ii) and M=N. We take o, pEEnd(M) such that
o(M)=N. From Subsection 2.2,

[r] =[or] = @ [ai] . 4.1.1)

Since [op] is self-conjugate, {[o;]} is a self-conjugate set, i.e. {[o;]} is invariant
under inverse because conjugation and inverse are equivalent on Qut(M).
Multiplying both sides of (4.1.1) by [e,] from left, we get

lo; p1[2] = D [o;][0i]

and, from above observation, it follows that the right hand side of this equality
contains [id]. Since [0, o] is irreducible because [o] is irreducible and [o;] is
an automorphism, this means that [o; o]=[e] by the characterization of the con-
jugate sector in Subsection 2.4 and hence

D lo;llo] = D o]

Since [07] contains [id] with multiplicity one, every [o;] is different and {[0;]};
is a subgroup of Out(M). We write G={[0;]} ={[,]} ;ec-

Once we fix representative o €End(M), we can take a, & Aut(M) such that
@ op=p. This choice makes {a,} an outer action of G. Indeed, @ 0, 0az,
is inner for g, g’ €G, and

-1 . . _
@O0, 00 = G000 = &0 =0,

Since p is irreducible, this means @ oa oaz,=id. So {a,} is an action of G
and M¢Dp(M). By comparing indices, we get o(M)=M¢C and have (i).
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In a general case (where M =N does not necessarily hold), we define 4 &
End(M ®N) by

dx®y) = yQr(x) for x&M,yEN. 4.1.2)

It is easy to see that 4 is irreducible. 4 is self-conjugate because
P =7Q7|y: MON—> NQr(M)

is the canonical endomorphism and the equality #=¢* holds. By the charac-
terization of conjugate sector in Subsection 2.4, [0 =[r1Q[r | \]=D [0;1Q[r | 4]

must contain [id,|®[idy] with multiplicity one. Therefore one of [o,] is [idy,]
and, [r|y] contains [idy] with multiplicity one. By the same argument as
in the case of M =N, we see that G= {[0;]Q[idy]} is a group and we get an
outer action {a,} CAut(M) such that {[e,]} ={[e;]} and (¢,Qidy)o6=46. Due
to (4.1.2), we obtain N C M¢. By comparing indices, we get N=M¢. Q.E.D.

In a sense, the following proposition is a generalization of Thoerem 4.1.

Proposition 4.2. Let M be a properly infinite factor and p SEnd(M) with
d,<oo and M No(MY=C. If [pp]= €'B nle;] and [pp]= E,,B m,B,] are irre-
ducible decompositions where n; and m, are the multiplicities, then the following
conditions are equivalent.

(i) The depth of M Dp(M) is two.

(ii) The depth of M Do(M) is two.

(iii) M N ppp(M)Y is a factor.

(iv) M Npea(MY is a factor.

) mn;=d,, for all i.

(vi) m,=dg, for all a.

(vii) [e;] [0]=d,,[0] for all i.

(viii) [B,] [0]=dg,[o] for all a.

Proof. (i)e(iii) and (ii)e(iv) are obvious from the definition of depth 2
and (iii) < (iv) follows from [opo]=[ppo]. It is enough to show (iii) & (vii) & (v)
because (iv) & (viii) < (vi) is shown in the same way.

(iii) = (vii): (iii) means that [opp] is a multiple of an irreducible sector.
Since [0o] contains [id], [oo0] must be a multiple of [¢]. Then

[opo] = © mla]e] = d;[o]

and hence [a;] [0]=d,,[0], where the multiplicity d,, has been determined by
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the relation d, ., =d,, d, due to the multiplicativity of the statistical dimension.
(vii) = (v): Multiplying [op]= ©D n;[e;] by [a;] from left, we have

du;le][0] = (@] [e] [2] = D n;[a;] [e]

because [@;] must be an element [«;] of the self-conjugate set {[¢;]} and d,,;=ds;.
This means that the right hand side contains [id] with multiplicity d,; and so
n;=d,;.

(v) = (iii): Since [a;] [op]= EP d,[a;] [e;] contains [id] with multiplicity d,;,
[2,] [0] must contain [o] with the same multiplicity. But we have dj;.,=dz; d;
from the multiplicativity of the statistical dimension. Therefore, [@;] [0o]=
d,;[e] Q.E.D.

The relation [p;] [0]=[e] means that o(M) is included in M* for some rep-
resentative o; of [0;]. So if p satisfies the conditions of Proposition 4.2, in
particular (vii), o(M) is a kind of generalized fixed point algebra. In fact, A.
Ocneanu announced that depth of MDN is 2 if and only if the relation of
M DN is the crossed product by a Kac algebra action.

For more detailed analysis, we need intertwiners. Let 0;, 0,&End(M).
We define H(po,, 0,) as the set of intertwiners from p; to 0,:

H(oy, 05) = {vEM; vo,(x) = p)(x) v for x=M} .

If p, is irreducible, H(o,, 0,) is a Hilbert space with (vi, v)=vF vy, v, €
H(Iol’ ,02)- Indeeds Since v%kEH(pZ: 401)9

vE 01(x) = vE py(x) v; = py(x) V¥ W

and so v vyeC. We write H(o)=H(id, p).

When [pp]= g@e[a ol 1.e. “[0p] is decomposed into elements of G”, it is natu-
ral to ask what [pp] is. The answer: “[ppo] is decomposed into elements of G
We show this more precisely. Since we assume the conditions of Theorem 4.1,
o satisfies the conditions of Proposition 4.2. So the irreducible decomposition
of [oo] is as follows:

[o0] = DPd,[B,] where d,=dp,

and [B,] [o]=d,[p] is satisfied. By conjugating [e,] [o]=[e], we have [o][e,]=
[#] and this means that there is a unitary 1, € M such that 1,€H(p, ooe,). In
fact, a stronger statement holds. From the duality of the fixed point algebra
and the crossed product [J, page 7],
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M, = MXG
@

where M, is the extension of M by o(M). On the other hand, there exists
#EEnd(M,), an extension of 7, which satisfies 5(M;)=M [L2, page 296], and so

M =pM) X 1G.

podop

Then there exists a unitary representation {2,} ,e¢ CM such that
poa,(x) = (Boa op™) (7(x)) = Ad2,(7(x))

and (5(M) U {1} ye0)” =M.

Let {W(0),} be an orthonormal basis of H(7, f,05) and we define matrix
elements B,(x)= W (0)¥ f,(x) W(o),. By the definition of H (g, B,00),
BoA0(x))=0,0(x), i.e. 6(M) is diagonal. Since

ﬂa‘(lg)ab ﬁ(x) = ; ﬂu—(zg)ac 6cb ﬁ(x) = ﬂa(lgﬁ(x))ab = ,@c(ﬁoag(x) lg)ab
= g aac ﬁoag(x) ﬂa'(zg)cb = ,?)'Odg(x) ﬂa‘(lg)ab s

B+(24)as is proportional to 2, and we write

ﬂo-(lg)ab = 7Z'<g, a>ab ’zg .

It is easy to see that the matrices #<{-, 6> form a unitary representation of
G. Moreover, it is irreducible for each ¢ and if o,50,, then #{-, s;> and
7, 0, are disjoint. Indeed, if #<{-, ¢ were reducible, by changing the basis
of H(p, B,0p), we would have

J

-~

)

aeEI W(a)a W(a):zk E<ﬂo‘(16)’ ﬂa-(ﬁ(M))>’ NM = B(M)NM.

© %®}M~

7E<ga G> = l:

By easy computation, we can check

Since g, is irreducible, this implies 3} W (o), W(o)¥=1 and J must be empty.
el

If z{-, 0,> and =<+, 0,> are equivalent, we may assume that #<{-, o, >=n{-, 0>

by a change of basis. We define U=3) W(a,), W(0,)¥. Then U is unitary and

U ﬂa'z(x)zﬂa'l(x) U, ie. [ﬂallz[ﬁcr ]
Note that dimz< -, o>=d, is the multiplicity of [4,] in [2e] and %_," di=|G|.

This means that @d,-z{-, o) is equivalent to the regular representation of G.
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In fact we see the coaction of G. We write [o0]= GBA d,[8,].

cea
Proposition 4.3. Let M be a properly infinite factor and p €End(M) with
[op]= @ [e,] where a is an outer action of a finite group G. Let B,, d, and
e

=g, 0> be as above. Then,

(i) Each n<{-, o) is an irreducible unitary representation.

(ii) If o,k o0,, then wl-, 0,> and <~ 0,y are disjoint.

(iii) If 0,Q0,=Pn;-0; is the irreducible decomposition where n; is the mul-
tiplicity of o;, then [B5,] [Bs,1=Pn;-[8;].

Proof. It suffices to show (iii). Since depth of M Dp(M) is 2, the irre-
ducible components of [£,,] [f,,] belong to {[A;]},eé. We start from [£,,][4,]
=q9n,-[ﬂ¢,.] and prove 01®02:E‘Bn,-°a,.. For simplicity we sometimes omit “o”".
Since [5] [8.] [P]=d, dy[p], dim H (o, 8,0 f,00)=d, d,. We have two different
basis of H(wg, Bi08,00). Let{U(s,)}, be a basis of H(B;, fioF;). Then
{U(0,)s W(0:),} 1.5, is a basis of H(p, §,05,05). On the other hand it is easy to
check that {8,(W(0;);) W(0)).},,s is another bais of H(z, 8,08,00). Since

W ()% Bu(W (0)¥) /91°ﬂ2('2g) Bi(W (a3)a) W (o),
= W(ol);k ﬂl(W(az);k ﬂz('zg) W(03)q) W(oy),
= W(0)¥ Bi(z<g, o2Dsa 4;) W (o),
= 7{g, 0104, 78, 01 'zg

and
W(0,)% U(o,)¥ B1o8y(2,) U(o j)f W(“,-)f
=0;; 04 4CAY B:i(2) W(o))s
= 8:'_1' 6” 7L'<g, Ui>ef Ag N
we obtain 0,Q0,~=Pn;-o;. Q.E.D.

Corollary 4.4. Let M be a properly infinite factor and N be the fixed point
algebra of M under an outer action of a non-commutative finite group G. Then
there exists no self-conjugate endomorphism p such that o(M)=N.

Proof. From Proposition 4.3, we get [op]==[o0] because d,>1 for some o
if G is non-commutative and hence [o]==[o]. Q.E.D.

For later use, we generalize Proposition 4.3. Let M be a properly infinite
factor and o €End(M). Assume that o satisfies the conditions of Proposi-
tions 4.2, i.e. the depth of M D o(M) is two. Then the irreducible decomposi-
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tions of [0o7] and [zp] are

[,0,5] = ®dg[ag] > [/6‘0] = @dc[ﬂa‘] .

Let {V(g);}; and {W(0),}, be basis of H(7, poa,) and H(g, f,00), and Bq(x),=
W(0)5 Bo(x) W (o), as before. Then B(V(8))w P(x) =00, (x) Bo(V(g):)es and
hence B, (V(2);)a is a linear combination of {V(g);};. We write B, (V(8))us=
S alilg, o> V(g);. We use the following convention.

(Tailg, 00); = wiig, ODEM(d,) .
(@i¥g, D) = 7iilg, o>EM,) .
(=8, 0D)ia, ;o = 7iilg, O>EM(d, d,) .
(=448, D) = 2, wiikg, 0 >EM(,) .
(72,48, 0D);; = 20, 7iig, o> EM(d,)

Note that [e,][e,,] and [B,][B,,] are always decomposed into {[e,]} and
{181}

Proposition 4.5. Let M be a properly infinite factor and p EEnd(M) such
that the depth of M D o(M) is two. If {V(g):};» {W(0).}, and niig, o) are as
above, the following statements hold.

(i) =g, 0D is unitary.

(@) If [2g]log]=Dnley) then 37.g1, 0D @n.ilgy o) is unitarily
equivalent to Gla”:zb<gi: 0>Q@1,,. Moreover, there is a unitary which
induces the above equivalence simultaneously for every pair (a, b).

(i) If [Be] [Boy]= D mi[Bs]. then 3 wi'<g, 0> @ n*g, 0,> is unitarily
equivalent to E‘Bzf”<g, 0,>®1,,. Moreover, there is a unitary which
induces the above equivalence simultaneously for every pair (j, k).

(iv) For fixed o, g—>='"’{g, 6> is a representation of the fusion rules of
{lee, ]}, i.e. [e,]—>=n!"{g, o) preserves the sum and the product.

(v) For fixed g, o—n},<{g, 0> is a representation of the fusion rules of

{851}
(vi) M is generated by o(M) and {V(8);} ;.-

Proof. (i): Since B(V(g)F) BV (8);)=0;;

IJ ab - 2 ﬂc(V(g)*)ac ﬂa‘(V(g) )cb
= 3 (X 70ie, > V(@ (3 7eile, o> V()
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ztilg, 0> iig, ) V(@)F V()

=
c,k,l
= g zkilg, 0> 018, o> .
(ii) and (iii) can be proved in the same way as the proof of Proposition 4.3.
(iv) and (v) are direct consequence of (ii) and (iii). (vi): Let N be a von
Neumann algebra generated by o(M) and {V(g);},;- Let v be an isometry in
H(pp) and f=w*. Then M is generated by (M) and f, (f is the conditional
expectation from 7 (M) to (M) [L2]), and it suffices to show that vEN. Let
{S(g);} be a basis of H(e,, op). By comparing dimension, we see that
{7(S(8)) V(8),}¢.:.; is a basis of H(p, pop). Since H(pp) C H (5, oop), we get
the desired result.

§5. The Classification of the Subfactors of the Type IIl; AFD
Factor with Index 3

Let RD P be a pair of type II; AFD factors with [R: P]=3. The classifica-
tion of such pairs is well-known [O1, page 161], [P1]. If the principal graph is
D,, P=RZ%s and, if the principal graph is 4;, R=0X S;D P=0X S, where Q
is a subfactor of P. The following theorem states that in the case of type III;
AFD factors the situation is the same.

Theorem 5.1. Let M be a type III, AFD factor and N be a subfactor of
M with[M: N1,=3. Then there exists a pair of type II, AFD factors RD P such
that RQ MyD PQ M, is isomorphic to M D N where M, is a type III; AFD factor.

Proof. By a theorem of P. H. Loi [Li, Corollaire 2.4], N is also a type
III, AFD factor and there exists o, EEnd(M) such that o,(M)=N. If the
principal graph is D,, by Theorem 4.1 N=M?%s and we get the stated result by
the classification of group actions [KST, Theorem 20]. We now assume that
the principal graph is 4;. Our aim is to look for a subfactor with index 6 and
an S; action. The descendant sectors and fusion rules are as follows (see Fig.
16):

[id] — ]
[p.] — pd

[Pl — [id] (-]

[P1P1fo] —_— /[Pd/ \[“J[P:]
(Y] —— i) \[pz]i la)

[(ppp] —— Npl [alip,

Fig. 16. The diagram of fusion rules in the case of As.
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[0 [71] = [id] D [o,] ,
[02] [01] = [01] D] [01],
[0 = [id] D[] D[es] ,
[a] [0] = [02] [2] = [02] ,
doy =\ 3,dp,=2,d,=1.

By Proposition 3.3, [@] is lifted to Z, action. By Lemma 3.4, we may assume

[od] [¢]=[a] [o1].

We consider the following inclusions:
M D py(M)D o,(M?%) .
Let E€E(M, p)(M)). By Subsection 2.2, there exists an isometry v&E M such
that E(x)=0,(v* 2,(x) v). Since o,(M%)=p,(M)"°***i ', there is a unique EE€
E(o0y(M), p,(M*)) and E is given as follows;

A oo
E(x)EBﬁipl—C;—ﬁ-(—x) for x€p,(M).

We can define E,EE(M, p,(M?%)) by

E(x) = l%oE(x)
_ E@)+ppoacor(EG)
2
_ 01(r*) 010,(x) £1(v)+01(a(v¥)) p10a°pi(x) 0i(e(v)) )
2

Let po,=End(M) with oy(M)=p,(M*). We saw in Subsection 2.2 that [0,0,]
is calculated from E; by using an M —M correspondence and the above relation

means that [0,8,] is contained in

[010:] D [o10a0m)] = [0,0,] D[] [0101]
= [id] D [a] D 2[o,] .

Since this contains [id] with multiplicity one, o, is irreducible and E; is the
unique expectation. Then

[M: pf(M)], = Index E, = (Index E) (Index E) = 6.
By comparing statistical dimension, we have
[ooo) = [id] D el D 2[0,] .

Due to diy=1, d,=1, dy,=2, p, satisfies the condition (v) of Proposition 4.2,
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and a possible decomposition of [g,0,] is one of the following.
[Booo] = [id] D[] D2[B] where dp =1,ds, =2,
or
[By00] = Gia[r,-] where dy =1.
In the second case, the relation between M and o (M) is given by the crossed

product by a non-commutative group of order 6 due to Theorem 4.1 and Prop-
osition 4.3, i.e.

M = py(M)XS; .
To reject the first possibility, we need the following two lemmas.

Lemma 5.2. Let oEnd(M) with dy=+/6. If o is irreducible and [op]=
[id] @[] D2[e,] is the irreducible decomposition such that d, =1, d,,=2, then
a, and a, are self-conjugate and the fusion rules are the following.

[e,)? = [id], (5.2.1)
[eya;] = [@y04] = [a)], (5.2.2)
[a.} = [id] D] D e] - (5.2.3)

Proof. Self-conjugacy of [a;] and [a,] follows from that of [0@]. Since o
satisfies the conditions of Proposition 4.2, [@;] [e]=[e] and [a,] [e]=2[c] hold.
From the first equality, we have

[07] =[] [07] = [&] [id] D [e] [e] D 2] [es] .

So, we see that [e,?==[id] and [e;] [¢,]=[a,], and by conjugation [a,] [e;]=[a,].
From the second equality, we obtain

2[0p] = [a,] [0P] = [@,] [id] D [a,] [1] D 2[a,] [@,]
= 2[a,] D2[a,f .

Therefore, [a,]2=[id]PB[a,]D[e,]. Q.E.D.

Lemma 5.3, If the assumptions of Lemma 5.2 are satisfied, then [po]l=
Dlr;] such that dy,=1.

Proof. Suppose [oo]=[id]D|s1P2[F,] such that d =1, dg,=2. Since
the depth of M D p(M) is two, we define

V(id) = 1, V(ey), V(@) V(@s),,
W(id) = 1, W(8y), W(ﬁz)h W(ﬂz)z ,
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wiice, B,
etc. as in Section 4. By definition
zid, id)y = nlay, idy = =<id, iy =1, (5.3.1)
a"ay, id) = n.<id, ) = [(1) (” . (5.3.2)

We may assume pB,op=p and @joa,=a, Then a}=p?=id as in the proof
of Theorem 4.1. From (5.3.1), (5.3.2), Lemma 5.2 and Proposition 4.5 (iii),
we obtain

zlay, b = zlay,idy =1, (5.3.3)
10
7z {ay, fY? = n'{ay, id> = l:o 1 :] . (5.3.4)

By changing the basis {V(a,);};, we may assume that z'Ca,, 8> is diagonal.
First, we show z<ay, f>=—1. If =#lay, f,>=++1, from Proposition 4.5
(iv) and Lemma 5.2 we obtain

7' {ay, p1)? = alid, frp+ulay, fio+n"ay, fi) . (5.3.5)
From (5.3.1) and this, we also obtain
ztlay, 1) = 2-+ntay, A1) .

So, #t"{a,, f,>=—1 or 2. Since z'{a,, §,> is diagonal and unitary, this and

(5.3.4) imply
. . 10
”<0‘2’/91>—|:0 1}-

This and n{e,, §,>=-+1 mean
Bi(V(ey)) = V(ay), b1(V(2);) = V(ay); .

We have also taken 4, out of [8;] such that B,cp=p. Since o(M) and
{V(@,);};; generate M by Proposition 4.5 (vi), we obtain #;=id. This is impos-
sible and we conclude z<{a;, 8, >=—1.

Second, we show

. [-10
NGRS [ 0 O:I . (5.3.6)

From eq. (5.3.5), we now have z'"{a,, B, )?=n'{a,, §,> and so z'<a,, B,>=0
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or 1. Since z°{a,, B, is unitary and diagonal, this and (5.3.4) imply #'{a,, 8,>
=0. We may assume

e (b 5.3.7
=< 25/91>_‘[0 —IJ. (5.3.7)

By Proposition 4.5 (v) and [8,] [8:]=[81] [B2]=[5:],
73,0y, B Ty, B = 7Ky, B1) 73,0y, B) = 7wy, Bo) .

Therefore,

. a0
”n<a2,ﬂz>=[0 0:] acC.

Also, the relation [8,F=[id]D[S.]PB[F.] implies

10 1 0
73,y B2)* = [ :"i‘[ 1 }+7[;7<a2’ B

01 0
20 .
= [0 0:l+7ftr<az, B2 .

So a=2 or —1.
In the same way as z'{a,, 8,>, we obtain

¢ >2—[1°}
7’:0 “1,:‘92 - 01 .

By changing basis {W(8,),}, we may assume

1 0
ﬂ:o<a1’ ﬂ2> = [ ] s

0 —1 (5.3.8)
b0
g —
wl'ay, By l:o 0:},
where b=2 or —1, as before. Since #{a,, £, is unitary, if a or b is 2, then

100 O
. 010 O
Ea<a2i /92> = 0 0 1 O
000 —1

Since 2(M) and {V(a,);};; generate M, this and eq. (5.3.8) mean

W (B2, W(BE, W (B2, W(B)EEM N Bo(M)" .
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This is impossible because 3, is irreducible. Therefore we obtain (5.3.6). By
the above argument, we may aslo assume

1 0
w oy, B = [0 _1 } >

—10
”fr<a2’ 182> = |i 0 0] .

But we do not make this assumption because we will make a further change
of the basis {W(8,).}s-12. Instead of this assumption, we use the information
that z¥"<a,, B,> is Hermitian, Spz!’{a,, §,>={0, —1} and =, <a,, §,>=0.

Finally we derive a contradiction. By [] [8,]=I[B.] and Proposition 4.5.
(iii), we obtain kz zi*a,, B ay, ﬂz>:; nitay, B> wHia,, B> is unitarily
equivalent to z:’{a,, 8,>. Due to (5.3.7), this means that there exists a unitary
U &M(2) such that

ziay, B U = Uzl ey, By,
w22 ay, By U = Unl¥ay, B>,
—n2ay, By U = Uray, B,
—x2%ay, B U = Unl¥ay, By .
By changing the basis {W(8,),} ;=12 We may assume

o; 0
U= o, Fw,,
0 o,

(i @0y, 72<ay, f> =77y, B,5—=0 and x'{ay, f,> can not be unitary.) and
SO

0
7, ay, Boy = ‘3 ol
L 21
b 0
7:32<(¥2, ﬂ2> = (; b ’
L 2]
F0 el
”?1<a2’ ﬂ2> = c (; s
L2 ]
"0 4]
”?2<a25 /92> = d (; )
L. Y2 g
~a, 05 O
. O0a 065b
7Z'.<0t2, ﬂ2> = 0 C: 0 dj >

"Cz Odz 0
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. a,+a, b,+b.
TE,,<0£2,/92>=[ 10 ’ 102}1

A
zi’ay, By = l:a ] .

From (5.3.6), we obtain a,+a,=—1 and b,+b,=0. Since #!'{a,, f,> is Her-
mitian and Spzf"{ea,, B,>=1{0, 1}, we obtain

a, ER, d=d,, aa,—|d|*=0.

We write as follows.

a 06 O
° . 0 az 0 '_“b
7t.<t1{2’ ﬂ2> - 0 a 0 d s
¢ 0d 0
a, ER, aa, =|d|? ata, = —1.

From [B,2=[id]B[5:1B][B,] and Proposition 4.5 (iii), we obtain that
Syrikay, B> @ ey, £
is unitarily equivalent to
wa,, id) @ 7'y, B> Du.ilay, By .
For i=1, j=2
7.y, B @ 7.y, Brp+7.5 5, B0 @ w1y, B = 0B 0D )X aty, B .

This means
000 O
6110 b 0 b 0 0d 000 0
[0 aj@[o ~b]+[0 —bJ@{J 0}_ 0056 O
000 —b
If 5==0, we divide by b and obtain
aq d 0 0 000 O
d—a 0 0| |000 O
0 0 a —d| |001 O
0 0 —d-—a 000 —1

Due to aa,=|d|%, a;-+a,=—1,
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a d 0 O
d —a 0 0

Sp |, 0‘ G —d = {+Val+|d[]% +Va+|d[H}
0 0 —d —a

={£V—ap £V —aj} -

So @, or @,=0, and d=0. But this is impossible because = {a,, #,> must be
unitary and a;+a,=—1. We are now left with the alternative 5=0. But this
is also impossible because, 5=0 implies |a,| =|a;| =1 due to the unitarity of
z{a,, B,), while a; and a, are real and @;+a,=—1. Thus we reached a con-
tradiction. Q.E.D.

Completion of proof of Theorem 5.1. By Lemma 5.3, we obtain [5,] [o,]
= @ [r,]. By Theorem 4.1 and the remark after Proposition 4.2, we obtain
£es,

M - po(M) >4 1S3 .
PooYoPy

Since [0,(M): py(M)]=2, there exists a Z, action 6 on M such that

(M) = o(M) X Z,.
PgoBopg

By the definition of crossed product, there exists a unitary ¥ & M such that
00 0(x) = 0400005 (04(x)) = uo(x) u* .

This means [o,00]=[0,] and by conjugation, [6] [7,]=[7,]. Multiplying both
sides of the equality [, 0o]=®I[r,] by [f] from left, we have

[@0 0] = [0]17, 0] = D] [1,] -

Therefore [6]€ {[r,]} i.e. {id, 6} is cocycle conjugate to a subgroup of {r}.
Then

MO N=p(M)XS;D p(M)XS,.

From the classification of group actions on the type III; AFD factor [KST,
Theorem 20], we obtain the desired conclusion of Theorem 5.1. Q.E.D.

Corollary 5.4, Let MDN be a pair of factors with [M: N1,=6 and M N
N'=C. If the depth of MDN is two, the relation between M and N is one of
the following.

(1) There exist a group G and its outer action on M such that N=MZ¢.

(ii) There exist a group G and its outer action on N such that M=NXG.
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Proof. Suppose the contrary. Due to Lemma 3.8, we may assume that
M and N are properly infinite and M is isomorphic to N, because the principal
graph does not change after taking tensor product. (Note that the above two
conditions are characterized by the principal graph of M DN or the principal
graph of M;C M, where M, is the extension of M by N [K3][PP1, Corollary
1.1.6].) Let p&End(M) with N=p(M). Thanks to Theorem 4.1 and Prop-
osition 4.2, [0] and [p] must satisfy the condition of Lemma 5.2. But this
is impossible because of Lemma 5.3.

8§6. Comments

6.1. In the theory of Ocneanu’s string algebra construction, there is no cri-
terion for the distinguished point in the case of general graphs. (In the case of
Coxeter graphs, the following (i) was announced by A. Ocneanu [Ol, page
161-162].) By the arguments of Subsection 2.3, we have the following criteri-
ons for the distinguished point and the existence of a flat connection.

Theorem 6.1. (i) The distinguished point must be the point with the mini-
mal component of the Perron-Forbenius eigenvector.
(ii) If we normalize the Perron-Frobenius eigenvector such that the mini-

mal component is one, all components must belong to {2 cos %; N=3,4, -} U
[2, 00).

These criterions essentially follow from the local index formula in [PP2, Corol-
lary 3.2]. D;, E; and the two graphs of U. Haagerup and J.K. Schou [HS] shown
in Fig. 17 do not have a point satisfying these criterions and hence can not ap-
pear as a principal graph.

Fig. 17. Two graphs in the list of [HS].

6.2. As we saw in Section 3 and just above, the properties of the statistical
dimensions such as the restriction of the values, additivity, and multiplicati-
vity, are very powerful for rejecting non-flat graphs. But we can prove Theo-
rem 3.7 solely on the basis of algebraic calculation of fusion rules. We omit
the detail.

6.3. In [Ka] Y. Kawahigashi proves the non-existence of D, and E, para-
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groups and the existence of D,,,, paragroups by the argument about flatness
of graphs. He also shows the numerical evidence for flatness of E; and Ej.
His method is constructive and this is the strong point of his method. But
it seems very hard to show flatness for general graphs.

The existence of a flat connection of a graph implies indireclty the existence
of consistent fusion rules associated with the graph, through the theory of ope-
rator algebras. But Lemma 5.3 shows that the converse is not true, i.e. the
consistency of the formal calcuration of fusion rules does not necessarily im-
ply the existence of a flat connection. The graph in Fig. 18 is also a counter
example. Indeed, suppose the principal graph of M D (M) is as in Fig. 18.
Then we can take p, such that

o(M) = o(M), [0 =[d]D o] DBle],

as in the case of A4,,. This implies that we can construct o, using the Cuntz
algebra Oy [I]. But direct computation shows that this is impossible.

[ I—— R )
Fig. 18. An example of a non-flat graph which has consistent fusion rules.

We must clarify the relation between flat connections and fusion rules to
simplify the axiom of flatness.

6.4. It is not hard to calculate fusion rules for Coxeter graphs with the Perron-
Frobenius eigenvalue two such as DS, E®, ES? and E{V. (AL is not interest-
ing because the corresponding sector is reducible and is a sum of two automor-
phisms.) The method in Section 5 is also applicable to the case of D{" and E.
But more complicated calculation is needed for the step corresponding to
Lemma 5.3.

6.5. In the theory of the II; AFD factor, the counterpart of the notion of the
canonical endomorphism is the canonical shift, and that of self-conjugate endo-
morphism is Choda’s roots of the canonical shift [C]. She shows in [C] the
following fact.

Fact 6.2. Let RD P be a pair of II factors. If [R: P]<4 or P is the fixed
point algebra under an outer action of a finite abelian group, then there exists
o EEnd(R) such that p(R)=P and 0® is the canonical shift.

In [1], for every finite abelian group G of order n, we construct self-con-
jugate endomorphism on type III;;, AFD factor, whose image is the fixed point
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algebra under an outer action of G, by using Cuntz algebra O,. Since an outer
action of any finite abelian group on the type III; AFD factor is unique [KST,
Theorem 20], by taking tensor product with the type III; factor, we have the
following fact.

Fact 6.3. Let M be the type III, AFD factor and N be the fixed point
algebra of M under the outer action of a finite abelian group. Then there exists
a self-conjugate o SEnd(M) such that o(M)=N.

In analogy with the case of the II; AFD factor we make the folloiwng con-

jecture.

Conjecture 6.4. Let M DN be a pair of type 11, ASD factors. If [M: N]
<4, then there exists a self-conjugate o EEnd(M) such that o(M)=N

In the case that the principal graph of M DN is A.y.n, We saw in Section
3 that this conjecture is true.

8§7. Appendix. In the Case of Type IL. Factors

Proposition 7.1. Let M DN be a pair of a type II.. factors with [M:N],<
oo, Then every non-zero projection in M N\ N' is infinite.

Proof. Let 7,, 7, be the canonical traces on M and N, and let E be the
minimal expectation from M to N. We define a faithful nomral semi-finite
weight by z,0E. Then there exists a unique positive self-adjoint operator 4
affiliated with M such that

70E = 7y(h) .

Due to a'l’g;EzaTzzidN, of =idyyys and oFE=Adh*, h is affiliated with Z(M N
N’), and in fact % belongs to Z(M N N') because of dim M N N'<oo. Let p be
a minimal projection in M N N’. Then Ap=cp for some scalar ¢c>0. So

1 1
=(p) = i (hp) = = (E(p)) .
Since E(p) is a positive scalar we obtain z;(p)=rco. Q.E.D.
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Note added in proof: After submitting this paper the author received a preprint of
V.S. Sunder and A.K. Vijayarajan ‘On the non-occurrence of the Coxeter graphs E; and Doy +y
as the principal graph of an inclusion of II, factors™ on the non-existence of Doqq and E; para-
groups.



