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A Note on Hypoellipticity of Degenerate
Elliptic Operators

Dedicated to Professor Mutsuhide Matsumura on his 60th birthday

By

Minoru KOIKE*

This note concerns C* hypoellipticity for differential operators (in R?) of
the form

L= D,Z"'+f(t)D,2'”+g(t)D,2'”, D, = —iglot, m=1,2,--
Here we assume

(A.1) 1) fand g belong to C~(—9, 0) for some >0,
2) f(t)>0 and g(¢t)>0 for ¢==0.

Concerning operators closely related to L, criteria for the hypoellipticity
have been recently given by several authors See Fedii [2], Hoshiro [4,5], Ku-
suoka and Stroock [6] and Morimoto [7, 8, 9, 10]. In particular, Hoshiro
considered the same operator as L with the assumptions (A.1) and

(A.2) both of f and g are non-decreasing in [0, d), and non-increasing in
(=9, 0].

In this note we shall prove the following Theorems 1 and 2, which show that
the condition

© lim (#; ) log () = lim x(#; f) log g(t) =0

is equivalent to the hypoellipticity for L under (A.1) and (A.2), where

u(t; g) = max {g(s)¥@m|¢t—s| ; s is between 0 and ¢}
= max {g(0r)V®™ (1—6)|t]|; 0<6<L1}.

Theorem 1. If (A.1) holds, then (C) implies that L is hypoelliptic (near
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t=0).
Theorem 2. Let (A.1) and (A.2) hold. Then (C) holds if L is hypoelliptic.

Notice that no assumption other than (A.1) is required in Theorem 1 whe-
ther m=1 or not (cf. Theorem 2 of [5] and Theorem 1.1 of [7]).

Example. Let o be a constant and
L = Dt2m+e-2m/ltle2m__|_exp[_Itl— ellltl]Dyzm'
Then the Theorems show that L is hypoelliptic if and only if 6<2.

We get the following Corollary at once (cf. Theorem 8.41 of [6], Theorem
3 of [8] and Proposition 1 of [10]).

Corollary. Let f satisfy the conditions in (A.1). Then the condition
lim ¢ log f(#) =0
>0
implies that the operator
D+ f(t)D, D"

is hypoelliptic. If f satisfies (A.2) in addition to (A.1), then the converse is also
true.

We prove Theorems 1 and 2 in Sections 1 and 2, respectively. Our proofs
are modifications of those in [4, 5]. We use the well known integral inequality
of Hardy and an interpolation theorem in Sobolev spaces.

§1. Proof of Theorem 1

In view of Proposition 2 of [5], it suffices to prove the following: The
condition

M lim u(t; g) log /(1) = 0

together with (A.1) implies that, for every ¢,>>0, there exists an N(eg)>1 such
that

@ (ogey= [glv)? dr<e [ 1vmey12 drtemn [ 1oy o) at

for v CF(—9, 0) and &> N(e,).
We may assume g and the derivatives of f are bounded in (—0, ) (by re-
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placing & with a smaller one if necessary). Since (2) holds whenever f(0)>0,
we only consider the case where f(0)=0.

We use the “sew rogether” method as in [4].
First, we have

Lemma 1. The inequality
©) [ sy 12 dr<anas g | 10y 12
0

holds if 0<a<d, veCy(—0,0) and v*®(@)=0 (k=0, ---, m—1). Similarly, the
estimate

[, s 1so)1? dr <an—bs g | 1smio) |2 ar

holds if 0<b< 8, veECF(—0, 8) and v®(—b)=0 (k=0, ---, m—1).
Proof. We prove (3). Since

o(t) — S, (’(n__li:! (s— 1) 1ym (s5) ds ,

we have, for t<a,

@00l <@-o7 | |y (5)] ds

s—t J”’"‘

<0(t)=(a—1t)™* S: v (s)|ds,
thus the left hand side of (3) is estimated above by
[ s @070 dr<uta; g | oepar.
Therefore the inequality (3) follows from the estimate
S; 6(F): dt <22 S_x | (1) | d,

which holds by the Hardy’s inequality (Theorem 327 of Hardy, Littlewood
and Polya [3]). Q.E.D.

Second, in order to prove Lemma 2 below, we use the following one-di-
mensional interpolation inequality (see, e.g., Adams [1], the proofs of Lemmas
4.10 and 4.12).
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Proposition. There exist a constant C, and a positive integer | such that,
if I is an (open) interval in R with the length |I1| <0, then the inequality

[ wowrasain=of 1umw oo | uta]
I I
holds for us C"(I), 0<k<m—1 and 0< p<1.
Let ¢ be a function belonging to C*(&) such that
0<¢<1, ¢(r) =1 for <1, and ¢(zr) =0 for 7=2.
Putting

6] x(t) = ¢(Ef(@@)), where 7=m/(Im+m+1),

we obtain

Lemma 2. There exists a constant C such that the estimate
®  [1peoerasc] oz aren | oo ]
holds for E>1 and v CF(—9, 0).

Proof. We have by the Leibniz rule
© @)™ <Gl 23 |72,

where C, depends only on m. Notice that, if 1< j<m, the function ¥*?y(»=9
vanishes on the outside of the open set

™ 1&) = {te(=9,9); £7/()>1},

and I(£) is disjoint union of (at most) countably many open intervals I,=(a,, £,)
(contained in (0,0) or (—9, 0)) with £ (a,)=1 or &%(B,)=1. Since ¢*)(r)
(k>0) vanishes to infinite order at r=1, we have |¢®(r)| < C,|r—1|* for
r>1 and 1<k=<m, where C, is independent of = and k. Therefore, letting 7,
be @, or B, with £f(n,)=1, we have , for tEl, and 1< j<m,

[ 29()| <const. £¥ max |¢® (EY(2))]
1<k<m

<const. EYC,| E¥f(£)—& (n,) |’
SGET 1=, | 'S CETID| L, |

with a constant C; independent of &, p and . Hence
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S |2y |2 g < CREPGD Y |14 S[ |m=D|2 gf |
» »

The above Proposition and (7) imply that the right hand side of the last in-
equality is estimated above by

ngzv(fﬂ)co[pg |vm |2 gt p-(m=Dligy S flv |2 dt]
e 1

for p€(0,1]. Putting p=&"29*) we obtain (5) by the definition of r and
(©). Q.E.D.

Now we can prove (2). Let a=a(f)=sup {t=(0,9); &'f(1)<2}, —b=
—b(&)=inf {t (-0, 0); £7f(t)<2}, where 7 is the number as in (4). Then,
a and b tend to 0 as £—>co, and, since & =(2/f(@))"*=(2/f(—b))*?, (1) implies
that for every € >0 there exists an N=N,>1 such that

4u(—b; &P+ u(a; g)*"] (log £Y<e  for E=N.
For arbitrary vECy(—9, d), we put v,;=xv and v,=(1—ZX)v, where ¥ is the

function defined by (4). Since the support of v, is contained in [—b, a], we can
apply Lemma 1 to »;. Hence

Gogep [ gl dar<e | 15471 ar
®)
<ec|[ [ 1wy drren( r1vto) 12

by Lemma 2. Since g is bounded, (log &)*"g(t)<e&2»" for £> N provided N
is sufficiently large. Furthermore v, vanishes on the outside of the set I(¢) de-
fined in (7), and, accordingly, the inequality |v,(t)| < |v(¢)| yields the estimate

® (log £)" S gD v (1) |2 dt < e?m Sf(t) |v(2) |2 dt .
Since |v(1)12<2|v(2)12+2|v,(1)|? adding (8) and (9) (“sewing together”), we
have (2). Q.E.D.

§2. Proof of Theorem 2

Let (C) be violated. We consider the case where u(¢; g)logf(¢) does
not converge to 0 (the other case is treated similarly). Then f(0)=0. There
exist an ¢ >0 and sequences s, #, (n=1, 2, ---) such that s, is between 0 and ¢,,
(10) g(sn) l by —Sy |2m l Ing(tn) |2m2€

and ¢,—0 as n—o0,
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We prove that L becomes non-hypoelliptic by modifying the proof in [4]
slightly. In fact, consider the eigenvalue problem in the interval (—d, &)

P(EYV(t) = [Dm+-& f(1)]v(t) = 2g(t)v(2),
YO(—8) = v® @) =0, k=0, m—I,

where £ is a real valued parameter. Here 2 is regarded as an eigenvalue. Let
A(€) be the smallest positive eigenvalue and v=v(¢; &) the corresponding eigen-

8
function such that ||v(-; E)IIZES . [v(z; €)|*dt=1. Then we have

AE) = (PEW(-; &), v(=; EN/(gv(<; £), v(=; &)
= inf {(P(&)u, w)/(gu, u); u€ C7(—9, 9), u==0}

8 I
(the infimum of the Rayleigh ratio), where (i, v)=§ u(t) v(t) dt. Let &, be
J =8

f(t,)"Ye  which tends to -+ oo as n—>co, and let J, be the interval (s,, ¢,) (or
(s, 5,)). Then &, f(£)<1 and g(¢)>g(s,) for t €J, by (A.2). Thus

A&, <g(s,) - inf {2+l PYllul; e CF(J,), u==0}
<g(s,)™" [const. |#,—s,|™*"+1]<const. |log f(t,)|*"

(for large n) by (10). Hence A(£,) < const. (log&,)*”. Let us put &,=
[(—1D)»*2(E)Y® (Re £,>0). Then |[x,|<const. log &,. The rest of the
proof is quite similar to that of [4], with the function u, in (2.8) of [4] replaced
by v(¢; €,) exp (ié,x+«x,y). Thus we omit it here. Q.E.D.

References

[1] Adams, R.A., Sobolev Spaces, Academic Press, New York, 1975.

[2] Fedii, V.S., On a criterion for hypoellipticity, Math. USSR Sb., 14 (1971), 15-45.

[3]1 Hardy, G.H., Littlewood, J.E. and Pélya, G., Inequalities, 2nd ed., Cambridge Uni-
versity Press, Cambridge, 1952.

[4] Hoshiro, T., Hypoellipticity for infinitely degenerate elliptic and parabolic operators
of second order, J. Math. Kyoto Univ., 28 (1988), 615-632.

[5] ———, Hypoellipticity for infinitely degenerate elliptic and parabolic operators
11, operators of higher order, J. Math. Kyoto Univ., 29 (1989), 497-513.

[6] Kusuoka, S. and Stroock, D., Applications of the Malliavin calculus, Part II, J. Fac.
Sci. Univ. Tokyo Sect. IA, Math., 32 (1985), 1-76.

[7] Morimoto, Y., On the hypoellipticity for infinitely degenerate semi-elliptic operators,
J. Math. Soc. Japan, 30 (1978), 327-358.

[8] —————, Non-hypoellipticity for degenerate elliptic operators, Publ. RIMS, Kyoto
Univ., 22 (1986), 25-30.

[9] ————  —, Ciriteria for hypoellipticity of differential operators, Publ. RIMS, Kyoto
Univ., 22 (1986), 1129-1154.

[10] —— , The. uncertainty principle and hypoelliptic operators, Publ. RIMS,
Kyoto Univ., 23 (1987), 955-964.



