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On the Whitney-Schwartz Theorem

By

Takao KAKITA*

Let F be a closed set in R®. Then, according to L. Schwartz [6], F is called
regular if for each x=F there are numbers d(>0), o(=0) and ¢(=1) such that
any two points y, z of F with r,,<d and r,,<d, are joined by a rectifiable
curve in F, of length not greater than wr,,'/? where r,, is the distance between
x and y. This definition is a generalization of “Property (P) local” by H.
Whitney ([9]). Schwartz stated in [6] the following theorem without proof.

Theorem (Whitney-Schwartz). Let T be a distribution in R"™ of order m
whose support is contained in a compact rvegular set F. Then

(A) (T, ¢;>—0 provided ¢,= C*(R") and their derivatives of order not greater
than m’ converge to zero uniformly on F, where m’ is any integer = q(F)m and
q(F) is a number =1, depending on F.

(B) T is represented by a finite sum of derivatives of measures whose sup-
ports are contained in F.

A similar result to the part (A) of Theorem was given for a general compact
set F by G. Glaeser, in such a sense that it has an advantage not making the
behavior of ¢, interfered in a ‘neighborhood’ of F (see Proposition II, Chap III
in {2]). We shall give an elementary proof of Theorem for a distribution in
an open set £ of R”. For the proof we make use the reproduction of Whiteny’s
extension theorem by L. Hormander ([4]). The key lemma is the following :

Lemma. Let u be a distribution of order m in 2 with support in a compact
regular set FC2. Then there is a constant C depending on m' and F such that
for any o= C=(2)

Ku, X1 =Clleln . » (1)

where q = q(F) is a positive number depending on F, m' is any integer = qm, and

el F:.Eki‘g 1(0/0x)*@(x)].
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In case F is a closed ball, a simple proof of (1) was given by S. Mizohata
in proving that evolution equations with finite propagation speed should be of
kowalevskian type (see [5]). Now we shall restate the Whitney-Schwartz
theorem in our form.

Theorem. Let u be a distribution in £ of order m with support in a compact
regular set FCQ. Then

(A) <u, p—0 provided ¢,= C(R) and their derivatives of order not greater
than m' converge to zero uniformly on F, where m’ is any integer = q(F)m.

(B) u is represented by a finite sum of derivatives of measures in 2 whose
supports are in F.

Proof of (A) is immediate from Lemma. For proving (B) we can apply the
Hahn-Banach theorem to the inequality (1) through the well-known method.
We omit the details (see [6]).

Before proceeding to prove our lemma, we shall give a sketch of the parti-
tion of unity by Whitney in [8], following the reproduction by Hérmander.

Let A be a closed set in R". The partition of unity is constructed as
follows. First, divide R™ into n-cubes of side 1, and let K, be the set of all
those cubes whose distance from A are at least vn . Next, divide the remain-
ing cubes into 2" cubes of side 1/2, and let K, be the set of those distant from
A at least vn /2. Repeating such a division process, we have a series of the
sets {K,, K, ---} where the union of all cubes of them is R"\A. Arrange all
cubes in order of a series Q,, @, -+ ; the center and side of each Q, are denoted
by y’ and s,, respectively. Now take X,=C< being equal to 1 on the cube

[x:] Z1/2, =1, -, n
and vanishing outside the cube
x| =1/241/8, i=1, -, n.
Then define X, C3(R") by

o x-—yj - x——yk y — e
1(0=1o( 5 )/ S n( ) =L
As for the denominator, it is verified
0 __nk
1= 30, (2 )=4m.
=1 Sk

The sequence X, in C3(R™) is locally finite in R™"\ A and has the properties :
(i) %;20; 32 (x) =1 for x&eR™A
(ii) for each a, there is a constant C, such that

]é I DU(x)]| < Cald(x, Ay '¥+1)
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for xe R™ A where D = d/0x

(iii) (the diameter of supp;) < Cd(suppX,, A), i=1,2, -
for some constant C.

In the following we quote each of (i), (ii), (iii) as the property of X,. Let
x&suppX,. Then it can be easily verified d(x, A)>1, provided s, = 1 (see [4]).
So we note d(x, A) <1 implies s, < 1.

Proof of Lemma. Since F is regular, to each x=F there corresponds an
open ball Bu(x) of center x, with radius d in £ such that any two points v, z
of FNB4(x) can be joined by a rectifiable curve in F. Here we note the radius
d depends on x. Since F is compact, we can choose a finite family {Bga,(x1),
-+, By (xm)} from the open cover {B,(x)|x&F} of F so that

FCBa(x)U - UBap(xn).

Take a partition of unity ¢, subordinate to the finite open cover {Bq(x,)}.
Then u is represented in the form

L¢:¢1u+"'+¢mu=u1+"'+um (2)

where suppu, = supp,uCF, = FN B, (x,), F, being also compact and regular.
Suppose the estimate (1) is valid for each uj, F), ¢, instead of u, F, q. Then
for p=C=(Q2), there is a constant C; such that

[<uyy @21 = Chll@lm,, v (3)

where m; is any integer = mg,, ¢, being a number (= 1) related to the regularity
of F,. Clearly, Lemma is a consequence of (2) and (3), with ¢ = g(F) = sup;zj<ng,
and C = sup,s,;smC,. So it suffices to derive (3) for each o= C=(£2), in which we
write '= F, and ¢ = g,, dropping the subscript ; for simplicity of notation.

Take ¢ in CH(2) and extend it to a function in CP(R") by setting zero
outside £, which we denote ¢ again. We shall give a function ¢=C™(2) so
that ¢(x)=¢(x) in F when |a|=<m where D*f=f‘. This can be carried
out by the method of Whitney’s extension theorem, as follows. Making use of
the partition of unity X; in R"\F just constructed above, we define a function
¢ by

N(x) =

o(x) for x=F
{ (4)

S (xX)pm(x; ) for x&R™F
where y’F is taken so that
d(supp2;, F) = d(suppZ,, 3%)

1
ou(x; ¥)= ]Emj'l-,go‘“’(y)(x—y)“

and XJ; stands for the sum with s, <1. Then ¢= CJ(R™) and satisfies
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D*¢ = D*p in F
when |a|<m ([6]). What we are going to obtain is the estimate

[gllm. 0 =Cll@ln:, (5)

where C is a constant depending only on m, ¢ and F. Let x=O\F be fixed.
Then d(x, F) > 0. To derive (5) we divide the case into 1) d(x, F) >1 and 2)
d(x, F)<1. It is enough to show for the case where m = 1.

1) d(x, F)>1.

Differentiation of ¢ in (4) gives, by Leibniz’s formula,

PO(x)= 3 JUP(x)pP(x; ¥).
Brr=a g
Since ;XA (x)| < 2Cp by the property (ii) of {X,}, we have

(D =Cl@lim, r

for a constant C’, when |a|<m, which implies (5).

2) 0<d(x, F)<1.

In this case, as we noted before, s; <1 provided x<suppZ,. Hence we have
27X(x) = 24,(x) = 1, which gives

Hx) = on(x; ¥)+ JE,X;(x)me(x; ) —@ul(x; ¥)] (6)

where yE F is so chosen as d(x, F') =|x—y|. Further we take x’&suppX; so
as to satisfy d(suppX;, F)=|x’—y’|. Then
| x—x’| < diam(suppX;) < Cd(suppX;, F) < Cd(x, F)

for some constant C where we used the property (iii) of {X;}. Thus in view
of the definitions of y, x’ and 3/, we get the inequalities
2=yl S|x—2' | +]57—"| < (C+Dd(x, F)
(7)
ly—y=<ly—x|+|x—3"| = (C+2)d(x, F)

which will be needed later. Denoting by Rn,(x; y) the remainder term of
Taylor’s formula at y, we have

o(x) = @u(x; ¥)+ Ru(x; ¥). (8)
Our basic concern is to estimate the derivatives of the difference ¢n(x; /) —

¢m(x; v)in (6). The Taylor polynomial of ¢(z”)

1
OV o 1) — B+ 5\ s __ =1\5
Pm (Z s 2) xﬁrs%-m,@!go (Z )(4 )

combined with the formula for any z, z/, z”

P F() = (2’5 2) + RET(2'; 2)
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obtained by differentiating (8), gives

e (z"; ') :\,;ls%"_‘.w%[?ﬁ#h(z'; 2)+RG(2; 2)(z"—2') . (9)
On the other hand
. 1 5
o )= | B SreRtiE 2 =) (10)

Thus the subtraction of (10) from (9) yields

1

I5(S;L—WI 5‘ R%T?)(ZI; ZXZ”—Z’)s’ (11)

PR(2"; 2 )—eR("; 2) =

so that changing z, z/, z” to v, ¥/, x gives

lo@(x; y)—eP(x; IS X IRGTP(y; yXa—y7)7]
iprsmoy

(12)
'=_<—Co”§0”m',F+“} > ;;'.IR%'WW; INx—y7)7|

Ism’—
since Rn(x; ¥)=@m(x; ¥)—@u(x; y)+ Rn(x; y), where m’ is any integer =mg.
So we are left with estimation of R$+7(y’; y). This will be worked out by a
technical modification of [7]. As y, y’F, there is a rectifiable curve C in F
of length, say L, joining y and y’. Let 4:y =2 2%, .-, 22 = y7 be a subdivision
of ¢ in F and let |4{=sup;sisp|2z°—2*"'|. Note that

PR("; 2') — @il(z"; 2) = REN2"; 2) — RN 2"; )
since
09(") = (" 2) + RP("; 2)
= 0("; 2')+ R{(="; 2').
Thus we get by (11)
1

R§m(z"; 2)— R4 (z"; )= 3 i REF1TO(2" 5 2)z"—2').
1rsm’ = y+yl 0!

Changing z, z/, z” to z*"%, z*, y’ in this equation, summing over 7 and noting
R¥®(y7; y7) =0 when |k|<m’, we consequently have

RGO 2 =2 13)

REFP(y75 ¥)= 2 ,
Jism'=|r+9i 0!

D
i=1|
Note that by the classical formula for the remainder term

! R‘(n77:'+5+1])(21' ; Zi—l)l g ! Z'[___,.'i—l I m’' - 17+5+77|€( ! Zi_zl—l | ) (14)

where &(/1)—0 when 1—0.
Now split the sum for ¢ in (13) into the sums for [d!<m’—|r-+7%| and for
|[6l=m'—|7+7|, and then denote the former by /, and the latter by [, res-
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pectively. Since |z'—z'"!|<L and |y’—z*|<L, in view of (14) we have

L= X A pmewen fae((d)
181<m =17 +71 0! =1
1

L™ menig(|4))

<
T isicm i+ 0]

which tends to 0 when |4|—0.
On the other hand

L Lo ()~ Ty 2

since for |d|=m'—|r+79],

(p%?”&”)(z‘; ziY) = gD(r+5+r))<zt—l)
and so

(P(r+5+:7)(21) — (P(T+5+7)(21—1) + R%ﬁ'd‘f—ﬂ)(z’l; 21—1).

Now for each fixed § we have

D
O+7)( 1) +0+9)( Hi~1 i i\0
2 LoTomm(zt) — oot (2t ](y7 —2")

= — jE_:‘; Lo+ m(2h)— pr+3+ (") ][(y7 — 2"V —(y/ —2* )],
which tends to a Stieltjes integral
— | Tor o a(s)— gt P d(y — 2(5)) (15)

when |4]/—0, where z(s) denotes the point on the curve C of length s along C
from y.
After the differentiation in the integral, (15) becomes

a!

D T AR O R N G R D 16)

Denote the sum of integrals (16) by I; 3, Then we have

, 1
T i — — )
REFP(y7; 9) Im:m,z_twm 511 lm J4

Hence, taking the regularity of F into consideration, we have the estimates
[REF(y7; IS CLL™ 71 @llme, ¢
< Cd(x, FY™ =110 0 g

for some constant C, and for any 7 and y with {74+»|<m’. The last estimate
combined with (7) and (12) implies



ON THE WHITNEY-SCHWARTZ TIHEOREM 19

lo(x; ¥)—o(x; MIECleln, r 2 d(x, FY™=11008d(x, F)!7!
' T=ari

lsm’=

where C, is a constant depending only on m’ and F. Now, the differentiation
of ¢ in (6) with respect to x gives

P (x) = pi(x; y)+ﬁ§=w gllx,‘-ﬁ’(x)[ga%’(x; ¥)—e@R(x; ¥)].

Thus in view of the property (ii) of {X;},

|6 <l m. 7
+ Callgllne # 33 (dlx, FYPHD) 8 d(x, Fereavmsn,
+r=a ] Tl

sm! =y

As for the exponent of d(x, F), if |a|<m

<<m'—1r+m>/q>+m|—wz%—{mq—|a—ﬁ|+<q—1>|nl~q|ﬁl}

Il

%{q(m—iﬁi+171|)—(!a|—l,3|+!7;i)}

> ‘7;1 (m—181+1791)=0.

Since d(x, F)<1, we finally have
[ ()< Clolmr, r

when |a| < m, where C is a constant depending only on m’ and F. Collecting
the results obtained so far, we consequently proved the estimate (5). Recall a
property of distributions with compact support that if Xe C(2) and its deriva-
tives of order up to m vanish on F, then <u, X>=0 (cf. [6]). Suppose n=C3(2)
is equal to 1 on a neighborhood of F. Then y¢ can be regarded as a function
in C3(2) and (p@)*=(y¢)* on F when |a|<m. Thus we get

<u, noy =<u, ¢,
and so

[Ku, >1=Ku, ne>l=<u, n¢>i
<Cilldlnm o

for any integer m’=mq where C,, C, are constants depending only on m’ and
F which completes the proof of Lemma.

Remark. A typical example of regular set is a convex set, where ¢g=1.
In this particular case, the proof of Lemma is carried out much more readily
than the above, since it is enough to use the classical formula for RG*7(y7; y)
in (12). Today, we know a large family of regular sets, that is, compact sub-
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analytic sets in R™ (or in real analytic manifolds) (see [1], [3]).

Acknowledgement

The author thanks the referee for his advice.

References

Bierstone, E., Differentiable functions, Bol. Soc. Brasi! Mat., IL (1980), 139-180.
Glaeser, G., Etude de quelques algébres tayloriennes, J. Anal. Math., 6 (1958), 1-
124.
Hardt, R.M., Some analytic bounds for subanalytic sets, Differential geometric
control theory, Birkhiuser, Boston (1983), 259-267.
Hoérmander, L., On the division of distributions by polynomials, Ark. Mat., 3 (1958),
555-568.
Mizohata, S., On evolution equations with finite propagation speed, Israel Jour. of
Math., 13 (1972), 173-185.
Schwartz, L., Théorie des distributions, Hermann, Paris, 1966.
Whitney, H., Functions differentiable on the boundaries of regions, Ann. of Math.,
35 (1934), 482-485.

, Analytic extensions of differentiable functions difined in closed sets,
Trans. Amer. Math. Soc., 36 (1934), 63-89.
On the extension of differentiable functions, Bull/. AMS, 50-2 (1944),

H

76-81.



