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On the Whitney-Schwartz Theorem

By

Takao KAKITA*

Let F be a closed set in Rn. Then, according to L. Schwartz [6], Fis called
regular if for each x^F there are numbers d(>0), ew(^O) and g(^l) such that
any two points y, z of F with rxy<d and rxz^d, are joined by a rectifiable
curve in F, of length not greater than a)ryz

1/q where rxy is the distance between
x and y. This definition is a generalization of "Property (P) local" by H.
Whitney ([9]). Schwartz stated in [6] the following theorem without proof.

Theorem (Whitney-Schwartz). Let T be a distribution in Rn of order m
whose support is contained in a compact regular set F. Then

(A) <T, 9j>-»0 provided ^e C°°(Rn) and their derivatives of order not greater
than m' converge to zero uniformly on F, where m' is any integer ^ q(F}m and
q(F} is a number ^ 1, depending on F.

(B) T is represented by a finite sum of derivatives of measures whose sup-
ports are contained in F.

A similar result to the part (A) of Theorem was given for a general compact
set F by G. Glaeser, in such a sense that it has an advantage not making the
behavior of <pj interfered in a 'neighborhood' of F (see Proposition II, Chap III
in [2]). We shall give an elementary proof of Theorem for a distribution in
an open set Q of Rn. For the proof we make use the reproduction of Whiteny's
extension theorem by L. Hormander ([4]). The key lemma is the following :

Lemma. Let u be a distribution of order m in Q with support in a compact
regular set FdQ. Then there is a constant C depending on m' and F such that
for any <p^C°°(Q)

tF (1)

where q = q(F) is a positive number depending on F, m' is any integer ^ #77?, and
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In case F is a closed ball, a simple proof of (1) was given by S. Mizohata
in proving that evolution equations with finite propagation speed should be of
kowalevskian type (see [5]). Now we shall restate the Whitney-Schwartz
theorem in our form.

Theorem. Let u be a distribution in Q of order m with support in a compact
regular set FdQ. Then

(A) <M, ̂ />— >0 provided cpj^C°°(Q) and their derivatives of order not greater
than m' converge to zero uniformly on F, where m' is any integer ^ q(F)m.

(B) u is represented by a finite sum of derivatives of measures in Q whose
supports are in F.

Proof of (A) is immediate from Lemma. For proving (B) we can apply the
Hahn-Banach theorem to the inequality (1) through the well-known method.
We omit the details (see [6]).

Before proceeding to prove our lemma, we shall give a sketch of the parti-
tion of unity by Whitney in [8], following the reproduction by Hormander.

Let A be a closed set in Rn. The partition of unity is constructed as
follows. First, divide Rn into n-cubes of side 1, and let KQ be the set of all
those cubes whose distance from A are at least -Vn . Next, divide the remain-
ing cubes into 2n cubes of side 1/2, and let K^ be the set of those distant from
A at least Vn /2. Repeating such a division process, we have a series of the
sets {K0, Kl} •••} where the union of all cubes of them is Rn\A. Arrange all
cubes in order of a series Qif Q2, ••• ; the center and side of each Q3 are denoted
by y and s}, respectively. Now take X0^C°S being equal to 1 on the cube

i = , -, n

and vanishing outside the cube

|x, ^1/2+1/8, i=l, -, n.

Then define H3<=C°S(Rn) by

/=!, 2, - .

As for the denominator, it is verified

The sequence Ij in C°S(Rn) is locally finite in Rn\A and has the properties :
( i ) fy^O; T>7=i%jW= 1 for x^Rn\A
( i i ) for each a, there is a constant Ca such that
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for x<=Rn\A where D = d/dx
(iii) (the diameter of suppfy) < Cd(supp%;, A), j=l, 2, •••

for some constant C.
In the following we quote each of ( i ), (ii), (iii) as the property of 13. Let

*esuppX,. Then it can be easily verified d(x, A)>1, provided s} — 1 (see [4]).
So we note d(x, A)^l implies s} < 1.

Proof of Lemma. Since F is regular, to each x^F there corresponds an
open ball Bd(x) of center x, with radius d in Q such that any two points y, z

of Fr\Bd(x) can be joined by a rectifiable curve in F. Here we note the radius
d depends on x. Since F is compact, we can choose a finite family {Bdl(xi)>
••• , Bdm(xm)} from the open cover {Bd(x)\x^F\ of F so that

Take a partition of unity <f>} subordinate to the finite open cover [Bdj(xj)}.
Then u is represented in the form

u = fau + ••• + (J>mu = i/i-f ••• +um (2)

where suppw., = supp^wdF, = F r \ B d j ( X j ) , F3 being also compact and regular.
Suppose the estimate (1) is valid for each Uj, FJf q} instead of u, F, q. Then
for <p<=C°°(Q), there is a constant Cj such that

\<u,,<p>\£C,\\y>\\nj.Fr (3)

where nij is any integer ^ mgjf q3 being a number (^ 1) related to the regularity
of Fj. Clearly, Lemma is a consequence of (2) and (3), with q = q(F) = sup1Sj<m<7j
and C = supigjgmCj. So it suffices to derive (3) for each tp^C™(Q}, in which we
write F— Fj and q — q]t dropping the subscript j for simplicity of notation.

Take <p in C^.Q) and extend it to a function in C°S(Rn) by setting zero
outside Q, which we denote (p again. We shall give a function </>^Cm(Q) so
that </}<a\x)=<p<a\x) in F when \a\<Zm where Daf=f<a\ This can be carried
out by the method of Whitney's extension theorem, as follows. Making use of
the partition of unity Ij in Rn\F just constructed above, we define a function

^ by
<p(x) for

S;^U)9mU;y) for

where 3;;'eF is taken so that

Xj, F) =

9 > m ( A : ; 3 ' ) = S - < ? C f t )
| a | gm « I

and SJ vStands for the sum with s.; < 1. Then <f)^Cf(Rn) and satisfies
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D"<1) = Da<p in F

when \a\^m ([6]). What we are going to obtain is the estimate

tF (5)

where C is a constant depending only on m, q and F. Let x^Q\F be fixed.
Then d(*, F) > 0. To derive (5) we divide the case into 1) d ( x , F) > 1 and 2)
d(x, F) ^ 1. It is enough to show for the case where m ^ 1.

1) d(x, F)> 1.
Differentiation of cp in (4) gives, by Leibniz's formula,

0<">(*) = 2 2'j/3+r=« j

Since 2/l*j^(*)l^ 2C/9 by the property (ii) of {%,}, we have

for a constant C'ft when \a\^m, which implies (5).
2) 0 < d(x, F) ^ 1.
In this case, as we noted before, Sj <1 provided ^esuppZ^. Hence we have

2}^x) - 2AW = 1, which gives

#*) = ^>m(^ ; 3^) + 2^(^)[pm(x ; y )-?m(^ ; y)] ( e )
where 3/eF is so chosen as d(x, F) = \x—y\. Further we take ^esuppX,- so
as to satisfy d(suppXj, F) = \ x J — y J \ . Then

\x-x'\^ diam(supp^) ^ Crf(supp^, F) ̂  Crf(x, F)

for some constant C where we used the property (iii) of {%/}. Thus in view
of the definitions of y, xj and yj, we get the inequalities

, F)
( 7 )

, F)

which will be needed later. Denoting by Rm(x ; y) the remainder term of
Taylor's formula at y, we have

<p(x) = </>m(x ; y)+Rm(x; y). (8)

Our basic concern is to estimate the derivatives of the difference <pm(x ; y3) —
<pm(x ; v) in (6). The Taylor polynomial of

^(z" ', z'}= 2 -i-P'
i ; 9 | < m - i r i p !

combined with the formula for any z, z'? z"
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obtained by differentiating (8), gives

?£'(*" ; *') = 2 -jjr !>£+a>(
|5 ism -i 71 0 !

On the other hand

,- (7 V .-,//. -N _ V'
<pm (Z , Z) — 2j ^T

1 5 1 s m - I r I 3 !

Thus the subtraction of (10) from (9) yields

<pg\z» ; z')-<p«?(z* ', z)= 23 i-tfS^C*' ; zXz*-z'?9 (11)
i 5 i g m - i 7 i o !

so that changing z, zf, z" to ^, y3, x gives

IpJ f^ ; y)-9>S5(^; jOl^ 2] l/?g+ '}(y; ^XA-y^l
ij? I g m - 1 7 1

(12)

since Rm(x\ y) = (pm'(x; y) — <pm(xm, y) + Rm'(x; y\ where m' is any integer ̂ m#.
So we are left with estimation of Rm^1i\yJ , y\ This will be worked out by a
technical modification of [7]. As y, yJ<=F, there is a rectifiable curve C in F
of length, say L, joining 3; and y. Let J : y = ZQ, z1, ••• , zp = yj be a subdivision
of C in F and let | J| =supisispk i— 21"1!. Note that

. nu)(~ff . ~i\ ,nc/ ) / _ / / . 7^1—
(f>m'(Z , Z j — <pm'\* , Z) —

since

Thus we get by (11)

R^\z"\ z)-R«fi\z*; z'}=
' -17+17]

Changing z, z', z" to z1"1, z\ y3 in this equation, summing over i and noting
Rm)(yi ] y3} = 0 when l /c l^ra ' , we consequently have

; 30= S 2 -^-^S^'^; e'^Xy-^)*. (13)

Note that by the classical formula for the remainder term

IflS^V; ^'1)l^ z*-^"1 ^-'^^'sdz*-^1-1!) (14)

where e(/i)— >0 when /i->0.
Now split the sum for d in (13) into the sums for \d\ <mr— |7+^| and for

|, and then denote the former by 7j and the latter by /j, res-
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pectively. Since \zl—zi~1\<L and \ y j — z l \ ^L, in view of (14) we have

1
^ . S

which tends to 0 when |J|-»0.
On the other hand

/j= a s •^rfyg.-M+')(*t)-
i=i | 3 i = m ' - i r + i?l 0 !

since for \8\=m'—\Y-\-i}\,

<p(l^\z* ; z^1)

and so

Now for each fixed d we have

S [pCr+*+7)(2<)

= - s1[^cr+5+^v)-^c

which tends to a Stieltjes integral

(15)

when |J|-»0, where 2(5) denotes the point on the curve C of length s along £
from y.

After the differentiation in the integral, (15) becomes

J (16)
\K\ = i0—K)Jy

Denote the sum of integrals (16) by I7,d,y Then we have

Hence, taking the regularity of F into consideration, we have the estimates

for some constant C\ and for any 7 and rj with l ^ + ^ l ^ m ' . The last estimate
combined with (7) and (12) implies
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\<P$(x; yj)-<p%(x; y)\£Ct\\<p\\*..P S d(x, Fyn'-w*d(x, F)""
1 77 1 g m ' - i r |

where C2 is a constant depending only on m' and F. Now, the differentiation
of <]} in (6) with respect to x gives

jQ+r=« -7=1

Thus in view of the property (ii) of { I j } ,

IT? I gm'- 1

As for the exponent of d(je, F), if \

= k(m-ij8| + |i7iM|a -|]8|+ 17 i)}

Since flf(^, F)^l, we finally have

when \a\^mf where C is a constant depending only on m' and F. Collecting
the results obtained so far, we consequently proved the estimate (5). Recall a
property of distributions with compact support that if XeC^(fi) and its deriva-
tives of order up to m vanish on F, then <?/, X> = 0 (cf. [6]). Suppose 7]^C°S(Q)
is equal to 1 on a neighborhood of F. Then TJ(/> can be regarded as a function
in C°S(Q) and (^)ca)=(^)ca) on F when \a ^ m. Thus we get

and so
KM, ^P>| = |

^IU. ^ (by (5))

for any integer m'^mq where Ci, C2 are constants depending only on m' and
F which completes the proof of Lemma.

Remark. A typical example of regular set is a convex set, where q—\.
In this particular case, the proof of Lemma is carried out much more readily
than the above, since it is enough to use the classical formula for R^+^(yJ ; ;y)
in (12). Today, we know a large family of regular sets, that is, compact sub-
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analytic sets in Rn (or in real analytic manifolds) (see [1], [3]).

Acknowledgement

The author thanks the referee for his advice.

References

[1] Bierstone, E., Differentiable functions, Bol. Soc. Brasil Mat., II (1980), 139-180.
[2] Glaeser, G., Etude de quelques algebres tayloriennes, /. Anal. Math., 6(1958), 1-

124.
[3] Hardt, R.M., Some analytic bounds for subanalytic sets, Differential geometric

control theory, Birkhauser, Boston (1983), 259-267.
[4 ] Hormander, L., On the division of distributions by polynomials, Ark. Mat., 3 (1958),

555-568.
[5] Mizohata, S., On evolution equations with finite propagation speed, Israel Jour, of

Math., 13 (1972), 173-185.
[6] Schwartz, L., Theorie des distributions, Hermann, Paris, 1966.
[7] Whitney, H., Functions differentiable on the boundaries of regions, Ann. of Math.,

35 (1934), 482-485.
[ g ] 1 Analytic extensions of differentiable functions difined in closed sets,

Trans. Amer. Math. Soc., 36 (1934), 63-89.
[9] ? On the extension of differentiable functions, Bull. AMS, 50-2 (1944),

76-81.


