Publ. RIMS, Kyolo Univ. 28 (1992), 13-20

On the Whitney-Schwartz Theorem

Bу

Takao Kakita*

Let F be a closed set in \mathbb{R}^n . Then, according to L. Schwartz [6], F is called regular if for each $x \in F$ there are numbers d(>0), $\omega(\geq 0)$ and $q(\geq 1)$ such that any two points y, z of F with $r_{xy} \leq d$ and $r_{xz} \leq d$, are joined by a rectifiable curve in F, of length not greater than $\omega r_{yz}^{1/q}$ where r_{xy} is the distance between x and y. This definition is a generalization of "Property (P) local" by H. Whitney ([9]). Schwartz stated in [6] the following theorem without proof.

Theorem (Whitney-Schwartz). Let T be a distribution in \mathbb{R}^n of order m whose support is contained in a compact regular set F. Then

(A) $\langle T, \varphi_{j} \rangle \rightarrow 0$ provided $\varphi_{j} \in C^{\infty}(\mathbb{R}^{n})$ and their derivatives of order not greater than m' converge to zero uniformly on F, where m' is any integer $\geq q(F)m$ and q(F) is a number ≥ 1 , depending on F.

(B) T is represented by a finite sum of derivatives of measures whose supports are contained in F.

A similar result to the part (A) of Theorem was given for a general compact set F by G. Glaeser, in such a sense that it has an advantage not making the behavior of φ , interfered in a 'neighborhood' of F (see Proposition II, Chap III in [2]). We shall give an elementary proof of Theorem for a distribution in an open set Ω of \mathbb{R}^n . For the proof we make use the reproduction of Whiteny's extension theorem by L. Hörmander ([4]). The key lemma is the following:

Lemma. Let u be a distribution of order m in Ω with support in a compact regular set $F \subset \Omega$. Then there is a constant C depending on m' and F such that for any $\varphi \in C^{\infty}(\Omega)$

$$|\langle u, \varphi \rangle| \leq C \|\varphi\|_{m', F} \tag{1}$$

where q = q(F) is a positive number depending on F, m' is any integer $\geq qm$, and

$$\|\varphi\|_{k,F} = \sum_{|\alpha| \leq k} \sup_{x \in F} |(\partial/\partial x)^{\alpha} \varphi(x)|.$$

Communicated by S. Matsuura, November 10, 1989, Revised April 8, 1991.

¹⁹⁹¹ Mathematics Subject Classification: 46F05.

^{*} Department of Information and Computer Sciences, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 160, Japan.

Τακάο Κλκιτά

In case F is a closed ball, a simple proof of (1) was given by S. Mizohata in proving that evolution equations with finite propagation speed should be of kowalevskian type (see [5]). Now we shall restate the Whitney-Schwartz theorem in our form.

Theorem. Let u be a distribution in Ω of order m with support in a compact regular set $F \subset \Omega$. Then

(A) $\langle u, \varphi_j \rangle \rightarrow 0$ provided $\varphi_j \in C^{\infty}(\Omega)$ and their derivatives of order not greater than m' converge to zero uniformly on F, where m' is any integer $\geq q(F)m$.

(B) u is represented by a finite sum of derivatives of measures in Ω whose supports are in F.

Proof of (A) is immediate from Lemma. For proving (B) we can apply the Hahn-Banach theorem to the inequality (1) through the well-known method. We omit the details (see [6]).

Before proceeding to prove our lemma, we shall give a sketch of the partition of unity by Whitney in [8], following the reproduction by Hörmander.

Let A be a closed set in \mathbb{R}^n . The partition of unity is constructed as follows. First, divide \mathbb{R}^n into n-cubes of side 1, and let K_0 be the set of all those cubes whose distance from A are at least \sqrt{n} . Next, divide the remaining cubes into 2^n cubes of side 1/2, and let K_1 be the set of those distant from A at least $\sqrt{n}/2$. Repeating such a division process, we have a series of the sets $\{K_0, K_1, \dots\}$ where the union of all cubes of them is $\mathbb{R}^n \setminus A$. Arrange all cubes in order of a series Q_1, Q_2, \dots ; the center and side of each Q_j are denoted by y^j and s_j , respectively. Now take $\chi_0 \in C_0^\infty$ being equal to 1 on the cube

$$|x_i| \leq 1/2, \quad i=1, \dots, n$$

and vanishing outside the cube

$$|x_i| \leq 1/2 + 1/8, \quad i=1, \dots, n.$$

Then define $\chi_j \in C^{\infty}_0(\mathbb{R}^n)$ by

$$\chi_{j}(x) = \chi_{0}\left(\frac{x-y^{j}}{s_{j}}\right) / \sum_{k=1}^{\infty} \chi_{0}\left(\frac{x-y^{k}}{s_{k}}\right), \qquad j=1, 2, \cdots.$$

As for the denominator, it is verified

$$1 \leq \sum_{i=1}^{\infty} \chi_0 \left(\frac{x - y^k}{s_k} \right) \leq 4^n \, .$$

The sequence χ_j in $C_0^{\infty}(\mathbb{R}^n)$ is locally finite in $\mathbb{R}^n \setminus A$ and has the properties: (i) $\chi_j \ge 0$; $\sum_{j=1}^{\infty} \chi_j(x) = 1$ for $x \in \mathbb{R}^n \setminus A$

(ii) for each α , there is a constant C_{α} such that

$$\sum_{j=1}^{\infty} |D^{\alpha} \chi_j(x)| \leq C_{\alpha}(d(x, A)^{-|\alpha|} + 1)$$

for $x \in \mathbb{R}^n \setminus A$ where $D = \partial/\partial x$

(iii) (the diameter of $\operatorname{supp} \chi_j \leq Cd(\operatorname{supp} \chi_j, A)$, $j=1, 2, \cdots$ for some constant C.

In the following we quote each of (i), (ii), (iii) as the property of χ_j . Let $x \in \text{supp} \chi_j$. Then it can be easily verified d(x, A) > 1, provided $s_j = 1$ (see [4]). So we note $d(x, A) \leq 1$ implies $s_j < 1$.

Proof of Lemma. Since F is regular, to each $x \in F$ there corresponds an open ball $B_d(x)$ of center x, with radius d in Ω such that any two points y, z of $F \cap \overline{B_d(x)}$ can be joined by a rectifiable curve in F. Here we note the radius d depends on x. Since F is compact, we can choose a finite family $\{B_{d_1}(x_1), \dots, B_{d_m}(x_m)\}$ from the open cover $\{B_d(x) | x \in F\}$ of F so that

$$F \subset B_{d_1}(x_1) \cup \cdots \cup B_{d_m}(x_m).$$

Take a partition of unity ψ_j subordinate to the finite open cover $\{B_{d_j}(x_j)\}$. Then u is represented in the form

$$u = \dot{\psi}_1 u + \dots + \dot{\psi}_m u = u_1 + \dots + u_m \tag{2}$$

where $\operatorname{supp} u_j = \operatorname{supp} \phi_j u \subset F_j = F \cap \overline{B_{d_j}(x_j)}$, F_j being also compact and regular. Suppose the estimate (1) is valid for each u_j , F_j , q_j instead of u, F, q. Then for $\varphi \in C^{\infty}(\Omega)$, there is a constant C_j such that

$$|\langle u_{j}, \varphi \rangle| \leq C_{j} \|\varphi\|_{m_{j}, F_{j}}.$$

$$(3)$$

where m_j is any integer $\geq mq_j$, q_j being a number (≥ 1) related to the regularity of F_j . Clearly, Lemma is a consequence of (2) and (3), with $q = q(F) = \sup_{1 \leq j \leq m} q_j$ and $C = \sup_{1 \leq j \leq m} C_j$. So it suffices to derive (3) for each $\varphi \in C^{\infty}(\Omega)$, in which we write $F = F_j$ and $q = q_j$, dropping the subscript j for simplicity of notation.

Take φ in $C_0^{\infty}(\Omega)$ and extend it to a function in $C_0^{\infty}(\mathbb{R}^n)$ by setting zero outside Ω , which we denote φ again. We shall give a function $\psi \in C^m(\Omega)$ so that $\psi^{(a)}(x) = \varphi^{(a)}(x)$ in F when $|\alpha| \leq m$ where $D^{\alpha}f = f^{(\alpha)}$. This can be carried out by the method of Whitney's extension theorem, as follows. Making use of the partition of unity χ_j in $\mathbb{R}^n \setminus F$ just constructed above, we define a function ψ by

$$\psi(x) = \begin{cases} \varphi(x) & \text{for } x \in F \\ \sum_{j}' \chi_j(x) \varphi_m(x; y^j) & \text{for } x \in R^n \setminus F \end{cases}$$
(4)

where $y^{j} \in F$ is taken so that

$$d(\operatorname{supp} \lambda_j, F) = d(\operatorname{supp} \lambda_j, y^j)$$
$$\varphi_m(x; y) = \sum_{|\alpha| \le m} \frac{1}{\alpha^1} \varphi^{(\alpha)}(y) (x - y)^\alpha$$

and $\sum_{j=1}^{j}$ stands for the sum with $s_j < 1$. Then $\psi \in C_0^m(\mathbb{R}^n)$ and satisfies

Τακάο Κακιτά

$$D^{\alpha}\phi = D^{\alpha}\phi$$
 in F

when $|\alpha| \leq m$ ([6]). What we are going to obtain is the estimate

$$\|\psi\|_{m,\Omega} \leq C \|\varphi\|_{m',F} \tag{5}$$

where C is a constant depending only on m, q and F. Let $x \in Q \setminus F$ be fixed. Then d(x, F) > 0. To derive (5) we divide the case into 1) d(x, F) > 1 and 2) $d(x, F) \leq 1$. It is enough to show for the case where $m \geq 1$.

1) d(x, F) > 1.

Differentiation of ϕ in (4) gives, by Leibniz's formula,

$$\psi^{(\alpha)}(x) = \sum_{\beta+\gamma=\alpha} \sum_{j}' \chi_{j}^{(\beta)}(x) \varphi_{m}^{(\gamma)}(x; y^{j}).$$

Since $\sum_{j} |\chi_{j}^{(\beta)}(x)| \leq 2C_{\beta}$ by the property (ii) of $\{\chi_{j}\}$, we have

$$|\psi^{(a)}(x)| \leq C'_a \|\varphi\|_{m, F}$$

for a constant C'_{α} when $|\alpha| \leq m$, which implies (5).

2) $0 < d(x, F) \leq 1$.

In this case, as we noted before, $s_j < 1$ provided $x \in \text{supp} \lambda_j$. Hence we have $\sum_{j}' \lambda_j(x) = \sum_{j} \lambda_j(x) = 1$, which gives

$$\psi(x) = \varphi_m(x; y) + \sum_j \chi_j(x) [\varphi_m(x; y^j) - \varphi_m(x; y)]$$
(6)

where $y \in F$ is so chosen as d(x, F) = |x-y|. Further we take $x^j \in \text{supp} \chi_j$ so as to satisfy $d(\text{supp} \chi_j, F) = |x^j - y^j|$. Then

 $|x-x^{j}| \leq \operatorname{diam}(\operatorname{supp} \chi_{j}) \leq Cd(\operatorname{supp} \chi_{j}, F) \leq Cd(x, F)$

for some constant C where we used the property (iii) of $\{\chi_j\}$. Thus in view of the definitions of y, x^j and y^j , we get the inequalities

$$|x - y^{j}| \leq |x - x^{j}| + |x^{j} - y^{j}| \leq (C+1)d(x, F)$$

$$|y - y^{j}| \leq |y - x| + |x - y^{j}| \leq (C+2)d(x, F)$$
(7)

which will be needed later. Denoting by $R_m(x; y)$ the remainder term of Taylor's formula at y, we have

$$\varphi(x) = \varphi_m(x; y) + R_m(x; y). \tag{8}$$

Our basic concern is to estimate the derivatives of the difference $\varphi_m(x; y^j) - \varphi_m(x; y)$ in (6). The Taylor polynomial of $\varphi^{(\gamma)}(z'')$

$$\varphi_m^{(\gamma)}(z''; z') = \sum_{|\beta| \le m - |\gamma|} \frac{1}{\beta!} \varphi^{(\beta+\gamma)}(z')(z''-z')^{\beta}$$

combined with the formula for any z, z', z''

$$\varphi^{(\beta+\gamma)}(z') = \varphi^{(\beta+\gamma)}_m(z'; z) + R^{(\beta+\gamma)}_m(z'; z)$$

obtained by differentiating (8), gives

$$\varphi_{m}^{(\gamma)}(z''; z') = \sum_{|\delta| \le m - |\gamma|} \frac{1}{\delta!} \left[\varphi_{m}^{(\gamma+\delta)}(z'; z) + R_{m}^{(\gamma+\delta)}(z'; z) \right] (z'' - z')^{\delta}.$$
(9)

On the other hand

$$\varphi_m^{(\prime)}(z''; z) = \sum_{|\delta| \le m - |\gamma|} \frac{1}{\delta!} \varphi_m^{(\prime+\delta)}(z'; z) (z'' - z')^{\delta}.$$
⁽¹⁰⁾

Thus the subtraction of (10) from (9) yields

$$\varphi_m^{(i)}(z''; z') - \varphi_m^{(i)}(z''; z) = \sum_{|\delta| \le m - |\gamma|} \frac{1}{\delta!} R_m^{(i+\gamma)}(z'; z)(z''-z')^{\delta}, \qquad (11)$$

so that changing z, z', z'' to y, y^{j}, x gives

$$\begin{aligned} |\varphi_{m}^{(7)}(x\,;\,y^{j}) - \varphi_{m}^{(j)}(x\,;\,y)| &\leq \sum_{|\eta| \leq m-|\gamma|} |R_{m}^{(\eta+\eta)}(y^{j}\,;\,y)(x-y^{j})^{\eta}| \\ &\leq C_{0} \|\varphi\|_{m',\,F} + \sum_{|\eta| \leq m'-|\gamma|} |R_{m'}^{(\eta+\eta)}(y^{j}\,;\,y)(x-y^{j})^{\eta}| \end{aligned}$$
(12)

since $R_m(x; y) = \varphi_{m'}(x; y) - \varphi_m(x; y) + R_{m'}(x; y)$, where m' is any integer $\geq mq$. So we are left with estimation of $R_m^{(j+\eta)}(y^j; y)$. This will be worked out by a technical modification of [7]. As y, $y^j \in F$, there is a rectifiable curve C in F of length, say L, joining y and y^j . Let $\Delta : y = z^0, z^1, \dots, z^p = y^j$ be a subdivision of C in F and let $|\Delta| = \sup_{1 \leq i \leq p} |z^i - z^{i-1}|$. Note that

$$\varphi_{m'}^{(i)}(z''; z') - \varphi_{m'}^{(i)}(z''; z) = R_{m'}^{(i)}(z''; z) - R_{m'}^{(i)}(z''; z')$$

since

$$\begin{split} \varphi^{(i)}(z'') &= \varphi^{(i)}_m(z''; z) + R^{(i)}_m(z''; z) \\ &= \varphi^{(i)}_m(z''; z') + R^{(i)}_m(z''; z') \end{split}$$

Thus we get by (11)

$$R_{m'}^{(\gamma+\eta)}(z''; z) - R_{m'}^{(\gamma+\eta)}(z''; z') = \sum_{|\delta| \le m'-|\gamma+\eta|} \frac{1}{\delta!} R_{m'}^{(\gamma+\eta+\delta)}(z'; z)(z''-z')^{\delta}.$$

Changing z, z', z'' to z^{i-1} , z^i , y^j in this equation, summing over *i* and noting $R_{m^2}^{(c)}(y^j; y^j) = 0$ when $|\kappa| \leq m'$, we consequently have

$$R_{m'}^{(\gamma+\eta)}(y^{j}; y) = \sum_{i=1}^{p} \sum_{|\hat{\delta}| \leq m' - |\gamma+\eta|} \frac{1}{\delta!} R_{m'}^{(\gamma+\hat{\delta}+\eta)}(z^{i}; z^{i-1})(y^{j}-z^{i})^{\hat{\delta}}.$$
 (13)

Note that by the classical formula for the remainder term

$$|R_{m'}^{(\gamma+\delta+\eta)}(z^{i}; z^{i-1})| \leq |z^{i}-z^{i-1}|^{m'-|\gamma+\delta+\eta|} \varepsilon(|z^{i}-z^{i-1}|)$$
(14)

where $\varepsilon(h) \rightarrow 0$ when $h \rightarrow 0$.

Now split the sum for δ in (13) into the sums for $|\delta| < m' - |\gamma + \eta|$ and for $|\delta| = m' - |\gamma + \eta|$, and then denote the former by I_{\perp} and the latter by J_{\perp} , res-

Τακάο Κακιτά

pectively. Since $|z^{i}-z^{i-1}| \leq L$ and $|y^{j}-z^{i}| \leq L$, in view of (14) we have

$$|I_{\mathcal{J}}| \leq \sum_{|\delta| < m' - |\gamma+\eta|} \frac{1}{\delta!} L^{m' - |\gamma+\eta|} \sum_{i=1}^{p} |z^{i} - z^{i-1}| \epsilon(|\mathcal{J}|)$$
$$\leq \sum_{|\delta| < m' - |\gamma+\eta|} \frac{1}{\delta!} L^{m' + 1 - |\gamma+\eta|} \epsilon(|\mathcal{J}|)$$

which tends to 0 when $|\mathcal{\Delta}| \rightarrow 0$.

On the other hand

$$J_{\mathcal{A}} = \sum_{i=1}^{p} \sum_{|\delta|=m^{i}-|\gamma+\eta|} \frac{1}{\delta!} \left[\varphi_{m^{i}}^{(\gamma+\epsilon+\eta)}(z^{i}) - \varphi_{m^{i}}^{(\gamma+\delta+\eta)}(z^{i-1}) \right] (y^{i}-z^{i})^{\delta}$$

since for $|\delta| = m' - |\gamma + \eta|$,

$$\varphi_{m'}^{(\gamma+\delta+\eta)}(z^{\imath}; z^{i-1}) = \varphi^{(\gamma+\delta+\eta)}(z^{\imath-1})$$

and so

$$\varphi^{(\gamma+\delta+\eta)}(z^{i}) = \varphi^{(\gamma+\delta+\eta)}(z^{i-1}) + R^{(\gamma+\delta+\eta)}_{m'}(z^{i}; z^{i-1}).$$

Now for each fixed δ we have

$$\begin{split} &\sum_{i=1}^{p} \left[\varphi^{(\gamma+\delta+\eta)}(z^{i}) - \varphi^{(\gamma+\delta+\eta)}(z^{i-1}) \right] (y^{j}-z^{i})^{\delta} \\ &= -\sum_{i=1}^{p-1} \left[\varphi^{(\gamma+\delta+\eta)}(z^{i}) - \varphi^{(\gamma+\delta+\eta)}(z^{0}) \right] \left[(y^{j}-z^{i+1})^{\delta} - (y^{j}-z^{i})^{\delta} \right], \end{split}$$

which tends to a Stieltjes integral

$$-\int_{0}^{L} [\varphi^{(\gamma+\delta+\eta)}(z(s)) - \varphi^{(\gamma+\delta+\eta)}(z^{0})] d(y^{j} - z(s))^{\delta}$$
⁽¹⁵⁾

when $|\mathcal{A}| \rightarrow 0$, where z(s) denotes the point on the curve C of length s along C from y.

After the differentiation in the integral, (15) becomes

$$\sum_{\kappa \mid =1} \frac{\delta!}{(\delta-\kappa)!} \int_{y}^{y^{j}} [\varphi^{(\gamma+\delta+\eta)}(z) - \varphi^{(\gamma+\delta+\eta)}(y)] (y^{j}-z)^{\delta-\kappa} (dz)^{\kappa}.$$
(16)

Denote the sum of integrals (16) by $I_{\gamma, \delta, \eta}$. Then we have

$$R_{m'}^{(\gamma+\eta)}(y^{j}; y) = \sum_{|\delta|=m'-|\gamma+\eta|} \frac{1}{\delta!} I_{\gamma,\delta,\eta} = \lim_{|\Delta|\to 0} J_{\Delta}.$$

Hence, taking the regularity of F into consideration, we have the estimates

$$|R_{m'}^{(\gamma+\eta)}(y^{j}; y)| \leq C_{1}L^{m'-|\gamma+\eta|} \|\varphi\|_{m',F}$$
$$\leq C_{1}d(x,F)^{(m'-|\gamma+\eta|)/q} \|\varphi\|_{m',F}$$

for some constant C_1 and for any γ and η with $|\gamma + \eta| \leq m'$. The last estimate combined with (7) and (12) implies

$$|\varphi_{m}^{(\gamma)}(x; y^{j}) - \varphi_{m}^{(\gamma)}(x; y)| \leq C_{2} \|\varphi\|_{m' \cdot F_{|\gamma| \leq m' - |\gamma|}} d(x, F)^{(m' - |\gamma+\gamma|)/q} d(x, F)^{|\gamma|}$$

where C_2 is a constant depending only on m' and F. Now, the differentiation of ψ in (6) with respect to x gives

$$\psi^{(\alpha)}(x) = \varphi^{(\alpha)}_{m}(x \; ; \; y) + \sum_{\beta+\gamma=\alpha} \sum_{j=1}^{\infty} \chi^{(\beta)}_{j}(x) [\varphi^{(\gamma)}_{m}(x \; ; \; y^{j}) - \varphi^{(j)}_{m}(x \; ; \; y)].$$

Thus in view of the property (ii) of $\{\chi_j\}$,

$$\begin{aligned} |\psi^{(\alpha)}(x)| &\leq \|\varphi\|_{m, F} \\ &+ C_2 \|\varphi\|_{m', F} \sum_{\beta+\gamma=a} (d(x, F)^{-|\beta|} + 1) \sum_{|\gamma| \leq m' - |\gamma|} d(x, F)^{((m'-|\gamma+\gamma|)/q) + |\gamma|}. \end{aligned}$$

As for the exponent of d(x, F), if $|\alpha| \leq m$

$$\begin{aligned} \langle (m' - |\gamma + \eta|)/q \rangle + |\eta| - |\beta| &\geq \frac{1}{q} \{ mq - |\alpha - \beta| + (q-1)|\eta| - q|\beta| \} \\ &= \frac{1}{q} \{ q(m - |\beta| + |\eta|) - (|\alpha| - |\beta| + |\eta|) \} \\ &\geq \frac{q-1}{q} (m - |\beta| + |\eta|) \geq 0. \end{aligned}$$

Since $d(x, F) \leq 1$, we finally have

$$|\psi^{(\alpha)}(x)| \leq C \|\varphi\|_{m', F}$$

when $|\alpha| \leq m$, where *C* is a constant depending only on *m'* and *F*. Collecting the results obtained so far, we consequently proved the estimate (5). Recall a property of distributions with compact support that if $\chi \in C_0^{\infty}(\Omega)$ and its derivatives of order up to *m* vanish on *F*, then $\langle u, \chi \rangle = 0$ (cf. [6]). Suppose $\eta \in C_0^{\infty}(\Omega)$ is equal to 1 on a neighborhood of *F*. Then $\eta \psi$ can be regarded as a function in $C_0^{\infty}(\Omega)$ and $(\eta \varphi)^{(\alpha)} = (\eta \psi)^{(\alpha)}$ on *F* when $|\alpha| \leq m$. Thus we get

$$\langle u, \eta \varphi
angle = \langle u, \eta \psi
angle,$$

and so

$$\begin{aligned} |\langle u, \varphi \rangle| &= |\langle u, \eta \varphi \rangle| = |\langle u, \eta \psi \rangle| \\ &\leq C_1 \|\psi\|_m \varrho \\ &\leq C_2 \|\varphi\|_{m' F} \quad (by (5)) \end{aligned}$$

for any integer $m' \ge mq$ where C_1 , C_2 are constants depending only on m' and F which completes the proof of Lemma.

Remark. A typical example of regular set is a convex set, where q=1. In this particular case, the proof of Lemma is carried out much more readily than the above, since it is enough to use the classical formula for $R_m^{(i+\eta)}(y^i; y)$ in (12). Today, we know a large family of regular sets, that is, compact subanalytic sets in \mathbb{R}^n (or in real analytic manifolds) (see [1], [3]).

Acknowledgement

The author thanks the referee for his advice.

References

- [1] Bierstone, E., Differentiable functions, Bol. Soc. Brasil Mat., II (1980), 139-180.
- [2] Glaeser, G., Etude de quelques algèbres tayloriennes, J. Anal. Math., 6 (1958), 1-124.
- [3] Hardt, R. M., Some analytic bounds for subanalytic sets, *Differential geometric control theory*, Birkhäuser, Boston (1983), 259-267.
- [4] Hörmander, L., On the division of distributions by polynomials, Ark. Mat., 3 (1958), 555-568.
- [5] Mizohata, S., On evolution equations with finite propagation speed, Israel Jour. of Math., 13 (1972), 173-185.
- [6] Schwartz, L., Théorie des distributions, Hermann, Paris, 1966.
- [7] Whitney, H., Functions differentiable on the boundaries of regions, Ann. of Math., 35 (1934), 482-485.
- [8] —, Analytic extensions of differentiable functions difined in closed sets, Trans. Amer. Math. Soc., 36 (1934), 63-89.
- [9] —, On the extension of differentiable functions, Bull. AMS, 50-2 (1944), 76-81.