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Orientations of Spin Bundles and
Symplectic Cobordism

By

Vassily GORBUNOV* and Nigel RAY**

Abstract

We analyse certain cofibrations of projective spaces in terms of Thorn complexes of
Spin bundles, and by applying the symplectic cobordism functor we are able to deduce
new relations amongst the elements 0t in the symplectic bordism ring.

§ 1. Introduction

Symplectic cobordism is the cohomology theory which arises from the Thorn
spectrum MSp associated with the infinite symplectic group.

For several years now, determining the structure of the coefficient ring
MSp* has been seen as an intractible problem, despite the herculean efforts of
S. Kochman [14, 15] to elucidate the classical mod 2 Adams spectral sequence.
Additional recent developments, also often invoking the Adams and Novikov
spectral sequences, have tended to be more qualitative, such as the work of
V.V. Vershinin and his school [26, 5, 10] introducing singularities based on
certain torsion elements <j)t defined long ago by the second author [20]. Other
Soviet workers have made progress by applying the concept of two-valued
formal groups, for example see [6, 3], but all these studies have involved a
high degree of technical complexity, and general interest in the problem has
predictably waned.

Lately, however, it has seemed that new developments in related areas
might lead to a resurgence of activity. For example, the emergence of elliptic
cohomology [16] as an exciting field of contact between algebraic topology,
analysis and theoretical physics, suggests that we might look for a real version
which is better behaved at the prime 2. By analogy with the relationship be-
tween real and complex /^-theory, this could well arise by imposing certain
singularities on symplectic cobordism. Moreover, the remarkable results of M.

Communicated by K. Saito, March 5, 1990.
1991 Mathematics Subject Classifications: 55N22, 55R25.

* Mat hematics Institute, Siberian Branch of the Soviet Academy of Science, Novosibirsk
630090, USSR.

** Mathematics Department, University of Manchester, Manchester M13 9PL, England.



40 VASSILY GORBUNOV AND NIGEL RAY

Hopkins and his co-workers [12] concerning nilpotency in homotopy rings indi-
cate that we might profitably investigate the special case of MSp* with a view
to obtaining more explicit information. And finally, the long standing challenge
of axiomatising symplectic orientable cohomology theories, of which symplectic
cobordism is the universal example, may be more realistically considered in the
context of recent new perspectives [21] on the complex case.

In our view, the study of MSp still stands to gain from the consideration
of various phenomena central to real /(-theory, such as the relationships be-
tween the eight Bott periodicity spaces [7], and the assignment by Clifford
algebra of KO orientations to arbitrary Spin bundles [2]. It is our aim in this
article to support the latter of these claims, by setting up exact sequences in-
corporating the symplectic cobordism of real, complex and quaternionic projec-
tive spaces, and then using MSp orientations of low dimensional Spin bundles
to draw conclusions concerning their module structures over AISp*. As appli-
cation, we obtain important new properties of the elements 0Z, proving that
certain triple products are zero and finding upper bounds for their order of
nilpotence. In fact this strategy bears a marked resemblance to that of [20],
where a discussion of the modules MSp*(BSp} and MSp*(HP°°) led to the de-
finition of the elements 0t and the investigation of their elementary properties.

We like to believe that this work gives some hope for the future of sym-
plectic cobordism, in the sense that fairly elementary geometric techniques can
still be shown to lead to an infinite amount of new and fascinating information,
suggesting that there may yet be more order amidst the chaos of MSp* than
meets the eye.

We now give a summary of the contents of each of our sections, noting
that §§ 2 and 3 consist mainly of background information and the establishment
of notation. We begin in § 2 with the elements 0t, explaining V. M. Buhstaber's
generalization 0*(n) in MSp*(RPn} and describing two special relations in the
case ?z=2. In § 3 we discuss low dimensional Spin bundles, paying particular
attention to the MSp orientation class of the universal Spin(3) bundle intro-
duced by N. Ray and R. Switzer in [22]. We outline an alternative approach
to this orientation due to K. Kozima and H. Toda [25], and collate material
from both sources concerning quaternionic quasi projective space. We are then
able to establish useful properties of the cofibre sequences linking real, com-
plex, quaternionic and quasi projective spaces. In passing, we also identify a
symplectic analogue of the well-known 2-series in MUZ(CP°°), which is so in-
fluential in the study of MU and BP at the prime 2 [19].

We apply symplectic cobordism to these cofibrations in § 4, thus obtaining
our crucial long exact sequences. With the aid of information on certain sym-
plectic Euler classes e and d culled from §2, we interpret these long exact
sequences in terms of the module structure of MSp*(RP°°) and MSp*(CP°°),
further enhancing details of the latter by proving that any symplectic Euler



ORIENTATIONS AND SYMPLECTIC CoooRnrbM 41

class of a Spin(5) bundle is zero.
In § 5 we analyse certain symplectic bundles over RPZ f\CP™ and RPZ f\HP°°,

and so define new elements <pl(n) in AfSp*(CPn) which are complex analogues
of 6^(n). By incorporating further material from §§2 and 3, we then evaluate
the coboundary of the square of the Euler class d, and develop explicit formulae
relating ^t(l) and 0^1).

These relationships are central to our final § 6, which gives the applications
to the structure of MSp*. We prove that

where f] denotes the standard generator of the 1-stem ?rf and its isomorphic
image MSpi, thus extending the earlier relation ^^=0 due to Buhstaber and
the first author ; an alternative interpretation is that y annihilates any sym-
plectic Euler class of a Spm(3)xSpin(3) bundle. As shown by K. Morisugi [17],
and independently by Vershinin [27], not all triple products of torsion elements
in MSp* are zero.

To conclude, we derive the nilpotency formula

from the properties of the elements </>*(w). This is the first explicit bound
known to us for the order of nilpotence of 0t (guaranteed to exist by [12]),
although M. Mahowald informs the first author that a simple Novikov spectral
sequence argument proves that <f>t

Sl=Q.
It is a great pleasure for the second author to acknowledge the finanical

support provided by both the Royal Society and the Soviet Academy of Science,
and to give thanks for the remarkable hospitality shown to him by the Soviet
topologists of Novosibirsk; without these, our work could not have been con-
ceived. Both authors also owe a special debt to Boris Botvinnik and Vladimir
Vershinin, for many happy hours of discussion and much encouragement.

A preliminary version of part of our work, based on the alternative per-
spective offered by transfer maps, is given in [11].

§2. Torsion Elements

In all that follows, we shall write Fn for the trivial ?z-plane vector bundle
over any base space (where F denotes R, C or the quaternions H respectively),
and 7], C and f for the corresponding Hopf line bundle over RP°°, CP°° and
HP00. To avoid over-elaboration, we shall often use the same symbol for a
Hopf bundle restricted to different skeleta, and similarly for any vector bundle,
its isomorphism class and its classifying map: we trust that the context will
always be sufficiently clear to prevent confusion. On occasion, we shall utilise
r, c and q to signify the respective operations of realification, complexification
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and symplectification on appropriate bundles or spaces.
We shall let £ stand for the complex conjugate of £, and £* for the quater-

nionic conjugate of f; since the quaternions do not commute, we must decree
in advance that they act on the right of <?, and therefore on the left of £*.
Thus we can form the real 4-plane bundle £(£)#?*, which may easily be identified
(for example see [18]) with XQ)R, where I is the universal Spin(3) bundle over
BSpin(3)^ HP00.

Recall from [8] that AfSp*(HP°°) is a free MSp* module; indeed, there is
an isomorphism

where z^MSp\HP°°} is our abbreviation for the first Conner-Floyd symplectic
Pontrjagin class />/i(£). Thus for any space X there is a Kunneth isomorphism

MSp*(Xf\HP'$^MSp*(X)\_[z]']. (2.1)

In similar vein, it will also be helpful to reserve special notation for the
suspension isomorphism. Thus we write s(n) for the generator of MSp*(Sn)
over MSp*f chosen such that it is the exterior product s(l)® ••• ®s(l) under a
suitable homeomorphism S'^S^ ••• AS1. Then the suspension isomorphism

MSp*+n(Sn/\Y)=*MSp*(Y)

will be written as s(n)y^>y for all y^MSp*(Y). Sometimes we shall further
abbreviate s(l) to s and S'/\X to SX.

Now consider the symplectic line bundle (r]—R)(£)R($—Il) over RPn/\HP°°.
Following Buhstaber, for each i^>l and l<^n<Soo we define d l ( n ) in MSp*~*l(RPH)
by applying 2.1 to write

in AlSp*(RPn/\HP°°). Clearly, given any m<n, each 0,(w) restricts to 04(m)
under the inclusion RPmc:RPn.

It follows from the definitions that 0»(1) in MSp'~*l(RPl) may be identified
with 0i of [20] in MSp4i_3. We shall thus often find it convenient to relabel
0! as 77 and 62i as 0t, since 62i+i is zero for all z^l by Roush's theorem [23].
As proved in [20], each (f>t is an indecomposable torsion element of order 2.
So we may now rewrite 2.2 in the special case n -1 as

over SHP00.
We shall need two simple properties of the elements 0<(2). For their state-

ment, we choose r(2) in MSp\RP2) to be the pull-back g*s(2) along the pro-
jection map g: RPZ—>S2 onto the top cell.
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Proposition 2.4. The relations

26i(2}=7]6ir(2) and 0 ,(2)0/2)= 0t0,r(2)

hold in AlSp*(RP2) for all i, ;>0.

Proof. By standard bundle computations (for example see [13]), g*(rQ—2r]
over RP2, and

over S'AS'^S8. Thus by 2.2

^

in MSp*(RPz/\HPM). Moreover, by iterating 2.3 and using the fact that s(l)2

= 0 in AISp^S1), we obtain

in MSp*(S*/\HP").
Applying g* and equating coefficients of zl now yields the first relation.
For the second, note that the diagonal map RP2—>RP2/\RP2 factors as the

composition of the projection g with the inclusion of the bottom cell. Thus

as sought. D

Corollary 2.5. For all i, _/>!, we have that 20t(2)0/2)=0 in MSp*(RP*).

D

§ 3. Spin Bundles and Quasi Projective Space

We now turn our attention to certain important cofibre sequences. They
have their origin in the well-known fact (for example see [2]) that, for any
n>l, the universal S71"1 bundle over BSpin(n] may be written up to homotopy
equivalence as

S»-j _I» BSpin(n-l) — > BSpm(n) . (3.1)

Here r classifies the tangent bundle of 571"1, and i is the standard inclusion.
For small values of n, these bundles have alternative descriptions as follows

(for example see [18]).
For n=2 and up to isomorphism, the inclusion Spin(l)^>Spin(2) is merely
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{±l}c*Sl, where el°^Spin(2) acts on R2^C by Z^QUOZ. Hence 3.1 becomes

S1-^>RP°° — > CP00,

being the associated sphere bundle S(£2) up to homotopy equivalence.
For n=3 and up to isomorphism, the inclusion Spin(2)^Spin(3} is the

standard S^S3, and Spin(3) acts on R3 as conjugation on the pure quaternions.
Hence 3.1 becomes

S2 -^> CP00 -U> //P00 ,

being the associated sphere bundle SQQ up to homotopy equivalence. Moreover,
pulling back 1 to BSpin(2) yields the homotopy commutative diagram

(3.2)
i *

CP00 > HP03.

For 72=4 and up to isomorphism, the inclusion Spin(3)^>Spin(4:) is the dia-
gonal homomorphism S3->S3XS3, where (q, r)^Spin(4:) acts on R*=Hby v^qvr~l.
Hence 3.1 becomes

S3 -^> HP- -U HP-xHPK .

Finally, for n—^> and up to isomorphism, the inclusion Spin(4:)c*Spin(5} is
the embedding SsxS3-*Sp(2) of diagonal matrices, where Spin(5) acts by con-
jugation on the real 5-dimensional vector of 2x2 quaternionic Hermitian matrices
of zero trace. Hence 3.1 becomes

where r acts via the product of the homeomorphism S4=±HP1 with its homotopy
inverse.

We may now take the mapping cone of each of these four projections /
by compactifying the corresponding vector bundle at co, so obtaining the fol-
lowing cofibre sequences

i / b
RP°° — > CP00 — ̂  M(C2) — > SRP" — > • • •

i f b
CP°° — >HP" — >M(X) — >SCP"

« / b (3.3)
HP™ — > HP" X HP" — > MSpin(£) — > SHP°° —

/ / b
HP°°XHP°° — > BSp(2) — > MSpin(5) — > S(HP°°xHP°°) — > •••
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for the Thorn complexes. Here each map / is the inclusion of the zero section,
and each map b is its collapse; the context will always serve to distinguish
between the cases. In addition, from 3.2, there is a useful homotopy commuta-
tive diagram

0.4)

CP°° - - - * HP00 ,

where m=M(i) and g is the inclusion of the zero section of
In [22] we proved that I is AfSp orientable. We exhibited a virtual sym-

plectic bundle e over

which restricts to £— H on the bottom cell S4, and so defines an orientation
class t in MS p\M (%)) by st=pfi(e). In turn, by virtue of 3.4, we may now
record that £2 also admits an MSp orientation class u^ MS p\M (£?)), defined by
su=m*t. Restricting to the zero sections then yields the symplectic Euler
classes

e=f*t<=MSp*(HP~) and d=f*u<=i\ISp\CP°°) (3.5)

which play such a prominent role in the rest of our work.
In fact the class d is a symplectic analogue of the 2-series [2]xeMf/2(CP00),

defined as the pull-back under / of the canonical complex orientation in
A'/£72(M(C2)). Since this series is an important ingredient of the theory of MU
at the prime 2, it is hardly surprising that we should find d to be influential
in the study of MS p.

We shall require an alternative description of the class u, implicit in the
work of Toda and Kozima [25]. To explain this, we first remark that, by
construction, we may identify the restriction of M(I) over any skeleton HP"
with the quasi projective space

where S3 acts on the right of S471'1 as usual, and on the left of S3 as conjuga-
tion in the unit quaternions. This identification, which we shall use henceforth
without comment, arises out of the obvious S3-equivariant homeomorphism /?
from the pure quaternions compactified as °o to S3.

Now each QPn admits a reflection map j into Sp(n) (for example see [24]),
and these maps are compatible at n—>oo. We obtain

Lemma 3.6. The composition M(X)=QP°°->Sp and the adjoint of e:SAf(I)
are homotopic.
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Proof. This is a straightforward exercise, carried out by showing that s
and the adjoint of j pull back to isomorphic symplectic bundles over the total
space S(*0JR). D

Corollary 3.7. // Qz^.MSp\Sp) denotes the element created by looping the
first Conner-Floyd symplectic Pontrjagin class, then t=j*(Qz} in MSp\M(T)\

Proof. This follows immediately from applying 3.6 to the definition of t
above. D

We shall also need

Lemma 3.8. There is a homotopy commutative diagram

M(3Q —* SCP~ —> MQO

; k J

sp , u > Sp

where k is the complex reflection map and I is the composition

sf m
SCP™ —> SM(C2) —> M(T)

defined from 3.4.

Proof. From [25], there is for each n a homotopy commutative diagram

c q
Qpn

J

Sp(n) > U(2n) > Sp(2n]

where the upper c and q are also standard complexification and symplectifica-
tion maps. It thus suffices to prove that the two diagrams

Mm > SCP°° SCP°°
and p

QP°° —> SCP™ SCP™

are, in turn, homotopy commutative, where p identifies the two cone points of
the suspension.

In fact a routine analysis, recalling the homeomorphism h above, shows
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that both diagrams commute strictly. D

Corollary 3.9. In MSp\M(l}\ we have that b*(sd)=2t.

Proof. From 3.7 and 3.8.

b*(sd)=b*(sf)*u=b*l*t

=b*l*j*(Qz)-=j*(q-c)*(Qz) .

But q-c:Sp-»Sp is the map 2, which duplicates each symplectic matrix (for
example see [1]) and has the property that B2 classifies twice the universal
symplectic bundle. Therefore

and the proof is complete. D

§ 4. The Exact Sequences

We now apply the symplectic cobordism functor to the first two of the
cofibre sequences of 3.3, and so obtain the long exact sequences

d /*
MSp*(CP") — > •••

(4.1)
d /* i*

MSp*(HP°°) — > -

whose study is a primary aim of this section.
We have already observed that £2 and I are MSp orientable bundles, so we

may immediately take advantage of the associated Thorn isomorphisms to rewrite
the above as

(4.2)
i*

MSp*(HP°°) — > •••

where the maps • d and • e signify multiplication by the respective Euler classes
introduced in 3.5. Before discussing the implications of these sequences, we
must investigate e in more detail.

Proposition 4.3. In MSp\HP™\ we have thai

Proof. We recall that the class it of 3.5 is constructed by analysing the
4-sphere bundle

p : S(l($Rz) — > HP00 ,
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whose total space admits symplectic line bundles v and p*g. There is a com-
mutative diagram of cofibre sequences

g

k sf

SlxHP

where g is the section described by the point (0, l)e/22, and k is its extension
over the unit circle. Following [22] (wherein v is labelled 0» the symplectic
bundle e over SMQQ satisfies h*e=v—p*t;, whilst it follows from the definitions
that k*v=y(S)R{;. Incorporating this information into the diagram yields

= 5(20 ,2*) .

Desuspending then yields the result. n

We now have a better hold on the homomorphism -e. In particular, we
need to refer to its kernel Ker e and cokernel Cok e, both of which are, of
course, MSp* modules. By virtue of 4.3, we have the descriptions

Kere=J2a,2' : . 53 0,o>=0 Vk\

and Cok0=MS/>*[[z]]/(e), where (e) denotes the ideal generated by e.
Describing the homomorphism -d is more difficult, since it acts on

MSp*(CP°°\ which is not free over MSp*; however, as we shall see, a few
properties can be gleaned from various of our formulae.

We now state our structure theorem.

Theorem 4.4. There are short exact sequences of MSp* modules

*'* d
0 —> Cok e —> MSp*(CP°°) —> Ker e —> 0

i* d
0 —> Cok d —> MSp*(RP°°) —> Ker d —> 0 .

Proof. These follow at once by restriction to the relevant parts of 4.2. D

Note that 3.9 tells us that d maps non-trivially to Ker e in the first of these
sequences.

It is a straightforward matter to dualise 4.4 so as to refer to the bordism
modules instead. The only significant modification is to interpret the homo-
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morphisms d and e in terms of cap products, which therefore lower, rather
than raise, dimension.

To proceed further, we must now examine the last of the cofibre sequences
of 3.3, whose long exact sequence may be displayed as

i* d /* i*
---- > MSp*-l[[y, z]] — •> MSp*(MSpin(Sft — > MSp*(BSp(2)) — > •-• (4.5)

by taking due note of the Kiinneth isomorphism 2.1, and writing y for the
generator of the symplectic cobordism of the first copy of HP00. This sequence
allows us to deduce the following.

Proposition 4.6. Every Spin(5) bundle is MSp orientable, and has zero sym-
plectic Euler class.

Proof. We first show that the element v^dy in MSp\MSpin(5)) restricts
to a generator on the bottom cell, thereby establishing that it is an orientation
class. To do this, it suffices to consider the pull back of y along the inclusion
of the fibre S^^HP^xHP00. This map T is described explicitly in §3, from
which we deduce that T*y is indeed a generator of MSp*(S4), as required.

Given this choice of orientation class, the symplectic Euler class i*dy is
clearly zero. But any other orientation class agrees with v up to multiplication
by a unit of MSp\BSp(2)+\ whence the result follows. D

This simple fact has striking consequences.

Proposition 4.7. In MSp\CP°° A///*0), we have that d®e=$.

Proof. The bundle C 2 X% over CP°°xHP°° is the universal Spin(2)xSpin(3)
bundle, with orientation class u®t in M5/>B(M(£2)AMQQ): so our equation fol-
lows by applying 4.6. D

Corollary 4.8. In MSp*(CPeo\ the relation 6td = Q holds for all *>0.

Proof. This results from combining 4.3 with 4.7. D

The above relation allows us to make an additional comment concerning
the structure theorem 4.4, namely that Ker d contains the ideal

generated by the elements
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§ 5. The Role of the Meal Projective Plane

We now investigate the commutative ladder of cofibre sequences

SZCP" > SZHP°° > SZM(I)

g S\ g
f i

RPZ/\HP~ >• RPZ/\M(H).

Here the vertical maps are derived from the projection g: RPZ->SZ of § 2 by
smashing with the identity on the relevant projective space, whilst the hori-
zontal maps are obtained from i and / of 3.3 by smashing with the identity
on Sz and RPZ respectively; although an abuse of notation, such a convention
simplifies several formulae below. Introducing RPZ in this fashion will allow
us, in the two main results of this section, to make geometrical constructions
with crucial algebraic consequences.

We shall concentrate on the induced ladder

/* i* d /*
> MSp*(SzHP~) * MSp*(SzCP~)

/*
— > MSp*(RPz/\HP°°) - > A4Sp*(RP2/\CP°°) - > MSp*+l(RPz/\M(l)) — *

of long exact sequences. Remark that, since MSp*(M(%y) is a free MSp*
module by virtue of the Thorn isomorphism, there is a Kiinneth isomorphism

Now recall from 2.4 that r(2) denotes the pull back g*s(2) in MSp\RPz\

Proposition 5B18 In MSp\RPz f\M(T)} we have that

Proof. We first show that in the lower long exact sequence, r(2)(g)d lies
in the image of i*.

Consider the virtual Sp bundle (^—jR)®^?— ff) over RPZ/\HP°°; it pulls
back over RPZ/\CP~ to

bearing in mind that cy^'crj over RP°°m By standard bundle computations (for
example see [13] again), ci]=g*£ over RPZ, whilst over SZCP°°
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=(s/)*e

from 3.6 and 3.8. Combining these facts gives

and taking pf^ ) of both sides yields

as sought.
Our proof is completed by recalling (for example from [9]) that d is a

MSp*(RP2f\HP°°) module map. Thus

)=3(/*( S 0i(2)* l)-d) from above

=(S0i(2)z l)-2tt from 3.9
IS1

)-M from 2.4

from 4.3.

But e-u = uz by definition of the Euler class, and so we obtain our desired
formula. n

Corollary 5.2. In MSp5(M(I)\ we have that dd* = yu2 mod2.

Proof. Since g* : MSp*(S*)-*MSp*(RP2) has kernel (2s(2)), the result fol-
lows directly from the proposition. n

A valuable alternative perspective is offered by the transfer map />n asso-
ciated to the S2-bundle projection p : CP^^^HP71, where n is arbitrary [4].
In this context, 5.2 tells us that £i,d = )?emod2 in MSp\HPn), where d and e
are suitably restricted to the finite skeleta. Similarly, 3.9 may be restated as
/>hl=2 in MSp\HP$\ These formulae are discussed in [11].

Our second task in this section is to introduce new elements ^t(w) in
MSp*~4i(CPn). These are defined in the same spirit as Buhstaber's elements
Ot(n\ by means of the equation

^/2((rC-jR2)®^-^))= I] «Mn)2l (5.3)isi r

in MSp*(CPn/\HP°°). Clearly, given any m<n, each <pt(n) restricts to <pi(m}
under the inclusion CPmC.CPn.
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For n=l, we may use the suspension isomorphism to rewrite ^(1) in
MSp*~u(CPl) as an element in MS/>4t-6, which we shall label fa; its identi-
fication is of special interest, and again involves considering RP2.

Proposition 5.4. For all i^l, we have that

g*fai(l)=fi*r(2), g*^i+8(l)=0, and g*faM(U=7j

in MSp*(RP2).

Proof. Since g*(rQ=2i) over RP2 (as already noted in 2.4), it follows that

H) (5.5)

over RP2AHP°°.
Now the total symplectic Pontryagin class pf((y—R)®R(%—H)) is given by

=1+23 23(
J§0 i>l

Hence applying />/2( ) to 5.5 and making use of 2.4 and 2.5 yields

g* S fa(iy=( 23 0*(2y )2+2 23 0f(2)z<+1

Equating coefficients and appealing to Roush's theorem establishes our formulae.

D

Corollary 5.6. For all z'^1, we have that

<f>4i = $t
2 mod 2, ^4i+2^EO mod 2, ancf (p2i+i = y]<f>L mod 2

m MS/)*.

Proof. These follows by direct analogy with the proof of 5.2. [j

§6. Applications to JtfS/i*

We are now in a position to apply the results of § 5 and exhibit our rela-
tions amongst the elements 0*.

Theorem 6.1. The relation

yffiOj^Q

holds in MS/>4a+;)_6, for all i, /^].
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Proof. Combining 4.2 and 5.2, we deduce that d : MSp*(CP°°)-+MSp*-\HP'Z),
the homomorphism induced by the map b : M(X)— >SCP°°, satisfies ddz=iqemod2.
Therefore, after smashing with the identity on HP00, the composition

d:MSp*(CP°°f\HP°?) — >MSp*-3(HP"/\HP^=MSp*-3l\:y, 2]]

acts such that d(dz®e}—f]e®e. But d®e is zero by 4.7, whence r}e®e in zero
also.

Since OtOj is the coefficient of ylz3 in e®e by 4.3, the result follows. D

Corollary 6.2. Any symplectic Euler class of a Spin(3)X Spin(3) bundle is
annihilated by t].

Proof. The universal example is e$$e, which is shown to be so annihilated
in the proof of the proposition. D

It is worth noting at this point that, in contrast to the lower dimensional
cases, the universal Spin(6) bundle is not MSp orientable. As pointed out to
us by A. Baker, the Stiefel-Whitney class w& provides an obstruction.

We conclude with our nilpotence formula.

Theorem 6.3. The relation

holds in MSp* for any z^/^1.

Proof. Using 5.6, we see that in 4.2

3^(00)=^+ 2 ftt. kZk mod 2
k^i

for certain elements fjtltk in MS/?m+<u<-6. Hence

(&'+ 2 ^.kzk^z+ 2 fM")=

in MSp'J~1Gl(HPOJ). Setting coefficients to zero yields the system of z'+l equa-
tions

i-l

0i3— 2 <j>i-k/Xi,

in MSp*.
To deduce our formula, we now have only to multiply the (/+l)th of these
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by $i3, for every z'^/^l, and substitute in each equation from the previous
ones. D

Corollary 6.4. The relation

^2l + 3=rO

holds in MS p &+&<.&-& for any i^l. D
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