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Quantum Deformation of Classical Groups

By

Takahiro HAYASHI*

Abstract

We construct coordinate algebras of quantum orthogonal, special orthogonal and sym-
plectic groups using M. Jimbo’s solutions of the Yang-Baxter equation and determine their
Peter-Weyl decompositions. To do this, we study some class of bialgebras and their
group-like elements (quantum determinants). A new realization of the universal R-matrix
is also given.

Introduction

Recently some interesting classes of Hopf algebras, referred as quantum
groups, are discovered. They are quantum deformations of function algebras
of Lie groups. Let A(G) be the coordinate algebra of a Lie group G. A quantum
deformation A(G,) of A(G) is a one-parameter family of Hopf algebras whose
representation theories (or coalgebra structures) are the same as those of A(G).
S.L. Woronowicz gave a real form of the first example A(SL{N)).

For orthogonal and symplectic case, some families of Hopf algebras were
constructed by Faddeev, Reshetikhin and Takhtajan [5] and independently by
Takeuchi [22]. In this paper, we will show that their Hopf algebras are indeed
quantum deformations of A(O(N)) and .A(Sp(N)) in the above sense. We will
construct also a quantum deformation of A(SO(N)). For this purpose, we in-
vestigate a class of bialgebras which we call quantum matric bialgebras. Quantum
matric bialgebras are defined by means of Yang Baxter operators, i.e., solutions
of the (constant) Yang-Baxter equation. We define Hopf algebras A(G,) as
quotients of quantum matric bialgebras corresponding to the M. Jimbo’s solu-
tions of type X;=A,;, B;, C; or D, [10]. Those quantum matric bialgebras are
completely determined as direct sums of dual coalgebras of simple algebras.

In §1, §2, we develop a general theory of quantum matric bialgebras and
their graded dual notion called Schur algebras. By their connection with the
algebraic structure of Yang-Baxter equation, we show L@AN =ML for any
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comodules L, M of a quantum matric bialgebra. In §3, we give a construction
of Hopf algebras from quantum matric bialgebras, which is based on cofactor
matrices [22] and the “Laplace expansion”. In §4, we give a structure theorem
of quantum matric bialgebras corresponding to Jimbo’s Yang-Baxter operators.
Section 5 is devoted to study group-like elements of these quantum matric
bialgebras. For X;=B,;, C,, D;, there exist two important group-like elements
which we denote by det,(X;) and quad,(X;), such that every other group-like
element is a monomial of these two elements. Further, we completely deter-
mine their relations, for example, dety(B;)*=quad,(B;)*'*!. Also, we show the
existence of cofactor matrices with respect to these elements, which enables
us to construct various Hopf algebras. In §5, together with Peter-Weyl theo-
rem, we prove that the coordinate algebras of SO,N) and Sp(N) are sub
Hopf algebras of the dual of the Drinfeld-Jimbo’s algebras U,8o(/N)) and
U Bp(N)) respectively. In §7, we give a useful criterion of the semisimplicity
of Schur algebras.

We work over any field K in §1-§ 3, and over the complex number field C
in §4-§7, unless otherwise noted.

The author would like to thank Professors K. Hasegawa, M. Hashimoto,
Y. Kanie and A. Tsuchiya for valuable discussions. He also wishes to thank
Professors E. Date, M. Jimbo, T. Miwa and M. Okado for their useful informa-
tion and kind hospitality during his stay in Kyoto.

Notation. Throughout this paper, A: C—CQC (resp. m: AQA—A) denotes
the coproduct (resp. product) of a coalgebra C (resp. algebra A), ¢ denotes the
counit of C, and w,: L—>LQC (or w.: L>CQL) denotes the structure map
of a right (or left) C-comodule L. Let A (resp. U) be another coalgebra (resp.
an algebra) and f:C—A (resp. {,>:UXC—C) be a coalgebra map (resp. a
bilinear pairing such that <xQy, a>=<xv, A(a)), <1, a>=¢(a) (x, yeU, a=C)).
Then, each right C-comodule L becomes a right A-comodule with the structure
map u—(id;,Xf Xw(u)) (resp. a left U-module with the action xu :=id®<x, N wz(u))
(x€U, usL)). We denote this A-comodule (resp. U-module) by L, (resp. Ly).
The antipode of a Hopf algebra A is denoted by S. For a finite dimensional
left H-module L, *L denotes a linear dual of L equipped with a left H-action
defined by <{xv, u>=<v, S(x)u>. For finite dimensional K-vector spaces V, W,
we identify V*QW* with (VQW)* by the pairing (f®g, vQuw) :={f, v)g, w)
(feV* geW*, veV, weW). We denote by zyw: VRIW-WQV a linear map
defined by zyw(vQuw)=w®v vV, weW). For a vector space with a fixed
basis {u;}, we denote by E;, the matrix units u,—d;,u,.
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§ 1. Schur Algebras and Yang-Baxter Equation

Let V be a vector space over a field K. We call an endomorphism Jy on
VRV a Yang-Baxter operator (or (V, By)is a Y B-pair) if it satisfies the follow-
ing Yang-Baxter equation :

(,Bv)l°(,3V)z°(ﬂv)1:(;81/)z°(ﬁv)1°(,3V)z- (1-1)

Here (Bv)1, (Bv). denote elements of End(V(RVQV) defined by (By): :=8r&idy,
(By).:=idy@Byv. For each element ¢ of the »-th symmetric group &,, we can
uniquely define By(¢)=End(V°") by the following two conditions (see [17]):

Bv((@, i+1)=(By); :=1dP* ' RBrRidP"* (I=i=sr-1),
Bv(g10:)=Bv(a.)Bv(02) (01, 0.€€,, [(010:)=I(0,)l{(a5)). (1.2)

Here {(g) denotes the length card{(7, j)|1<i<j<r, 0(1)>0(j)} of 0ES,.
Let V=(V, By) be a Y B-pair such that dim V<. We define the Schur
algebra Sch(V) of V by
Sch(V)= @(’Schr(lf),

Scho(V)=K, Schy(V)=End(V), Sch.(V)=Endg(V®") (r=2).

Here B(r) denotes the subalgebra of End(V®") generated by (By)i, -, (Bv)r-1.
Since B(r)XB(s)CB(r+s) under the identification End(V27)®End(V®)=
End(Ve®r+%) there exists algebra inclusion

AT 1 Seh . o(V)CERdpergpe(VE RV ) =Sch,(V)@Schy(V) .

Let A:Sch(V)—Sch(V)®XSch(V) be the direct sum P, s.,A™. Then, clearly,
we have

Proposition 1.1. The Schur algebra becomes a (non-unital) bialgebra with
the coproduct A and a counit ¢ defined by «(Z,a,)=a,=K (a.=Sch.(V)).

Example. Let V be a K-vector space and z,=End(V®%) be a linear map
defined by z{(x®y)=yR=x (x, y=V). It is easy to see that (V, zy) is a Y B-
pair and that ¢—7,(c) defines a representation of S, on V", It was proved
by Schur [21] that Sch,(V') coincides with the linear span of the image of the
representation GL(V)—End(V®") if ch K=0.

Let Sch(V) be the completion of Sch(V) with respect to the fundamental
neighbourhood system {@,-,Sch,.(V)|s=0} at 0. As an algebra, Sch(V) is iso-
morphic to the direct product of Sch,(V)s (#=0). Moreover Sch(V) becomes
a topological bialgebra with a coproduct defined by
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= ISIZOA” : E?h(V) — ST:h(V)@ﬁ(V): IsloSchr(V)@Schs(V) .

Let p"’=pp’cEnd Ve +* be the composite map zy(Xs.)° Br(X+s), wWhere X,s&
S, .5 is defined by

71 2 - r r+lr4+2 - r4s
x”_(s—l-l s+2 o s+r 1 2 - s ) (1.3)

Since  Br(Xrs)o(Br)e=(Bv)iss fr(Xrs) (1=t<r) and By(Xrs)>(Bv)e=(Bv)i-reBr(Xss)
(r+1<i<r+s), we get p"<(8y)i=(Bv)cp™® for 1=t<r+s, t+r. Hence p"*
defines an element of Sch.(V)®Schy(V)=Endsiess(V® ™). Let p=pr &
SCh(V)®Sch (V) be the sum 3, .45007". For i, 721, we set p, =31 - @ps
RIR -+ ®;’;,§®l®--- ®1, where p=31:0:®pr The following shows that o is
a sort of so-called “universal R-matrix.”

Proposition 1.2. We have the following identities:

1) tsman(Aa)o=pAa)  (a€Sch(V)), (L.4)
(2) ARid(p)=p15035,  1ARA(0)=p13012, (1.5)
3) P12013023=— Q23013012 - (1.6)

Proof. (1) It is sufficient to show that z(A(a))p"* and p"*(A(a))(a=Sch,.(V))
define a same operator on V®'*5  Since A(a) commutes with By(X.)= B(r+s),
we get p-sA(a)=1y(Xs- XA(a)Bv(X+s). Hence (a) follows from zy(Xs» XA(a))yry(Xs,)™
=7(A(a)).

(2) For weVe ™+, we have p(w)=7vX;sX1:) " 02tyXrs X1 w), where
X s X1,ES, .54 Is defined by X,sX1:(2)=X,s@) 1<i<r+s) and X, X1.,(6)=:
(r+s<i<r+s-+t). Hence we have

013025W)=TyXsst, r X Br)eTrX s e, s Br)w0)
=tyXsse, 1 JovXeer, s X Br(Br)w)
=tr(Xe, r+8)BrXrss Xw)
=(AQid(p)Xw).
Part (3) follows easily from (1) and (2). O
Definition 1.3. For left Sch(V)-modules L, M, we define a map B.x: LM

—MSL by
Brau(u@v)=7ru(p(u@v)) (uQ@ve LRM). (L.7)

Theorem 1.4. (1) The map Bry is a Sch(V)-module homomorphism.
(2) For Sch(V)-modules L, M and N, the following “Yang-Baxter equation”
holds :
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(B w®id . Xid QB LwXBru®idw)=(dy@Brar)Bry@idy)id.&Bun). (1.8)

In particular, (L, Br1) is a YB-pair.
(3) For Sch(V)-module maps [: L—>L' and g: M—M', we have Br -/ Xg

=gQf *Bru.
(4) If By is invertible, then LIM=MQL as Sch(V)-modules.

Proof. Part (1), (2) and (3) follow immediately from (1.4), (1.6) and (1.7)
respectively. Part (4) follows from the existence of p™'=>3;, s2o(B7 ) Xsr )Ty rs).
O

Let (V, Bv) be a Y B-pair such that dim V<o and Sy is invertible. For
right Sch(V)-modules L, M, we define Bry: LIM-->MQL by Brulu@v)=
r((u@u)p~?). Then this map satisfies properties similar to the above theorem.
Moreover we have

Brarlu@u’), vQv >=<{u@u’, Bru(v®v’)> (1.9

for ne L*, w'eM* v=L and v &AM,

§2. A Commutator Formula for Quantum Matric Bialgebras

We begin by recalling some notations and results of [5, 8]. For YB-pairs
V=(V, By) and W=(W, Bw), we define the product VXW as a YB-pair defined
by

VXW :=(VRW, (idV®TVW®idW)°(ﬁV®,3W)°(idV®TWV®idW)) . (2.1)

If dimV <c and B, is invertible, we define the dual V™ of V by V7 :=
(V*, (*By)™"), where ‘BycEnd(V*®V*) is defined by <(Br(u@u’), vQv'>=
u®u', Brv@v)>, (u, w' €V, v, v'EV*). We call a YB-pair (E, Bz) of the
of the form E :=V XV the quantum matrix of V.

Let T(V) be the free non-commutative algebra generated by V. We define
the symmetric algebra S(V, By)=S(V)=F::S.(V) on V as the quotient graded
algebra T(V)/(Im (idygr—fBv)) of T(V). Itis known that the symmetric algebra
S(E) on a quantum matrix E=V“XV becomes a bialgebra whose coproduct
and counit are defined by A(xi;))=3:%:.X@x:; and &(x;;)=0;; where u;, v; and
xi; (1<i, j<N) are bases of V, V* and E satisfying <us, v,>=0i;, x:;=v:®u,
(cf. [5, 8]). We define a right (resp. left) S(F)-comodule structure wy (resp.
wys) on V (resp. V*) by wv(u,)=>3:u:Qxs, (resp. wyv:)=2,%:;Qv;). Then By
(resp. 'By) is an S(E)-comodule endomorphism on VRV (resp. V*QXV*) (see
5, 81). The following observation essentially due to [8] plays an essential role
in this paper.

Proposition 2.1. There exists a non degenerate bilinear pairing < ,>:Sch(V)
QRS(E)—K satisfying the following conditions.
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(a) <Sch,.(V), SUE»=0 if r+t.
(b) <Ala), xQy>=<a, xy>, <a®b, A(x)>=<ab, x> (a, bESch(V), x, yES(E)).
In particular, the category of finite dimensional left Sch,.(V )-modules is equivalent

to that of finite dimensional right S,.(E)-comodules. For a right S(E)-comodule
L, the left action of Sch,.(V) is given by

au=id;RX<a, Mwr(u)) (asSch(V), usL). (2.2)

Proof. As is observed in [8, §5], the dual of the projection E®"—S,(F)
is naturally identified with the inclusion Sch,(V)LEnd(V®"). It is rather easy
to verify that, under this identification, the graded dual of the product and
the coproduct of S(F) coincides with the coproduct and the product of Sch(V)
respectively. O

Noting S.(V) is a quotient Sch(V)-module of V®", we will define a YB
operator Bsu» over S(V) by Bsan=II: sz0Bs,07s ;>

Proposition 2.2 Let m: S(V)RXS(V)—S(V) be the product of S(V). Then,

¢)) m°,88<v>=m s (2.3)
(2) ,BS(V)O(m®idS(V))=(idS(V)®m)°(,BS(V>)1°(,BS(V))2 s (2.4)
,3S<V>O(idS(V)®m)=(m®ids<V>)O(ﬁS(V))zO(ﬂS(m)l . (2.5)

Proof. By Br.w».ryw»=PBr(X;s) and Theorem 1.4 (3), Bsw> coincides with
the map ¢squ, defined in [8, §4]. Hence this is nothing but (4.14) and (4.13)
of [8]. 0

Example. Let V=(V, zy) be as the example of §1 such that dim V <oo.
Then, as algebras, S(V) and S(FE) coincide with the polynomial algebras gener-
ated by elements of V and E respectively. Since p is the unit of the algebra
Sch(V )@Sch(V), Bry=7rx for any Sch(V)-modules L, A. Hence the equality
(1) of the above proposition is nothing but xy=7yx for x, yeS(V).

The above example seems to suggest the map Bsw» express “commutativity”
of S(V). Unfortunately, explicit form of Bsq, is not so simple in general.

Example. Let V be a complex vector space with a basis {u;|1</<N}.
For 0#¢<C, we define a YB operator S(Ay_1) by
N
BANn_1)= 21 Eu®Eiit+q X E,QE;i+(1-¢") 3 EuQ®E ;. (2.6)
i= i£) i>7
We call B(Ax_1) Jimbo's YB operator of type Ax_, and denote the correspond-
ing YB-pair by V(Awy_:). The symmetric algebra S(V,(Ax_,)) is an algebra
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with generators u;, ---, uy and relations w;u,=qu,u; (/<j). Hence {us, --- u; |
1<, < - <0, <N} is a basis of S, (V). Since S(V) is generated by V, we can
calculate Bswy by using (2.4), (2.5) and Bsw)lver=pBr. If N=2, the result is
as follows:

‘Bq(AN_l)(u%ui(X)u?‘uZ): Eo(l_qzyq(sr—1)r/2+(i—j~m+n)r+in+jm
] 2] e rurr@uttrud @.7)
v leL v lq

Here [#]!, and [i } are defined by
q

I Ul e :
[r ]q_ ] !q[]._"r] i (0<r<j),0 (otherwise),
Y=l =1l [ [Pl=C =20 2.8)

The rest of this section is devoted to study a YB operator Bs on a
quantum matric bialgebra S(E). First we show a relation between this operator
and pe§c—h(V)®§€Fl(V). Define a linear map ¢<End(Sch(V)®*) by ¢(a)=
tscha(pap™). Then,

Proposition 2.3. Let E be the quantum matrix on V. Then,
{Bswx(x), a>=<x, ¢(a)> (x&€S(E)®*, ac=Sch(V)®2).

Proof. The map Bs¢» is uniquely characterized as a YB operator on S(V)
satisfying the equation of (2.4), (2.5) and Bsu»|ver=pSv. Hence it is enough to
show that ¢ satisfies (1) ¢iogeodi=@s0¢00, (2) ¢rodpeARid=idRAc,
Dr0¢p:0ld @A=ARidog and (3) ¢ |sen,arroschvr=Bs-

For a, b, c=Sch(V), we have

¢x°¢2°¢'1(a®b®0):(()21PslPsz)(c®b®a)(Pz1Palpaz)—1 s
¢2°¢1°¢2(a®b®c):((732‘031,021)(C®b®a)(‘032‘031‘021)—l .

By (1.6), 02103105:=p320:0.1, hence (1) holds. By (1.5), we get idRA(p:)=
02105 and id®A((P—l)21):(.0H1)13(‘0—1)12- Using this, we get id®A°¢((l®b):
(021031 )ORA(a)Np2p05)"". It is easy to see this coincides with ¢, RQ¢,cARid.
Part (3) follows from direct calculation. |

Lemma 2.4. For finite dimensional left Sch (V)-modules L and M, the fol-
lowing diagrams are commutative :
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Sch(V)YRLQSch (VIQM —> LRM  Sch(V)QSch(V) —> LQQL* QMM *

l‘pxﬂlﬂ lﬁu[ l¢ iﬁLMXﬁL*M*
Sch(VYQMRSch (VYRL — MRL Sch(V)RSch(V) — MIM*RQ LR L*
(2.9)

Here Sch(VYQL—L is the action of Sch(V), Sch(V)—»LQL*=End (L) is the
corresponding representation and the maps ¢XBru, PBruXBrwu« are defined by
OXBLu=1QrQ1edpQBLuclRrR1,
BruX Brews=1RrQ@1oB1 4 QB rem+clRrR]1 . (2.10)
Proof. The first diagram follows from direct computation. The second

diagram follows easily from the first diagram using similar argument of [§,
§1, §33. [

Let L be a right S(E)-comodule. By definition of the left action of S(E)
on L* the following diagram is commutative:

id
L*QL _*cﬂ,;_@x—’— S(EYQL*QL
idQw,, id®<,> (2.11)
L*QLRJS(E) ——————
QLRS(E) (o S(E)

We define the coefficient map cfr: L*QL—S(E) by this diagram. It is easy to
see that c¢f, is a coalgebra map from the dual coalgebra L*@L=~End(L)*.
This means that the coefficient map is a dual notion of the representation map.
By the above lemma, we get the following.

Theorem 2.5 (commutator formula for S(E)). For right S(E)-comodules L,
M, the following diagram is commutative

Loremram —TB s myesE

|
iﬁL*M*XﬁLM iﬁsm (2.12)
M*QMRL*®L

S(EYRS(E) .
Taefs D PIOSE)
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§3. Inverse of Quantum Matrices

In this section, we investigate a “linear algebraic” method of constructing
Hopf algebras from quantum matric bialgebras. Let V, E, {us}, {v;}, {x:,} be
as in §2. We call an element 0#g=S.(E) group-like if A(g)=gQg. We note
that there exists one to one correspondence between group-like elements of
S(E) and the isomorphism classes of one dimensional left (resp. right) S(E)-
comodules. It is given by g—[Kg].

Example. (cf. 75, 16, 25]) Let V=V (Ay_,) be as in §2. We denote the
quantum matrix on V(Ay_;) by E=E{Ax_1), Asan algebra, S(E) is generated
by {x;;11=<i, j<N} with the following defining relations:

X Xir=—XirXi1, X jeXir—Xik Xk ,
XgeXit=Xi1 Xk, xt‘kx;l_lexik‘(q_q_l)xjkxil:()
(IZi<jEN, 1Zk<IEN). (3.1)

Define an element det,=det,(Ay_.)=S(F) by
dete= 2] (—@)"“x1 s 13Xz 02> *** XN o (i) - (3.2)
TEG g

Then det, is a central group-like element of S(E). Moreover A(GLN)):=
S(E)[det;'] and A(SLy(N)):=S(F)/(det,—1) are Hopf algebras (i.e. have an
antipode). We call them the coordinate algebra of the quantum general linear
group and the quantum special linear group respectively.

Let g=S(E) be a group-like element. We say that elements y;; (1<7, J<N)
(resp. z;; (1=¢, j<N)) form a left (resp. right) cofactor with respect to g if
they satisfy the equation

M=

N
> ViuX s, =048, XixZr,=03,8 . (3.3)
k=1

k

Il
-

If y;;=z:, then we say that y;; form a cofactor (see [22]).

Proposition 3.1. (1) Let G be a set of group-like elements of S(E). If
there exist both left and right cofactor with respect to an element g, of G, then
the quotient S(E)/X,ec(&—1) is a Hopf algebra whose antipode is given by S(X;,)
=5:,=2ij, where — : S(E)>S(E)/X;ec{g—1) is the projection.

(2) If, in addition, each element of G is central, then the localization
S(E) g™ ]zec have an antipode which sends x., to g5'yi;.

Proof. Quite similar to those of [22, Propositions 1.3, 3.47. O

Lemma 3.2. (Laplace expansion) Let L., Ly, Ly (resp. My, M,, M;) be right
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(resp. left) S(E)-comodules and p: L,QLy,— Ly (resp. v: MiQMy—M;) be a S(E)-
comodule map. Then the following diagram (3.4) (vesp. (3.5)) is commutative :

*X)1
LRL@L, — B s It LIQLSL,
1®#l ! ¢frie1, 34
ch3 v
LI®L, S(E)
*
M@MAMY ———> M,@MQMIQM
v®ll ¢S wrons (3.5)
Cf * Y
M,@M* k. S(E)

Proof. The commutativity of (3.4) follows immediately from those of the
following :

L¥QL,QL, LIQLYQL, QL.
w1 1O .
ll@y \ e \
S(EYQLIQLQL, S(EYQRLIQLEQL,&L,
LYQL, 1ol ;
\aﬁ?l 1Qp l1®<,>
S(EYQL*R L, S(E).
(EYQLIQ 1845 (E)

By the above lemma, we get a sufficient condition of the existence of co-
factor matrices. For a group-like element g=S(E), we define a condition (x)
(resp. (%)) as follows.

(x) (resp. (x)) There exist right (resp. left) comodules L, K& (resp. M,,
K7), a comodule map p:L,QV—Ku (resp. v:V*RM,—»Ki) and a basis
{Cus i 1<i<SN’YC L, (resp. {v¢|1<i<N'}CM,)such that Kt~ Kg (resp. Ki~Kg),
N'2N and p(‘u;:Qu;)=0:;4 (resp. v(v;Qué)=0d;,0) for 1<i<N’, 1<7<N.

Theorem 3.3. Suppose g satisfies the above condition (x) (resp. (x)). Then
there exists a left cofactor y;, (vesp. right cofactor z;;) with respect to g. It is
given by the following formula:

yi=cfr,(‘v;Q°us), zi;=cfu,(ViQui) (1=i, j<N). (3.6)
Here {°v;} and {u$} denote the dual bases of {‘u;} and {v} respectively.

Proof. Set L,=V, L,=Kiu and define #a*=(K#un)* by {#*, #)=1. Compar-
ing the images of #*®‘u;Qu; by (3.4), we get
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N
2 fr (0@ ura, =018 .
=1
Hence y;; form a left cofactor. O

Example. Let p, ¢ be non-zero complex numbers such that 1, —p?% —g%
p*¢® are distinct. We define a YB-pair by (W, yw):=V ,(A1)XV(A4,). Then rw
is a diagonalizable matrix which has 1 (resp. —p?% —¢?, H%¢®) as an eigenvalue
of multiplicity 9 (resp. 3, 3, 1). Hence Schy(V) is a semisimple algebra isomor-
phic to Mat(9, C)PMat (3, C)PMat (3, C)PC. In particular, S,(W XW) has a
unique group-like element g. Applying the above theorem to the projections
2 VRV—-Ker (rw—p%?), v: V¥QV*—Ker(rw—p~2¢"%), we get the following
formula of the cofactor matrix with respect to g:

Om1-0i1,0n1-051,.

Yiapmnd=q r Xm'n'd " @4, j, m, n=1, 2).

Here 7’=3—: and the basis {xupma} of WYXW is defined by xujpmmr=
(vi®v1)®(um®un>-

§4. Brauer-Schur-Weyl Reciprocity

Now, we will begin to study some important examples of YB-pairs obtained
by Jimbo. Let X, be the Cartan matrix B;, C; or D,. Define integers N, v by

20+1 (X=B) —1 (X=B)
N=3 2 (X=0), y= 1 (X=0C). 1.1
2l (X=D) —1 (X=D)

For 1</<N, we set i/=N+1—7 and
(i—v/2 (1<i<(N+1)/2)
=1 i (=(N+1)/2) , e(i)={
i+v/2 (N+1)/2<i<N)

1 (I=i=(N+1)/2

. 4.2)
—v (N+1)/2<i<N)

We define a YB operator B,=p4(X;) on V:=@c;sxCu; by the following
formula and call it fimbo’s YB operator of type X;:

,Bq(Xz): 2 (Eii®Eii+quii’®Ei’i)+(] 2 Eii®Eii+q ? Ei]®Eji

ity izi’ ity
+(1¢) B (Ea®E ,—ee(i)g* 7 Esy ®F5). (4.3)

Here for X=C, D (resp. X=B), ¢ (resp. ¢*/*) denotes a non-zero complex num-
ber. Besides the Yang-Baxter equation (1.1), it satisfies the following relation

0" B—aB7 =(q—q" N 1), (4.4)
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where ¢,=End (V®?) is defined by

= % ¢@)e(/)g TE 1y RE+:; . (4.5)
For ¢*#1, we denote the YB pair (V, B,(X:)) and the corresponding quantum
matrix by V(X,)=V(X;) and E(X;)=E(X,) respectively.

As is pointed out by Jimbo, these YB operators have deep connection with
quantum enveloping algebras. Let X;=[a;:;]is:,js; be a Cartan matrix and d;
(1<i<Zl) be positive integers such that d;a;;=d;a;; and the greatest common
divisor of dy’s is 1. Let ¢#0 be a complex number such that g¢;:=q¢%#=+1.
The quantum enveloping algebra Uy X,) is a C-Hopf algebra with unit 1 and
generators e;, fi, k3 (1<i<l!) satisfying the following relations:

kik;‘:kzlkizl, kikj:kjki,

kie; k7' =q%e;, kif k7t=q7%4f,, 4.7)
ki—k7!
eif; —fjei:5ijqi—__q‘7f , 4.8)
1‘—(11_7
2 (_l)n[ ] e; "t "e,et=0  (i#)), 4.9)
osnsi-aj, n a;
1-ay .
= (—1)"[ fireamrfL =0 (#7), (4.10)
0snsl-agj n q;
Ale)=eQ@1+k:iRe:, Af)=fRQr7+1Qf:, Alki)=FkiQk,, (4.11)
e(es)=0, e(f)=0, e(ky)=1, (4.12)
Sles)=—Fk7e;, S(fi)=—fiki, S(ki)=Fk7'. (4.13)

From now on, until the end of this section, we shall assume that q=C is
transcendental over @, unless otherwise noticed. Then every finite dimensional
UyX;)-module is complete reducible (see [20]). For a UyX;)-module L and
n=mn)eZ’, we set L,={usL|ku=q%u}. For each neZ!, there exists the
unique irreducible finite dimensional module L(r)#0 such that L(n)=U/(X,)L(n),
and e¢;L(n),=0 (1=/<l). We call L(n) the irreducible finite dimensional
Uy(X:)-module with highest weight n. The module L(r) has a weight space
decomposition L(n)=C@neziL(n),. Moreover the dimension of L(n), is given by
the Weyl character formula (cf. [13]). In particular, L(m)® L(r) has the unique
decomposition of the form @Pck,L(k), and the branching coefficient ck, is the
same as those of the corresponding modules of simple Lie algebra of type X,.
For each finite dimensional irreducible module L there exist the unique numbers
neZL, and ({;)={=1}"* such that the algebra automorphism e;—C;e;, fi—C:ifs,
k.—C:k; carries L to a module isomorphic to L(n).
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For X,=A, B, C, D, we define algebras U=Ux and U=Ux by

UfX)) (X=A,C, D) o Ux (X=A4, C)
:{ _{ , (4.14)

U —
U By (X=B) | codIxUx (X=B, D)

where <{¢)> denotes an order 2 finite group acting on Ujp or Up by g=id
(X=B) or
U(gt):ea(t); U(fz>:fa(z)y U(kt):ko‘(l)y

0(1)=i+0; ;-1—0u (X=D).

(4.15)

It is easy to see that [Jy (X=B, D) is a Hopf algebra with a coproduct defined
by (4.11) and A(e)=0c®o. For Up-modules, we have the following lemma.

Lemma 4.1. (1) Every finite dimensional Up-module is completely reducible.
(2) For n=m)cZt, such that n,.,=n,, up lo isomorphism, there exists the
unique irreducible U p-modules LN(n) and f(n)* such that f(n):f(n)‘f: L(n) as
Up-modules and that ocv,=v, (resp. gvy=—1vh) for Oiv,,E[N,(n),, (resp. 0=+vh e
IN,(n)t,). (3) For n=(n)=Z, such that n,_y#n,, up to isomorphism, lhere exists
the unique irreducible Up-module L (n) such that L(n)= L(n))PBL(nswy)) as Up-
modules. (4) Up to the algebra automorphisms of the form ep—Cies, fo—Cif4,
ko—Cik,, a—a, {GYe{x£1}Y), each irreducible finite dimensional Up-module is
isomorphic to a module of the form mentioned above.

Proof. The existence of the above modules is easily shown using Verma
modules. For a Up-module M, there exists a one to one correspondence be-
tween all submodules of A/ and all sub C[<o, ki, -, k;>]-modules of
{veM|e;v=0}. Hence the problem is reduced to the study of C[{e, k.>]-
modules which decompose into direct sum of one-dimensional C[{/;>]-modules.

ol

There exists a representation my of Ux on V(X:) such that B (Xi).€
Endy (V") (1=i<r). These are defined by the following formulas:

mae)=Eiin, mi(fo="(mx(e), walk)=TT.," (1=i=i),
tx(e)=FEiin—Eawne, mx([i)="(wx(e:)),
nx(k)=T:;T i *T sy T+ (X=B, C, D, 1<i<[-1),
75(e)=q""Er 1i—Evsi 140, m8(f1)=¢ 7 E1 11— Eiys 141
n5(k)=T.T1.,"Y, ms(e)=—idy,

mole)=Ey 1, wc(f)="meler), me(k)=T; T2,
mo(e)=Ei s 1mi—Ei1s, wo(f1)="mpler)),
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Tp(k)=T 1T T14:7 Tt
1(0)=2 . L5+ E i+ B,
T:=3,¢%E,,. (4.16)

Remarks. Our definition of A;, B;, C; and D, is the transpose of those of

[71.

To discuss the tensor product module V&7, let us recall some notations of
the Young diagrams. An element A=(4,, ---, 1) of Z* is called a partition (or
Young diagram) if 2,= --- 22,=0. A partition A=(4,, --, 4;) is identified with
(4, =+, 21, 0, -+, 0). We denote by @ the set of all partitions. For a partition
A=(2;), the transpose A’=(Ai, ---, 4;) is defined by A;=card{n|i,=i}. For i=2,
we set || :=2:4;. We define sets @(X;) and ¢,(X,) of partitions as follows
(cf. [24]):

{lePii<i+1} (X=4)
l {le@| i+4L20+1} (X=DB)
-CE(XL): )
'{ {le@|i<l} (X=0C)
Re@ i +u=<2)  (X=D)
(4.17)
{2e2(A)] 2| =r} (X=4)
g?)r(Xl):{
{leP(X)I 2| <7, |2] =7 (mod 2)} (X=B, C, D).

For A= @(B,) or @(D;), we set A'=(N—2, 23, 25, ---)’. We note that A'"=2 and
that A'=2 if and only if X=D and 2j=/[. For 1=2(X;), we define n(A)=Z.,
as follows.

(a) If X=A, C, then n(A)=A,—2s, -, Aior—2A1, Ai—2Aia).

(b) If X=B and A;</, then, n(Q)=(A,—2s, -, Ai_1— A1, 241).

(¢) If X=D and 21/, then, n(A)=(A;—2A., -+, Aic1—A1, A1+ A).

(d) If X=B, D and A;>I[, then, n(1):=n(a").

Let A be an element of @(X;). We define an irreducible U x-module E(Z)
as follows. For X=A, B, C, we set f(l)::L(n(l)). If X=1B, define the action
of o=ls on L(2) by o—(—1)'*. For X=D, we set L(2):=L(n(2) if 1<,
and L(2):=L(n(2)" if 2;>I, where L(n) is as in Lemma 4.1. By definition,
f(l) is U g-irreducible unless X=D, A/=[. If X=D and 2i=l, L(2) has two
Up-irreducible components. We note that if 1=y then f(l)i]j(y) unless X=A.
For 1, pe®(X,), we say A~p, if X=4A and p;=2,4+0;, or X=B, C, D and
Ziz,uiiéi, for some ]'.

Proposition 4.2. (1) For A=P(X,), E(2)®17:@1~p59(xl)f(#).
(2) For r>0, V®T:®;egr(xl)mxlj(1), where the multiplicity m;>0 is given
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b
g ma=card{(2°, -+, AN|AEP(X,), A~ 21°=(0), A"=41}.

Proof. 1t suffices to prove part (1). For X=A, B, C, this follows im-
mediately from the general theory of quantum enveloping algebras. Let X,=D,.
Then Z(/{)@V:@z~ﬂeg(p)f(ﬂ) as Up-modules. Hence by Lemma 4.1, it suffices
to determine the multiplicity of f(y) and Ij(;ﬂ) in f(l)@V for p=®(D;) such
that A~y and gi#/. Suppose Ai#!/. Then, up to constant, there is a unique
vector 0+#v,&(L(A)RV ucu> such that ew,=0. It is easy to see that v, is of
the form v,=v;@ui+ 2 ,5w,Qu, for some 1<i<l, 00 EL(Dnczy and wips, -,
zuNef(Z). Hence ov,=v, if and only if gvi=v;. Thus we get IN,(Z)®VZ)
Upvu=L(p). Next suppose 2j=(. Since L((O)N®LA)=L() and L((0)NRL(x)
=L(p"), we get

Homy (Z(DRV, I (1))=Homg,(L(ONRALARV), L(ONRL (1))
~Homy (L(QV, L(ph).

On the other hand, dim HomUD(f(l)(g)V, L(n(p)))=2. Hence the U p-module
L(ARXV has both L(g) and L(p') as multiplicity one irreducible components.
This completes the proof of the proposition.

Theorem 4.3. (g-analogue of Brauer-Schur-Weyl reciprocity) Lel 7, be
the representation w$ oA : l7x—>End(V®T) and B(r)be asin §1. If the parameter
g is transcendental over Q, then we have,

Im (z,6,)=Sch, (V(X)(:=Endp (Ve )=DBice,xpEnd (L(),
Endg(Ve")=B(r)=Dice,xpMat(m,; C).

Proof. We give a proof for X=B, C, D. The case X=A is quite similar.
We set G(B)=G(D)=0(N, C) and G(C)=Sp(N, C). It was proved by Brauer
[3] that the algebra Endgcx,(V®") is generated by (8:); and (¢1): :=idv®" &,
®idy® * (1<i=r—1). Since dimEnde.x,(V®") is ko:=2lice, wxp(dim Ly,
there exist vectors {£,(¢)|1<k=<k,} (¢=C*) of End V®" satisfying the follow-
ing two conditions.

(i) For each k, &:(g) is a monomial of operators {(8¢)i, (¢g):i|1=i<r}.

(i) The vectors {&.(1)|]1<k=<k,} are linearly independent. We identify
End Ve with CV*" by means of the basis {E:;,® - QE; ;. }. By (@) and (4.3),
(4.5), each component of a vector &£:(¢) is a Laurent polynomial of the param-
eter ¢ with coefficients in Z. Hence {£.(¢){1<k<k,} are linearly independent
if ¢ is transcendental over Q. Since B(r)CEndy,V® and dimEndgy, Ve =4,
we get B(r)=Endy,V®". On the other hand, by Proposition 4.2, Im (7 ,g.) is
isomorphic to the semi-simple algebra @ice,xp End L(2). Hence the rest part
of this theorem is a consequence of the general theory of semisimple algebras.

]
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Let 4 be an element of ®,.(X;) (r=0). By the above theorem and Proposi-
tion 2.1, up to isomorphism, there exists the unique irreducible right S,(E(X.))-
comodule L such that Ly~ Z(Z). We denote this comodule by Z(z; 7). Each
S(E(X;))-comodule is isomorphic to a direct sum of comodules of this form.
We can rewrite Theorem 4.3 as follows.

Corollary 4.4. (1) As an algebra (resp. coalgebra), Sch(V (X)) (resp.
S(EX.)) decomposes as follows:
Sch(V{(X)=@® @ End(L(;7),

r20 AP (XD

S(ELXD))=B D Imcfian.

T20 AEP (XD

(2) An S(E(X)))-comodule L is irreducible if and only if Lg is irreducible.
3) For each S.(E(X))-comodules L, M (r=0), L=M if and only if
Ly=Alg.

§5. Quantum Determinants

Let V be a Uy (X;)-module. We call that V is a type 1 module if V=P ,ez:V ..
Let ,BVeEnqu( xp(VQV) be a YB operator on V. Denote by E the quantum
matrix on V.

Theorem 5.1. Let (V, By) be as above. If V is an irreducible type 1 module,
then each group-iike element of S(E) is central.

Proof. We define a left action of Sch(V) on S(E) by a(x)=idsz&®
{a, YA(x)) (aeSch(V), x=S(E)). Combining this with the algebra map Uy X))
—Sch(V), we get a left action of U,X;) on S(£). Since tensor products and
composition factors of type 1 modules are also type 1, Cg is a type 1 Uy X))-
module. Hence the action is given by e;g=f;g=0, k,g=g. Therefore VRC g
and Cg®V are both irreducible and the map u®g—g®u (u=V) gives an iso-
morphism. By Schur’s Lemma, By c,(4.Qg)=cg®u, for some non-zero con-
stant ¢, where u; and x;, be as in §2. Comparing the images of u,Qg by the
maps ®cevofv.c, = PBr,c,Ridowyrgc, : VRCZE —( CaQVIRXS(E), we get gxi,

=Xxi;8. |

Proposition 5.2. Let V and E be as above and let g=S,.(E) be a group-like
element. Suppose there is a right S(E)-comodule map 0+p: Ve —Cg, then
there exist both left and right cofactors with respect to g.

Proof. Using (4.11), (4.13), ome can verify Homy xp(L@M, N)=
HOqu(XL,(L, N®*M) for finite dimensional U, X,;)-modules L, 1/, N. Hence
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there exists a Uy X;)-module map 0=%p': VO '-Cg®*V. Since CgX*V is
irreducible, g’ is surjective. Hence there exist bases {‘u.}, {u.} of L,:=V® "},
17 satisfy the condition (%) in § 3. O

Now we will return to the study of the examples of §4. Let X, be A,
B;, C, or D, and q=C be transcendental over . Following Manin [16] and
Takeuchi [22], we introduce the following graded algebras 2(V), (V") in
order to study some group-like elements:

o _{ T(V)/(Ker (idver — B8)) (X=4, O)
T Ty (Ker (dyoy— 8), T eg) (X=D, D).
T(V7)/(Ker (idyver-— 7)) (X=A4, O)

Q(V'):{ G.1)
TV )/(Ker(idyeore—B7) Imc¥)  (X=B, D).

The defining relations of 2(V (X)) is as follows:

QU (A)=<us A<i<N) [ u=0, quu,+uu:=0 (<j),
QU (B)=<Cu; (1<i<N) | ul?=0 G=l+1), quiu,+u,u=0 G<J, i#J5’),

Ui+ uie —(g—q™ ") D ¢ uu =0 16,
1=j<t

Wt —(@"P—q7) 2 ¢ ugu =0 1<i<0)),
1575l

RQUVLCH=(u; I=<iEN) | uf=0 A<Ki<N), quau,+u,u,=0 (<J, i#j'),
Up i+ @ uaue +(g—q7) 2 ¢ uyu, =0 (1<i<0)),
i

1<Js
QVLADN=Cu, I<i<N) | u,*=0 (1=ZiEN), quou,+uu=0 G<j, i=)"),
Uity U e —(@—q ") 2 ¢ uu, =0 (1<i<0)) . (5.2)

1=

Since B,(X:) is a syvmmetric matrix, the defining relation of Q2(V(X,)") with
respect to the generators {v;} is the same as those of Q2(V,(X,)) with respect
to {u;}. In particular, Q(V(X,))=2(V(X))") as algebras. As an application
of the diamond lemma [2], we have the following (cf. [16, 22]).

Lemma 5.3. The products wuius, - U, (resp. vy vy, - vy,) (L=6<t,< -
<i,<N) form a linear basis of 2,(V)(resp. 2, (V). In particular, x(V) and
QyV) (resp. v_(V) and Qu_(V7)) is one dimensional (resp. N-dimensional).

We define a bilinear pairing <,>: 2y _(V)QRRxy_(V)—=C and <,>: Qx(V)
R2y(V)-C by

<Di) iz]>:5i] > <17: ﬁ>:1y (53>
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where 7;, #; (1</<N) and i, 7 are defined by

Ui=Urlhy - Ugaligr 0 Uy, Di=0ils o Vicalugr = U,
(5.4)
U=U Uy " Uy, V=V1Vs *** Uy .
Then, we have
Dsx, W=Dy, XU, , Dx, ay=<0, xay (x=Uyx). (5.5)

We will prove these formulas for X=B. Since e;i, is a weight vector of
Qy_ V), we have e;ii;=0 unless i<I, j=i, (;+1) or i=l, j=I, {+1. On the
other hand, we have

eitii=Fki(uy -+ Ui_1)e(Uip)Uivs - Uy
Ry o+ s v Uarn)ei(Ue XUonyr -+ Uy)
=1l,41+0 @<,
el =—1y (<), et;=—q¢"%U14, el =—qils.

Similarly, we obtain the explicit formulas for the action of ¢;, f:, k; and ¢ on
the modules 2y _,(V), Qy_(V"), x(V)and Qy(V"). The formula (5.5) follows
easily from these formulas.

By (5.5) and Corollary 4.4 (3), we can identify left S(E)-comodules 2y_«(V ")
and 25(V") with 24_,(V)* and 2y(V)* respectively. We define a group-like
element of S(E) by det(X)):=cfo,o(#Qu) and call it gquantum determinant
of S(E). For X=A, this definition agrees with that of in §3 (see e.g. [16]).

Proposition 5.4. The following yi, form a cofactor of S(E(X1)) with respect
to dety(X;) (¢f. [22, Problem 5.6 a)]):

Vi, =(—q) ¥z N TS0 Ndefo  (D,Ril4), (5.6)
where Noy=(N+1)/2 and functions Y .,, Yo are defined by
0 @E<0) 0 (=0)
Yzo(i = J

) "so(i)= . (5.7
1 (20) L (>0

Yso(i)=

Proof. Set V=V(B.), Li=82y_,(V(B.)), and

— -1,-2l+i-Y i-Ng .y — -1,21- =Ny
Cui_(_l)l (] +1i 200t o)u cvr___(_l).l (] J+Y>0(‘L ‘°>v].

Denote by p: L,®QV—Ci the restriction of the product of 2(V). Then, by
(5.2), (6.3), we have pu(‘u;Qu,)=0:;z and <{v,, ‘u;>=0;;, Hence by Theorem
3.3, v, form a left cofactor with respect to det,(B;). Other cases are similar.
O

If X,=B,, C, or D, there exists another important group-like element of



QuANTUM DEFORMATION OF CrLassicaL GRouPps 75

S(E(X.)). Let quadyX,) be the group-like element corresponding to the one-
dimensional S(E)-comodule Im ¢,(X;)=C3:e(i)¢* ***u:Qu;-. We call it the quadratic
group-like element of S(ELX;)). The next proposition was obtained by [5] and
[22].

Proposition 5.5. The following elements y,, form a cofactor of S(E(X:))
with respect to quady(X;):

yi]‘__s(l')e(]-)qi_]—x]’z' . (58)

Lemma 5.6. Let q be transcendental over Q. Then, we have the following
isomorphisms of S(E(X,))-comodules :

LQ+(NY; r+N) (X=A4)

L(A; NRCdety={ L(A; r+N) (X=C)
L@t r+N) (X=8, D),
L(2; )®Cquad,~L(A; r+2) (X=B, C, D).

In particular, for X=DB, D, Cquad,~ L((0); 2) and Cdety= L((0)"; N).

Proof. Let X=D. Since g(det,)=—det, and ¢(quad,) =quad,, we have
(LQ; n®det)o=LQ; r+N)y, (LQA; nQquade=L(A; r+2)s

by Lemma 4.1. By Corollary 4.4.(3), this proves the lemma for X=0D. The
proof of other cases are similar. O

Theorem 5.7. Let g be a complex number transcendental over Q.

(1) Each group-iike element of S(EX))) is central, and is not a zero-divisor.

(2) For each group-iike element g=S(E(X.)), there exists a cofactor with
respect to g.

(3) We have the following identities (cf. [22]).

dety(B:)*=quady(B;)* ",  dety(C,)=quad,(C,)
dety(D;)*=quad(D,)*.
(4) The set G of all group-like elements of S(E(X))) is given as follows:

{det,” | r=0} (X=4)
¢ =+ {quad,” | »=0}I1{det,quad,” | =0} (X=B, D)
\ {quad,” | =0} (X=0).

Proof. We denote by g, the set of all group-like elements of S.(E.(X))).
We prove (3), (4) only for the case X=D. The proof of other cases are similar
and relatively easy. By the above lemma, we have
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C det,quad,’ =L ((0)'; 2+28)L((0); 2+2t)~C quad,** .

Hence quad,'** and det,quad,’ are distinct in @, On the other hand, by
Corollary 4.4 (1), we have card ¢,=1 if »&2Z and |r|<2/—2, card ¢,=2 if
re2Z and |r|=2{ and card ¢,=0 if otherwise. Thus we get (4). Since det,”
is an element of ¢, different from det,quad,’, it must coincide with quad,*.
This proves (3). Let {ui(4;7)} be a linear basis of f(l; r) and {x4(4;7)} be
a linear basis of Im,zc;- defined by w(u,(2; r)=2:ui(d; NQRx:,(4; 7). By
part (4) and the above lemma, for each g=g;, {gx;,(A; r)} is a linear basis of
either Imcfzca. -+ OF Imcfzcat,ree, because

(gRu,(A; r)=2(gRu.(4; r))Qgx.,(4; r).

Hence S(E)—S(E); x—gx defines a linear isomorphism from Im c¢fzc1 > onto
Im ¢fzca,resr O Onto Im cficat,resy. By Corollary 4.4 (1), this proves that x—gx
is injective. If y,;, form a cofactor with respect to gg, then g’y;, form a
cofactor with respect to gg'e¢. Hence (2) follows from Propositions 5.4,
5.5. O

§6. Peter-Weyl Decomposition

Let ¢ be a complex number transcendental over @. For X=X,=5,, C, D,,
define Hopf algebras Ay, Ax by

Ax 1 =S(E{X.)/(quad(X,)—1),
Ay :=S(E(X1))/(quad,(X;)—1, det,(X;)--1). (6.1)

For X;=4,, we set zzl,yzA,y::A(SLq(H—l)). By Theorem 5.7 (3), we have
Ag=Ag.

Definition 6.1. For X,=B, C, D, we denote z‘le by A(O42[41)),
A(Spg20), A(OL21)) respectively. For X,=B,, D, we denote Ay by
A(SOL2I+1)), A(SO42])) respectively.

Note. The Hopf algebras A(O,(N)) and ASpN)) were first introduced
by Faddeev, Reshetikhin and Takhtajan [5] and independently by Takeuchi
£22]. In [5] (resp. [22]), the quantum groups O, N) and Sp,(N) are introduced
under the notation SO,,(N) and Sp. (V) (resp. O,,(N) and Spi,(N)) respec-
tively.

Combining the representation maps U y—Sch,(V) with the pairing of Prop-
osition 2.1, we get a bialgebra pairing ¢, > between Uy (or Uy) and S(E(X)).
Since <a, (quad,—1)>=0 (eclx) and <a, (det,—1)>=0 (¢=Uy), we get Hopf
algebra pairings <,>:(7X®/~1X—>C and UxQAxy—C.
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Lemma 6.2. Let L, M be right S(E)-comodules. Then,

(1) If Ly (resp. Ly) is irreducible, then Ly (resp. L) is irreducible.

(2) If a linear map f: L—M gives an isomorphism Lx=Mz (resp. Ls=Muy),
it also gives an isomorphism Ly=~My (resp. Ly=My).

(3) We have the following isomorphisms of comodules:

LQ;ma=L@; s LG 0a=L@A; )4 Qe@A(X)NP(X)),
C@; ma=L@t; s)a Qe (X)), FeP(X.),
LQ; 7)a=LQA+(NY; r4+N)a (A=, (A)).

(4) If n(A)=n(y) for 2eP.(X,) and psP(X,), then E(l; r)A:I;(y; S)a.

(5) If X=D and 21=I, then E(Z; r)a has the irreducible decomposition L'EDL”
such that L'y~ L(n()) and L"y~ L(n(A)"), where we sel n" :=(n,y) for n=(ny).
If otherwise, [~,(2; 7)a S irreducible.

Proof. Part (1) and (2) follow immediately from the definition of L7 and
L, (see the notation before §1). Since (C quad,)z, (Cquad,). and (C dety), are
trivial comodules, part (3) follows from Lemma 5.6. If n(d)=n(y), then we
have either A=pg, A=p+(N, .-+, N)Y (X=A) or A=y' (X=B, D). Hence part
(4) follows from part (3). Let X=D and A;=I[. By Lemma 5.6, there exists an
S ia(E)-comodule isomorphism go:f(l;r)(X)Cquadq‘:f(Z; r)Q@Cdet,, Let v
be a non-zero vector of L(n(l)),,mf_)f(l; r)y. Since ¢ is also an U p-module
isomorphism, we may assume ¢(v®quad,')=v®det,. Since o(quad,’)=quad,’
and o det,=—det,, we have ¢(ocv®quad,')=—cvRdet,. On the other hand, from
the definition of Ap, ¢’ : u®quad,"—~uR@det, (u Ef(l; r)) gives an isomorphism
([N,(l; r)®Cquadq‘)A:(f(2; r)Q@C dety)s. Define Ap-comodule isomorphisms by
. :=¢'*=¢. Then we have

Im ¢, =0, (U(vQquad,")+U(svRquad,’))
=U¢,(v&®quad,")+U¢,(evQquad,’)
=UvQdet,,

Im ¢_=UogvRdet, .

Hence Im¢. and Im¢_ are distinct irreducible component of (lN,(l; r)QC det,)y.
This proves part (5) for X=D Ai=[. The rest case of part (5) follows from
part (1). O

We introduce the following sets:
P,=PSL(I+1)=P;=PSp2l)=Z",,
Pp=PSOQI+1)={n=mn)eZ’ | n,=2Z},
Pr=PSOQ20)={n=mn)cZt | ni.,+n,€2Z}. (6.2)
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For X=A, B, C, Py is the image of the map ®(X,)—~Z.,; A—»n(4). While for
X=D, Pp={n(2), n(A)°|Ac<(D,)}. Let n=(n;) be an element of Py. We will
define an Ayx-comodule L,(n) as follows. Suppose X=D or n,_,=n;. Noting
Lemma 6.2 (4), we set LA(n)zf(R; 7)4, where A1 denotes an element of @.(X))
such that n(1)=n. Suppose X;=D, and n,_,<<n;. Then there exists the unique
A=P(D;) such that n=n(2) (and that A;=[). We define L (n):=L’ and L,(n°)
:=L", where L’ and L” be as in Lemma 6.2 (5). From the above lemma, we
have

Proposition 6.3. (1) For each n< Py, the Ax-comodule L 4(n) is irreducible.
(2) If n#n', then Ly(n)=L(n’').
(3) We have the following irreducible decomposition :
~ LA(n()DLa(n(2)°) (X=D, 2i=[)
L(A;7)a=
L (n(2)) (otherwise).

(4) In particular, the irreducible decomposition of f(/’l; 7)a 1S the same as
those of L(A; r)y.

Theorem 6.4. (1) (Peter-Weyl decomposition) We have the following coalgebra
isomor phisms :

A(ON)=, B (End Ly,

ASLA(N)= P (End L(n))*.

nePSL(N)
A(SO(N)= & (End L(m)*,
nePSO(N)
ASp(N)= E (End L(n))*,
nePSp(N)

where we set POQ2I+1)=P(B;), POQ)=2L(D;).
(2) The pairings <,>: UxRAx—C, UxRQAx—C define Hopf algebra injec-
tions AX—>I7X°, Ax—Ux°.

Proof. We will prove this theorem for A(SO,(N)). Other cases are similar.
Let A; be the image of Po<,-<sS,(E) by the projection S(E)— Ap.

Step 1. We will determine the structure of the comodule f(l; r)a, for each
r<s and 1=2.(D;). Let L be a subcomodule of L~(1; r)a. Since o(L)CTLRA
and

oA L)CHL(2; r)H)CLA; NQA.CL(; 1WA,

we have w(L)C LRXA;. Hence L becomes a subcomodule of E(Z; 7)a,. On the
other hand, since A; is a subcoalgebra of A, each subcomodule of L(Z; 7)y4,
naturally becomes a subcomodule of 17(,2; r)a. Thus, the comodule L(4; 7)4, is
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completely reducible, and its irreducible decomposition is the same as those of
LQ; )

Step 2. We will show that A * is a multi-matrix algebra, that is, it is
isomorphic to a direct sum of matrix algebras. Since the ground field C is
algebraically closed, it suffices to show that the Jacobson radical J of A * is 0.
Let @ be the representation

D AF =, @smxw —_, End( eisovar).

By Corollary 4.4 (1) and step 1, the Ag*-module Po<-<sV®" is completely redu-
cible. Hence we have @(J)=0. Since @ is injective, this implies J=0.

Step 3. Let M and N be irreducible components of (Dos<r<sV® ), Since
A, is a subcoalgebra of A, M=~ N if and only if M,~N,. Hence the irreducible
decomposition of (Pos,<sV® )4, is the same as those of (Posr<sV )4 On the
other hand, since A * is a sub multi-matrix algebra of End (Be<.<:V®"), each of
its irreducible modules is isomorphic to a submodule of Py<-<;V®". Thus we
get A*~@.cpiy(End Ly(n)), where Xsy={n(l), n(A)’|1€2P.(D;) 0<r<s)}.
Since Ap=lim A; as a coalgebra, we obtain the decomposition of part (1).

Step 4. Let ¥':U—As* be the map induced by the pairing <,>: URQA:">
URA-C. 1t is easy to see that the following diagram is commutative :

[Z20N

From the structure of (Pos-<:V® )y, it follows that the image of the repre-
sentation U—End (Pos,-sV®") is isomorphic to (Ppepes, (End La(n)). Therefore
the map ¥ is surjective.

A%

End(r@] ver).

Step 5. Let a=Ap be an element of the kernel of the map Ap—Up°.Up*.
Let s be an integer such that a= A;. By step 4 and <Up, a>=0, we have a=0.
Thus we get (2). O

Note. Let K be an arbitrary field and ¢ (X=C, D) or ¢** (X=B) be a
non-zero element of K such that ¢*41+#0. Let E(X)) (X=B, C, D) be the
quantum matrix on a YB-pair defined again by (2.6) and (4.3). Then the
quantum matrix S(E(X;)) has the group-like elements quad, and det, corre-
sponding to the one-dimensional comodules Im¢, and 2(V(X;)). Since the ele-
ments y;; defined by (5.7) still form a cofactor with respect to quad,, we can
define Hopf algebras Ay and Ax again by (6.1) (see Proposition 3.1. (1)). It is
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unclear whether these are proper g-analogues of the function algebras of classical
groups.

§7. Symmetric and Hermitian Yang-Baxter Operators

Let (V, Bv) be a Y B-pair and E, {u;}, E;; etc. be as before. We define
an antialgebra automorphism J on End (V®7) by

J(E:i; QE4,;,Q - QF; ;. )=E,; 1, QE;i,Q - QFE; i, . (7.1)

We say that (V, By) is symmetric if J(By)=pfr. It is easy to see that the YB-
pair V(X,) is symmetric for each g=C* and X=A4, B, C, D. Let (V, B») be a
symmetric YB-pair. Since J(a)B.=j(B:a)=p:/(a) (1=i<r) for a=Sch,(V), the
map J defines an antialgebra automorphism on Sch(V), which we denote again
by J (cf. [6, Chapter 2.7]). We define J:S(E)—S(E) by <{J(a), x>=<a, J(x)>
(asSch(V), x=S(E)). This map is characterized as the algebra anticoalgebra
automorphism of S(F) satisfying J(x;;)=x,,. The following result on quantum
determinants corresponds to the fact det [a;,]=det [a,:].

Proposition 7.1. Let g be a group-like element of S(E{(X))) (X=A, B, C, D)
and suppose q=C* be transcendental over @. Then we have J(g)=g.

Proof. For each »=0, J induces a permutation of the group-like elements
of S,(E). Hence this proposition follows easily from Theorem 5.6 (4). O

Let (V, By) be a YB-pair on C. We call (V, Bv) Hermitian if By*=py,
where for »=0, * denotes an antilinear antialgebra automorphism on End (V®")
defined by (7.1). The YB-pair V(X;) is Hermitian if g=R. Similarly to a
symmetric YB-pair, for a Hermitian YB-pair V, we have an antilinear anti-
algebra coalgebra automorphism * on Sch (V).

Proposition 7.2. I/ (V, By) is a Hermitian YB-pair, then Sch,(V) (»=0) s
a semisimple algebra.

Proof. Let (|) be a Hermitian form on V®" such that {u;® - Qu;,} is
an orthonormal basis. Since (V®7, (!)) is a unitary representation of Sch,(V),
it is completely reducible. Since Sch,(V)CEnd (V®"), the Jacobson radical of
Sch,(V) must be 0. |
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