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Quantum Deformation of Classical Groups

By

Takahiro HAYASHI*

Abstract

We construct coordinate algebras of quantum orthogonal, special orthogonal and sym-
plectic groups using M. Jimbo's solutions of the Yang-Baxter equation and determine their
Peter-Weyl decompositions. To do this, we study some class of bialgebras and their
group-like elements (quantum determinants). A new realization of the universal ^-matrix
is also given.

Introduction

Recently some interesting classes of Hopf algebras, referred as quantum
groups, are discovered. They are quantum deformations of function algebras
of Lie groups. Let A(G) be the coordinate algebra of a Lie group G. A quantum
deformation A(Gq) of A(G} is a one-parameter family of Hopf algebras whose
representation theories (or coalgebra structures) are the same as those of A(G).
S. L. Woronowicz gave a real form of the first example A(SLq(N)).

For orthogonal and symplectic case, some families of Hopf algebras were
constructed by Faddeev, Reshetikhin and Takhtajan [5] and independently by
Takeuchi [22]. In this paper, we will show that their Hopf algebras are indeed
quantum deformations of A(0(N)) and A(Sp(N)) in the above sense. We will
construct also a quantum deformation of A(SO(Nty. For this purpose, we in-
vestigate a class of bialgebras which we call quantum matric bialgebras. Quantum
matric bialgebras are defined by means of Yang Baxter operators, i.e., solutions
of the (constant) Yang-Baxter equation. We define Hopf algebras A(Gq) as
quotients of quantum matric bialgebras corresponding to the M. Jimbo's solu-
tions of type Xi = AL, Bt, CL or Dt [10]. Those quantum matric bialgebras are
completely determined as direct sums of dual coalgebras of simple algebras.

In § 1, § 2, we develop a general theory of quantum matric bialgebras and
their graded dual notion called Schur algebras. By their connection with the
algebraic structure of Yang-Baxter equation, we show L®M^M$$L for any
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comodules L, M of a quantum matric bialgebra. In § 3, we give a construction

of Hopf algebras from quantum matric bialgebras, which is based on cofactor
matrices [22] and the "Laplace expansion". In §4, we give a structure theorem
of quantum matric bialgebras corresponding to Jimbo's Yang-Baxter operators.
Section 5 is devoted to study group-like elements of these quantum matric
bialgebras. For Xi — Bi, Ct, Dt, there exist two important group-like elements
which we denote by detg(^G) and quadg(^)> such that every other group-like
element is a monomial of these two elements. Further, we completely deter-
mine their relations, for example, dQtq(Bi)2=quadq(Bi)zl+l. Also, we show the
existence of cofactor matrices with respect to these elements, which enables
us to construct various Hopf algebras. In § 5, together with Peter-Weyl theo-
rem, we prove that the coordinate algebras of SOq(N) and Spq(N) are sub
Hopf algebras of the dual of the Drinfeld-Jimbo's algebras £/5(§o(AO) and
£/g(§j)(AO) respectively. In §7, we give a useful criterion of the semisimplicity
of Schur algebras.

We work over any field K in § l-§ 3, and over the complex number field C
in §4-§7, unless otherwise noted.

The author would like to thank Professors K. Hasegawa, M. Hashimoto,
Y. Kanie and A. Tsuchiya for valuable discussions. He also wishes to thank
Professors E. Date, M. Jimbo, T. Miwa and M. Okado for their useful informa-
tion and kind hospitality during his stay in Kyoto.

Notation. Throughout this paper, A: C-»C0C (resp. m: A®A->A) denotes
the coproduct (resp. product) of a coalgebra C (resp. algebra A), s denotes the
counit of C, and a)L: L-*L(g)C (or a)L: L->C®L) denotes the structure map
of a right (or left) C-comodule L. Let A (resp. U} be another coalgebra (resp.
an algebra) and /: C-+A (resp. < , >: £/(g)C-^C) be a coalgebra map (resp. a
bilinear pairing such that (x®y, ay=(xy, A(a)>, <1, a>=s(a) (x, y^U, ceC)).
Then, each right C-comodule L becomes a right ^4-comodule with the structure
map w^>(idL®/)(ftX>))(resp. a left [/-module with the action xu :=id§§(x, y(a)L(u))
(x^U, weL)). We denote this A-comodule (resp. ^/-module) by LA (resp. Lv).
The antipode of a Hopf algebra H is denoted by S. For a finite dimensional
left //-module L, *L denotes a linear dual of L equipped with a left //-action
defined by (xv, zO=<z;, S ( x ) u y . For finite dimensional Jf-vector spaces V, W,
we identify y*(g)TF* with (V(&W)* by the pairing </®g, v®wy\=(f, v^g, u>y
(/€E7*, gtEW*, vtEV, w<=W). We denote by TVW : V&W-+W&V a linear map
defined by TVW(V®W}=w®v (v^V, iv^W). For a vector space with a fixed
basis {iti}, we denote by Ei} the matrix units
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§ 1. Schur Algebras and Yang-Baxter Equation

Let V be a vector space over a field K. We call an endomorphism /3F on
a Yang-Baxter operator (or (V, /SF) is a YB-pair) if it satisfies the follow-

ing Yang-Baxter equation :

(Pr\<Pv)*<Pv\=(Pr)*<Pr)i<Pv)* - d-D

Here (0K)i, (&v\ denote elements of End(F0F(g)F) defined by (j8K)i :=
(^F)2 : — idF0/3F. For each element <; of the r-th symmetric group ©r, we can
uniquely define /3F(0")^End(F°r) by the following two conditions (see [17]):

. (1.2)

Here /(#) denotes the length card{(z, y)|1^2<y^?-, G(i)>o(])} of (re@ r .
Let V=(F, /3F) be a FB-pair such that dimF<^. We define the Schur

algebra Sch(V) of V by

Sch(V r)=0Sch r(V),
rso

Sch0(F)-/C Sch1(F)=End(F), Sch r(^)=EndBCr)(F® r) (r^2).

Here B(r) denotes the subalgebra of End(F® r) generated by (^F)I, ••• , (]8^)r-i.
Since 5(r)0J3(s)CjB(r+s) under the identification End(F3rX'?)End(l/®s)=
End(F® r+s), there exists algebra inclusion

Let A:Sch(F)->Sch(F)®Sch(y) be the direct sum ® r ,s ,0A r s . Then, clearly,
we have

Proposition 1.1. The Schur algebra becomes a (non-unit al) bialgebra with
the co product A and a counit e defined by z(^rar}=aQ^K (areSchr(F)).

Example. Let V be a IT-vector space and rK^End(F®2) be a linear map
defined by TV(x®y)=y®x (x, y^V). It is easy to see that (V, z>) is a YB-
pair and that a^>TV(a} defines a representation of 3r on V0r . It was proved
by Schur [21] that Schr(V) coincides with the linear span of the image of the
representation GL(F)->End(F0r) if chK=Q.

Let Sch(F) be the completion of Sch(F) with respect to the fundamental
neighbourhood system {0 r-*Sch r(V)|s^O} at 0. As an algebra, Sch(F) is iso-
morphic to the direct product of Schr(F)'s (r^O). Moreover Sch(F) becomes
a topological bialgebra with a coproduct defined by
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A:- fl A r s :Sch(F) — > Sch(V)®Sch(F)= II Schr(^)0Schs(F).
r . s ^ O r . s ^ O

Let prs=p£stEEndV®T+s be the composite map rF(Xsr)°/3F(%rs), where
6r+s is defined by

/ 1 2 -. r r+1 r+2 ••• r+sx
TS — I i\s i 1 . o , i\s+l s+2 ••• s+r 1

Since j8X*r.M0K)i=(j87).+.'M*r.) (l^O) and pv(1.rt)*(pv\=(Pv)t-r*Pv(*rJ
(r-\-l^t<r+s\ we get prs°(^v)t=(^v\°prs for l^<r+s, ^r. Hence /)rs

defines an element of Schr(^)®Schs(^)^End5Cr)(8)jB(S)(F®r+s). Let p = pv^

Sch(F)0Sch(F) be the sum Sr,s^
rs. For /, ;>1, we set /0i;=S*l® ••• <8>^*

(g)l® ••• (g)^®l® ••• ®1, where p=^kpk®pi The following shows that p is
a sort of so-called "universal ^-matrix."

Proposition 1.2. We have the following identities :

(1) rmm(A(a))p = pA(a) (f leSEE(V)), d-4)

(2) A®id(/o)=jo13i023, id®A(/o)=jOi3/Oi2 , (1.5)

(3) P12P13P23=P23P13P12. (1-6)

. (1) It is sufficient to show that r(A(a)V r sand ^ rs(A(a))(a^Sch r,s(F))
define a same operator on ]/®r+s. Since A(fl) commutes with fiv(Xrs)
we get jorSA(a)=rF(Zsr)(A(a))jSF(^rs). Hence (a) follows from zvO

(2) For u;ey® r+s+e, we have pi,(w)^TV(lrS^ltYlp2^v(IrsXlt)(w\ where
is defined by K r«Xlt(0=*r«(0 (1^/^r+s) and % r sxlj(0=2

Hence we have

Part (3) follows easily from (1) and (2). D

Definition 1.3. For left Sch(F)-modules L, M, we define a map fiLM i L®M
->M®L by

(1.7)

Theorem 1.4. (1) The map $LM is a Sch(V)-module homomorphism.
(2) For Sch(V)-modules L, M and N, the following "Yang-Baxter equation"

holds :
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)^ (1.8)

In particular, (L, fiLL) is a YB-pair.
(3) For Sch(V)-module maps f : L->L' and g: M->Af, we have

(4) // /3F is invertible, then L®M^M(g)L as Sch (V)-modules.

Proof. Part (1), (2) and (3) follow immediately from (1.4), (1.6) and (1.7)
respectively. Part (4) follows from the existence of io"1=:Sr,sso(/3F

1)(Xsr)TF(Xrs).
D

Let (V, /3F) be a 75-pair such that d imV<oo and /3F is invertible. For
right Sch(F)-modules L, M, we define fiLM: L(g)M-->M®L by PLM(U^V)=
?LM((U®V}P~I). Then this map satisfies properties similar to the above theorem.
Moreover we have

for 7/eL*, w'eA/*, vc^L and v'^M.

§2. A Commutator Formula for Quantum Matric Bialgebras

We begin by recalling some notations and results of [5, 8]. For YB-pairs
V=(V, pv) and W=(W, pw\ we define the product VxW as a YB-pair defined
by

If dimy<oo and j$v is invertible, we define the dual V~ of V by V":=
(V*, C^r1), where i/3FeEnd(F*®F*) is defined by <fiv(u®u'\ v®vfy =
<u®ur

t
tpv(v^vf)>f (u, u'^V,v,v'(=V*). We call a F£-pair (E, $E) of the

of the form E:=V"xV the quantum matrix of F.
Let T(F) be the free non-commutative algebra generated by V. We define

the symmetric algebra S(V, fiv)=S(V)=Q)r>QSr(V) on V as the quotient graded
algebra T(F)/(Im(idFg)F—/SF)) of T(V). It is known that the symmetric algebra
S(E) on a quantum matrix E — V"xV becomes a bialgebra whose coproduct
and counit are defined by A(xij)=^kXik(£)Xkj and e(xij)=5ij, where ut, Vj and
xtj (1^2, j'^N) are bases of V, F* and E satisfying <w*, Vjy=dtjf Xij=Vi&)Uj
(cf. [5, 8]). We define a right (resp. left) S(E)-comodule structure cov (resp.
o)F*) on V (resp. V*) by (t)v(uj)=^iUi^xi3 (resp. o>7*(vi)=Sj*ui8>^)- Then ^8F

(resp. J/3F) is an 5(£)-comodule endomorphism on F(g)F (resp. F*{g)V*) (see
[5, 8]). The following observation essentially due to [8] plays an essential role
in this paper.

Proposition 2.1. There exists a non degenerate bilinear pairing < , > : Sch(F)
®S(E}~>K satisfying the following conditions.
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(a) <Schr(n St(E»=Q if

(b) <A(a), *®;y>=<fl, xy\ (a®b, A(x)y=(ab, je> (a,

In particular, the category of finite dimensional left Schr(V)-modules is equivalent
to that of finite dimensional right Sr(E)-comodules. For a right S(E}-comodule
L, the left action of Schr(F) is given by

att=idL<g)<a, >(<wL(tt)) (aeSch(F), u^L} . (2.2)

Proof. As is observed in [8, §5], the dual of the projection E®r->Sr(E)
is naturally identified with the inclusion Schr(F)c^End(F®r). It is rather easy
to verify that, under this identification, the graded dual of the product and
the coproduct of S(E) coincides with the coproduct and the product of Sch(F)
respectively. D

Noting Sr(V) is a quotient Sch(F)-module of F®r, we will define a YD
operator /35cF) over S(V) by ^s^=Ilr,s^ft

Proposition 2.2 Let m : S(V)®S(V)-+S(V) be the product of S(V). Then,

(1) m°j$s^—m , (2.3)

(2) j55(F)°On(g)id(sCF))=(id5(7)(8)m)o(j8S(7))1o(j85cF))2 , (2.4)

F))0(/5)scF))20(/35cF))i . (2.5)

Proof. By ftTr(.v^T^v^=^v(^rs) and Theorem 1.4 (3), /3S(F) coincides with
the map <psw defined in [8, §4]. Hence this is nothing but (4.14) and (4.13)
of [8]. D

Example. Let V=(V, z>) be as the example of § 1 such that dimF<oo.
Then, as algebras, S(V) and S(E) coincide with the polynomial algebras gener-
ated by elements of V and E respectively. Since p is the unit of the algebra
Sch(7)(g)Sch(F), PLX=TLM for any Sch(T/)-modules L, M. Hence the equality
(1) of the above proposition is nothing but xy = yx for x,

The above example seems to suggest the map /35cF) express "commutativity"
of S(V). Unfortunately, explicit form of /3sCF) is not so simple in general.

Example. Let V be a complex vector space with a basis {u
For Q^q^C, we define a YB operator /35(^4^_i) by

Pq(AN_J= 2 £«®£«+^ 2 Et&Ejt+d-q*) 2 £«%>£„ . (2.6)
i = i i*j i>j

We call j8a(A^_i) Jimbo's YB operator of type AN_! and denote the correspond-
ing F5-pair by V^AN^}. The symmetric algebra S(Vq(AN_l)) is an algebra
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with generators u1} ••• , UN and relations UiUj—qu3Ui (*</). Hence {uil ••• uir

l^z'i^ ••• ^ir^N} is a basis of Sr(V). Since S(V) is generated by V, we can
calculate flstY) by using (2.4), (2.5) and £SCK) Fg)F=/3F. If N=2, the result is
as follows :

[r] !,[ ; 1 fWl «r ru}+ r<8>«i+ rM<- r - (2.7)
L T JsL r Jg

Here [r] !g and are defined by
L T J q

W !<=[r]a[r-l], - [l]g, W,- • (2.8)

The rest of this section is devoted to study a YB operator flstE) on a
quantum matric bialgebra S(E). First we show a relation between this operator
and peSchCV^SchCF). Define a linear map ^eEnd(Sch(F)®2) by

). Then,

Proposition 2.3. Let E be the quantum matrix on V. Then,

Proof. The map /3s(F) is uniquely characterized as a F£ operator on
satisfying the equation of (2.4), (2.5) and jS^c^lror^^F. Hence it is enough to
show that <[> satisfies (1) (/>i°<f>20</>i=<pz0<l>i°(/>z> (2)

id®A=A®ido0 and (3) ^ lsc
For a, ^?, c^Sch(F), we have

By (1.6), piipaipn=pnp*ipzi, hence (1) holds. By (1.5), we get id(g)A(1o21)=
^2^31 and id®A((io~1)2i)=(io"1)i3(1o"1)i2. Using this, we get i
(p2ip3i)(b(&A(a))(p2ip3iTl. It is easy to see this coincides with
Part (3) follows from direct calculation. G

Lemma 2.4. For finite dimensional left Sc,h(V)-modules L and M, the fol-
lowing diagrams are commutative :
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Sch (V)® L®Sch (F)®M — •> L®Af Sch (F)®Sch (V) —» L® L*®A/®A/*

Sch(7)0Sch(F) —

(2.9)

Sch(7)®L->L is the action of Sch (7), Sch(F)->L(g)L*^End(L) is f/ie
corresponding representation and the maps (f>X^LM, ^LM^^L^-M* are defined by

(2.10)

Proof. The first diagram follows from direct computation. The second
diagram follows easily from the first diagram using similar argument of [8,
§ 1 8 3"1 n-Lj J3 Oj . I _ 1

Let L be a right S(/s)-comodule. By definition of the left action of S(E)
on L*, the following diagram is commutative :

(2.11)

We define the coefficient map cfL: L*®L->5(£) by this diagram. It is easy to
see that cfL is a coalgebra map from the dual coalgebra L*®L^End(L)*.
This means that the coefficient map is a dual notion of the representation map.
By the above lemma, we get the following.

Theorem 2.5 (commutator formula for S(E)}, For right S(E)~comodules L,
M, the following diagram is commutative:

C L C M > S(E}®S(E]

sw (2.12)
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§3. Inverse of Quantum Matrices

In this section, we investigate a "linear algebraic" method of constructing
Hopf algebras from quantum matric bialgebras. Let V, E, {HI}, {vj}} {xtj} be
as in §2. We call an element 0=£geS r(E) group-like if A(g)=g®g. We note
that there exists one to one correspondence between group-like elements of
S(E) and the isomorphism classes of one dimensional left (resp. right) S(E)-
comodules. It is given by g<-*[Kg'].

Example, (cf. [5, 16, 25]) Let V = Vq(AN_1) be as in §2. We denote the
quantum matrix on Vq(AN_i) by E—E^AN^), As an algebra, S(E) is generated
by {xtjll^i, j^N] with the following defining relations:

(3.1)

Define an element dQtq=dQtq(AN_1)~S(E) by

detg= S (— #) ( f f ) £ i ffdi-)Xz ff(2) ••• XN ffdND • (3.2)

Then det? is a central group-like element of S(E). Moreover A(GLq(N)):=
SCE^det,1] and A(SLq(N)):=S(E)/(detq-l) are Hopf algebras (i.e. have an
antipode). We call them the coordinate algebra of the quantum general linear
group and the quantum special linear group respectively.

Let g(ES(E) be a group-like element. We say that elements ytj (l<i, j^N)
(resp. ztj (l^i, j^N)} form a left (resp. right) cof actor with respect to g if
they satisfy the equation

N N

2 y i k x k j = 8 t j g , S xtkZkj=8ijg . (3.3)

If ya—Zij, then we say that ytj form a cofactor (see [22]).

Proposition 3.1. (1) Let G be a set of group-like elements of S(E). If
there exist both left and right cofactor with respect to an element gQ of G, then
the quotient S(E)/^lg<EG(g—l) is a Hopf algebra whose antipode is given by S(xtj)
—yij=zij, where ~~~ : S(E)-^S(E)/^g&G(g— 1) is the projection.

(2) If, in addition, each element of G is central, then the localization
S(E)[_g~1']g&G have an antipode which sends xl} to g^ytj.

Proof. Quite similar to those of [22, Propositions 1.3, 3.4]. D

Lemma 3.2. (Laplace expansion) Let L1} Lz, L3 (resp. MI, A/2, M3) be right
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(resp. left} S(E)-comodules and fjt: L^L^-^L, (resp. v: M^M^M*) be a S(E)-
comodule map. Then the following diagram (3.4) (resp. (3.5)) is commutative :

C/L

(3.5)

A/3®M*

Proof. The commutativity of (3.4) follows immediately from those of the
following :

S(£)®I*(g!Z,1®L2 —,^ ^ > SlE/^LfCgjL*®!,®!.,
L}®L,

x<u<8>l 1<8>A« I]

I

S(£)®L?®I3 —— > S(£).
1 ® < , > D

By the above lemma, we get a sufficient condition of the existence of co-
factor matrices. For a group-like element g^S(E), we define a condition (*)
(resp. (*)') as follows.

(*) (resp. (*)') There exist right (resp. left) comodules Llf Ku (resp. M2,
Kv\ a comodule map /*: L^y-^^Cw (resp. v: V*®M2->^B;) and a basis

^ (resp. {vj l^f^A/' /}cM2) such that Kii^Kg (resp. JKv^J
$Uj)=dijU (resp. y(vj§§Vi)=dijv) for

Theorem 3.3B Suppose g satisfies the above condition (*) (res^?e (*)')•
'̂s^s a /^/? cof actor yi3 (resp. right cof actor za) with respect to g. It is

given by the following formula :

(3.6)

Here {cvt} and {uc
t} denote the dual bases of {cUi} and {vl} respectively.

Proof. Set LZ=V, LB=Ku and define u*^(Ku)* by </7*, «>=!. Compar-
ing the images of n*®cUi®Uj by (3.4), we get
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Hence yis form a left cofactor. D

Example. Let p, q be non-zero complex numbers such that 1, — pz, —qz,
P2q2 are distinct. We define a YB-pair by (W, Tw) :=V p(^i)xV gUi). Then TW
is a diagonalizable matrix which has 1 (resp. — £2, — qz, pzqz) as an eigenvalue
of multiplicity 9 (resp. 3, 3, 1). Hence Sch2(F) is a semisimple algebra isomor-
phic to Mat (9, C)©Mat(3, (7)©Mat(3, C)©C. In particular, S2(W~XW) has a
unique group-like element g. Applying the above theorem to the projections
^: V(g)7->Ker(7V— />VX P: F*0F*^Ker(7V-/rV2), we get the following
formula of the cofactor matrix with respect to g :

y^Hmn,=q8ml~dilr8nl'5jlx,m'n'Ki'j', (i, /, m, » = 1, 2).

Here z'— 3—z and the basis {x (0-Kmra)} of W^XVP is defined by ;r«;-xmn) =

§ 4. Brauer-Schur-Weyl Reciprocity

Now, we will begin to study some important examples of F5-pairs obtained
by Jimbo. Let XL be the Cartan matrix Bt, Ct or Dt. Define integers N, v by

2/ + 1 (X=B) -1 (X=B)

(4.1)21 (X=C), v-

21 (X=D) -1 (X=D)

For l<Li<LN, we set i'=N+l—i and

i—v/2 (l<i<(N+l}/2)
( 1 (l^*^C/V+l)/2

(4.2)

We define a YB operator f}q=pq(Xi) on F :— @i^i^NCui by the following
formula and call it Jimbo's YB operator of type Xt :

,i J,J>

) . (4.3)
i>J

Here for X=C, D (resp. X=B\ q (resp. ^1/2) denotes a non-zero complex num-
ber. Besides the Yang-Baxter equation (1.1), it satisfies the following relation
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where ^eEnd(F®2) is defined by

tq= 23 e(i)eOy-'E^®E,.,. (4.5)
^,J = 1

For #2=£l, we denote the YB pair (V, /3g(^Q) and the corresponding quantum
matrix by V(Xl)=Vq(Xl) and E(Xl)=Eq(Xl) respectively.

As is pointed out by Jimbo, these YB operators have deep connection with
quantum enveloping algebras. Let Xi=laij']1^i,j^i be a Cartan matrix and dL

(1 <:/<;/) be positive integers such that diatj—djaji and the greatest common
divisor of d«'s is 1. Let <?^0 be a complex number such that qt:=qdt^±l.
The quantum enveloping algebra Uq(Xi) is a C-Hopf algebra with unit 1 and
generators eif ft, kf (l^i^l) satisfying the following relations:

(4.7)

23 (-D71 *J-ai'-BM?=0 (iV;), (4.9)
gl-a^ ^

21 (-DB

A?i®fe 1 , (4.11)

=0, e(A)=0, e(A,)=l, (4-12)

1ei, S(/0=-A*i, SCA^*^- (4.13)

From now on, until the end of this section, we shall assume that q^C is
transcendental over Q, unless otherwise noticed. Then every finite dimensional
Uq(Xi)-modu\e is complete reducible (see [20]). For a Uq(Xi)-mod\i\s L and
n=(ni)^Zl, we set Ln={u^L kin=q^iu}. For each neZ^0, there exists the
unique irreducible finite dimensional module L(n)=^0 such that L(n)=Uq(Xi)L(n)n

and eiL(n)n=Q (l^z^O- We call L(ri) the irreducible finite dimensional
Uq(Xi)-module with highest weight n. The module L(ri) has a weight space
decomposition L(ii)=@m^ziL(n)m. Moreover the dimension of L(n)m is given by
the Weyl character formula (cf . [13]). In particular, L(m}®L(n] has the unique
decomposition of the form ©kc%inL(k\ and the branching coefficient c^n is the
same as those of the corresponding modules of simple Lie algebra of type Xt.
For each finite dimensional irreducible module L there exist the unique numbers

and (£t)e{±l}1 such that the algebra automorphism
i carries L to a module isomorphic to L(ri).
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For XL~Ai, BI, Ci, Dh we define algebras U—UX and U=LJ x by

£/,(*,) (X=A, C,D) „ ( Ux (X=A, C)
, Uz=\ , (4.14)

U l / 2 ( B , ) (X=B} l C [ < « j > ] K l / z (X=B,D)q

where < f f > denotes an order 2 finite group acting on UB or UD by (7= id
(*=£) or

o(el}=eaw, (T(/ t )=/ f f C t )» <r(ki)=kGM,
(4.15)

ff(0=*+3< i-i-3.i (*=£)•

It is easy to see that [7^ (X—By D) is a Hopf algebra with a coproduct defined
by (4.11) and k(a}=a®G. For [/^-modules, we have the following lemma.

Lemma 4.1. (1) Every finite dimensional UD-module is completely reducible.
(2) For n—(ni}^ZlQ such that ni^ — ni, up to isomorphism, there exists the
unique irreducible UD-modules L(ii) and L(/i)1 such that L(n) — L(n^—L(n} as
UD-modules and that Gvn—vn (resp. av\l — —v*n) for Q=£vn^.L(ii)n (resp, Q^v]t^
L(/i)i). (3) For n=(nl)^Z{Q such that n^i^ni, up to isomorphism, there exists
the unique irreducible U D-module L(ri) such that L(ii)—L((ni)}@L((nGM}} as UD-
modules. (4) Up to the algebra automorphisms of the form e^-^^i, fi^^ifi,
ki^-^iki, (7^->(73 ({C,i}^{ ±1}Z)» each irreducible finite dimensional UD-module is
isomorphic to a module of the form mentioned above.

Proof. The existence of the above modules is easily shown using Verma
modules. For a ^-module M, there exists a one to one correspondence be-
tween all submodules of M and all sub C[<<7, klt ••• , &z>]-modules of
{v^M\eiV=Q}. Hence the problem is reduced to the study of C[<<7, £ t>]-
modules which decompose into direct sum of one-dimensional C[</^>]-modules.

There exists a representation KX of Ux on V(Xt) such that
EnduD(V&r) (l^f<r). These are defined by the following formulas:

(X=B, C, D, l^i^

)= — idF
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Ti=-2,<fvE,,. (4.16)

Remarks. Our definition of At, Bt, Ct and DL is the transpose of those of
[7].

To discuss the tensor product module F®r, let us recall some notations of
the Young diagrams. An element 2=(/il} ••• , /U) of Zk is called a partition (or
Young diagram) if ^^ ••• J^^O. A partition ^=(^1, ••• , /U) is identified with
Wi, ••• , Ik, 0, ••• , 0). We denote by & the set of all partitions. For a partition
%—(%i\ the transpose ^'—(X(, • • - , Afi is defined by ^=card{w|^re^'}. For /le.23,
we set U| :=S^j. We define sets &(X{) and <Pr(Xi) of partitions as follows
(cf. [24]):

(X=A)

(4.17)

\^r, U|-r (mod 2)} (^=5, C, D).

For ^^(Bt) or 5>(DO, we set ^=(7V-^;, ^, ^, - • • ) ' . We note that X^=X and
that K=X if and only if X=D and ^{=/. For X<=&(Xi), we define nWtZJo
as follows.

(a) If X=A, C, then w(^)=Wi--^, •-, ^_i-^, ^z-^+i).
(b) If Z=5 and K^l, then, w(^)=U1-^, •-, ^z-i-^, 2^0-
(c) If Z^D and Jl{^/, then, n(^)=(^1— ̂ s, ••• , ^-i-2l} Jtt^+2^.
(d) If X=5, D and ^>/, then,

Let 2. be an element of &(Xt). We define an irreducible t/jr-module
as follows. For X=A, B, C, we set L(Z):=L(n(X)\ If Z=5S define the action
of a^UB on L(Z) by (7-K-l)1^'. For X=Z), we set L(X):=L(n(W if ^^/,
and L(X) i=L(n(W if ^i>/, where L(ri) is as in Lemma 4.1. By definition,
L(Z) is f/jr-irreducible unless X=D, K=l. If X=D and ;j=/, L(^) has two
£/D-irreducible components. We note that if tep then L(Z)3=L([t) unless X—A.
For Z, ̂ S(Xi\ we say Ji^p, if Z=A and ^=^+3^ or X=B, C, D and
Xi~^t±dij for some /.

Proposition 4.2. (1) For
(2) For r>0, F® r-©^£p rcxj)m^L(^), w//i^rg the multiplicity
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by

Proof. It suffices to prove part (1). For X=A, B, C, this follows im-
mediately from the general theory of quantum enveloping algebras. Let Xi=Dt.
Then L(^)(g)y^0^^e£PCZ))L(^) as LVmodules. Hence by Lemma 4.1, it suffices
to determine the multiplicity of L(p) and L(^) in L(X)®V for p^&(Di) such
that X^fi and p'l^l. Suppose 1(^1. Then, up to constant, there is a unique
vector 0^^e(L(^)Cg)F)n(^) such that 0*^=0. It is easy to see that z;^ is of
the form v^—v^ut+^^iW^Uj for some l<i<l, Q^v^^L(X)n^^ and K/I+I, • • - ,

Hence av^—v^ if and only if ovi—vj,. Thus we get
Next suppose K=l. Since L((0)f)(g)r(^)^L(^) and

we get

On the other hand, dim HomUD(L(X)®V, L(n(//)))=2. Hence the f/^-module
L(^)®F has both L(fjt) and L(^ f) as multiplicity one irreducible components.
This completes the proof of the proposition.

Theorem 4.3. (q-analogue of Brauer-Schur-Weyl reciprocity] Let nv^r be
the representation 7rf roA: L/jc-^End (F®r) and B(r} be as in § 1. // the parameter
q is transcendental over Q, then we have,

^ ; C) .

Proof. We give a proof for ^=5, C, Z). The case A==/l is quite similar.
We set G(B)=G(D)=0(N, C) and G(C)=Sp(N, C). It was proved by Brauer
[3] that the algebra EndGCjnG7®r) is generated by (j80i and (rOi -.^id^®1"1^!
®idpr®r"i-1 (l^^r-1). Since dimEndGCJn(F®r) is k, :=S>ie£prc^,)(dim L^))2,
there exist vectors {f/eG?)|l^/^&o} (^^Cx) of End F®r satisfying the follow-
ing two conditions.

(i) For each k, £*(#) is a monomial of operators {(/35)i, (^)j l^i<r}.
(ii) The vectors {f^( l ) | l^^^^ 0} are linearly independent. We identify

End F®r with CNZr by means of the basis {£Vl0 •" ®Eir3r}. By (i) and (4.3),
(4.5), each component of a vector gk(q) is a Laurent polynomial of the param-
eter q with coefficients in Z. Hence {?*(#)! 1^&^£0} are linearly independent
if q is transcendental over Q. Since 5(r)cEnd^F®r and dimEnd^F®r = /?0,
we get B(r)=EnduxV®r. On the other hand, by Proposition 4.2, Im(7rF(8r) is
isomorphic to the semi-simple algebra ®^ e f f r C^p End L(A). Hence the rest part
of this theorem is a consequence of the general theory of semisimple algebras.

D
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Let ^ be an element of 5*r(ZO (r^O). By the above theorem and Proposi-
tion 2.1, up to isomorphism, there exists the unique irreducible right Sr(Eq(Xt))-
comodule L such that Lu—L(Z). We denote this comodule by L(A; r). Each
S(Eq(Xl))-comodu\Q is isomorphic to a direct sum of comodules of this form.
We can rewrite Theorem 4.3 as follows.

Corollary 4.4. (1) As an algebra (resp. coalgebra), Sch(Vq(XL)) (resp.
S(Eq(Xi)) decomposes as follows :

Sch(Vr
q(^))= 0 0 End(LW; r)),

r > o ^ e ^ r C X / )

(2) An S(Eq(Xi))-comodule L is irreducible if and only if L& is irreducible.
(3) For each Sr(Eq(X ^-comodules L, M (r^O), L^M if and only if

§ 5. Quantum Determinants

Let V be a £7fl(Xi)-module. We call that F is a type 1 module if V=0neziV
T

n.
Let j8preEndffa<;ri)(Vr(8)F) be a }rJ5 operator on V. Denote by E the quantum
matrix on V.

Theorem 5.1. Let (V, j3v) be as above. If V is an irreducible type 1 module,
then each group-like element of S(E) is central.

Proof. We define a left action of Sch(F) on S(£) by
(a, >(A(jc)) (aeSch(F), x^S(E)). Combining this with the algebra map Uq(Xi)
->Sch(F), we get a left action of Uq(Xi) on S(E). Since tensor products and
composition factors of type 1 modules are also type 1, Cg is a type 1 Uq(Xi)-
module. Hence the action is given by eig=fig—Q, kig=g. Therefore V®Cg
and Cg§§V are both irreducible and the map u®g^>g(&u (we 7) gives an iso-
morphism. By Schur's Lemma, fiv,cg(u^(3)g}—cg®u^ for some non-zero con-
stant c, where ut and xi3 be as in § 2. Comparing the images of u3®g by the
maps a)Cg®vQfiv, cg = fiv, cg®idoa)v®Cg ; V®Cg ->( Cg®V)®S(E\ we get gxtj

n

Proposition 5.2. Let V and E be as above and let g^Sr(E) be a group-like
element. Suppose there is a right S(E}-comodule map Q^ft : V®r—>Cg, then
there exist both left and right co factors with respect to g.

Proof. Using (4.11), (4.13), one can verify Homc/g(xp(£®M, AO-
M) for finite dimensional Uq(X ^-modules L, M, N. Hence
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there exists a £7a(Xz)-module map 0=±/f ' : V®r~l->Cg®*V. Since Cg®*V is
irreducible, ft' is surjective. Hence there exist bases { c u l } , [ul] of LI :=V9r~1

t

V satisfy the condition (*) in § 3. D

Now we will return to the study of the examples of §4. Let Xt be At,
BI, Ci or Di and q^C be transcendental over Q. Following Manin [16] and
Takeuchi [22], we introduce the following graded algebras Q(V), Q(V~} in
order to study some group-like elements :

F-/3)) (X=A, C)

T(7)/(Ker(i(W-j8)f Im^) (X=D, D),

-/r)) (X=A, C)
Q(V~)= (5.1)

^-/r), Im <*) (^f=5, D).

The defining relations of <0(FQ(ZO) is as follows :

S

(5.2)

Since j8Q(A"i) is a symmetric matrix, the defining relation of Q(Vq(XiY) with
respect to the generators {vt} is the same as those of Q(Vq(Xt)) with respect
to { u i } . In particular, Q(Vq(Xi))^Q(Vq(XiY) as algebras. As an application
of the diamond lemma [2], we have the following (cf. [16, 22]).

Lemma 5.3. The products uiluiz---ulr (resp. v t l V i z - ~ V i r ) (l^/i
'r^AO form a linear basis of Qr(V}(resp. Qr(V~}}. In particular, QN(V} and

N(V~) (resp. Qx-i(V) and fi^_i(V")) is one dimensional (resp. N-dimensional}.

We define a bilinear pairing < , > : QN-i(V)®QN-i(V~)-+C and < , > : QN(V)
V^C by

<Vi,uS/=dtJ, (v, «>=!, (5.3)
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where vi} ut (l<i^N) and u, v are defined by

ui=u1u2 ••• Ut-iUi+i -•• UN , Vi=ViVz ••- Vi-iVl+1 ••• VN ,
(5.4)

U = UiUZ"-UN, V — ViVz"-VN'

Then, we have

(ViX, uf)— <vi, xu^, <J)x,u>=<j)9 xu) (x^Ox). (5.5)

We will prove these formulas for X=B. Since eiU3 is a weight vector of
®N-\(V\ we have eiiij=Q unless i<l, j—i, (z'+l)' or i=l, j=l, /+!. On the
other hand, we have

UN

Similarly, we obtain the explicit formulas for the action of et, ft, kt and a on
the modules QN-i(V\ QN^(V~\ QN(V} and QN(V~). The formula (5.5) follows
easily from these formulas.

By (5.5) and Corollary 4.4 (3), we can identify left S(£)-comodules QN-i(V~)
and QN(V~} with QN.i(V)* and QN(V}* respectively. We define a group-like
element of S(E) by detq(Xi):=cfQN<;V)(v(S)u) and call it quantum determinant
of S(E). For X=A, this definition agrees with that of in § 3 (see e.g. [16]).

Proposition 5.4. The following yi3 form a co fact or of S(Eq(Xi)) with respect
to det,(Z,) (cf. [22, Problem 5.6 a)]) :

.^,®!/*), (5.6)

where NQ=(NJ
rl')/2 and functions Y^0, Y>Q are defined by

0 (z<0) f 0
(5.7)

1 d'^0) 1 (*>0)

Proof. Set V=Vq(Bt\ L1=QN_1(Vq(Bl)), and

Denote by p. : L1®V-+Cii the restriction of the product of Q(V). Then, by
(5.2), (5.3), we have p(cut®Uj)=dtju and <ci;,, cMi>=^o-. Hence by Theorem
3.3, yij form a left cofactor with respect to detQ(5z). Other cases are similar.

n

If Xi — Bi, Ci or DI, there exists another important group-like element of
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S(Eq(Xi)). Let quadq(Xi) be the group-like element corresponding to the one-
dimensional S(£)-comodule lmcq(Xi)—C^ie(i}q'L+llzUi®Ui>. We call it the quadratic
group-like element of S(Eq(Xi)). The next proposition was obtained by [5] and
[22].

Proposition 5.5. The following elements y%3 form a co fact or of S(Eq(Xi))
with respect to quadq(^) :

'JXj>*> . (5.8)

Lemma 5.6. Let q be transcendental over Q. Then, we have the following
isomorphisms of S(E q(Xi}}-comodules :

; r+AO (X=C)
T; r+AO (X=B, D),

; r+2) (X=B9 C, D}.

In particular, for X=B, D, Cquad5^L((0); 2) and Cdetg-L((0)' ; N).

Proof. Let X=D. Since (T(detg)=— det? and cr(quadg) =quade, we have

by Lemma 4.1. By Corollary 4. 4. (3), this proves the lemma for X—D. The
proof of other cases are similar. D

Theorem 5.7. Let q be a complex number transcendental over Q.
(1) Each group-like element of S(Eq(Xi}) is central, and is not a zero-divisor.
(2) For each group-like element g(=S(E<l(Xi)\ there exists a co factor with

respect to g.
(3) We have the following identities (cf. [22]).

(4) The set Q of all group-like elements of S(Eq(Xi)) is given as follows :

{det/ ! r^O} (X=A)

{quad/ r^O}II{detgquadg
r r>0} (X=B, D)

{quad/ r^O} (X=C).

Proof. We denote by Qr the set of all group-like elements of Sr(Eq(Xt)).
We prove (3), (4) only for the case X~D. The proof of other cases are similar
and relatively easy. By the above lemma, we have
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Cdet^quadg^LCCOy; 2/+20^L((0); 2/+20-C

Hence quad</+£ and detgquadg' are distinct in S2i+2t- On the other hand, by
Corollary 4.4 (1), we have card<? r = l if r^2Z and |r|^2/-2, card<? r=2 if
r^2Z and \r\^2l and card£ r=0 if otherwise. Thus we get (4). Since detQ

2

is an element of Qa different from detgquad</, it must coincide with quad/*.
This proves (3). Let {wiW; r)} be a linear basis of L(A; r) and {ji;U; r}} be
a linear basis of Im c / Lc^;r ) defined by (a(uj(X\ r))=SiWiU; r)®*oU; r). By
part (4) and the above lemma, for each ge£s, {gxi}(}(; r}} is a linear basis of
either Imc/£C^ ; r+S) or Imc/Luv+s), because

Hence S(E)—>S(E);x>-^gx defines a linear isomorphism from Iinc//;^,,.) onto
Im cfia-r+s) or onto Im c/£(^t ; r+s ). By Corollary 4.4 (1), this proves that x^gx
is injective. If yi} form a cof actor with respect to g^Q, then g'yi3 form a
cof actor with respect to gg'^Q, Hence (2) follows from Propositions 5.4,
5.5. D

§ 6. Peter-Weyl Decomposition

Let q be a complex number transcendental over Q. For X=Xt = Bi, Ch DL,
define Hopf algebras AX, Ax by

Ax :-

^x ^(^(^OVCquad^)-!, det5(^)--D. (6.1)

For Xi = Ai, we set Ax=Ax:=A(SLq(l+iy). By Theorem 5.7 (3), we have

Definition 6.1. For Xi = Bit Ct, DL, we denote Ax by A(Oq(2l + l)\
A(Spq(2l)\ A(Oq(2l}} respectively. For XL = Bl} Dh we denote Ax by
,4(5OQ(2/H-1)), ^(SO5(2/)) respectively.

The Hopf algebras A(Oq(N)) and Aq(Spq(N)) were first introduced
by Faddeev, Reshetikhin and Takhtajan [5] and independently by Takeuchi
[22]. In [5] (resp. [22]), the quantum groups Oq(N) and Spq(N) are introduced
under the notation S01/q(N) and Sp1/q(N) (resp. O1/q(N) and Splfq(N)) respec-
tively.

Combining the representation maps L/x-^Schr(F) with the pairing of Prop-
osition 2.1, we get a bialgebra pairing < , > between U x (or U x} and S(Eq(X{)\
Since <a, (quad5— 1)>=0 (a^U x} and <a, (detg— 1)>=0 (a^.U x\ we get Hopf
algebra pairings < , > : 0 X®AX-^C and U X®AX—>C.
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Lemma 6.2. Let L, M be right S(E)-comodules. Then,
(1) // Lu (resp. LU) is irreducible, then LA (resp. LA) is irreducible.
(2) // a linear map f : L— >M gives an isomorphism L^— MA (resp. LA — MA),

it also gives an isomorphism Lu—Mu (resp. Lu^Mu).
(3) We have the following isomorphisms of comodules :

rfc^LW; sfc, Ltf ; rX^Ltf; s)A

Ltf; r)^L(tf; s)A

L(A ; r)A~

(4) // n(Z)=n(p) for Z^<Pr(Xi) and fjtG^s(Xt\ then L(A; r)A^L(^; s}A.
(5) // X—D and A[=l, then L(l\ r}A has the irreducible decomposition L'@L"

such that L'u^-L(n(Xy) and L/fu^L(n(X)a}, where we set 11" :=(n«,<«) for n=(n^.
If otherwise, L (A; r)A is irreducible.

Proof. Part (1) and (2) follow immediately from the definition of LI and
LA (see the notation before §1). Since (Cquadg)x (CquadaXi and (Cdet,)^ are
trivial comodules, part (3) follows from Lemma 5.6. If n(X)=n(fji), then we
have either JL=H, Z=fi±(N, ••• , N)' (X=A) or t=pi (X=B, D}. Hence part
(4) follows from part (3). Let X~ D and Al=/. By Lemma 5.6, there exists an
Sr+22(E)-comodule isomorphism <p : L (A ; r)0C quadg

z ̂  L (X ; r)(g)C detg. Let v
be a non-zero vector of L(ii(^))nC^c,>L(^; r)n. Since <p is also an L/D-module
isomorphism, we may assume ^(f®quadgO=^®detg. Since (7(quadgO=Quadg

z

and (7detg=— detg, we have ^>((T?;0quadgZ)= — 0^(<§detg. On the other hand, from
the definition of AD, <pr : u(S)quadq

l^u(g)detq (u^L(/l; r)) gives an isomorphism
(L(l; r)®CquadgO^— (^U; r)®Cdet3)4. Define ^D-comodule isomorphisms by
<p±:=<p'±<p. Then we have

Im 99+ = ^+([/

Im )_=

Hence Im^u and Im^)_ are distinct irreducible component of (LU; r)®Cdetg)c/.
This proves part (5) for X=D l(—l. The rest case of part (5) follows from
part (1). D

We introduce the following sets :

PA=PSL(l+l)=Pc=PSp(2l)=Zl0,

(6.2)
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For X=A, B, C, Px is the image of the map ^(X^Z1^} >fc-»JiM). While for
X=D, PD={n(X), wWIJlesKA)}. Let w=(w*) be an element of Pz. We will
define an A^-comodule LA(ri) as follows. Suppose X^D or ni_1=ni. Noting
Lemma 6.2 (4), we set LA(n)=L(A', r)A, where X denotes an element of &r(X{)
such that /i(/Q=/i. Suppose Xt=Di and ni_i<nL. Then there exists the unique
2^&(Dt) such that n=n(Z) (and that ^I=/). We define LA(n):=L' and LA(n f f)
:=L", where Z/ and L" be as in Lemma 6.2 (5). From the above lemma, we

have

Proposition 6.3. (1) For each n<=Px, the Ax-comodule LA(n} is irreducible.
(2) // n^ri, then LA(n)&LA(n').
(3) We have the following irreducible decomposition :

LA(n(l)}@LA(n(lY} (X=D, 2(=l)

LA(n(l}} (otherwise).

(4) In particular, the irreducible decomposition of L(X\ r)A is the same as
those of L(A; r)u-

Theorem 6.4. (1) (Peter-Weyl decomposition) We have the following coalgebra
isomorphisms :

A(Oq(NJ)--=

A(SLt(N»= ® (End L(n))* ,
n<=PSL(.N)

A(SO£N»= 0 (End L(w))* ,
nePSO(^)

0 (EndL(»))*,

where we set S>0(2/ + 1)=S>(5£), £>O(2l)=£>(Di).
(2) T/ie pairings < , > : 0 x®Ax~^- >C, U X®AX-^C define Hopf algebra injec-

tions AX-*UX°, AX-^UX°.

Proof. We will prove this theorem for A(SOq(N)). Other cases are similar.
Let As be the image of ®0^r^sS r(£) by the projection S(E)-+AD.

Step 1. We will determine the structure of the comodule L(A; r}As for each
r^s and %^&r(Di\ Let L be a subcomodule of L(2; r)A. Since a)(L)c:L(S)A
and

we have o)(L)cL®As. Hence L becomes a subcomodule of L(/l; r)^. On the
other hand, since As is a subcoalgebra of A, each subcomodule of L(X\ r}As

naturally becomes a subcomodule of L(%\ r)A. Thus, the comodule L(X; r}As is
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completely reducible, and its irreducible decomposition is the same as those of

Step 2. We will show that As* is a multi-matrix algebra, that is, it is
isomorphic to a direct sum of matrix algebras. Since the ground field C is
algebraically closed, it suffices to show that the Jacobson radical / of As* is 0.
Let 0 be the representation

0 : A.* cn_ © Schr(^) cz_ End ( © F® r) .
r=0 r=0

By Corollary 4.4 (1) and step 1, the ,4s*-module ©o^r^7®7" is completely redu-
cible. Hence we have $(/)— 0. Since 0 is injective, this implies /=0.

Step 3. Let M and N be irreducible components of (©o^r^sF®7")^. Since
As is a subcoalgebra of A, M^Nif and only if MA^NA. Hence the irreducible
decomposition of (ffio^rssJ7®7")^ is the same as those of (®^rzsV®r)A. On the
other hand, since As* is a sub multi-matrix algebra of End(©0grgSF® r), each of
its irreducible modules is isomorphic to a submodule of ©ogr^®7". Thus we
get As*^©neP<s>(End LA(n)\ where P<s>={nU), n(Z)° \^®r(Dl

Since AD=ljm As as a coalgebra, we obtain the decomposition of part (1).

Step 4. Let F : U->AS* be the map induced by the pairing < , > :
C. It is easy to see that the following diagram is commutative :

From the structure of (©osrgsl7®7")^, it follows that the image of the repre-
sentation U— ̂ End(©0^r-s^® r) is isomorphic to ffinep<s> (End LA(ii)\ Therefore
the map W is surjective.

Step 5. Let a^AD be an element of the kernel of the map AD-*U D° <^>U D* •
Let s be an integer such that a^As. By step 4 and <JJD, a>=0, we have a=Q.
Thus we get (2). D

Note. Let K be an arbitrary field and q (X=C, D} or q11* (X=B) be a
non-zero element of K such that ?2+1^0. Let Eq(Xt) (X=B, C, D) be the
quantum matrix on a 75-pair defined again by (2.6) and (4.3). Then the
quantum matrix S(Eq(Xt)) has the group-like elements quadg and detg corre-
sponding to the one-dimensional comodules Im cq and Q(Vq(Xt)). Since the ele-
ments yij defined by (5.7) still form a cofactor with respect to quadq, we can
define Hopf algebras Ax and Ax again by (6.1) (see Proposition 3.1. (1)). It is



80 TAKAIIIRO HAYASIII

unclear whether these are proper ^-analogues of the function algebras of classical
groups.

§ 7. Symmetric and Hermitian Yang-Baxter Operators

Let (V, j3v) be a YB-pair and E, {HI}, Etj etc. be as before. We define
an antialgebra automorphism / on End(F® r) by

XEt^Et^® ••• ®EirJr}=EJlil®EJziz® .» ®EJrir. (7.1)

We say that (F, /3F) is symmetric if J(^v)=^v. It is easy to see that the YB-
pair Vq(Xi) is symmetric for each q^C* and X~A, B, C, D. Let (V, fiv) be a
symmetric YB-pair. Since J(a)^l=J(^ia)=piJ(a) (l<i<r) for aeSchr(F), the
map / defines an antialgebra automorphism on Sch(F), which we denote again
by / (cf. [6, Chapter 2.7]). We define /: S(E)->S(E) by </(a), ^>=<a, /(*)>
(aeSch(F), x^S(E)). This map is characterized as the algebra anticoalgebra
automorphism of S(E) satisfying J(xij)=Xji. The following result on quantum
determinants corresponds to the fact det [flij=det [fl^].

Proposition 7.1. Let g be a group-like element of S(Eq(Xt)) (X—A, B, C, D)
and suppose q^C* be transcendental over Q. Then we have J(g)=g.

Proof. For each r:>0, / induces a permutation of the group-like elements
of Sr(E). Hence this proposition follows easily from Theorem 5.6 (4). D

Let (V, j8r) be a YB-pair on C. We call (V, flv) Hermitian if fiv*=Pv,
where for r^O, * denotes an antilinear antialgebra automorphism on End(T®r)
defined by (7.1). The TO-pair Vq(Xt) is Hermitian if q^R. Similarly to a
symmetric F^-pair, for a Hermitian y^-pair V, we have an antilinear anti-
algebra coalgebra automorphism * on Sch(F).

Proposition 7.2. // (V, /3F) is a Hermitian YB-pair, then Schr(K) (r^O) is
a semi simple algebra.

Proof. Let ( | ) be a Hermitian form on V®r such that {utl® ••• ®uir} is
an orthonormal basis. Since (F®r, ( ! )) is a unitary representation of Schr(F),
it is completely reducible. Since Schr(F)cEnd(F®r), the Jacobson radical of
Schr(F) must be 0. D
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