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Pairings and Copairings in the Category of
Topological Spaces
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Nobuyuki ODA*

Abstract

We prove a theorem which gives a relation between the pairings of homotopy sets
induced by pairings and copairings of topological spaces. We obtain many results on
commutativity of elements of homotopy sets as immediate consequences of the theorem.
As a further application of the theorem, we prove a generalization of a theorem of Suga-
wara on the existence of inverse element in the homotopy set when the target space is
a Hopf space. We also prove the dual result which is a generalization of a theorem of
Hilton, Mislin and Roitberg.

§ 1. Introduction

We work in the category of G-spaces (namely, G-equivariant spaces) with
base point * which is fixed under the G-action. So we denote simply by
/: X^Y a G-map. We simply write / — g when / is G-homotopic to g. The
group G is a topological group throughout the paper.

We call a continuous map p: XxY-*Z a pairing with axes f: X->Z and
g'.Y->Z when p\Xx{*}^f and p\{*}xY^g (Definition 2.1). Dually we
define a copairing 6 : A—>B\/C with coaxes h : A—>B and r: A—>C (Definition
2.4.)

In a previous paper [13], we studied some properties of axes of pairings
and coaxes of copairings of topological spaces. We also obtained fundamental
results on the homotopy sets of the axes and coaxes. On the other hand, pair-
ings and copairings of topological spaces induce pairings of homotopy sets. In
this paper we study some of the properties of these induced pairings.

We now state them more precisely. Given a pairing p: XxY-*Z, we can
define a G-map a + /3: A-+Z for any G-maps a : A-+X and ft : A-+Y by the
formula (2.2) in §2. Dually, given a copairing 6:A-*B\/C, we can define a
G-map a + fi : A-^Z for any G-maps a : B-+Z and /3 : C-»Z by the formula
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(2.5) in § 2. Let [_A, Z] be the G-homotopy set of all the G-maps from A to
Z. Then we have the following main result of this paper.

Theorem 2.7. Let a : B-+X, ft : C->X, r : B-+Y and d i C-+Y be G-maps.
Let ft : XxY-*Z be a pairing with axes f : X-^Z and g : F-»Z, and 6 : A^ByC
a copairing with coaxes h:A-*B and r:A-*C. Then the following relations
hold in [4, Z].

(1)

(2)

(3)

In Theorem 2.7, the formulae (2) and (3) are special cases of the formula (1).
The result (2) says that two pairing + and 4- coincide when composed with
the axes and coaxes, and hence (3) says that the pairings are commutative when
composed with the axes and coaxes. So, this theorem is a generalization of
the well-known result that the homotopy set \_A, Z] is an abelian group when
A is a co-Hopf space and Z is a Hopf space, as we see by setting h^r^!A

and f — g—lz in Theorem 2.7. We prove the theorem by generalizing the
method of Hilton [6].

In § 3 we show that various important results concerning commutativity of
elements in homotopy set are direct consequences of Theorem 2.7. These are
properties of cyclic maps, cocyclic maps and filtrations of homotopy sets given
by, for example, CW decomposition of the source space or Postnikov decom-
position of the target space.

In §4 we prove a theorem which generalizes a result of Sugawara as an
application of Theorem 2.7. Sugawara [15, 16] proved a theorem which asserts
that each elements of [A, X~\ has a left inverse element and a right inverse
element under some conditions when X is a Hopf space. Our first result is
stated in the following theorem.

Theorem 4.1. Let Abe a Hausdorff G-CW complex and X and Y G-Q-connected
Hausdorff G-CW complexes. Suppose that Y acts on X by a G-map p : Xx Y
-*X. Then for each element a of \_A, X~\ and each element ft of \_A, F], there
exists a unique element J of \_A, X~^ such that

In the proof of the above theorem, we use Theorem 2.7 to know the fact
that the pairing 4- induced by /* : XxY^Z coincides with the ordinary sum +
induced by the co-Hopf structure of n -sphere Sn in homotopy group 7rn(Z).
This enables us to handle the pairing 4- as the usual sum + in the homotopy
group 7rra(Z).

In Theorem 4.2, we prove the dual result of Theorem 4.1. It is a gener-
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alization of a result of Hilton, Mislin and Roitberg [7].

The author would like to express his thanks to Professor M. Mimura for
valuable comments and to Professor T. Matumoto for valuable information on
G-CW complexes.

§2. Pairings and Copairings

Let Ax - X—*XxX be the diagonal map defined by Ax(x)=(x, x) for any
element x of X and 7A- : XyX-^X the folding map defined by VjrU, *)=* =
^X*» x) for any element x of X. We consider the wedge sum (or the one point

union) X\JY of X and Y as the subspace of the product space XxY with the
inclusion map /: XyY-^XxY.

Definition 2.1. We call a G-map fjt : XxY-^Z a pairing with axes f : X—>Z
and g : Y—>Z, if the diagram

XXY
A

J

» zvz

Remark. A £fo/>/ space X is a topological space with a continuous multi-

plication m: XxX->X with a two-sided unit, namely,

fvg
is G-homotopy commutative.

for the folding map Vjr : X\/X—>X. To generalize the concept of the Gottlieb
group [5], Varadarajan [18] introduced a map F: XxA-^X with a ryc/zc map
f : ,4->X, namely,

: XVA->X.

More generally, Stasheff [14] considered a map / : XxY-+Z with a^gs ^ : X-*Z
and /i : F-»Z, namely,

This is a pairing in Definition 2.1. Stasheff [14] called a map /: XxY~-*Z an
GJtia/ ?72fl^ when the axes are inclusion maps g : XdZ and h : YdZ. There
are dual concepts of the above definitions [3, 6, 18, 21].

Now, suppose that we are given a pairing fi:XxY-*Z. Then we can
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define a map a-\-ft : A~>Z for any G-maps a : A—>X and ft : A—>Y by

(2.2) af j8=jMo(aXj8)oA4 .

This defines a pairing of homotopy sets

t:[4, *]X[4, r]->[4, Z].

Now, we denote by * : X- »F the constant map.

Proposition 2.3. // f j i i X x Y - ^ Z is a pairing with axes / : X~>Z and
g : Y->Z, then

f*(a) and * + fi

in \_A, Z] for any G-maps a : A—>X and ft : A— >Y.

Proof. Let us suppose that j8=*. Then we have

for the inclusion map j\ : X-*X\/Y defined by j\(x)-=(x, *) for any element x
of X. It follows that

Similarly we have the latter result.

Definition 2.4. We call a G-map OiA-^BVC a copairing with coaxes
h : yl— >5 and r : /1-»C, if the diagram

A4
y4X/l -

/ zXr
is G-homotopy commutative.

Given a copairing fli/L-^VC, we define a G-map a4-/3 : /i-»Z for any
G-maps a : B-+Z and ft : C-+Z by

(2.5) a + ft=Vzo(

This defines a pairing of homotopy sets

+ : [B,Z]x[C,Z]— >[^ ,Z] .

Proposition 2.6. // 6:A->ByC is a copairing with coaxes h:A-*B and
r: A^>C, then

a-i-*=/i*(a) and * + ft=r*(ft~)
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in \_A, Z] for any G-maps a : B-+Z and j8 : C->Z.

Proof. Let us suppose that j8=*. Then we have

for the projection map ql : J3VC->5 defined by q^oc, *)=x for any element x
of B and ^x(*, 3;)=* for any element y of C. It follows that

Similarly we have the latter result.

Theorem 2.7. Le^ a : B-+X, ft : C->X, r : B->Y and d : C-+Y be G-maps.
Let [i : XxY->Z be a pairing with axes f : X->Z and g : Y->Z, and 6 : A~^B\/C
a copairing with coaxes h\A-*B and r:A-+C. Then the following relations
hold in [A, Z].

(1)

(2)

(3)

Proof. We first prove (1). By Definitions 2.1 and 2.4, we have

This completes the proof of (1). To prove (2) and (3), set in (1) /3=r=* for
(2), and a=<5=* for (3), then we have the results by Propositions 2.3 and 2.6.

Proposition 2.8. Let p: XxY-*Z be a pairing with axes f : X-+Z and
g : Y-»Z, and 0 : A^BVC be a copairing with coaxes h : A—>B and r : A-*C.
Then the following results hold.

(1) // X=Y and f^g, then

in \_A, Z] for any elements a : B-+X and f) : C—*X.
(2) If B = C and h-rf then
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in [_A, Z] for any elements ft : B-+X and d : B->Y.

Proof. (1) Putting <5=/3 and r=<* in (2) and (3) of Theorem 2.7 respec-
tively, we have

A*(a) + r*(]8)=/*(a)+^(j8) and r*(j8) + A*(a)=5r*(a) + /*(j8).

Since / — g by our assumption, we have /i*(a)-j-r*(jS)=r*(j9)-f/z*(a).
(2) Putting a=fl and r=<5 in (2) and (3) of Theorem 2.7 respectively, we

have

A*(j8) + r*(«)=/*(]8)-h^(«) and

Since /i^r by our assumption, we have /*

§3. Various Results on Commutatiyity

A G-space X is called a //0/>/ G-space [1, 17] when Z=F=Z and /-g-l^
in Definition 2.1.

A G-space A is called a co-Hop / G-space [2] when A=B=C and /i^r^l^
in Definition 2.4.

We have the following well-known result [6, 21] as an immediate con-
sequence of Theorem 2.7.

Proposition 3.1. Let A be a co-Hop f G-space and X a Hopf G-space. Then
for any elements a and /3 of [_Af X~], we have

(1)

(2) a+fi^fi+a where we write += + = 4- by (1).

Proof. Set f~gczlx and h^r-lA in Theorem 2.7(2)(3), then we have the
result. q. e. d.

We say that a G-space Y acts on a G-space X from the right when X—Z
and f — lx in Definition 2.1. In this case, g: Y-*X is called a cyclic map [18].

We say that a G-space C coacts on a G-space A from the right when A—B
and ! I ~ I A in Definition 2.4. In this case, r : A— >C is called a cocyclic map [18].

The above situations were also studied by Eckmann and Hilton [3, 6] as
operators and cooperators in connection with fibre sequences and cofibre
sequences.

Proposition 3.2. Let Z be a Hopf G-space.
(1) // 6 : A->B\/C is a copairing with coaxes h : A-*B and r : A-*C, then

8) and h*(a) + r*(=r*() + h*(a)
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in iA, Z~] for any elements a of \_B, Z] and /3 of [C, Z].
(2) // C coacts on A from the right with the cocyclic map r: A—>C, then

a + fi=a + r*(j3) and a-rr*(p)=r*(fi + a

in [_A, Z] for any elements a of [_A, Z] and ft of [C, Z]; that is, the image of
the cocyclic map

r*:[C, Z]—>U, Z]

zs contained in the center of [/L, Z].

f. (1) By Theorem 2.7(2) (Set f^g~lz) and Proposition 2.8(1).
(2) Since A=B and h^!A: A-+A, we have the result by (1). q.e.d.

The above Proposition 3.2(2) is a generalization of Corollary 3.10 of Lim
[9]. As an example of Proposition 3.2(2), we have the following well-known
results. Let IX be the reduced suspension space and QX the loop space of a
G-space X.

Example 3.3. If
i j du—>v—>w—>iu—> • • •

is a G-cofibre sequence, then we have a G-map

0:W—>W\/IU

with the cocyclic map d: W—>IU [3, 4, 6]. It follows that the image of

d* : [177, Z] —> [W, Z]

is contained in the center of the target object for any Hopf G-space Z by Prop-
osition 3.2(2). Therefore the image of

d* : [IU, flZ] —> [W, QZ~\ (or (Id)* : \_Z2U, Z] —> IIW, Z])

is contained in the center of the target group for any G-space Z.

Proposition 3.4. Let A be a co-Hopf G-space.
(1) // /j.: XxY—>Z is a pairing with axes f : X—>Z and g: F—>Z, then

a + |8=/*(a) + g*(j8) and /*(a) + 5r*(j8)=^*(j8) + /*(a)

in [/I, Z] /or any elements a of [A, X~] and /3 of [A, Y~\.
(2) // Y acts on Z from the right with the cyclic map g: F-»Z, then

af]8=a:4-51*(j9) and a+ £*(j8)=g*(j8) + a

m [A, Z] /or any elements a of \_A, Z] and ft of [_A, F]; that is, the image of
the cyclic map
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is contained in the center of \_A, Z~\.

Proof. (1) By Theorem 2.7(2) (Set h^r^lA) and Proposition 2.8(2).
(2) Since X=Z and f-lz: Z-+Z, we have the result by (1). q.e.d.

The result of Proposition 3.4(2) is a generalization of Theorem 2 of Hoo
[8]. As an example of Proposition 3.4(2), we have the following well-known
result.

Example 3.5. Let
d i p

QB—> F—>E—>B

be a G-fibration sequence. Then there exists a G-map

f j t i F x Q B — > F

with the cyclic map 3: QB->F by Proposition 11.3 of [6] or [3, 4], Then the
image of

3* : IA, QB-] — * IA, F]

is contained in the center of the target object for any co-Hopf G-space A by
Proposition 3.4(2). Therefore the image of

, QB~\ — > \_SA, F] (or (S3)* : [_A, Q2B1 — > \_A, 0F])

is contained in the center of the target group for any G-space A.

We remark that Theorem 2.7 gives us various formulae in the following
cases. (1) h^lA and f^lx] (2) r^lA and f^lx; (3) h = lA and g^lY; (4)
r^lA and g^lY.

Proposition 3.6. (1) Let C oacl on A from the right (h — lA) and Y act on
X from the right (f-lz). Then

for any a of [A, X] and d of [C, Y~\ ;

r*(j8)tr=£*(r) + j8 for any $ of [C, ^] and r of \_A, F] .

(2) Let B coact on A from the left (r~lA} and Y act on X from the right
lx\ Then

for any a of [_B, X] and d of [A, F] ;

for any /3 of \_A, *] and r of [_B, F] .

(3) Let C coact on A from the right (h — lA) and X act on Y from the left
~lY). Then
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f r*(«)=/*(a)-i-d for any a of \_A, X~\ and d of [C, F];

r*(j8) + r=r + /*(j8) for any ft of [C, X] and r */ [4, F] -

(4) Let B coact on A from the left (r—lA} and X act on Y from the left
!F), Then

for any a of IB, X] and d of \_A, F] ;

for any ft of \_A, A] and 7 of [3, F] .

A G-space Y is called a group-like G-space [19, 21] when it is homotopy
associative Hopf G-space with a homotopy inverse v:Y-*Y, namely, lY + v — *
— v-t-!F. Then the homotopy set [A", F] has a group structure for any space
X. The inverse — [/] : X-+Y is given by — [/] = |>°/] for any element
[/] : ^-F.

A G-space Z is called a cogroup-like G-space [21] when it is homotopy
associative co-Hopf G-space with a homotopy inverse v\X-*Xy namely, \x + i>—
*~u + lx. Then the homotopy set \_X, F] has a group structure for any space
F. The inverse — [/] : A-»F is given by — [/] = [/ov] for any element

Let r be a group. A central chain of F is a sequence of subgroups

such that [F, ri]c:A+1 for all z, where [A, B] is the commutator subgroup
generated by commutators

{aba~lb~l a^A and b^B}.

If we are given a filtration

of a G-space A, we define

rt(X, F)-{[/]: X-+Y I

The following result is a generalization of Lemma 2.14 of Whitehead [19].

Proposition 3.7. Let F be a group-like G-space. If X is a G-space with
filtration

/o i\ in
A0C XiC ••• C AWC An+1C ••• C A

swc/i f/iaf £/iere zs a cofibration sequence

fn in On

U n > -A 7i > A ft -i- 1 > -^ (J 77
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for each n, then
ra(

is a central chain.

Proof. Let [/]ero(X, F) and [g]^rn(Z, F) be any elements. We have
to show that

Consider the exact sequence
<5* /*

F] -^ [*B + 1, F] -^> lXn, F] .

Since ^(g|^n+i)=g|XJI^*, we have

/B, F]

It follows that [g\Xn+l'] is contained in the center of [_Xn+l, F] by Example 3.3.
Therefore we have

»^^

in [^+1, F]. It follow that [/] + lgl-in-lg^rnM F). q.e.d.

If we are given a system

Qn+i Pn Pi Po
Y - > Yn+i - > Y n - > ••• - > F! - > F0

such that qn — pn°qn+i for a G-space F, we define

f, F] .

Proposition 3,3. Let X be a cogroup-like G-space. If Y is a G-space with
a system

Qn + i Pn ^ Pi Po
Y - > Yn+1 - > ? „ - > ••• - > F! - > YQ

such that qn — pn°Qn+i and there is a fibration sequence

dn ^ Pn kn

••• — > QKn — > Fn+1 — > Y n — > Kn

for each n, then

rQ(x, Y^r^x, F)Z) ••- ̂ rt(x9 F)D •••
is a central chain.

Proof. Let [/]e/l(^, F) and [^]efn(Z, F) be any elements. We have
to show that

[/] + C^]-C/]-C^]erB+1(X, F).

Consider the exact sequence
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Since ?n«([g])=/>n*{tf *+!*([£])}=**, we have

It follows that #ra+i*([g]) is contained in the center of [X, Fn+1] by Example 3.5.
Therefore we have

-[/]-[£^

in [XB+1, F]. Thus we have [/] + [^]-[/]-[g]ern+1(X, Y\

§4. A Generalization of a Theorem of Sugawara and its Dual

In this section we work in the category of Hausdorff G-CW complexes.
If X is a Hopf space and A is any space, then the homotopy set [_A, X~\

has a binary operation with a two-sided unit. Sugawara [15, 16] proved that
each element of [_A, X~\ has a left inverse element and a right inverse element
under some conditions. Whitehead [20] has also studied the conditions of the
theorem of Sugawara.

If A is a co-Hopf space and X is any space, then the homotopy set \_A, X~]
has a binary operation with a two-sided unit. Hilton, Mislin and Roitberg [7]
proved that each element of [A, X~] has a left inverse element and a right
inverse element under some conditions.

The existence of the inverse elements in the homotopy set \_A, X~\ is
analyzed in Chapter 17 of Hilton [6] or Chapter 3 of Whitehead [21].

We now suppose that a G-space Y acts on a G-space X from the right,
namely, X—Z and f — lx in Definition 2.1. Then we have a homotopy com-
mutative diagram

XxY - — > X

J \ | V *

X\/Y > X\/X
IxVg

with cyclic map g: Y-+X. Then we have an action

+ : [A, X~]X[A, F] —> \_A, X

of [4, F] on [A, X~\ defined by

u^U, ^]

for each element a of [^4, X~\ and each element $ of I A, F]. In the above
situation, we prove Theorem 4.1 which generalizes the result of Sugawara.
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The proof is carried out by generalizing the methods in [6, 15, 16, 20, 21].
A G-space X is called G-n-connected (resp. G-simple) if the fixed point set

XH is n -connected (resp. 0-connected and simple) for any closed subgroup H of
G. The references of the G-CW complex are [1, 10, 11, 12]. We note that
Matumoto [12] has constructed a G-CW complex Kx and a weak G-homotopy
equivalence px '• KX-^X for any G-space X which satisfies the 7>separability
condition.

Theorem 4.1. Let A be a Hausdorff G-CW complex and X and Y G-Q-con-
nected Hausdorff G-CW complexes. Suppose that Y acts on X by a G-map
fjL : XxY-*X. Then for each element a of [_A, X~] and each element /3 of [A, Y~],
there exists a unique element ? of \_A, X~\ such that

Proof. We consider a G-map <])\XxY-*XxY defined by $(x, y)=
> y\ y}- Then the G-map ^ induces a map

(a) $*: LA, X~\X\_A, n-[/i, XXY-]
We see that

(b) fa(a, j8)=

for any a of \_A, X~\ and any 0 of [_A, F]. If A=G/H+/\Sl for z'^1, then by
Proposition 3.4(2), we have

where the symbol + means 4- which is the usual sum induced by the co-Hopf
structure of S\ Hence the homomorphism

is an isomorphism for any subgroup H of G and for any z^l. Therefore the
map <j>* in (a) is an isomorphism for any G-CW complex A by Theorem 5.2 of
[10] or Proposition 0.4 of [12]. Hence for any pair (a, j8) of [_A, X~\X[_A, T],
there exists a unique element (f, d) of [A, X~\x\_A, F] such that fa(T, d)=
(Y+8,d)=(a, ft). It follows that r^^=a and 3=£, namely, j-±fi=a. This
completes the proof.

We now consider the dual situation. Let us suppose that a G-space G
coacts on a G-space A from the right, namely, A=B and h — !A in Definition 2.4.
Then we have a homotopy commutative diagram

e
AVC
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with the cocyclic map r:A-*C. Then we have an action

+ :D4, Z

of [C, X~\ on [A, X] defined by

a + 0=

for any elements a of [4, Z] and ft of [C, Z].

We prove now a theorem which generalizes the result of Hilton, Mislin
and Roitberg [7]. The proof is done by generalizing their method to the co-
action of G-spaces in the equivariant category.

Theorem 4.2. Let A, C and X be G-Q-connected Hausdorff G-CW complexes.
Suppose that C coacts on A by a G-map 0: A-*A\/C. Suppose tliat one of the
following conditions is satisfied.

(1) A and C are G-l-connected.
(2) X is G-simple.

Then for each elements a of [A, X~\ and ft of [C, X~\, there exists a unique
element f of [/I, X~\ such that r + ft=a.

Proof. We define a G-map (p: AyC-^A\/C by

and 0 ' : C=i 2 :C — >A\/C,

where i'2 is the inclusion map defined by *'2(*)=(*, x) for any element x of C.
We see that

as in [7]. The G-map 0 induces a map

(c) ^*: [4, X]x[C, X^tAvC, X~\

We see that

(d) 0*(a, j8)

for any element a of [^4, ^f] and any element ft of [C, X],
The same is true when the maps and spaces are restricted to any fixed

point sets in (d).
We now consider the conditions (1) and (2) separately.
(1) The induced homomorphism

(e) (0*)* : Ht((AvC)H) — > Ht((AV C)H}

of the integral homology groups of the fixed point set (A\/C)H is an isomor-
phism for any subgroup H of G and any z'^0, since (</>ff)*(a, ft)=(a, r*(a)+ft)
for any element a of Ht(A

H) and /3 of Hi(CH) by the definition of 0, where
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the symbol + means 4- which is the usual sum in the homology groups. If A
and C are G-1-connected, the isomorphism (^H)* in the homology groups in (e)
implies an isomorphism

(0ff)* : nt((A V C)*) — > x&A V C)*)

in the homotopy groups for any subgroup H of G and any z'^0 by the White-
head theorem. It follows that the G-map <p : AVC-+AVC is a G-homotopy
equivalence by the equivariant Whitehead theorem [1, 10, 12]. Then </>* in (c)
is an isomorphism.

(2) Let us substitute the equivariant Eilenberg-MacLane complex K(nn(X), k]
for X in (c). Then we have a map

(f ) 0*

We see that
<f>*(a, j8)=

for any element a of H£(A: nn(X)) and any element ]8 of H%(C ; nn(Xy) by (d)
or the definition of <[>. We remark that

where the symbol + means + which is the usual sum induced by the loop
structure of K(nn(X), k); it is the result of Proposition 3.2(2). Then the homo-
morphism <})* in (f) is an isomorphism for all k and n. Considering <J) : A V C(—Y]
—>AyC(=Z) as an inclusion map, we see

H&Z, Y; Kt(X»=H&Z, Y ; ;r<.i(^))=0

for all i by the above argument and the long cohomology exact sequences. It
follows that </>* : [Z, X~\-*[Y, X~\ is an isomorphism by the G-obstruction theory
[1, 11]. Then the map 0* in (c) is an isomorphism.

Now, by the above arguments (1) and (2), we see that for any element
(a, /3) of [A, ^]X[C, X~\9 there exists a unique element (j, d) of [A, X~]x
[C, X] such that 0*(r, d)=(r±d, 3)=(a, /3). Then we have r + ̂ =a and d=fi
and hence ^4-/3=a. This completes the proof.

The following result of Corollary 4.3(1) is a generalization of the existence
theorem of inversion of Sugawara [14, 16].

Corollary 4.3. (1) Let X be a G-Q-connected Hausdorff G-CW complex and
fji: XxX—*X be a pairing with axes \x'> X~>X and some map g: X-+X. Then
there exists a map u : X->X such that M + ljr=* in [X, A'].

(2) Let A be a G-simple Hausdorff G-CW complex and 0 : A—*A^A be a
copairing with coaxes I A : A-^-A and some map r : A-+A. Then there exists a
map v\ A—>A such that [u~] + lA=* in [_A, A].
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Proof. (1) Set A — X=Y, a~* and £1=1 x in Theorem 4.1, then we have
the result.

(2) Set A=C = X, a = * and P = 1A in Theorem 4.2, then we have the result.
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