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On the Injectivity of Cycle Maps

By

Morihiko SAITO*

Introduction

Let X be a smooth projective variety over C, and DbMHM(X)go the bounded
derived category of mixed Hodge Modules of geometric origin on X, cf. [17].
We have naturally Q£eD6MHM(J£>°, whose underlying Q-complex is Qx. Let

where (/) denotes the Tate twist, cf. [loc. cit.]. Let CHP(X)Q be the Chow
group of X with Q-coefficients. We have a cycle map

(0.1) clMH :

By adjunction for ax\ A->pt, we have

, Qf

where RF(X, Q?)=(flz)*Q? and QH=Q%. Here MHS(Q)go is the category of
mixed Hodge structures of geometric origin, which is defined by MHM(pt)go.
By [17, II, (4.5)], the canonical filtration T (cf. [7]) on RF(X, Qf ) splits non
canonically, and induces a decreasing filtration L on H&R(X, Q(/)) such that

(0.2) GriffinC* Q(/))=ExtfcHsw«°(Q*, H*-*(X, Q)(/)).

Let L denote also the induced filtration on CHP(X)Q. In [17, II] we showed
that the cycle map (0.1) is surjective if the Hodge conjecture is true for any
smooth projective varieties. In this case, the Gr|clMH are bijective, and (0.2)
holds with the left hand side replaced by GrlCHp(Z)Q, and f, / by 2p, p (but
L may be non separated). The existence of such a filtration was suggested by
Bloch [4]. The injectivity of (0.1) is equivalent to the separatedness of the
filtration L on CEP(X)Q, and would imply Bloch's conjecture [4]. The bijecti-
vity of (0.1) is related with a problem that MM (Spec C, Q), the category of
(still conjectural) mixed motives (cf. [1]) with base field C and Q-coefficients,
might be close to the category of mixed Hodge structures of geometric origin
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MHS(Q)S°, cf. also [9] [10] [12] [13], etc. It would be also related with Deligne's
remark [13, 4.16] and Murre's results [14], cf. [17, II, (3.4)].

In this paper we study the injectivity of (0.1), and reduce it to the surjec-
tivity of some morphisms. Here the notion of geometric level plays an im-
portant role, and we can get a strong control on it if the Hodge conjecture
is true, cf. (0.11-12) below. We say that a pure Hodge Module with strict
support Z has geometric level ^n, if it is isomorphic to a direct factor of
Hlf*(Qx [dim^])(m) for a projective morphism / : X-+Z such that X is smooth
of dimension <>n. A mixed Hodge Module has geometric level ^n, if so are
GrfM. Let X be a complex algebraic variety, and MHM(Z)f?^ the full sub-
category of MHM(Z)S° consisting of mixed Hodge Modules of geometric origin
on X with geometric level <n. We denote Ext^ju by Exti,gigri and Exti,g0

if jl=MHM(JK)f?SB and MHM(Z)§0 respectively (same for Horn).
Let X be a complex algebraic variety of dimension <n. Then we have

Qf, D?eZ)6MHM(Z)f?^, cf. (2.8), where Dg is the dual of Qf. By the same
argument as [17, II], we can construct naturally cycle maps

(0.3) clMH :

(0.4) clMH :

cf. (2.15), such that (0.4) is the composition of (0.3) with the natural morphism

(0.5)

Note that (0.4) coincides with (0.1) by the natural isomorphism D%=Q%(dimX)
[2dimX] if X is smooth, where p=dimX— d. We have

(0.6) Theorem (cf. (3.9-10)). Let X be a pure dimensional quasi projective
variety such that X is locally complete intersection (or, more generally, Qx[dimJ£]
is a perverse sheaf). Then the cycle map (0.3) for n=dimX is bijective if d^
dimZ-2.

So the injectivity of (0.1) is reduced to that of (0.5) if p^2. In general,
we can show

(0.7) Theorem (cf. (3.1)). Let X be as above, and d^N. The cycle map
(0.3) for n=dimX is infective, if (0.5) for n=dimY is injective for any closed
subvariety Y of X with pure dimension < dimX such that Y is locally complete
intersection (or, more generally, QF[dimF] is a perverse sheaf} and if the cycle
map (0.4) for d + l is surjective for any smooth projective variety with dimension

Note that the last hypothesis follows from the Hodge conjecture, cf . [17, II]
and (1.4) below. As to the first hypothesis, we have
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(0.8) Proposition (cf. (2.14)). The morphism (0.5) is injective for an algebraic
variety X of dimension ^n, if the natural morphisms

(0.9)

(0.10)

are surjective for any smooth (locally closed) subvariety Y of X, where ^=
— d. In particular, (0.5) is injective if d — n — l.

Here (0.9) (resp. (0.10)) is always surjective if p<l (resp. 0). Note that
the surjectivity of (0.10) follows from the Hodge conjecture, cf. (0.12) below.
If the cycle map of Bloch's higher Chow group CHP(Y, 1)Q[5] to Ext^CQ?, Q?(/0)
is surjective, it would imply the surjectivity of (0.9), cf. (3.12).

We prove Theorem (0.7) by induction on dimX, and reduce it to the case
X smooth and d=dimX—l, cf. §3. The same argument would apply to the
case of reasonable mixed sheaves, cf. (3.13). For the surjectivity of (0.10), we
show that the natural morphism

(0.11) CHdlmy_p(*xsr)0 —> Ext£go(/*QS, g*Q?(/0)

is surjective if the Hodge conjecture is true, where /: X—>S, g: Y—>S are
projective morphisms of smooth varieties X, Y. Here we need the Hodge con-
jecture for any smooth projective varieties by definition of mixed Hodge Modules
of geometric origin. By induction, the surjectivity of (0.11) implies that of the
natural morphisms

(0.12) Exti.gUB(M, A/) —-> Exti.glsm(M, AO —> Exfr,g0(M, AO

for m>n, where M, N are pure Hodge Modules of geometric origin with
geometric level <,n such that the weight of M is equal to the weight of N
plus i.

In § 1, we introduce the notion of relative correspondence over a base
variety, and show the surjectivity of (0.11) assuming the Hodge conjecture.
In § 2, we study the property of geometric level. In (2.7) (2.9) we deduce the
surjectivity of (0.12) from that of (0.11). We show (0.8) in (2.14). In §3, we
prove (0.7) by induction on dimX, using the Yoneda extension class associated
with a cycle.

In this paper, variety means a separated and reduced algebraic variety over
C unless otherwise stated.

§ 1. Relative Correspondence

(1.1) Let /: X-*S, g: Y—>S be proper morphisms of algebraic varieties,

and d =N. We define the group of relative correspondences of X to Y over 5
with Q-coefficients by
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(1.1.1) CS(X,Y; Q)d=

By [17, II] we have a cycle class map

(1.1.2) CS(X, Y ; Q)d —

where the last isomorphism follows from the adjunction, and is induced by the
restriction morphism Q?xF-*Qj?x5F. (In this paper, the direct image by a closed
embedding is sometimes omitted because the equivalence of categories [16,
(4.2.10)] holds for mixed Hodge Modules of geometric origin.) We have canonical
isomorphisms

(1.1.3)

where 5: S~>SxS denotes the diagonal embedding. In fact, the first isomor-
phism follows from the adjunction for (fxg)1, (fxg)* together with the isomor-
phism DxxSY=(fXgy'd*Ds, the second from the definition of tensor (g) together
with (fXg)*Qx*Y=f*Q%^g*QY', and the last from [18, 2.8] using the duality

Let Z be a reduced and irreducible variety of dimension d with a projective
morphism h : Z-^S factorized by XxsY-*S, i.e. Z has morphisms to X, Y over
5. Then we have a natural morphism

(1.1.4) f*Q$ — > A^Qf — > h*D$(-dK-2dl — > £*0?(-d)[-2</]

in D6MHM(S)go, where the first and last morphisms are induced by the restric-
tion and Gysin morphisms [17, II, (2.3.1)], and the middle by Q%-+D%(—d)[—2d'],
cf. (1.1.6) below. Similarly, we have a morphism

(1.1.5) QfxF — ̂  ;r*Qf — > 7r*Df(-^)[-2^] — > I^5y(-d)[-2d],

where ^ : Z-»XxsY. Note that, if Z is a subvariety of ZXsF, (1.1.5) coincides
with the image of the cycle [Z] by (1.1.2).

Remark. Let X be a variety of dimension d, Xi(l<i<k) the irreducible
components of dimension d, and Xf=\jiXl. Then IC^'Q^SJC^Q^ by defini-
tion, and we have natural morphisms

(1.1.6) Qf [d] — > ICj'0* — * />Z(-d)[-d] •

These two morphisms are dual of each other, and induce natural isomorphisms
(cf. [16, (4.5.14)][17, II, (2.2.4)])

(1.1.7)
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Let n : Y-+X a resolution of singularity. Then the natural morphism Q% —>
Dx(—d)[—2d'] of (1.1.6) coincides with the composition of the restriction and
Gysin morphisms Qf-*7r*QF and w*Q? = ^*JD?(-rf)[-2rf]-*Z>f(-rf)[-2d] in
DbMHM(X)go by (1.1.7), because it implies that elements of these groups are
uniquely determined by their restriction to a generic point of each Xx.

(1.2) Proposition. The morphism (1.1.4) corresponds to (1.1.5) by the isomor-
phism (1.1.3).

Proof. The last two isomorphisms of (1.1.3) are functorial by [18], and
we have a commutative diagram

a-2-1)

where the vertical morphisms are induced by (1.1.4). We have to show that
the image of ideExts,KO(g*#?, £*#?) in the last group corresponds to (1.1.5)
by the first isomorphism of (1.1.3).

We can check that the isomorphism [18, 2.8] is compatible with direct
image, using an acyclic resolution in the definition of direct image, cf. also
Remark below. So the morphism g*D$^g*Q$—>d*D% corresponding to the
identity on g*D$ is the composition

(1.2.2) teX^UDFEie?) — -> 8*8*0$ — > d*D»s ,

where the first morphism is induced by 5*(/>?K|QP)=I>? with d:Y-+YxY the
diagonal embedding. (Note that DY^QY=vr*DY' by definition, and pivd^id.
We use also Kom(D?, DY)=ttom((aY^DY

f , QH)=Q if Y is connected.) On the
other hand, the morphism (fXg)*QJx,Y-+ft*D1s(—d)\_—2d~\ corresponding to (1.1.5)
by the first isomorphism of (1.1.3) is the composition

(1.2.3)

The first and last morphisms are naturally factorized by using the morphisms

S*Y—*8*h*Q$ and

where the first two morphisms are induced by the restriction morphisms by
Z-+ZxY—>XxY. Since we have a commutative diagram

(1.2.4)

the assertion is reduced to the following commutative diagram
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where the horizontal and vertical morphisms are induced by the restriction and
Gysin morphisms respectively. But this can be checked easily, because Z is
the fiber product of ZxY and Y over YxY.

Remark. The isomorphism [18, (2.8.1)] is valid also for mixed Hodge
Modules of geometric origin. For a morphism of complexes M—>N, the cor-
responding element of Hom(iVI^DN, Drj) is defined by using the edge morphism

of the spectral sequence converging to Hom(L, D"\ whose Ei-term is Ext5(L~/-),

D%), where L—M^DN and A denotes the diagonal. In fact, a morphism A/-*

N defines a morphism L°— >DJ whose composition with L~1->L° is zero, and

this induces the corresponding morphism L-^D^.

(1.3) Theorem. Let X be the composition of (1.1.2) and (1.1.3). Then X is
surjective if the Hodge conjecture is true for any smooth projective variety.

Proof. This follows from the next proposition and [17, II, (4.7)].

Remark. The Hodge conjecture for a smooth proper variety is easily reduced
to the X smooth projective case using Chow's lemma and the compatibility of
the (classical) cycle map with direct image.

(1.4) Proposition. Let X be an algebraic variety, and it : X'—>X a surjective
proper morphism of a smooth variety. Then the cycle map (0.4) is surjective, if
it is surjective for a smooth compactification of X'.

Proof. Put M=C(K*D$,-+D$). Then

(1.4.1) M has weight>0, i.e. Gr?7/W=0 for i<j .

In fact, it is enough to show that fxM has weights >0 for any x^X by [16, 4.6],
where/*: {x}-»X. Let Y=n~\x\ Then ?xM = C((aY)*DY->QH) by base change
[16, (4.4.3)], and the assertion follows from the long exact sequence

(1.4.2) -» H*(aY)*D¥ — * H*QH — > H'fxM —^ H^(aY)*D? —> Hl+1QH -> ,

because (aY)*DY has weights ^0 and H\aY}*B{!-*HQQH^QH is surjective.
By (1.4.1) and [17, II, (4.5.1)], we get the surjectivity of

(1.4.3)
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using the long exact sequence associated with the triangle
Since the morphism (1.4.3) is compatible with the push-down of cycles by [17,
II, (2.4)], the assertion is reduced to the X smooth case.

Let X" be a smooth compactification of X with / : X-+X". We have to
check the surjectivity of the restriction morphism

(1.4.4)

By the same argument as above, it is enough to show that M' =
has weights >0. But fx C(D$.->j*D?)= /i/>?'[l] = Qff[l] for x^X (because
i''xj*Dx—ty and 0 otherwise. So the assertion follows.

§2. Level of Mixed Hodge Modules

(2.1) We say that a pure Hodge structure M has level ̂ n if max{/> :
Gr^M^O} — min{/> : Gr^M^O}^n. We say that a pure Hodge structure of
geometric origin AI has geometric level <n if there exists a smooth projective
variety X of dimension ^n such that A/ is a direct factor of Hl(X, Qn)(m).
Grothendieck's generalized Hodge conjecture [11] is equivalent to

(2.1.1) a pure Hodge structure of geometric origin M has level ^n iff it
has geometric level ^n

modulo the Hodge conjecture. In fact, if a pure Hodge structure of geometric
origin M has level <Jw, M is a direct factor of Hl(X, QH)(m) with i<Ln assum-
ing Grothendieck's generalized Hodge conjecture, and then we can use the weak
Lefschetz theorem to decrease dimX.

We say that a mixed Hodge structure has (geometric) level ^n if so are
its graded pieces. We say that a mixed Hodge structure has (geometric) level
n, if it has (geometric) level <n and not <^n — 1. Let MHS(Q)sn (resp. MHS
(Q)Sun) be the full subcategory of MHS(Q)(resp. MHS(Q)'°) consisting of mixed
Hodge structures with level (resp. geometric level) <n. Put MHS(Q)1°71=MHS

Similarly we can define the notion of (geometric) level <n (and level n)
for mixed Hodge Modules on an algebraic variety X. We say that a pure
Hodge Module with strict support Z has level <n if its generic variation of
Hodge structure has level <n—dimZ, and geometric level ^n if it is a direct
factor of H^^Q^^n) for a projective morphism / : F-»Z with Y a smooth
variety of dimension ^n. We define MHM(Z)^, MHM(^)|°n, MHM(Z)|^7? as
above. These categories are stable by the dual functor D, and

(2.1.2) a mixed Hodge Module M has level ^/?, it" c '» ?U has level <n for any
locally defined function g.
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In fact, we may assume M pure by the exactness of 0g, and M is a variation
of Hodge structure. Then the assertion is clear. We have

(2.1.3) the (geometric) level of a pure Hodge Module coincides with its weight
mod 2.

This is clear for level, and follows from Remark (iii) below for geometric level
Generalizing (2.1.1), we might conjecture the following:

(2.1.4) a pure Hodge Module of geometric origin M has level <n iff it has
geometric level ^n.

(2.2) Remarks. ( i ) Any pure Hodge Module of geometric origin M with
strict support Z is a direct factor of H3f*Q$(m) for a projective morphism / :
Y-*Z such that Y is smooth. In fact, it is enough to show the assertion for
the restriction of M to any nonempty open subvariety of Z by Nagata-Hironaka,
cf . Remark (ii) below. By [17, I, (2.7)], M is a direct factor of HJf*QY(m) for
a projective morphism / of a smooth variety Y to Z', where Z' is an affine
variety containing Z as a closed subvariety (by shrinking Z if necessary). Let
gi> ••• , gk be defining equations of Z in Z'. Then we may assume that
Ui/^gT^O) is a divisor with normal crossings by replacing Y with its resolu-
tion (using the decomposition (2.2.1) below). Then we get the assertion using
inductively the commutativity of <pei,i with HJf* (cf. [16, 2.14]), because
GrYtpgi,iQY\_dY~] is a direct sum of constant sheaves supported on intersections
of the irreducible components of glXO), cf. the proof of [17, II, (4.2)], and the
weight filtration on (pgl,iQY[_dY~] induces the weight filtration on the direct
image. In particular, the geometric level of a mixed Hodge Module of geometric
origin is well-defined.

( ii ) A pure Hodge Module M with strict support Z has geometric level
<n, if so is its restriction to a nonempty open subset of Z. In fact, the mor-
phism over the open subset can be extended over Z by Nagata-Hironaka, and
a pure Hodge Module with strict support is uniquely determined by its restric-
tion to any nonempty open subset of its support.

(iii) If a simple pure Hodge Module M has geometric level n, Mis a direct
factor of #°/*(Qr[dr])(ra) for /: F->Z as above such that dY:=dimY=n. In
fact, M is a direct factor of H3 f*(Q$[_dY~]}(m) with dY—n and /<^0 by the
relative hard Lefschetz theorem [15]. If ;<0, we can decrease dY by restrict-
ing Y to a relative hyperplane Y', and Z to a sufficiently small smooth open
subset, so that / and the restriction of / to Y' are smooth.

(iv) Let / : X-^Y be a proper morphism, and M a pure Hodge Module on
X. We have the decomposition

(2.2.1) /*A/^ffi/W*;V/)[-/] in

by [16, (4.5.4)]. If AI belongs to MHM(X^n, MHM(AT)*° or MHM(X)*?*n, we
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have (2.2.1) in DbMHM(Y).n, DbMHM(Y}fn or DbMHM(Y)y^n by [17, II, (4.5)]
and (2.3) below.

(v) Let i\ X-^-Y be a closed embedding of algebraic varieties, and U=
with the natural inclusion /: U-*Y. Then we have naturally the functors

(2.2.2) /,, ;*

using (2.4.1) below and a Cecil covering by affine open subvarieties. They are
the left and right adjoint functors of the pull-back j*=j\ Similarly we have

(2.2.3) i*i*, iV : DbMHM(X)y^n —+ DbMHM(X)y^n

using a Cech covering. Combined with (2.6) below, we get

(2.2.4) *'*, ?•

They are the left and right adjoint functors of the direct image f* by the same
argument as [16, (4.4.1)]. It is the same for £6MHM(*)l°n, DbMHM(X^n, and
these functors are compatible with the natural functors DbMHM(X)^n -»

(2.3) Proposition. The derived categories DbMHM(X)±n, D"MlM(X)*0
n,

DbMHM(X)j.^n are stable by direct images, i.e. for /: X-+Y, we have natural
functors /*, /, : DbMHM(X^n- >DbMH.M(Y^n, etc. compatible with the natural
functors

Proof. By definition of direct image [16] using a sheaf theoretic resolution
of Beilinson [2], it is enough to show that MHM(^)|^W, etc. are stable by the
cohomological direct images HJf:, HJf* for a quasiprojective morphism /,
because we have (2.2.3). So the assertion follows from the next proposition.

(2.4) Proposition. Let f : X—>Y be a morphism of algebraic varieties, and
AI a mixed Hodge Module of level <n on X. Then

(2.4.1) H3f*M, H3f,M have level ^n .

Moreover, if f is proper and AI is pure with strict support X, let H3f*M =
@z^z be the decomposition by strict support, cf. [15]. Then

(2.4.2) Mi has level <n—\j\ for Z=f(X) and level <n—\j otherwise.

The same assertions hold with level replaced by geometric level if M is of
geometric origin.

Proof. We may assume / quasiprojective by the same argument as above,
and M pure with strict support X, using the spectral sequence associated with
the weight filtration.

We first show the assertion on geometric level. If / is projective, (2.4.1) is
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clear by definition. If / is an open embedding, it follows from Nagata-Hironaka.
For (2.4.2), we may assume / projective using Chow's lemma and (2.2.1). In
fact, take a birational projective morphism TT : X'-*X such that X is quasi-
projective. Assume TT induces an isomorphism over UdX. Then there exists
uniquely a pure Hodge Module M' with strict support X' such that M' ri-\un =
M\u (cf. [16]) and the assertion is reduced to M' and fx. So we may assume
/ projective. Then the case Z ~ f ( X } is clear by definition using the relative
hard and weak Lefschetz theorems, cf. (2.2, iii). If Z^f(X\ we take (locally)
a nonzero function g on f(X) such that g~\tyl)Z. Then the assertion follows
from the next proposition and the commutativity of <p with the direct image
(cf. [16, 2.14]), because (pgM£=M£ and we have a surjection can: <pgfM—*<pgfM
(cf. [15, 5.1.4]).

We now show the assertion on level. If / is an open embedding such that
F\Z is a locally principal divisor, this follows from the next proposition, using
[16, (2.11.10)]. So we may assume / projective, and the assertion is reduced
to (2.4.2). By the same argument as above, it is enough to show the case
Z=f(X). So we may assume / smooth. By [16, 2.14], the assertion is reduced
to the case Y=pt by restricting to a generic fiber using the iteration of nearby
cycle functors <p. Let D be the singular locus of M, i. e. D is the largest sub-
variety such that the restriction of Al to its complement is a variation of Hodge
structure. Let x: X'-*X be a resolution of (X, D), and Mr be a pure Hodge
structure with strict support X' such that M' x'\D'—M\x\D where D'—K~^(D},
cf. [16, 3.21]. By the same argument as above, it is enough to show the asser-
tion for M', and we may assume X smooth and D a divisor with normal
crossings. Then the assertion follows from the calculation of [16, 3.11] (using
the intersection of DR(/F|gM, F) with K*L which is filtered quasi-isomorphic to
DR07|«A/, F)).

(2.5) Proposition, Let g be a function. If a mixed Hodge Module Al has
geometric level ^n, then <pgM has geometric level <n and (pgM has geometric
level 5jn. The same assertion holds with geometric level replaced by level.

Proof. We may assume that Al is a pure Hodge Module with strict support
because (pg, <pg are exact functors. We first show the assertion on geometric
level. By (2.2, i), M is a direct factor of HJf*Qg(m) for a projective morphism
/ of a smooth variety Y, and we may assume f~lg~\Q) is a divisor with normal
crossings by the same argument as in (2.2, i). Taking a ramified covering, and
blowing up further, we may assume the multiplicities of its irreducible com-
ponents are constant by the semi-stable reduction theorem. Then GrY<pgQy,
GrYtpgQy are direct sums of constant sheaves supported on intersections of the
irreducible components of /~1^"1(0). So the assertion follows.

For the assertion on level, let D be the singular locus of M, cf. the proof
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of (2.4.1). By the decomposition theorem and the compatibility of direct image
with nearby and vanishing cycle functors [16], the assertion is reduced to the
case the support is smooth and D\jg~l(Q) is a divisor with normal crossings.
The assertion is trivial, if the support is contained in g~\Q). In the other case,
the assertion follows from the calculation of nearby cycle functor [16, (3.17.3)]
and the surjectivity of can: <l)gM-*<pgM.

(2.6) Proposition. Let X be a closed subvariety of Y. Then the natural
functor

(2.6.1) i* : £6MHM(Z)ff,n — > DbMHM(Y^n

is fully faithful and its essential image is the full subcategory consisting of the
objects M such that supp/P'McZ (same for DbMHM(X)fn,

Proof. This follows from the same argument as [16, (4.2.10)] using (2.3)
and (2.5).

(2.7) Theorem. Let M, N be pure Hodge Modules of geometric origin with
geometric level ^n on an algebraic variety S. Let k=wtM— wtJV, where wtiVl
is the weight of M. If Hodge conjecture is true for any smooth projective
varieties, the composition

(2.7.1) Exti.gUB(M, N) —^ Extlgo,,n(M, N) —> Ext|,go(M, JV)

is surjective, where Ext|>go, <=n denotes Ext^-z for c^=MHM(S)l^.

Proof. We may assume VI, N simple. We proceed by induction on n. By
(2.2, iii), M, N are direct factors of #°/*(Qf Wz])(m), #°s*(Q?[dF])(r) for
projective morphisms /: X—>S, g : Y-+S such that dx, dY are the level of M,
N. By Remark (2.2, iv), we may replace A/, .V by /*(QJ[
(r). Let

It is the image of a cycle £ of dimension d by 2, cf. (1.3), where d=(dx+dY

— k)/2. Since the assertion is trivial for £^0, we may assume &>0. Then
d<max{dx, d Y } . Decomposing f into a sum of morphisms, we may assume
that C is represented by an irreducible variety Z. Replacing Z by its resolution,
£ is obtained by the composition of the restriction and Gysin morphisms, cf.
(1.1.4). So the assertion follows from the next proposition.

(2.8) Proposition. Let X be an algebraic variety X of dimension <n. Then
Qf (resp. D% ) is naturally lifted to DbMHM(X)^n. Adore precisely, there exists
uniquely an object of Z)6MHM(J^)|1°^7l, denoted also by Qf (resp. D%), whose
underlying Q-complex is Qx (resp. Dx] and whose restriction to a smooth open
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dense subvariety U is isomorphic to Q" (resp. Djj) in DbMHM(U). Moreover, for
f : X-^Y a morphism of algebraic varieties of dimension <n, the restriction and
Gysin morphisms Qy—>f^Qx and fiDx-*DY aw uniquely lifted to morphisms of
Z}6MHM(F)|f^ (and hence Z/MHM(F)1°, £>6MHM(F)^), and they are compatible
with the composition of morphisms.

Proof. We show the assertion for Qx, because the dual argument holds
for Df. We may assume X, Y connected. The first assertion is clear if X
smooth. If Qf exists, the natural morphism

(2.8.1) Homz.gi*»(Qf, Q?)—> HomQ(Qx, Q*)=Q

is injective by Remark below, because QX^C is clear. Here C and °Hk are as
in Remark below with Jl=MHM(X)^n. For surjectivity, we have a natural
injection Qx-*cH°J*Qu in C with j: U—*X, and the assertion is reduced to that
for U by the argument on the surjectivity of (2.8.3), because j* is left exact
with respect to the classical ^-structure (i.e., °Hkj*Qff=Q (&<0)), and Hom(Q_?,
cH0j*Qg)=Hom(Q%, j*Qg)=Hom(Qfi, Qg). This argument shows also uni-
queness of Qx. For existence, we may assume the existence on an open sub-
variety X' of X such that Z :=X\X' is smooth and X is topologically locally
trivial along Z by inductive argument using a Whitney stratification of X. Let
/*A/=C(Qf-^#0/*Q?') in DbMHM(X) with i: Z-*X and f : X'-^X. Then M
is a variation of Hodge structure of type (0, 0) on Z, and has geometric level
dimZ. So it is enough to show that cH°j*Q§>—>i*A4 is lifted to a morphism of
C. By adjunction, it is equivalent to a morphism i*(cH°j'*Q$,)-+M. So the
assertion is clear, because 2* is exact with respect to the classical ^-structure
so that i*(cH°j'*Q$.)^C, and it is a variation of mixed Hodge structure.

For the restriction morphism, it is enough to show bijectivity of

(2.8.2) Homr.gl$B(Qf, /*Qf) —> HomD,QY,(QY, /*Q*).

Since Jf*/*Q*=0 for £<0, we may replace /*Qf, f*Qx by c#°/*Qf, JC°f*Qx.
Then the injectivity follows from (2.8.3). For surjectivity, we may assume f(X)
is dense in Y using the adjunction for the inclusion of the closure of f(X) into
Y. Let U be a smooth open dense subvariety of Y such that the restriction
of MQf*Qx to U is a local system. Then we have a natural inclusion c//°/*6f~>

cH°j*j*(cH°f*Qx) in C on Y (because the underlying Q-complex of its kernel
is zero). By the same argument as above using the surjectivity of (2.8.3), the
assertion is reduced to that for the restriction of / over U, and we may assume
Y is smooth and M*f*Qx is a local system. Then the surjectivity of (2.8.2) is
clear, because c//°/*Q? is a variation of Hodge structure of type (0, 0) on Y.

Remark. Let JL=MEM(X)^n> MHM(Z)1°, MHM(,Y)^n or MHM(Z)C0. Then
we have a 'classical' ^-structure (c£)-°, c£)-0) on DbJl such that Me,0s0 (resp.
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Me 3)*°) if and only if <#>rat(M)=0 for />0 (resp. /<0), where rat(M) is the
underlying Q-complex of M and M3 is the natural (i.e. classical) cohomology
functor. In fact, c£?=°(resp. c^)"°) is defined by the condition:

For any closed embedding is : S^>X of an irreducible variety S, there is a
non empty open subvariety U of 5 such that (Hki^A4)\u=Q for k>dimS
(resp. (//*ftM)|z7=0 for /e<dimS),

using the theory of gluing ^-structure in [3]. Since the functors Hki$, Hki'-s

corresponds to the functors P3{ki*, p&kils on the underlying Q-complexes by the
forgetful functor rat, and rat : MHM(^)-»Perv(Qx) is faithful and exact, we
may replace H*i$M, HkfsM by p^*jJrat(M), pMkil

srat(M\ and the above con-
dition depends only on the underlying Q-complex. Then we can check the
coincidence with the above condition. In fact, it is clear for c^)=° by the
distinguished triangle as in [16, (4.4.1)], and for c£}=° we use also the left ex-
actness of the functor j* with respect to the classical ^-structure on Db

c(Qx).
Let cHk : DbJl-+C denote the cohomology functor associated with the classical

^-structure where C is the heart of the ^-structure, cf. [3]. Then M^DbJl
belongs to C if and only if C/P(M)=0 for k^Q. The functor cHk corresponds
to the natural cohomology functor Mk : Db(Qx)->M(Qx) by the forgetful functor
rat, and the forgetful functor rat: C—>M(QX) is exact. It is also faithful,
because Im commutes with rat, and Me£ is 0 if and only if rat(M) is zero
(this is checked by restricting to an open subvariety of the support of M\ So
we get injectivity of

(2.8.3) Homc(M, N) — > HomQ(rat(M), rat(AO)

for M, N^C. Note that (2.8.3) is surjective if there is an injection N->N'
such that (2.8.3) is surjective for (M, Nf). This is checked using the morphism
of the long exact sequences associated with the short exact sequence Q—>N—>
N'->N'/N-*Q.

(2.9) Proposition. For M, N, k as in (2.7), the natural morphism

(2.9.1) Extfc lBuB(A/, N) — > Ext|.gl,m(M, N)

is surjective for m>n, if the Hodge conjecture is true for any smooth projective
varieties.

Proof. Let feExt|igls1II(M, N). We apply [17, II, (4.5)] to MHM(S)|fsra,
and get pure Hodge Modules MXO^/^fc) with f;-eExt^gU77lOV/;, A/ ;_0(l^y^Jfe)
such that M=Mfe, N=MQ, wtMj=wtN-i-j, and f =IIjf;. Let dj be the geometric
level of MJ. By the next lemma, we may assume rf;^max{rfi7_i, dj+1} for 0<
j<k (by replacing MJt f; if necessary), if the Hodge conjecture is true. Since
dj—dj-i is odd by (2.1.3), there is an integer /* such that
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(2.9.2) dj<d]_l for i^j\ and di>d3^ otherwise,

where j\ may be 0 or k. So the assertion follows.

(2.10) Lemma. Let Mj(j=Q, 1, 2) be pure Hodge Modules of geometric
origin with weight w+j and geometric level ^n on S, and f^Exts,8i<n(MJ,
Mj.i) (;'=!, 2). // the Hodge conjecture is true for any smooth projective varieties,
there exist pure Hodge Modules of geometric origin M'3 with weight w+j and
geometric level d'j(j=Q, 1, 2) and ^j(^Ext1

Sigl^n(Mj, M/_i)(y=l, 2) such that Mj=
M/(y=0, 2), di^max{d'0, d'z] and

(2.10.1) £i£s=ft« in Ext|,gI^(M2, M0).

Proof. The assertion follows from (2.7) if we replace (2.10.1) by

(2.10.2) £if,=fifi in Ext|,go(M2, M0),

where Ext^ iglsn(M ;, MJ_1)=Ext^go(MJ, M^O by definition. We show that
(2.10.2) implies (2.10.1). Let N^M&Mi, and Nj=M} for ;=0, 2. Define C,e
Exti.gisnCAO, N,_i)(y=l, 2) by Ci=ft— ft, Ca=£a+ft. Then, it is enough to show
CiC2=0 in Ext|,gisn(M2, M0) assuming CiG— 0 in Ext!,go(M2, M0). Using the
long exact sequence associated with the functor Ext(M2, *) and the short exact
sequence associated with G, the assertion is equivalent to the existence of a
mixed Hodge Module of geometric origin M with geometric level <^n such that
Gr%+jM=N} and Cj is identified with the extension class defined by the short
exact sequence Q^Gr%+j_1A4^Ww+jM/Ww+j-2M-+Gr%+jM-+Q. But this follows
from the assumption except for the condition on the geometric level of M. So
the assertion is clear by definition of geometric level on mixed Hodge Modules.

(2.11) Remark. Let M, N, k be as in (2.7), and d, dr the geometric level
of M, N. By (2.9.2), CeExt|,gl^(M, N) is zero for k>d + d', and its restric-
tion to a sufficiently small open subvariety of S is zero for k>d-\-d'—2 dimS,
if the Hodge conjecture is true for any smooth projective varieties. This follows
by the same argument as in (2.9).

(2.12) Lemma. Let X be an n-dimensional algebraic variety such that Qx\_n~]
is a perverse sheaf. Then Q?[TZ], D%[_—n~\ are mixed Hodge Modules (i. e H3Q^=
H~jD§=Q for j^ri) with geometric level n. Let Y be a locally principal divisor
of X, i.e. locally Y— ,g"~1(0)red for a non zero divisor g of Ox- Then Qy[n — 1]
is a perverse sheaf.

Proof. We first show the last assertion. The vanishing of PMJQY for y>
n — l=dimF follows from the definition of perverse sheaf [3]. We have locally

(2.12.1) Qr=C(can: <pgtiQx -> ̂ ,iQx)[-l] .
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This implies PJC'QY=Q for j<n — 1, because ^,i[— 1], ^.i[ — 1] are exact
functors.

For the first assertion, it is enough to show the assertion for Q§ by duality.
Since the functor rat: MHM(X)->Perv(Qjr) is faithful and rat°Hj—pMj°rat, we
have HJQ$=Q for / ^w. The assertion on geometric level is clear by (2.8).
This follows also from an exact sequence of mixed Hodge Modules

(2.12.2) 0 — > Q?[n-l] — > ;:Q?[n] — > Qf [>] — > 0

where Y is a principal divisor such that U=X\Y is smooth (restricting X),
and ; : U-+X.

Remarks. ( i ) If Qx[_n~] is a perverse sheaf, X is purely n -dimensional.
( ii ) We say that X is locally complete intersection, if X is locally a closed

subvariety of a smooth variety Y such that X=nigigft5'71(0)red for a regular
sequence gx, ••• , g k ( i . e. /e=dimF— dimJ£). If J^ is locally complete intersection
of pure dimension n, then Qx[ft] is a perverse sheaf.

(2.13) Lemma. Let X be a quasi projective variety, and Z its closed sub-
variety which does not contain an irreducible component of X. Then there exists
a locally principal divisor Y of X such that Y~DZ (and X\Y is dense in X).

Proof. We may assume X is a closed subvariety of Pm. If X is irredu-
cible, Y is defined by a homogeneous polynomial of m+1 variables. In general,
let X=\JtXi be the decomposition into irreducible components. Then there are
homogeneous polynomials Pl of degree dl such that
We may assume dt=djf and put P=

Remarks. ( i ) If X is locally complete intersection, so is }'.
( i i ) We may assume X\Y smooth by replacing Z with Z \jSmgX.

(2.14) Proof of (0.8). We first note that (0.9) is surjective for p=l by
definition of geometric level, and (0.10) is surjective for p=Q, because (1.1.7)
holds in DbMHM(X)j.^m for dimX^m. We have the vanishing of negative ex-
tensions, because Qy [dimF] is a mixed Hodge Module. So it is enough to show
the first assertion. Wre proceed by induction on dimX. The assertion is clear
if dimX^d, because (1.1.7) holds for DbMHM(,Y)|°^dimx. So we may assume
dimX>d and the assertion is proved for subvarieties of X with smaller dimen-
sion. Let feExtjfl^B^QJ, Df(— d)). Let Z be a closed subvariety of X with
dimension <dimX such that Y :=X\Z is smooth of pure dimension dimX. If
X is quasiprojective, we may assume Z is a locally principal divisor by (2.13).
The restriction of f to Y is the image of ?'eExt^gUdimF(Q^, Qf(/>)) by hypo-
thesis. Using a factorization of £' as in the proof of (2.9), we see that the
restriction of £' to an open dense subvariety is zero by (2.1.3), and we may
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assume ?'=0 by replacing Z. Let i: Z->X, j : Y-*X. We have a distinguished
triangle

(2. 14. 1) — > z*Dif — * DS — > /*D? — > .

By adjunction for /, j (cf. (2.2. v)) and (2.6), the assertion follows from the in-
ductive hypothesis (applied to Z) and the surjectivity of (0.9), using a morphism
of the long exact sequences associated with (2.4.1).

(2.15) Proposition. We have naturally a cycle map (0.3) whose composition
with (0.5) is the cycle map (0.4) in [17, II].

Proof. We may assume n=dim X. By the same argument as in [loc. cit.],
it is sufficient to show clMH(div(g))=0 in ExtiigiSdimXQf , Qf(l)) for a rational
function g on X when Z is smooth projective. Then the assertion is reduced
to [loc. cit.] by the injectivity of (0.5) in the divisor case, cf. (0.8).

§ 3. Injectivity of Cycle Maps

(3.1) Theorem. Let X be a quasi projective variety of pure dimension n, and
d^N. Assume Qx\_n} is a perverse sheaf (resp. X is locally complete intersec-
tion). Then the cycle map (0.3) for d is injective, if the following conditions are
satisfied :

(3.1.1) the cycle map (0.4) for d is injective for any closed subvariety Y of pure
dimension n — l such that QY[_n — 1] is a perverse sheaf (resp. Y is locally
complete intersection),

(3.1.2) the cycle map (0.4) for d+1 is surjective for any purely n-dimensional
smooth projective variety X' .

Remark. Theorem (0.7) follows from (3.1) by induction on n.

We begin with some preliminaries.

(3.2) Yoneda extension. Let JL be an abelian category, and M, N objects
of JL. Then a Yoneda extension class eeFExt^(M, N) is represented by a long
exact sequence

(3.2.1) 0 — >N — > L,—> ---- > L,_! — >M— >0

for Lt^JL. This can be viewed as a resolution of N, and the morphism
M[ — &]— >[L0^ ---- >L f e _!— >M] induced by the identity on M determines e'^
Hom/)6ji(M[— £], N) which depends only on the Yoneda extension class *
Conversely, let e'^HomDi>ji(Af[—k], N) represented by a morphism

(3.2.2) M[-A»] — >L'
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with N^L' a quasi-isomorphism which we can truncate between degree 0 and
k (i.e. L;=0 for /<0 or i>k) using the filtration r. We define a complex L
by L^Li for i<k-l, L t=0 for i^k and L^^Ker (M0Li_!->Li). Then we
have a natural quasi-isomorphism L— *C(M[— &]— >L') with a morphism L[l — k~]
— >M, which gives a long exact sequence (3.2.1) and determines a Yoneda ex-
tension class. These two correspondences are inverse of each other up to sign.

Let e be a Yoneda extension class represented by (3.2.1) as above, and
e'^HomDb^(M[_— k~\, N) corresponding to e. Let u : M—>M' be a morphism in
JL such that er belongs to the image of u* : HomDbj(M'[_ — &], N)— >
Honiz)6j(M[ — &], Af). Then there exist L- (0^z<&) and a morphism of long
exact sequences

<3-2-3>
0 __^ /v— > Lo — > ---- > L*.! — > M— > 0

0 _._> A/ — > £> — > ---- > L / _ x — > Af, __^ 0 ̂

This follows from the definition of morphisms of Dbjl.

Remark. For a long exact sequence (3.2.1), let >A=Im(Li_1->L i) (0<z</e),
NQ=N, ATft=M. We have a short exact sequence 0-^A^-^Li-WVi+1-^0 for Q<i<k.
We denote by e^eExtjiOVi+i, A^) the corresponding extension class. Then e'
coincides with the composition of eif

(3.3) Yoneda extension class associated with a cycle. Let X be as in (3.1).
Let C,^CEd(X), and p = n — d. By (2.13) there are closed subvarieties Xt (l<^i
<p) of X such that Qf t[n— z] is a perverse sheaf and supp Cd^p. Then we
have the cycle class fi=clMH(0 in Ext^80(Qfi, Dx^-d}} for Q^i^p, where
XQ=X. By (2.12) and (2.2, v), £t is naturally defined in Ext^^^Qf,, Df^-rf)).
The restriction and Gysin morphisms Qx^^Qxi and D%l->D%i_l determine ex-
tension classes

(cf. (2.12.2)) such that ef
i°%i°ei=£i_1, and we get

(3.3.1) (n«i^^)-6P-(ni«^ei)=fo in Ext^glSB(Qf [n],

This gives a representative of the Yoneda extension class corresponding to £„.
Let Xp=\JiZi be the decomposition into irreducible components. By (1.1.7), ?p

belongs to

(3.3.2) HomZl80(Q?pW], ^(-dK-d]) ̂ 2
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Its restriction to a generic point of Zi is the multiplication by a rational num-
ber rif and this number gives the coefficients of the cycle £.

For Q^k^p, we define

(3.3.3) 7*=(ni*i*p«»'£P'(m<i^

The following is a key proposition in the proof of (3.1).

(3.4) Proposition. With the above notation, let ^CEd(X) for d^n-2. If
f0:=c!MH(0 is zero in Ext^glSn(Qf [n], D% [- n~](-d}\ there exist a locally
principal divisor Y on X containing Xz, a projective morphism K of a smooth
variety X' of pure dimension n onto X} and

! : Qf [n-l]->Q?[n-l], /2

— >Qf2[w— 2] are natural morphisms.

Proof. Let j:U=X\Xi^>X. By the long exact sequence associated with
0-^Q^Cn— 1]— >y.Q^[n]->Qf [?z]->0, the condition f0=^1og1=0 is equivalent to
that 7] i belongs to the image of

By (3.2) we have a morphism of long exact sequences (3.2.3) in
such that M=Qf1[n-l], M'=-jlQ^\_n~], N=D%[-n](-d), k=2p-l, where the
first long exact sequence corresponds to (3.3.1) as in Remark after (3.2). Put
N'=L'k_i, Nff=lm(L'k_z-^L'k_1). Then the morphism of long exact sequences
induces

0 — -> Q£2[n-2] -^ yfQ^x^Cn-l] — QftCn-l] — > 0

(3.4.1) Ju* J M ' J u

0 — > N" — > ,V — > y,Q^[n] — >0

where y : X^Xz^X^ We denote by

the extension classes induced by the second long exact sequence of (3.2.3) so
that

where e^Extx,si^n(j\Qu C^], Nff) is the extension class associated with the second
exact sequence of (3.4.1). By [17, II, (4.5)], the composition of 572 with Wn^N"
—>N" is zero, because Df[— w](— d) has weights ^ — n-\-2d. So rj'2 is factorized
by the projection N"-+N"/Wn-zN". Replacing N" by N"/Wn-sNff (and e, u"
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by their composition with the projection), we may assume

(3.4.2) wtN^n-2.

We will modify A', N" so that they become as simple as possible. Using
(3.4.1), we can check

(3.4.3) If we have a morphism A'->L such that its composition with u' is
zero and the composition A"— >A'->L is surjective, then we may
replace A', A" by Ker(A'->L), Ker(A"-*L),

because u', u" is factorized by Ker (A'— >L), Ker GV*->L). Then we may assume

(3.4.4) wt A"^n-l,

because wt / fQ^^Cn — l]^w — 1 and wt/,Q^[72]^w. In fact, we may assume
first

wt N'<n ,

and then (3.4.4) using semisimplicity of Grjf A' which induces a splitting of Gr}T
of the second exact sequence of (3.4.1). Let er be the composition of e with
A^-^GrJf-iA". Since wt Q?2[w -2]^n — 2, the composition of M with 0' is zero
by the commutativity of (3.4.1), and er is the composition of /,Qf [n]-»Q£ [n]
with

Let Gr5T-iN*=©z(Gr;T-iAr*)z be the decomposition by strict support. Then

(GrT
7T_1iV//)z=0 for dim Z^n ,

because GrlT-iA" has level <n by (2.1.3). The composition of eff with the pro-
jection GrT

?r_iA//->(GrT^_1A//)z is factorized by Qf [n-l]->Qf [n-1], and is zero
for d imZ<?z — 1, because H1Q%=Q for f>dimZ. If dimZ=n — l, the image
of the morphism Qg[n — l]->(GrT

7r_i.Y'!r)z is either ICZQ7/ or zero. So we may
assume

(3.4.5) Grir-rA'-ejC^Q"

by (3.4.3) so that e" is identified with the natural morphism

where F^ are irreducible closed subvarieties of X with codimension one. In fact,
let Gr5r-iA" = L®L' be a decomposition such that a" (and hence e') is factorized
by L-X}r{r_iAf". Considering the extension class e modulo Wn-aN'-flm w',
we get a splitting of Lf~>Nf/Wn_2N'+lm uf, and we can apply (3.4.3) to the
projection N'-+N' /Wn-iN'+lm u'-+L'. Let

A=Wn-*
Then we have
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Im(A->N'/N"=j<Q$\:n'j)=Im

with a short exact sequence

0 — ̂  Wn-*N* —+A—> Q^

because NffrMmu'=Imuff by the injectivity of u in (3.4.1), cf. (2.12.2). This
implies also a short exact sequence

0 — > Im u' — > A — > Wn-ZN"/lm u" — > 0

which splits by the semisimplicity of Wn..zN" (cf. (3.4.2)), i.e.,

(3.4.6) A^lm

for a subobject A1 of W n - 2 N f f .
Let Y be a locally principal divisor of X containing the Yl, We have a

natural surjective morphism v0 : QrO — 1]— >GrJT-iA/r//, which factorizes 0" na-
turally, cf. (3.4.5). So we get a morphism of short exact sequences

0 — > e?[n-l] — * /('QftrO] — > QZCn] — > 0

0 i
V |l

0 — > Gr*r_iN" — > N'/A — > Q?[n] — > 0

where /" : X\Y~>X, and the extension class of the second exact sequence is e".
Then we can modify JV' by replacing GrJT-iAT' with Qr [w — 1], and get a mixed
Hodge Module JV' with a morphism of short exact sequences

0 __> A _ -> N> — > yrQ^[n] — -> 0

(3.4.7) \v' \v,

0 — >yi — >#' — > ATV/I — >o.

(In fact, Nr is defined by it.) Since u' is factorized by A, u' is naturally fac-
torized by vr. This induces a factorization of the morphism (3.4.1) by

o — > jvx/ — > jv' — > y,Q£M — > o
(3.4.8)

0 _> AT^ —>N' — > y,Q^[n] — > 0

where A/"^ is defined by the first exact sequence. In particular, we have uff =
v"°w" for wff: Qf[n-2]-^Af// so that

with jil^-ri^v". We define a filtration G of JV' by G_iJV'=0,
(=AKN"), G1N' = A+Nff, G2N

f=N'. Let ,40-Im u», B0 = Q
Qf[n-l], C = Qf[n]. Then
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(3.4.9)

because G is defined by the convolution of the two filtrations defined by the
first exact sequences of (3.4.7-8), and AnNff=Ker(A-+jlQg[nJ), etc. Let /2te
Ext*(C, Bt\ otji^Ext^Bi, Aj) denote the extension classes induced by N'. Since
the composition of the extension class of GrfJV', Gr?JV' and that of Gr?W,

is zero, we get

(3.4.10) aj.o^+an0p1=Q (/=o, 1).

By definition, j8t (i=Q, 1) and aOQ are natural morphisms. Then a0i is also a
natural morphism up to sign by (3.4.10), using adjunction. By (3.4.6), we get
aio=0, because A is the extension defined by (a0o, «io). So

(3.4.11) aii'0^0

by (3.4.10). Let 2i^Ext^-^n(Al) DJi\_ — n~\(—d)) be the composition of the inclu-
sion At-+N" with TJ'Z. By the long exact sequence associated with 0-»/U0^4i
->N"->Bl->Q, we get

(3.4.12) ;io°aoi-Ui°aii=-0.

Applying (3.4.3) to N', we may assume further

(3.4.13) AI has strict support of dimension n.

In fact, let Ai=^z(Al)z be the decomposition by strict support. Then, con-
sidering Af ' / Imw' , it is enough to show that the composition of /"QfxrM^
N'/A-^A^Y] with the projection ^4i[l]— >(^40Z[1] is zero for dz^n. Here we
can restrict to X\Y by adjunction for j", and we may replace /"QfvrM by
Qxln']. The case dz<n — l follows from [16, (4.5.6)] using adjunction for
Z-+X. The case dz—n — 1 is reduced to Horn (Qf7 [72 — 1], (Ai)z) =
Hom(Hn~lQz, (A1)Z)=Q by the same argument, and we can check it by restrict-
ing to a smooth open subvariety of Z, because Al is pure of weight n—2.

Since the geometric level of A± is n, AI is a direct factor of //07r#(Q'5-'[w])(l)
for a proper morphism TT of a smooth projective variety X' of pure dimension
n onto Z. By the decomposition theorem (cf. (2.2.1)), Al is a direct factor of
^*QJ5-'[w](l). Let 7, 77 be the composition of an, ^ with the associated mor-
phisms 4i-^r*Q^M(l), 7r*Qz'M(l)-^i respectively. Then (3.4. 11) and (3.4.12)
hold with an, /d replaced by 7, f]. Since w;" is the composition of natural
morphisms Qf2[>— 2]— >AQ-^N", r]z is the composition of Q?2[>— 2]->^40 with
^o, and we get ^0°a0iI= — ̂ 2°/2. So the assertion follows, because f)i=fi.

(3.5) Lemma. Le? X be a smooth quasi-projective variety of pure dimension
n, and Y a (reduced) divisor on X. Let Y = \J1Y1 be I he decomposition into irre-
ducible components. Lei cl be the composition of natural morphisms
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(3.5.1) Q{/—>Q{!%—>Z^ t(l-n)[2-2n]-

Then the d form a basis of a Q-vector space ExtJr,go(Qr,

Proof. By the adjunction for i: Y-*X, the assertion is reduced to (1.1.7).

(3.6) Proposition. With the above notation, let C,(ECHd(X)Q, and £' =
2i^z(C'[^i])eCHd_i(F)e for r^Q. Then the composition of S t J V i ^ Q r — »
QxU)[2] u>#/i clMH(0 coincides with the composition of clMF(C) ^^^ ^^ G^sm
morphism Dy—*DTx.

Proof. We may assume F irreducible, r=l, and £ is represented by an
irreducible closed subvariety Z which intersects properly with Y by the classical
moving lemma. Let Z'=Zr\Y. Using the adjunction for the inclusion i: Y—>X,
we get a commutative diagram

t \ a

where r is as in (3.5.1), a and /3 are induced by the adjunction and determined
uniquely by the commutativity, and the other morphisms are natural ones. By
(1.1.7), /3 is uniquely determined by its restriction to a generic point of each
irreducible component of Zr, and it is enough to show that it is the multiplica-
tion by the intersection multiplicity. In particular, it is enough to consider the
underlying Q-complexes. So may assume Z is a curve and d = l by intersect-
ing with a generic smooth subvariety of X with codimension d — 1, which inter-
sects transversally with Z. Let g be a (reduced) defining equation of Y. We
can check that c is obtained by the composition of a natural morphism i*—></>g and
its dual <^-»z!(l)[2] (by restricting to a generic point of F), and j8 : QZ>—>DZ>
coincides with the composition of Qz'=i*Qz-+<f>gQz with its dual. Then we

m
get the assertion, because $gQz=r(Zr\g~l(t}, Q)=0Q for ^0 sufficiently small,
where m is the intersection multiplicity.

(3.7) Proof of (3.1). The assertion is clear by (1.1.7) if d = n, and follows
from the next proposition if d = n — 1. So we may assume d<n—2. Let C^
CHd(X)Q such that f0=clMH(0=0. By (3.4) we have Y, X', r, TI as in (3.4).
Let

be the elements corresponding to 7, r] by adjunction, where Y'—Tc~l(Y). Here
7*, rj are considered in the extension group defined in D6MHM (X)'^0. Let Y'=
\JiY'L be the decomposition into irreducible components. By (3.5), we have 7' =
Si^Vz for rl^Q) where ct is defined by (3.5.1) with X, Y, Yt replaced by X',
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)•', r;. By (1.4) and (3.1.2), there exists £^CHd+1(X')Q such that i)'=
Let Z'=^rl(£'lYi^CHd(Y

f)Q, and 7?"=clMH(C"). By (3.6), -q'*?' coincides
with the composition of 77 " with the Gysin morphism D$,-^D%,. Since )?, 7 are
the composition of TT*)?', TT*^' with the Gysin and restriction morphisms K*D%,
-*DJx, Qy-^n^Qg. respectively, j]°y coincides with the composition of TT*^"
with the Gysin morphism Dy—>Dx by definition of direct image (cf. [17, II,
(2.3.6)]) using the commutative diagram

(3.7.1)

Dn - > DH

Let CeCHd(y')Q such that **£=£ for i\Y—>X. Then ^2°/2 coincides with the
composition of |=clMII(0 with the Gysin morphism Dy—^D"-- By adjunction,
•qor=i]20fz implies n*7j"=j. Since Tr^^cP111^*^) by [17, II, (2.4)], we get
**£*=£ in CHd(7)Q by (3.1.1). So it is sufficient to show i£ff=Q in CHd(*%
where /' : Y'->Xr. By definition, i'^r is the intersection of £' with Slrz[Fl],
and it is enough to show Ci=S<rt[rl]=0 in CHl(X')Q. We have clMH(Ci)=r'°/i
by definition of ^, where /i:Qf<-»Qr' is the natural morphism. Using the
dual diagram of (3.7.1), Y'°f[ corresponds to 7°/i=0 by adjunction. So we get
clMF(Ci)=0, and the assertion is reduced to the case d — n — l and follows from
the next proposition.

(3.8) Proposition. Let X be an n-dimensional variety. Then we have a
cycle map

(3.8.1) cln : CUn-.(X)Q — * ExtS^(QJ, DJ(l-n)) ,

(cf. [16] [17, I]), and it is bijective, where Exti=Exti&MiiMc;n. Moreover, (0.3-4)
are injective for d — n — l.

Proof. It is enough to show the first assertion, because (0.3-4) are factorized
by (3.8.1). If X is smooth, the assertion is proved in [17, I, (3.4)]. Here X
may be not necessarily pure dimensional, because the (n — l)-dimensional case
is clear. In general, let TT : X'-*X be the normalization. Let Z be a closed
subvariety of X such that d i m Z ^ n — 2. Let U=X\Z. Then the natural
morphisms

(3.8.2) CH

are isomorphisms. In fact, the first isomorphism is clear. For the second, we
use a long exact sequence associated with a triangle like (2.14.1) together with
the adjunction isomorphisms as in (2.2, v). Then the assertion follows from
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[16, (4.5.6)] and [17, II, (4.5)].
We denote by Xk the union of the irreducible components of dimension <±k.

Let Y=Xn_1uS'mg X, Z'^Sing Furn_2U;r(Smg X'\ Then dim Z'^n-2. We
take Z containing Zr. Replacing X by U, we may assume X' smooth and
^TI-I USing ^smooth of pure dimension n — 1. We may assume also X is purely
n -dimensional, because Xn_i does not intersect with an n -dimensional irreducible
component if we delete the intersection.

Let Fusing X, and Y'=n-\Y\ We may also assume that x'=n: \ Yr : Y'-*Y
is etale, because we can take Z containing ;r'(Sing n'\ We have a distinguished
triangle

(3.8.3) —-

using base change by / : Y-*X, and we get the commutative diagram

Ker (CH^Cr'h -> CH^F)^ — > Ext£(Q?, Ker

(3.8.4)

0 0,

where the vertical sequences are exact. By [17, I, (3.4)], /3 is bijective, and it
is enough to show the bijectivity of f. Here we may assume Y connected by
restricting to each connected component. Let k be the number of the connected
components of n~l(Y). Then the source and the target of T are both Q- vector
spaces of dimension k — 1 and we get the bijectivity of 7, where we use the
adjunction for n' together with a splitting of the surjective morphism

(3.9) Theorem. Let X be an n-dimensional variety. Then (0.3) for d — n —
is bijective, and

(3.9.1) c l^rCHn.iWg— ̂  > ExtK&n+i(Qf ,

for d — n — l is also bijective.

Proof. By (3.8) it is enough to show the surjectivity. Let fe
Ext^|Jsn+1(Qf, Df(l— n)). By (1.1.7), it is enough to find an open subvariety
U of X such that dimX\U<n and the restriction of £ to U is zero. Then
the assertion for (0.3) is clear by (2.1.3). For (3.9.1), the assertion follows
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from an argument similar to the proof of (2.10). In fact, we may assume X
smooth, and f=£i£2 for f^Extj-.g^+^M.,, MJ_i)=Extigo(A/J, M,_0 with A/0=
QxW, M2=Q?[n](-l), and Mi=#°;r*Q£|> + l] for a smooth projective mor-
phism TT : r~>Z of relative dimension 1. Then it is enough to show that f , are
induced by divisors in Y=YXxX, because we can choose the divisors so that
they do not intersect by restricting X. Here we may consider Sj 'm MHM(Z)
by the injectivity of Extl.goCV/,, M^O-^Ext^OW,, M;_i). Then the assertion
follows from (3.8).

(3.10) Theorem. Let X be as in (3.1). Then (0.3) for d = n-2 is bijective.

Proof. The injectivity follows from an argument similar to the proof of
(3.1). Here the assumption (3.1.1) is satisfied by (3.8), but (3.1.2) is not, unless
the Hodge conjecture is assumed. But (3.1.2) is used only to construct a cycle
CeCHd+i(X')0 such that )?'=clWH(C). For the proof of this, it is enough to
show that the restriction of i}' to an open dense subvariety of X' is zero by
(1.1.7). Here we may replace 7)', X' by 77, X by definition of 77'. Then the
assertion is clear by (2.1.3), because ij is defined in DbMHM(X)^n.

The surjectivity follows from the surjectivity of (3.9.1), because the restric-
tion of feExtxfgi^dim.r(Qf, D^(—d)) to an open dense subvariety is zero by
(2.1.3).

Remark. We have a morphism

(3.10.1)

by direct image (2.3) and the restriction morphism (2.8). But it is not clear
whether it is bijective. If it is injective, Bloch's conjecture [4] would follow
by an argument similar to [17, II, (4.12)].

(3.11) Remark. By (0.8), the injectivity of (0.5) is reduced to the surjec-
tivity of (0.9) and (0.10). The surjectivity of (0.9) would be true if the cycle
map of Bloch's higher Chow group CHP(Z, 1)Q [5] to Ext^(Q£, Q?(/>)) is sur-
jective, cf. (3.12) below. In general, CHP(X, r}Q is related with

(3.11.1) H^(X, «(/))=Extifgo(Q?f Q?(/)) for i=2p-r, /=/>

by the cycle map. In fact, with the notation of [loc. cit], we can construct
a cycle map of HiKerS* to (3.11.1), and the well-definedness is reduced to its
invariance by a deformation parametrized by A1, which can be checked using
the direct image by a smooth morphism with fiber A1. Since an element of
CW(X, r)Q is represented by a cycle of dimension dim X-\-r—p, there is no
reason to expect the surjectivity of (0.12) for AI=Q$, /V— Q^(J))} i=2p—r, n —
dim X, when r>p (i.e. /</).
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For an irreducible variety X, let

(3.11.2) #j,H(Rat(,Y), Q(/))= Urn //{,„({/,
[7

where £7 runs over (smooth) nonempty open subvarieties of X, cf. [6]. If we
have the surjectivity of the cycle map onto H^H(U} Q(/)), then

(3.11.3) # im(Rat (*), Q0'))=0 for i>j ,

and //^H(Rat(^), Q(z)) would be expressed in terms of Tate variations of mixed
Hodge structures up to finite covering, and would be related with Milnor K-
theory. Note that (3.11.3) for i=2p, j=p is equivalent to the Hodge conjecture
by induction on dim X.

(3.12) Remark. We have the surjectivity of (0.9) if

(3.12.1) Hl^\Rat(X)} 0(/>))=0 for

for any irreducible variety X (cf. (3.11.2)) using induction on dim X. In fact,
we can decrease dim X and p inductively using the long exact sequence as in
(2.14), and reduce to the case p=l. So we consider this case in the following.

Let X be a smooth variety. We have

(3.12.2) Ext^HMc^Qf, «f (l))=Exti4IJMCz)(G? , Qf (D)-A^, 0J9fc>zQ •

Here the last isomorphism with ^-coefficients seems to have been known to
some specialists, where the extension in MHM(Z) is replaced by that in the
category of admissible variations of mixed Hodge structures. If X=pt, the last
isomorphism is due to Carlson, Morgan. This induces a morphism

(3.12.3) a : Extl1HMoY>(Qf , Qx (1))

In fact, we have a : Ext^Mc^Q?, Q?(l))-»r(Zan, O*xan/Rxan)=r(X™,O*an®zQ\
where R denotes the roots of unity of C, and Rxa* the constant sheaf on Xan.
Since each g^F(X*n, O*.an/Rxan) determines a morphism of ni(X, x] into R,
whose image is a finite group, we get F(X*n, O*x*JRx^}=r(X™, O* an)(8)zQ.
Let 0eExtJ,HMc2-)(Q?, Qf (1))- We have to show a(e)(=F(X} O$)®ZQ. Replac-
ing X by a finite covering, we may assume a(e)^F(Xan, C^an) by the above
argument. By GAGA, it is enough to show that a(e) is meromorphic on a
smooth compactification X' of X. By Remmert-Stein (applied to the graph),
we may assume X'\X is smooth deleting the singular points. Then the asser-
tion is easily checked using the condition of admissible variation of mixed Hodge
structure (i.e. extendability of the Hodge filtration). On the other hand, we
have

(3.12.4) 0

as follows. Let £/=SpecC[f, r1], U'=U\{1}, Y=XxU, Y'^XxU' with
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/ : F'->r. For g^F(X, 0J), let ig : X-+Y be the inclusion defined by the graph
of g. If g=£l, we have a natural morphism j\QY'W-+(ie)*Qx(l)' Taking the
direct image TC* by the projection re : Y-*X, we get j8(^)eExti1HMcx)go(Qf , Qx (1)),
where /3(1) is defined by 0. Restricting to each point of X\g~\l), we can
check #°/3=id (choosing the sign appropriately). In fact, the assertion is reduced

S x
dx/x=logx by calculating the period of the mixed Hodge structure corre-

sponding to the extension class. So we get (3.12.2), because a is injective by
[17, I, (4.5)].

Let X be an algebraic variety of pure dimension n, Xt (l^i^r) the irre-
ducible components of X, and Rat W*=IL Rat(^)*, where Rat (X,)* is the
group of non zero rational functions on Xt. Then

(3.12.5)

This follows from (3.12.2) and the exact sequence

where Z=Sing * and U=X\Z. In fact, (3.12.5) is reduced to (3.12.2) if X is
smooth (i.e. X—U), and it is enough to show that 3 coincides with
div : r(U, 0$)®ZQ->@Q, where ExtlrH

2M(^g°(QF, />?(l-n)) is identified with a
direct sum of Q by (1.1.7). Since the assertion is local in the classical topology,
it is reduced to the case X=A1, Z={0}. In this case, 3 is identified with

Ext^HMciDCQ^, Q£(l))->HomMnscQ)(«ff, H\U, Q)J)) in [18, (3.6)], and the asser-
tion follows from the proof of [loc. cit.], because it is enough to consider the
case g=id.

If (3.12.1) is true for any X, Extj£f&(jnso(Qf, Df(l-d)) is generated by
geRat(Z)*®zQ such that div ^==0, where Z is a closed subvariety of pure
dimension d. This suggests a strong relation with higher /(-theory and Bloch's
higher Chow groups [5],

(3.13) Remark. Let k be a field of characteristic zero, and <~V(k) the cate-
gory of reduced and separated varieties over k. Assume k is embeddable into
C, and for any X^^V(k\ there exists an abelian category M(X)' with a
forgetful functor rat : c5^(J^)/->Perv (Xc, Q) satisfying the formalism of mixed
sheaves (e.g., existence and strictness of weight filtration, semisimplicity of
pure objects, stability of its derived category by standard functors compatible
with rat, and existence of QJ/e^(Spec k)' such that rat (QM)=Q and DQ*
= QM, etc.), where Perv(Zc, Q) is the category of Q-perverse sheaves on Xc=

C with stratification defined over k. Here an embedding
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of k into C is chosen. We define the full subcategory Jtt(X) of <M(X)' consist-

ing of the objects of geometric origin as in [17, II]. Then most of the argu-

ments in this paper and [17, II] would apply to this setting. Here the Hodge

conjecture would be replaced by the surjectivity of the cycle map

(3.13.1) Grid* : Gr£OP(A% —> Hom^cspec.XQ-11, Hzp(ax}*(ax)*QM(p})

for X smooth projective. If k is a number field, JH(X}' might be defined by

the category consisting of objects ((M, F), Ka, Kt; W) where (M, F) is a filtered

holonomic £)-Module on X, Ka is a Q-perverse sheaf on Xa — X®ktGC for each

embedding a : &->C, Kt is an etale Qrperverse sheaf [3] on X=X®kk with

action of Gal(&/&) for each prime number /, and W is a finite filtration on M,

Ka, KI, such that they have comparison isomorphisms as in [9] [10] [13] (using

[3]) and ((M® f t i f fC, F), Kff; W) is a mixed Hodge Module on Xff for any a. In

this case, the surjectivity of (3.13.1) would be equivalent to a conjecture that

an absolutely Hodge cycle [9] is algebraic [13].
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