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On the Injectivity of Cycle Maps

By

Morihiko SarTo*

Introduction

Let X be a smooth projective variety over C, and D°MHM(X)2° the bounded
derived category of mixed Hodge Modules of geometric origin on X, cf. [17].
We have naturally Q¥ < D°MHM(X)-°, whose underlying @-complex is @x. Let

Hyu(X, Q()))=Exthomumcxrreo(Q%, Q%(7)),

where (7) denotes the Tate twist, cf. [loc. cit.]. Let CH?(X), be the Chow
group of X with @-coefficients. We have a cycle map

(0.1) cIM: CHP(X ) —> Hyf(X, Q(p)).
By adjunction for ax: X—pt, we have

Hyw(X, Q(7)=Exthimuscereo(QF, RI'(X, QFXs)),

where RI'(X, Q¥)=(ax)+Q% and Q¥=QZ. Here MHS(Q)*° is the category of
mixed Hodge structures of geometric origin, which is defined by MHM(pt)s°.
By [17, 1I, (4.5)], the canonical filtration 7 (cf. [7]) on RI'(X, Q%) splits non
canonically, and induces a decreasing filtration L on Hyy(X, Q(j)) such that

(0.2) Gri Him(X, Q()))=Exthns@=(Q", H' (X, @)1)).

Let L denote also the induced filtration on CH?(X)e. In [17, II] we showed
that the cycle map (0.1) is surjective if the Hodge conjecture is true for any
smooth projective varieties. In this case, the GricIMH are bijective, and (0.2)
holds with the left hand side replaced by GriCH?(X)e, and ¢, j by 2p, p (but
L may be non separated). The existence of such a filtration was suggested by
Bloch [4]. The injectivity of (0.1) is equivalent to the separatedness of the
filtration L on CH?(X),, and would imply Bloch’s conjecture [4]. The bijecti-
vity of (0.1) is related with a problem that MM (Spec C, @), the category of
(still conjectural) mixed motives (cf. [1]) with base field C and Q-coefficients,
might be close to the category of mixed Hodge structures of geometric origin
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MHS(®)%°, cf. also [9][10][12][13], etc. It would be also related with Deligne’s
remark [13, 4.16] and Murre’s results [14], cf. [17, II, (3.4)].

In this paper we study the injectivity of (0.1), and reduce it to the surjec-
tivity of some morphisms. Here the notion of geometric level plays an im-
portant role, and we can get a strong control on it if the Hodge conjecture
is true, cf. (0.11-12) below. We say that a pure Hodge Module with strict
support Z has geometric level <n, if it is isomorphic to a direct factor of
Hif (Q%[dim X])m) for a projective morphism f: X—Z such that X is smooth
of dimension <n. A mixed Hodge Module has geometric level <n, if so are
GrM. Let X be a complex algebraic variety, and MHM(X)%., the full sub-
category of MHM(X)%° consisting of mixed Hodge Modules of geometric origin
on X with geometric level <n. We denote Extjss by Extf qi1s» and Extf 40
if A=MHM(X)%, and MHM(X)2® respectively (same for Hom).

Let X be a complex algebraic variety of dimension <n. Then we have
Q%, D¥= DPMHM(X)%<,, cf. (2.8), where D¥ is the dual of Q¥. By the same
argument as [17, II], we can construct naturally cycle maps

(0.3) M CHo(X)q —> Extz%hi<n(Q%, D¥(—d)),

(0.4) cIMi: CHo(X)q —> Extz*i(Q¥F, D¥(—4)),

cf. (2.15), such that (0.4) is the composition of (0.3) with the natural morphism
(0.5) Extz’8<(Q¥%, D¥(—d)) — Ext¥’((Q¥, D¥(—d)).

Note that (0.4) coincides with (0.1) by the natural isomorphism D¥=Q%(dim X)
[2dimX] if X is smooth, where p=dimX—d. We have

(0.6) Theorem (cf. (3.9-10)). Let X be a pure dimensional quasiprojective
variety such that X islocally complete intersection (or, more generally, @ xIdimX]
is a perverse sheaf). Then the cycle map (0.3) for n=dimX is bijective if d=
dimX —2.

So the injectivity of (0.1) is reduced to that of (0.5) if p<2. In general,
we can show

(0.7) Theorem (cf. (3.1)). Let X be as above, and d=N. The cycle map
(0.3) for n=dimX 7s injective, if (0.5) for n=dimY is injective for any closed
subvariety Y of X with pure dimension < dimX such that Y is locally complete
intersection (or, more generally, Qy[dimY'] 7s a perverse sheaf) and if the cycle
map (0.4) for d-+1 is surjective for any smooth projective variety with dimension
<dimX.

Note that the last hypothesis follows from the Hodge conjecture, cf. [17, II]
and (1.4) below. As to the first hypothesis, we have
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(0.8) Proposition (cf. (2.14)). The mor phism (0.5) is injective for an algebraic
variety X of dimension <n, if the natural morphisms

(0.9) Ext}?aka(QF, QY (p)) —> Exti(Q¥, Q¥(p)
(0.10) Ext¥ gicaime(QF, QF(9)) —> Extilo1:.(QF, Q¥ (D))

are surjective for any smooth (locally closed) subvariety Y of X, where p=dim}”
—d. In particular, (0.5) is injective if d=n—1.

Here (0.9) (resp. (0.10)) is always surjective if p<1 (resp. 0). Note that
the surjectivity of (0.10) follows from the Hodge conjecture, cf. (0.12) below.
If the cycle map of Bloch’s higher Chow group CH?(Y, 1)[5] to Ext}?;(Q¥, Q¥ ()))
is surjective, it would imply the surjectivity of (0.9), cf. (3.12).

We prove Theorem (0.7) by induction on dimJX, and reduce it to the case
X smooth and d=dimX—1, cf. §3. The same argument would apply to the
case of reasonable mixed sheaves, cf. (3.13). For the surjectivity of (0.10), we
show that the natural morphism

(0.11) CHaimy -p(X X sY )o —> Ext¥ oo/ +Q%, 2+Q¥ (D))

is surjective if the Hodge conjecture is true, where f: X—S, g: Y-S are
projective morphisms of smooth varieties X, }'. Here we need the Hodge con-
jecture for any smooth projective varieties by definition of mixed Hodge Modules
of geometric origin. By induction, the surjectivity of (0.11) implies that of the
natural morphisms

(0.12) Extl, gisn(M, N) —> Exty gram(M, N) —> Extl zo(M, N)

for m>n, where A/, N are pure Hodge Modules of geometric origin with
geometric level <n such that the weight of M is equal to the weight of N
plus 7.

In §1, we introduce the notion of relative correspondence over a base
variety, and show the surjectivity of (0.11) assuming the Hodge conjecture.
In §2, we study the property of geometric level. In (2.7) (2.9) we deduce the
surjectivity of (0.12) from that of (0.11). We show (0.8) in (2.14). In §3, we
prove (0.7) by induction on dimX, using the Yoneda extension class associated
with a cycle.

In this paper, variety means a separated and reduced algebraic variety over
C unless otherwise stated.

§1. Relative Correspondence

(1.1) Let f: X—S, g: Y-S be proper morphisms of algebraic varieties,
and d =N. We define the group of relative correspondences of X to ¥ over S
with @Q-coefficients by
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(L.1.1) Cs(X,Y; Q)e=CHa(X XsY)q.

By [17, II] we have a cycle class map

(1.1.2) Cs(X, Y5 @)a —> Extzity. go(Q@¥x vy D¥usr(—d)
=Extzl$, go(Q¥xr, Dixgr(—d)),

where the last isomorphism follows from the adjunction, and is induced by the
restriction morphism Q%.y—@Q%. . (In this paper, the direct image by a closed
embedding is sometimes omitted because the equivalence of categories [16,
(4.2.10)] holds for mixed Hodge Modules of geometric origin.) We have canonical
isomorphisms

(1.1.3)  EXt3¥ oo(Q@%.y, D¥«sr(—d)=Exts¥%, go(f X 8)sQ%xy, 0+D5(—d))
=Ext5’5(/ Q¥ Q2:Q¥, DE(—d)=Exts’(/+Q¥%, g+D7(—d)),

where 0: S—SXS denotes the diagonal embedding. In fact, the first isomor-
phism follows from the adjunction for (f Xg)', (f X &)« together with the isomor-
phism D%, ¢y=(fXg)'0+D¥, the second from the definition of tensor & together
with (f X 2)xQ%.r=1+Q%X2+Q¥, and the last from [18, 2.8] using the duality
D(g+Q¥)=g+D¥.

Let Z be a reduced and irreducible variety of dimension d with a projective
morphism h : Z—S factorized by XxsY —S, i.e. Z has morphisms to X, Y over
S. Then we have a natural morphism

(1.14)  f4Q% —> h«QF —> hyDY(—d)[—2d] —> g+ DY (—d)[—2d]

in D°MHM(S)%°, where the first and last morphisms are induced by the restric-
tion and Gysin morphisms [17, II, (2.3.1)], and the middle by Q% —D¥(—d)[—24d],
cf. (1.1.6) below. Similarly, we have a morphism

(1.1.5) Q%y — 714QY —> 7wy DY (—d)[—2d] —> D¥ g(—d)[—24],

where 7w : Z—XXsY. Note that, if Z is a subvariety of XX Y, (1.1.5) coincides
with the image of the cycle [Z] by (1.1.2).

Remark. Let X be a variety of dimension d, X; (1<:<k) the irreducible
components of dimension d, and X’'=\;X,. Then ICx @7=@:ICx,Q@" by defini-
tion, and we have natural morphisms

(1.1.6) Q%[d]— 1ICx @7 —> DF(—d)[—d].

These two morphisms are dual of each other, and induce natural isomorphisms
(cf. [16, (4.5.14)](17, 11, (2.2.4)])

(L.L7) Homy, ;o(Q%4[d], D¥(—d)—d]) <— Homy. (o(ICx Q, DY(—d)[—d])

~ k
<— Endmumcx2o(ICx @)= Endyumcx=2(ICx,@")=Dq .
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Let m: ¥'—X a resolution of singularity. Then the natural morphism Q% —
D¥(—d)[—2d] of (1.1.6) coincides with the composition of the restriction and
Gysin morphisms Q¥ —n+Q¥ and n.QF =rn.D¥(—d)—2d]—>D%(—d)[—2d] in
D*MHM(X)#° by (1.1.7), because it implies that elements of these groups are
uniquely determined by their restriction to a generic point of each X,.

(1.2) Proposition. The morphism (1.1.4) corresponds to (1.1.5) by the isomor-
phism (1.1.3).

Proof. The last two isomorphisms of (1.1.3) are functorial by [18], and
we have a commutative diagram

Ext§ go(gxD¥, g+ DY = Extl,s, o(@x DI X gxQ¥, 6:D¥)
(1.2.1) i l

Exts’(/+Q¥, gxDY(—d)) = Exts¥ pol f+Q¥XgxQf, 8, DY(—d))
where the vertical morphisms are induced by (1.1.4). We have to show that
the image of ideExt} . (g+D¥, g+D¥) in the last group corresponds to (1.1.5)
by the first isomorphism of (1.1.3).

We can check that the isomorphism [18, 2.8] is compatible with direct

image, using an acyclic resolution in the definition of direct image, cf. also

Remark below. So the morphism g«D¥Xg+QF —0.D¥ corresponding to the
identity on g,D¥ is the composition

(1.2.2) (XD« DFRQY) —> 058+ DY —> 6+D¥ ,

where the first morphism is induced by 6*(D¥XQ¥)=D¥ with §:Y—Y XY the
diagonal embedding. (Note that D¥X]QF —=pr¥D¥ by definition, and pr,-d=id.
We use also Hom(D¥, D¥)=Hom((ay),D¥, Q¥)=Q if Y is connected.) On the
other hand, the morphism (f X 2).Q%, y—0+D¥(—d)[—2d] corresponding to (1.1.5)
by the first isomorphism of (1.1.3) is the composition

(1.2.3)  (f X@Q¥y —> 0xN15QY —> dxhsDF(—d)[—2d] — 0 DE(—d)[—2d].
The first and last morphisms are naturally factorized by using the morphisms

(F X Q)Q%y —> (hXD)xQYy —> 04h5xQY and DY —> g D¥ —> DX,

where the first two morphisms are induced by the restriction morphisms by
Z—-7ZXY—-XXY. Since we have a commutative diagram
‘ (h X 2)xQ% v > 0xh+Q%
(1.2.4) ! l
(WX @)(DEXQFN—d)N —2d] — 0xhDF(—d)[—2d]

the assertion is reduced to the following commutative diagram
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(h X ) DFXRQY) —> 0xh+D%

|
' |

(&X)(DF¥XRQY) —> 0+8+D¥

(1.2.5)

where the horizontal and vertical morphisms are induced by the restriction and
Gysin morphisms respectively. But this can be checked easily, because Z is
the fiber product of ZXxY and Y over ¥V XY.

Remark. The isomorphism [18, (2.8.1)] is valid also for mixed Hodge
Modules of geometric origin. For a morphism of complexes M—.JN, the cor-
responding element of Hom(MXDN, D¥) is defined by using the edge morphism

of the spectral sequence converging to Hom{L, D7), whose E,-term is Ext%(L"?,
D), where L=MXDN and A denotes the diagonal. In fact, a morphism M—
N defines a morphism L°—D¥7 whose composition with L™'—L° is zero, and

this induces the corresponding morphism L—DY.

(1.3) Theorem. Let A be the composition of (1.1.2) and (1.1.3). Then A is
surjective if the Hodge conjecture is true for any smooth projective variety.

Proof. This follows from the next proposition and [17, II, (4.7)].

Remark. The Hodge conjecture for a smooth proper variety is easily reduced
to the X smooth projective case using Chow’s lemma and the compatibility of
the (classical) cycle map with direct image.

(1.4) Proposition. Let X be an algebraic variely, and @ : X' — X a surjective
proper morphism of a smooth variety. Then the cycle map (0.4) is surjective, if
it is surjective for a smooth compactification of X'.

Proof. Put M=C(n.D%—D¥). Then
(1.4.1) M has weight>0, i.e. GrVH’M =0 for i<j.

In fact, it is enough to show that ;.M has weights>0 for any x<= X by [16, 4.67,
where i, : {x}—>X. LetY=x"%(x). Then i,M =C((ay)D}—8Q") by base change
[16, (4.4.3)], and the assertion follows from the long exact sequence

(1.4.2) — H'(ay)xD¥ — H'Q¥ —> H%' M — H'*'(ay)«Dy} —> H'"'Q¥ —,

because (ay)«D¥ has weights =0 and H(ay)«D¥ —>H'Q¥=QY is surjective.
By (1.4.1) and [17, II, (4.5.1)], we get the surjectivity of

(1.4.3) Extx"’o(@%, DE(—d)=Extx’{(Q%, n: D% (—d))
— Extz’5,(Q%, D¥(—d)
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using the long exact sequence associated with the triangle —n D¥ —>D¥—>M—.
Since the morphism (1.4.3) is compatible with the push-down of cycles by [17,
II, (2.4)], the assertion is reduced to the X smooth case.

Let X” be a smooth compactification of X with ;j: X—>X”. We have to
check the surjectivity of the restriction morphism

(1.4.4) Extx*o(QF, D¥(—d)) —> Extz*%,(Q¥, j«D¥(—d))
:EXt}?go(Q.{'\!’: D;(—d))

By the same argument as above, it is enough to show that M'=C(D%.—j.D¥%
has weights >0. But ,C(D% — j.D¥)=:.D¥[1]=Q%[1] for x& X (because
1+7+D¥=0) and 0 otherwise. So the assertion follows.

§2. Level of Mixed Hodge Modules

(2.1) We say that a pure Hodge structure A{ has level<n if max{p:
GrM=+0} —min{p : GriEA#0} <n. We say that a pure Hodge structure of
geometric origin A has geometric level<n if there exists a smooth projective
variety X of dimension <z such that A is a direct factor of H(X, Q¥)m).
Grothendieck’s generalized Hodge conjecture [11] is equivalent to

(2.1.1) a pure Hodge structure of geometric origin M has level <n iff it
has geometric level <n

modulo the Hodge conjecture. In fact, if a pure Hodge structure of geometric
origin 1/ has level <n, M is a direct factor of H'(X, @¥)(m) with i<n assum-
ing Grothendieck’s generalized Hodge conjecture, and then we can use the weak
Lefschetz theorem to decrease dimX.

We say that a mixed Hodge structure has (geometric) level <n if so are
its graded pieces. We say that a mixed Hodge structure has (geometric) level
n, if it has (geometric) level <n and not <n—1. Let MHS(Q):, (resp. MHS
(Q)5sn) be the full subcategory of MHS(@) (resp. MHS(®)*°) consisting of mixed
Hodge structures with level (resp. geometric level) <n. Put MHS(Q)%,=MHS
(@)*°*N"MHS(Q): ».

Similarly we can define the notion of (geometric) level <z (and level n)
for mixed Hodge Modules on an algebraic variety X. We say that a pure
Hodge Module with strict support Z has level <n if its generic variation of
Hodge structure has level <z—dimZ, and geometric level <n if it is a direct
factor of Hif.Q¥(m) for a projective morphism f:Y—Z with ¥ a smooth
variety of dimension <n. We define MHM(X).,, MHM(X)%,, MHM(X)¥., as
above. These categories are stable by the dual functor D, and

(2.1.2) a mixed Hodge Module M has level <n, if ¢»,1/ has level <n for any
locally defined function g.
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In fact, we may assume M pure by the exactness of ¢, and M is a variation
of Hodge structure. Then the assertion is clear. We have

(2.1.3) the (geometric) level of a pure Hodge Module coincides with its weight
mod 2.

This is clear for level, and follows from Remark (iii) below for geometric level.
Generalizing (2.1.1), we might conjecture the following :

(2.1.4) a pure Hodge Module of geometric origin A/ has level <n iff it has
geometric level <n.

(2.2) Remarks. (i) Any pure Hodge Module of geometric origin M with
strict support Z is a direct factor of H’f.Q¥(m) for a projective morphism f :
Y—Z such that Y is smooth. In fact, it is enough to show the assertion for
the restriction of M to any nonempty open subvariety of Z by Nagata-Hironaka,
cf. Remark (ii) below. By [17,1, (2.7)], M is a direct factor of H’f.Q¥(m) for
a projective morphism f of a smooth variety Y to Z’, where Z’ is an affine
variety containing Z as a closed subvariety (by shrinking Z if necessary). Let
g1, -+, 8r be defining equations of Z in Z’. Then we may assume that
Uif'g7Y0) is a divisor with normal crossings by replacing Y with its resolu-
tion (using the decomposition (2.2.1) below). Then we get the assertion using
inductively the commutativity of ¢, ., with H’fys (cf. [16, 2.14]), because
Gri¢,,1Q¥[dy] is a direct sum of constant sheaves supported on intersections
of the irreducible components of g7%(0), cf. the proof of [17, II, (4.2)], and the
weight filtration on ¢, .Q@f[dy] induces the weight filtration on the direct
image. In particular, the geometric level of a mixed Hodge Module of geometric
origin is well-defined.

(ii) A pure Hodge Module M with strict support Z has geometric level
<mn, if so is its restriction to a nonempty open subset of Z. In fact, the mor-
phism over the open subset can be extended over Z by Nagata-Hironaka, and
a pure Hodge Module with strict support is uniquely determined by its restric-
tion to any nonempty open subset of its support.

(iii) If a simple pure Hodge Module M has geometric level n, M is a direct
factor of H°f«(Q¥[dy1)(m) for f: Y—Z as above such that dy:=dimY=n. In
fact, M is a direct factor of H’f.(QF[dy])m) with dy=n and 7<0 by the
relative hard Lefschetz theorem [151. If j<0, we can decrease dy by restrict-
ing Y to a relative hyperplane Y’, and Z to a sufficiently small smooth open
subset, so that f and the restriction of / to Y’ are smooth.

(iv) Let f: X—Y be a proper morphism, and M a pure Hodge Module on
X. We have the decomposition

2.2.1) [ =@D,H f+M)[—j1 in D'MHM(Y)
by [16, (4.5.4)]. If A/ belongs to MHM(X).,, MHM(X)2S, or MHM(X)8%,, we
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have (2.2.1) in D’MHM(Y )., D'MHM(Y )£, or D°MHM(Y )35, by [17, 11, (4.5)]
and (2.3) below.

(v) Let i: X—Y be a closed embedding of algebraic varieties, and U=
XN} with the natural inclusion j: U—Y. Then we have naturally the functors

(2.2.2) Ju Jx+ D'MHMU)% <0 —> D'MHM(Y ))%P<a

using (2.4.1) below and a Cech covering by affine open subvarieties. They are
the left and right adjoint functors of the pull-back j*=j'. Similarly we have

(2.2.3) i5d*, iy’ 1 D'MHM(X)20 <, —> D'MHM(X)E <,
using a Cech covering. Combined with (2.6) below, we get
(2.2.4) i*, i': D'MHM(Y )30, —> D°MHM(X) <, .

They are the left and right adjoint functors of the direct image 74 by the same
argument as [16, (4.4.1)]. It is the same for D°MHM(X)%%, D°MHM(X)<,, and
these functors are compatible with the natural functors D*MHM(X)&., —
D"MHM(X)g,— DPMHM(X )< ,— D°MHM(X).

(2.3) Proposition. The derived categories D'MHM(X)s,, D°MHM(X)%9,
D'MHM(X)®.,, are stable by direct images, i.e. for f: X—Y, we have natural
functors fx, fi: D°MHM(X).,—D*MHM®Y )<,, etc. compatible with the natural
functors D°MHM(X)E.,— D"MHM(X)25,— D"MHM(X)<,— D"MHM(X).

Proof. By definition of direct image [16] using a sheaf theoretic resolution
of Beilinson [2], it is enough to show that MHM(X)g&,, etc. are stable by the
cohomological direct images H’f., H’f, for a quasiprojective morphism f,
because we have (2.2.3). So the assertion follows from the next proposition.

(2.4) Proposition. Let [ : X—Y be a morphism of algebraic varieties, and
M a mixed Hodge Module of level <n on X. Then

2.4.1) H [ M, H f M have level <n.

Moreover, if f is proper and M is pure with strict support X, let H’fyM =
PzM2 be the decomposition by sirict support, cf. [15]. Then

(2.4.2) M} has level <n—|j| for Z=f(X) and level <n—|j| otherwise.

The same assertions hold with level replaced by geometric level if M 1is of
geometric origin.

Proof. We may assume [ quasiprojective by the same argument as above,
and M pure with strict support X, using the spectral sequence associated with
the weight filtration.

We first show the assertion on geometric level. If ; is projective, (2.4.1) is
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clear by definition. If f is an open embedding, it follows from Nagata-Hironaka.
For (2.4.2), we may assume f projective using Chow’s lemma and (2.2.1). In
fact, take a birational projective morphism z: X’'—X such that X is quasi-
projective. Assume z induces an isomorphism over UCX. Then there exists
uniquely a pure Hodge Module A{’ with strict support X’ such that M’|,-1qg)=
M|y (cf. [16]) and the assertion is reduced to M’ and fx. So we may assume
f projective. Then the case Z=f(X) is clear by definition using the relative
hard and weak Lefschetz theorems, cf. (2.2, iii). If Z=/(X), we take (locally)
a nonzero function g on f(X) such that g }(0)D>Z. Then the assertion follows
from the next proposition and the commutativity of ¢ with the direct image
(cf. [16, 2.14]), because ¢,Mi=M} and we have a surjection can: ¢, M—¢, Al
(cf. [15, 5.1.47).

We now show the assertion on level. If f is an open embedding such that
Y\ X is a locally principal divisor, this follows from the next proposition, using
[16, (2.11.10)]. So we may assume [ projective, and the assertion is reduced
to (2.4.2). By the same argument as above, it is enough to show the case
Z=f(X). So we may assume f smooth. By [16, 2.147, the assertion is reduced
to the case Y =)t by restricting to a generic fiber using the iteration of nearby
cycle functors ¢. Let D be the singular locus of M, i.e. D is the largest sub-
variety such that the restriction of A/ to its complement is a variation of Hodge
structure. Let n: X’—X be a resolution of (X, D), and A/’ be a pure Hodge
structure with strict support X’ such that M’| x/\p=M| x\p Where D'=xr"*(D),
cf. [16, 3.21]. By the same argument as above, it is enough to show the asser-
tion for M’, and we may assume X smooth and D a divisor with normal
crossings. Then the assertion follows from the calculation of [16, 3.11] (using
the intersection of DR(j1$8M, F) with KL which is filtered quasi-isomorphic to
DR(jiseM, F)).

(2.5) Proposition. Let g be a function. If a mixed Hodge Module M has
geometric level <n, then ¢, M has geometric level <n and ¢, V[ has geometric
level <n. The same assertion holds with geomelric level replaced by level.

Proof. We may assume that 1/ is a pure Hodge Module with strict support
because ¢,, ¢, are exact functors. We first show the assertion on geometric
level. By (2.2, i), A/ is a direct factor of H’[,Q¥(m) for a projective morphism
f of a smooth variety Y, and we may assume f g %0) is a divisor with normal
crossings by the same argument as in (2.2, i). Taking a ramified covering, and
blowing up further, we may assume the multiplicities of its irreducible com-
ponents are constant by the semi-stable reduction theorem. Then Gr{¢,Q%,
Gr¥¢,Q# are direct sums of constant sheaves supported on intersections of the
irreducible components of f~'¢~%(0). So the assertion follows.

For the assertion on level, let D be the singular locus of M, cf. the proof
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of (2.4.1). By the decomposition theorem and the compatibility of direct image
with nearby and vanishing cycle functors [16], the assertion is reduced to the
case the support is smooth and D\Ug™*(0) is a divisor with normal crossings.
The assertion is trivial, if the support is contained in g7*(0). In the other case,
the assertion follows from the calculation of nearby cycle functor [16, (3.17.3)]
and the surjectivity of can: ¢, M—¢p, M.

(2.6) Proposition. Let X be a closed subvariety of Y. Then the natural
Junctor

(2.6.1) ix 1 D'MHM(X)g%, —> D"MHM(Y )&,

g

s fully faithful and its essential image is the full subcategory consisting of the
objects M such that suppH’MC X (same for DPMHM(X)E, D°MHM(X)<,).

Proof. This follows from the same argument as {16, (4.2.10)] using (2.3)
and (2.5).

(2.7) Theorem. Let M, N be pure Hodge Modules of geometric origin with
geometric level <n on an algebraic variety S. Let k=wtM —wtN, where wtM
is the weight of M. I[f Hodge conjecture is true for any smooth projective
varieties, the composition

(2.7.1)  Exth gea(M, N) —> Exth go. cn(M, N) —> Exth oo(M, N)
g

is surjective, where EXt% 40 <n denotes Exthi for A=MHM(S)%;.

Proof. We may assume M, N simple. We proceed by induction on n. By
(2.2, iii), M, N are direct factors of H°f«(Q¥%[dx])(m), H'g+(QF[dy]) () for
projective morphisms f: X—S, g: Y—S such that dy, dy are the level of M,
N. By Remark (2.2, iv), we may replace M, N by f«(Q¥Ldx))(m), g+«(Q¥[dy))
(r). Let

E=Extl oo /(Q¥[dx]Nm), g«(QFLdy1)r).

It is the image of a cycle { of dimension d by 2, cf. (1.3), where d=(dx+dy
—k)/2. Since the assertion is trivial for <0, we may assume £>0. Then
d<max{dy, dy}. Decomposing £ into a sum of morphisms, we may assume
that ¢ is represented by an irreducible variety Z. Replacing Z by its resolution,
& is obtained by the composition of the restriction and Gysin morphisms, cf.
(1.1.4). So the assertion follows from the next proposition.

(2.8) Proposition. Let X be an algebraic variety X of dimension <n. Then
Q% (resp. D¥) is naturally lifted to D'MHM(X)%.,. More precisely, there exists
uniquely an object of D"MHM(X)E.,, denoted also by Q% (resp. D%), whose
underlying Q-complex is Qx (resp. Dy) and whose restriction to a smooth open
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dense subvariety U is isomorphic to QF (resp. DY) in DPMHMU). Moreover, for
J: X—Y a morphism of algebraic varieties of dimension <n, the restriction and
Gysin morphisms Qy—f«Qx and f.Dx—Dy are uniquely lifted to morphisms of
D*MHM(Y )&%, (and hence DMHM(Y )&%, D°MHM(Y )<,), and they are compatible
with the composition of morphisms.

Proof. We show the assertion for @%, because the dual argument holds
for D¥. We may assume X, Y connected. The first assertion is clear if X
smooth. If Q% exists, the natural morphism

(2~81) HomX. glsn (Qgr ;) i HomQ(QX: QX):Q

is injective by Remark below, because Q¥ <C is clear. Here ¢ and ‘H* are as
in Remark below with A=MHM(X)g,. For surjectivity, we have a natural
injection Q¥—°H"/+Q¥ in C with j:U—X, and the assertion is reduced to that
for U by the argument on the surjectivity of (2.8.3), because 74 is left exact
with respect to the classical ¢-structure (i.e., “H*j.Q¥ =0 (£<0)), and Hom (Q%,
‘H7.Qf)=Hom (Q%, j+«Q@F )=Hom(Q#, Q#). This argument shows also uni-
queness of @%. For existence, we may assume the existence on an open sub-
variety X’ of X such that Z:=X\X' is smooth and X is topologically locally
trivial along Z by inductive argument using a Whitney stratification of X. Let
ixM=C(Q%—°H'7,Q%) in DMHM(X) with 7: Z—X and j;': X’—X. Then M
is a variation of Hodge structure of type (0, 0) on Z, and has geometric level
dimZ. So it is enough to show that ‘H°j Q% —i,M is lifted to a morphism of
C. By adjunction, it is equivalent to a morphism *(°H°/3@%)—M. So the
assertion is clear, because 7* is exact with respect to the classical ¢-structure
so that *(“H°j4Q% )=C, and it is a variation of mixed Hodge structure.
For the restriction morphism, it is enough to show bijectivity of

(2.8.2) Homy gi<n (QF, f«Q%) — Homo(qy)(QY, f+Qx).

Since 4*f4+Qx=0 for k<0, we may replace f+Q¥%, f+xQx by ‘H°f,Q%, 4°f,Qx.
Then the injectivity follows from (2.8.3). For surjectivity, we may assume f(X)
is dense in Y using the adjunction for the inclusion of the closure of f(X) into
Y. Let U be a smooth open dense subvariety of Y such that the restriction
of 4°f+@x to U is alocal system. Then we have a natural inclusion ‘H°f Q¥ —
‘H 4w j*CHf«Q%) in C on Y (because the underlying @-complex of its kernel
is zero). By the same argument as above using the surjectivity of (2.8.3), the
assertion is reduced to that for the restriction of f over UU, and we may assume
Y is smooth and 4°f4«@Qx is a local system. Then the surjectivity of (2.8.2) is
clear, because ‘H°f Q¥ is a variation of Hodge structure of type (0, 0) on Y.

Remark. Let A=MHM(X)&.,, MHM(X)&%,, MHM(.X )<, or MHM(X)°. Then
we have a ‘classical’ f-structure (‘9=°, °©3°) on D’ such that MePD="(resp.
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Me@?°) if and only if 4’rat(M)=0 for ;>0 (resp. j<0), where rat(M) is the
underlying @-complex of M and %’ is the natural (i.e. classical) cohomology
functor. In fact, ‘D=°(resp. ‘9*") is defined by the condition :

For any closed embedding 7is: S—X of an irreducible variety S, there is a
non empty open subvariety U of S such that (H*3%M)|y;=0 for k>dimS
(resp. (H*sM)|y=0 for k<dimS),

using the theory of gluing f-structure in [3]. Since the functors H*:%, H*iy
corresponds to the functors ? 4%:%, ?49(*{5 on the underlying @Q-complexes by the
forgetful functor rat, and rat: MHM(X)—Perv(Qyx) is faithful and exact, we
may replace H*¥M, H*sM by PJ*%rat(M), P4 *israt(M), and the above con-
dition depends only on the underlying Q-complex. Then we can check the
coincidence with the above condition. In fact, it is clear for °9=° by the
distinguished triangle as in [16, (4.4.1)], and for ‘@*" we use also the left ex-
actness of the functor j, with respect to the classical ¢-structure on D% @ x).

Let °H*: D’ 41— denote the cohomology functor associated with the classical
t-structure where C is the heart of the i¢-structure, cf. [3]. Then M& DA
belongs to ¢ if and only if *H*(AM)=0 for k+0. The functor ‘H* corresponds
to the natural cohomology functor 4 *: D% Qx)—M(Qx) by the forgetful functor
rat, and the forgetful functor rat: C—M(Qy) is exact. It is also faithful,
because Im commutes with rat, and M<C is 0 if and only if rat(M) is zero
(this is checked by restricting to an open subvariety of the support of M ). So
we get injectivity of

(2.8.3) Hom¢(M, N)—> Homg(rat(M), rat(N))

for M, NeC. Note that (2.8.3) is surjective if there is an injection N— N’
such that (2.8.3) is surjective for (A, N’). This is checked using the morphism
of the long exact sequences associated with the short exact sequence 0—N—
N'—N’/N—O.

(2.9) Proposition. For M, N, k as in (2.7), the natural morphism
(2.9.1) Exth gisa (M, N) —> Exth gizm (M, N)

is surjective for m>n, if the Hodge conjecture is true for any smooth projective
varieties.

Proof. Let E=Exth gi<m(M, N). We apply [17, 11, (4.5)] to MHM(S)$sn,
and get pure Hodge Modules M,(0<7<k) with &;EEXty q1sm (M, M,.)) (1< k)
such that M=M;, N=M,, wtM,=wtN+7, and E=T1[,&,. Let d; be the geometric
level of M;. By the next lemma, we may assume d,<max{d,,, d,,} for 0<
7<k (by replacing M,, &, if necessary), if the Hodge conjecture is true. Since
d,—d,_, is odd by (2.1.3), there is an integer j; such that
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(2.9.2) d,<d,., for j<j, and d;>d,., otherwise,

where j; may be 0 or k2. So the assertion follows.

(2.10) Lemma. Let M,(j=0,1, 2) be pure Hodge Modules of geometric
origin with weight w-j and geomeiric level <n on S, and &,€Extk g0 (M,,
M,_)(7=1, 2). If the Hodge conjecture is irue for any smooth projective varieties,
there exist pure Hodge Modules of geometric origin M, with weight w-j and
geometric level d;(7=0, 1, 2) and §;€EXty, gisn (M}, M;_1)(7=1, 2) such that M;=
Mj (7=0, 2), di<max{d;, d;} and

(2.10.1) §:6,:=61& in EXty gisa (M,, M,).
Proof. The assertion follows from (2.7) if we replace (2.10.1) by
(2.10.2) &:6,=6& in EXt?S,go(Mz; My),

where Ext§ gi1c0(M,, M,_1)=Exts 40 (M,, M;_,) by definition. We show that
(2.10.2) implies (2.10.1). Let N,=M,PM;, and N,=M, for =0, 2. Define {,=
Exty g<a (N, N;2))(7=1, 2) by §i=§&—&1, {,=&,+&;. Then, it is enough to show
(i8=0 in Ext% g<n (M, M,) assuming {,{,=0 in Ext} . (M, M,). Using the
long exact sequence associated with the functor Ext(M,, %) and the short exact
sequence associated with {;, the assertion is equivalent to the existence of a
mixed Hodge Module of geometric origin M with geometric level <z such that
Gr¥.;M=N, and (, is identified with the extension class defined by the short
exact sequence 0—Grl,; \M—W ., M/W 4. ;_ osM—Gr¥, ;M —0. But this follows
from the assumption except for the condition on the geometric level of M. So
the assertion is clear by definition of geometric level on mixed Hodge Modules.

(2.11) Remark. Let M, N, k be as in (2.7), and d, d’ the geometric level
of M, N. By (2.9.2), {€Exth g1, (M, N) is zero for k>d-+d’, and its restric-
tion to a sufficiently small open subvariety of S is zero for 2>d-+d’—2 dimS,
if the Hodge conjecture is true for any smooth projective varieties. This follows
by the same argument as in (2.9).

(2.12) Lemma. Let X be an n-dimensional algebraic variety such that Q x[n]
is a perverse sheaf. Then Q¥[n], DE[—n] are mixed Hodge Modules (i.e H'Q¥=
HD¥=0 for j+#n) with geometric level n. Let Y be a locally principal divisor
of X, i.e. locally Y=g"'(0)rea for a non zero divisor g of Ox. Then Qy[n—1]
is a perverse sheaf.

Proof. We first show the last assertion. The vanishing of ?.4’@Q for 7>
n—1=dimY} follows from the definition of perverse sheaf [3]. We have locally

(2.12.1) Qy=C(can: ¢, ,Qx — ¢, 1 Qx)[—1].
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This implies ?9°Qy=0 for j<n—1, because ¢, .[—1], ¢,.[—1] are exact
functors.

For the first assertion, it is enough to show the assertion for Q¥ by duality.
Since the functor rat: MHM(X)—Perv(Qy) is faithful and rate H'="?47.rat, we
have H’Q¥=0 for j+n. The assertion on geometric level is clear by (2.8).
This follows also from an exact sequence of mixed Hodge Modules

(2.12.2) 0-— Q¥[n—1]1—;.Qf[n] —> QF¥[n]—>0

where Y is a principal divisor such that U=X\Y is smooth (restricting X),
and j: U—X.

Remarks. (i) If Qx[n] is a perverse sheaf, X is purely n-dimensional.

(ii) We say that X is locally complete intersection, if X is locally a closed
subvariety of a smooth variety Y such that X=/\;<;<,87'(0)req for a regular
sequence gy, '+, gx(i.e. k=dimY —dimX). If X is locally complete intersection
of pure dimension n, then Qx[n] is a perverse sheaf.

(2.13) Lemma. Let X be a quasiprojective variely, and Z its closed sub-
variety which does not contain an irreducible component of X. Then there exists
a locally principal divisor Y of X such that Y DOZ (and X\Y is dense in X).

Proof. We may assume X is a closed subvariety of P™. If X is irredu-
cible, ¥ is defined by a homogeneous polynomial of m-+1 variables. In general,
let X=\,;X; be the decomposition into irreducible components. Then there are
homogeneous polynomials P, of degree d, such that \U,.; X, UZCP70)¢& X..
We may assume d;=d;, and put P=>);P..

Remarks. (i) If X is locally complete intersection, so is 1.
(ii) We may assume X\Y smooth by replacing Z with Z\USingX.

(2.14) Proof of (0.8). We first note that (0.9) is surjective for p=1 by
definition of geometric level, and (0.10) is surjective for p=0, because (1.1.7)
holds in D"MHM(X)g., for dimnX<m. We have the vanishing of negative ex-
tensions, because Q¥[dim) ] is a mixed Hodge Module. So it is enough to show
the first assertion. We proceed by induction on dimX. The assertion is clear
if dimX<d, because (1.1.7) holds for D’MHM(X)2{d4imx. SO we may assume
dimX>d and the assertion is proved for subvarieties of X with smaller dimen-
sion. Let éSExtx’%-,(Q%, D¥(—d)). Let Z be a closed subvariety of X with
dimension <dimX such that Y :=X\Z is smooth of pure dimension dimX. If
X is quasiprojective, we may assume Z is a locally principal divisor by (2.13).
The restriction of £ to Y is the image of & CEXt}gaimy(QF, Q¥ (p)) by hypo-
thesis. Using a factorization of & as in the proof of (2.9), we see that the
restriction of & to an open dense subvariety is zero by (2.1.3), and we may
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assume &’=0 by replacing Z. Let i: Z—X, j: Y—>X. We have a distinguished
triangle

(2.14.1) —> i3 DY —> DY} — j D¥ —.

By adjunction for 7, j (cf. (2.2.v)) and (2.6), the assertion follows from the in-
ductive hypothesis (applied to Z) and the surjectivity of (0.9), using a morphism
of the long exact sequences associated with (2.4.1).

(2.15) Proposition. We have naturally a cycle map (0.3) whose composition
with (0.5) is the cycle map (0.4) in [17, 1I].

Proof. We may assume n=dim X. By the same argument as in [loc. cit.],
it is sufficient to show cIM¥(div(g))=0 in Ext% mzaimx(@%, Q@%(1)) for a rational
function g on X when X is smooth projective. Then the assertion is reduced
to [loc. cit.] by the injectivity of (0.5) in the divisor case, cf. (0.8).

§$3. Injectivity of Cycle Maps

(3.1) Theorem. Let X be a quasiprojective variety of pure dimension n, and
deN. Assume Qx[n? is a perverse sheaf (resp. X is locally complete intersec-
tion). Then the cycle map (0.3) for disinjective, if the following conditions are
satisfied :

(3.1.1) the cycle map (0.4) for d is injective for any closed subvariety Y of pure
dimension n—1 such that Qy[n—171s a perverse sheaf (resp. Y is locally
complete intersection),

3.1.2) the cycle map (0.4) for d+1 is surjective for any purely n-dimensional

smooth projective variety X'.

Remark. Theorem (0.7) follows from (3.1) by induction on n.

We begin with some preliminaries.

(3.2) Yoneda extension. Let A be an abelian category, and M, N objects
of 4. Then a Yoneda extension class eYExt% (M, N) is represented by a long
exact sequence

3.2.1) 00— N—>Ly—> - — L, ,—>M—0

for L;=A. This can be viewed as a resolution of N, and the morphism
M[—k]—>[Ly—> - —L,_,—M7] induced by the identity on M determines e’'c
Hompss(M[—Fk], N) which depends only on the Yoneda extension class «
Conversely, let ¢’=Homps (M [—£7, N) represented by a morphism
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with N5 L’ a quasi-isomorphism which we can truncate between degree 0 and
k (i.e. L;=0 for ;<0 or 7>k) using the filtration z. We define a complex L
by L;=L} for i;<k—1, L,=0 for 7=k and L,_=Ker (M@ L;_,—L;). Then we
have a natural quasi-isomorphism L=C(M[—Fk]—L’) with a morphism L[1—Fk]
—M, which gives a long exact sequence (3.2.1) and determines a Yoneda ex-
tension class. These two correspondences are inverse of each other up to sign.

Let ¢ be a Yoneda extension class represented by (3.2.1) as above, and
e’cHomps(M[—F], N) corresponding to e. Let u: M—AM' be a morphism in
A such that e’ belongs to the image of wu*:Hompsy(M'[—£k], N)—
Homps4(M[—Fk], N). Then there exist L (0<:<k) and a morphism of long
exact sequences

0—>N—>Ly—>-—> Ly, —>M—>0
|
(3.2.3) I l l lu
0 ->N—>Lj—> - —> Ly, —> M —>0.

This follows from the definition of morphisms of D" 1.

Remark. For a long exact sequence (3.2.1), let M,=Im (L;_;—L;) (0<i<k),
N,=N, N,=M. We have a short exact sequence 0—>N,;,— L;—N;,.,—0 for 0<:<k.
We denote by e;=ExtY%(Ni;1, N,) the corresponding extension class. Then e’
coincides with the composition of e;.

(3.3) Yoneda extension class associated with a cycle. Let X be as in (3.1).
Let {&CH4(X), and p=n—d. By (2.13) there are closed subvarieties X; (1<:
<p) of X such that Q¥ [n—i] is a perverse sheaf and supp {CX,. Then we
have the cycle class &;=cIM¥({) in Ext¥,.(Q%, D¥(—d)) for 0<i/<p, where
Xo=X. By (2.12) and (2.2, v), §; is naturally defined in ExtZ¢,<,_«(Q@%,, DE,(—d)).
The restriction and Gysin morphisms Q¥,_,—Q¥, and D¥,—D¥,_ determine ex-
tension classes
eiEEXt:\’i_l,g]§n-zA—1(Q§i_1[n‘Z‘+1]1 Qfxll[n—lj),
e1IIEEXti’i_1.glén—z+1(D§i[i_njy Dfi’]‘,;_l[i—n—l:b ’

(cf. (2.12.2)) such that e;-&;.e;=£;_,, and we get

(3.3.1) (Hlsigpe£)°sp°(Hl§i§pei)=EO in EXt,Zx}fglgn(Qf\’I[n], Y—nl(—4d)).

This gives a representative of the Yoneda extension class corresponding to &,.
Let X,=\U;Z; be the decomposition into irreducible components. By (1.1.7), &,
belongs to

(3.3.2) Homy, o(Q%,[d], D (—d)[—d]) &= Homy o(ICx @, DY (—d)—d])
Pl EndMHM<z>g°(IC.Y,,QH)’—_@1 Endunmezeo(IC2,@7)=D.Q .
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Its restriction to a generic point of Z; is the multiplication by a rational num-
ber r;, and this number gives the coefficients of the cycle {.
For 0<k<p, we define

(3 3 3) 7]’6—(1—,[1<’L<pel) Sp (Hk<1,spei)EEXtX gl<n(QXk[n k]r g[_n](—d))-

The following is a key proposition in the proof of (3.1).

(3.4) Proposition. With the above notation, let {&CHy(X) for d<n—2. If
& :=cIMH(QQ) is zero in Ext¥,<.(Q%¥[n], D¥[ —nl(—d)), there exist a locally
principal divisor Y on X containing X,, a projective movphism w of a smooth
variety X' of pure dimension n onlo X, and

NEEXtE dian(m+Q% [n](1), D¥[—n1(—d)),
TEEXt) q<n(QF [n—1], 74Q% [n1(1))

such thal ney=mnyef,and 7o f1=0, where f,: Q¥[n—11-QF[n—1], f,: QF[n—-2]
—Q%,[n—2] are natural morphisms.

Proof. Let j:U=X\X,—X. By the long exact sequence associated with
0—-Q%[n—1]1-7QF[n]—-Q%[n]—0, the condition &=17,°¢,=0 is equivalent to
that 7, belongs to the image of

Ext¥zic.(7,QF [n], D[—n](—d)) — Ext¥z.(Q%[n—1], D¥[—n](—d)).

By (3.2) we have a morphism of long exact sequences (3.2.3) in MHM(X)&,
such that M=@Q¥%[n—1], M'=;QF[n], N=D¥[—nl(—d), k=2p—1, where the
first long exact sequence corresponds to (3.3.1) as in Remark after (3.2). Put
N'=L;_,, N=Im(L;_,—L;_;). Then the morphism of long exact sequences
induces

0 —> Q%[n—2] — j1Q% \x,[n—1] —> Q% [n 17—0
(3.4.1) [ u L |«
0— N —> N’ — 7.Qf[n] —0
where j/: X\X,—X,. We denote by
NEExtYeln(7, Q7 [n], D¥[—nl(—d)), N:CEXt¥n(N”, DE[—n](—d))

the extension classes induced by the second long exact sequence of (3.2.3) so
that

Mou=1n1,  Neu’=7s  Nee=7;

where ecExt} o127, @F[n], N”) is the extension class associated with the second
exact sequence of (3.4.1). By [17, II, (4.5)], the composition of »; with W,_;N”
—N” is zero, because D¥[—n](—d) has weights =—n+2d. So 7; is factorized
by the projection N*—N*”/W,_sN”. Replacing N” by N”/W,_.N” (and e, u”
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by their composition with the projection), we may assume
(3.4.2) wt N"=n—2.

We will modify N’, N” so that they become as simple as possible. Using
(3.4.1), we can check

(3.4.3) If we have a morphism N’'—L such that its composition with u’ is
zero and the composition N”—N’—L is surjective, then we may
replace N', N” by Ker (N'—L), Ker (N"—L),

because u’, u” is factorized by Ker (N'—L), Ker (N”—L). Then we may assume
(3.4.4) wtN"<n—1,

because wt ji Q% x,[n—1]<n—1and wt;,Qf[n]<n. In fact, we may assume
first

wtN'Zn,

and then (3.4.4) using semisimplicity of Griy N’ which induces a splitting of Gr}
of the second exact sequence of (3.4.1). Let ¢’ be the composition of ¢ with
N”—-Gri_N”. Since wt Q¥,[n—-2]<n—2, the composition of u with ¢’ is zero
by the commutativity of (3.4.1), and ¢’ is the composition of 7 QF[n]—Q%[n]
with

¢" CEXt), gion(Q¥[n], GrIN").

Let GrV_ N"=@4GrV_;N”), be the decomposition by strict support. Then
(Griy_i:N")z=0 for dim Z=n,

because Gr)Y_,N” has level <z by (2.1.3). The composition of ¢” with the pro-
jection Gri¥_,N”—(Gr}_,N"), is factorized by Q%¥[n—11-Q¥%[n—1], and is zero
for dimZ<n—1, because H'Q¥=0 for ;>dim Z. If dim Z=n—1, the image
of the morphism Q%Z[n—1]-(Gr¥_,N"), is either IC,Q¥ or zero. So we may
assume

(3.4.5) Gri V" =@.1Cy, Q"
by (3.4.3) so that e¢” is identified with the natural morphism
¥n—1] — ©.8F,n—1] — D.ICy,QY,

where Y; are irreducible closed subvarieties of X with codimension one. In fact,
let Grly_,N”"=LE@L’ be a decomposition such that ¢” (and hence e’) is factorized
by L—Gr%_,N”. Considering the extension class ¢ modulo W,_,N'-+Imu/,
we get a splitting of L'—>N'/W,_,N’'+Imu’, and we can apply (3.4.3) to the
projection N'—=N'/W,_,N'+Imu'—L’. Let

A=W, ,N”+Imu’.
Then we have
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Im (A—>N’/N"=7.Qf [n])=Im u=Q¥ [n—1]
with a short exact sequence
0—> Wy oN" — A—> Q% [n—1]—0,

because N”’NIm u’=Im u” by the injectivity of » in (3.4.1), cf. (2.12.2). This
implies also a short exact sequence

0—Imu'—>A— W, ,N"/Imi” —> 0
which splits by the semisimplicity of W,_,N” (cf. (3.4.2)), i.e..
(3.4.6) A=Im u’'PA,

for a subobject A, of W,_sN”.

Let Y be a locally principal divisor of X containing the },. We have a
natural surjective morphism v,: @F[n—1]—Gr¥_,N”, which factorizes ¢” na-
turally, cf. (3.4.5). So we get a morphism of short exact sequences

0— QFn—1]— jIQ%y[n] — Q¥[n]—>0
[ 2 |
0— G, N" — N'/JA —Q¥[n]—0

where j7: X\Y—X, and the extension class of the second exact sequence is e”.
Then we can modify N’ by replacing Grliy_,N” with @F[n—1], and get a mixed
Hodge Module N’ with a morphism of short exact sequences

0—>A—N'—> j1Q¥%y[n] —>0

| !
(3.4.7) [— !
00— A—>N'— N'/JA —0.

U1

(In fact, N’ is defined by it.) Since u’ is factorized by A, u’ is naturally fac-
torized by v’. This induces a factorization of the morphism (3.4.1) by

0—>N"—>N'"— j,Qf[n] —>0

‘ v” l v’
A

0—>N"—> N'—>7,Qf[n]—>0

(3.4.8)

where N” is defined by the first exact sequence. In particular, we have u’=
v”ow” for w”: Q% [n—2]—N" so that

7]227]/2/0“)//
with p4=nsv”. We define a filtration G of N’ by G_,N'=0, G,N'=ANN"
(=ANN"), G,N'=A+N", G,N'=N’. Let Ay=Imu”, By=Q¥%[n—-1], B,=
Q¥n—1], C=Q%[n]. Then
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(3.4.9) GriN'=ADA, GréN'=BPB, GriN'=C,

because G is defined by the convolution of the two filtrations defined by the
first exact sequences of (3.4.7-8), and ANN”=Ker (A—;,Q¥[n]), etc. Let B.€
Ext(C, B,), a,;Ext'(B,, A,) denote the extension classes induced by N’. Since
the composition of the extension class of Gr$N’, Gr¢N’ and that of Gr¢N’,
GréN’ is zero, we get

(3410) a;o°,80+a11°‘8120 (=0, 1).

By definition, 8, (=0, 1) and a,, are natural morphisms. Then a, is also a
natural morphism up to sign by (3.4.10), using adjunction. By (3.4.6), we get
a1,=0, because - is the extension defined by (aqo, @1). SO

(3411) a11°‘81:0

by (3.4.10). Let 2, =Ext3¥;.(A., D¥[—n](—d)) be the composition of the inclu-
sion A,—»N” with 7y. By the long exact sequence associated with 0—ADA,
—N”—B,—0, we get

(3.4.12) Ao @or+Area;=0.
Applying (3.4.3) to N’, we may assume further
(3.4.13) A, has strict support of dimension #.

In fact, let A,=P,(A,), be the decomposition by strict support. Then, con-
sidering N’/Im u/, it is enough to show that the composition of j{Q%y[n]=
N’/A—A,[1] with the projection A,[1]—(A4,)z[1] is zero for dy#n. Here we
can restrict to X\Y by adjunction for j”, and we may replace j'Q%.y[n] by
Q¥%[n]. The case dz<n—1 follows from [16, (4.5.6)] using adjunction for
Z—X. The case dz=n—1 1is reduced to Hom (Q%¥[n—17, (A)z)=
Hom (H""'Q%, (A,);)=0 by the same argument, and we can check it by restrict-
ing to a smooth open subvariety of Z, because A, is pure of weight n—2.

Since the geometric level of A, is n, A, is a direct factor of H'z«(Q% [n])(1)
for a proper morphism = of a smooth projective variety X’ of pure dimension
n onto X. By the decomposition theorem (cf. (2.2.1)), A, is a direct factor of
7xQ% [n](1). Let 7, » be the composition of @i, 4, with the associated mor-
phisms A,—r.Q% [n](1), 7+Q% [n1(1)— A, respectively. Then (3.4.11) and (3.4.12)
hold with a., 4, replaced by 7, . Since w” is the composition of natural
morphisms Q%,[n—2]—A,—N", 7, is the composition of Q% [n—2]—-A, with
A, and we get Agca@ogi=—1,°f,. So the assertion follows, because f:=/:.

(3.5) Lemma. Let X be a smooth quasi-projective variety of pure dimension
n, and Y a (reduced) divisor on XN. Let Y=\U,Y, be Lhe decomposition into irre-
ducible components. Lel ¢, be the composition of natural morphisms
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(3.5.1) Qf — Qf, —> Dy (1—n)[2—2n] — D¥(1—n)[2—2n]=Q¥(1)[2].
Then the ¢, form a basis of a Q-vector space Ext} ,o(Q¥, @%(1)).
Proof. By the adjunction for 7: Y —X, the assertion is reduced to (1.1.7).

(3.6) Proposition. With the above notation, let [{=CHy(X)q, and {'=
DL [V )ECHe (Y)g for ri=Q. Then the composition of X.rit.: QF —
QE[2] with cIMI) coincides with the composition of cIMY(C") with the Gysin
morphism D¥—D¥.

Proof. We may assume Y irreducible, »=1, and { is represented by an
irreducible closed subvariety Z which intersects properly with Y by the classical
moving lemma. Let Z'=ZNY. Using the adjunction for the inclusion 7: Y —JX,
we get a commutative diagram

QF — Q7 —> Dj(—d)[—2d] — Di(—d)[—2d]

I la T T
B
Q¥ (—DI—-2] — Q% (—D[—2] == D% (—d)[—2d] — Dy(—d)[—2d],

where ¢ is as in (3.5.1), @ and B are induced by the adjunction and determined
uniquely by the commutativity, and the other morphisms are natural ones. By
(1.1.7), B is uniquely determined by its restriction to a generic point of each
irreducible component of Z’, and it is enough to show that it is the multiplica-
tion by the intersection multiplicity. In particular, it is enough to consider the
underlying @-complexes. So may assume Z is a curve and d=1 by intersect-
ing with a generic smooth subvariety of X with codimension d—1, which inter-
sects transversally with Z. Let g be a (reduced) defining equation of Y. We
can check that ¢ is obtained by the composition of a natural morphism 7*—¢, and
its dual ¢,—¢'(1)[2] (by restricting to a generic point of ¥), and §: @, —D,
coincides with the composition of Qz =i*Q,—¢,Q, with its dual. Then we

m
get the assertion, because ¢,Q,=/"(ZNg '), @)=HQ for t-+0 sufficiently small,
where m is the intersection multiplicity.

(3.7) Proof of (3.1). The assertion is clear by (1.1.7) if d=n, and follows
from the next proposition if d=n—1. So we may assume d<n—2. Let (&
CHy(X)q such that &=cIMH({)=0. By (3.4) we have Y, X', 7, 7 as in (3.4).
Let

7'EEXty 0o(QF [n—1], Q% [n](1)), 7' €Ext¥ W(Q% [n](1), Df[—n](—d))

be the elements corresponding to 7, by adjunction, where V'=z"'(Y). Here
7, 7 are considered in the extension group defined in D’MHM(X)°. Let V'=
\U;Y, be the decomposition into irreducible components. By (3.5), we have 7'=
it for r,€Q, where ¢, is defined by (3.5.1) with X, )7, 1", replaced by X',
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V7, 1. By (1.4) and (3.1.2), there exists {’&CHg,1(X")q such that »’=cIM(").
Let {"=207.(-[V.])=CHu(Y")q, and 7n”=cl™¥({”). By (3.6), 5’1’ coincides
with the composition of %»” with the Gysin morphism D¥ —D¥. Since 7, 1 are
the composition of w,%’, w4y’ with the Gysin and restriction morphisms m4D¥.
—D¥, QF—r.Q¥ respectively, n-r coincides with the composition of z.n”
with the Gysin morphism D¥—D¥ by definition of direct image (cf. [17, II,
(2.3.6)]) using the commutative diagram

ﬂ,'*DII;II > ft*D‘lyl/
|
(3.7.1) | !
D¥ > DY,

Let &CHy(Y)o such that i &={ for 7: Y—X. Then 7,-f, coincides with the
composition of &=cIM() with the Gysin morphism D¥—D¥. By adjunction,
Neor=1s0f, implies myn”=E&. Since myn”=cl™(x4{”) by [17,11, (2.4)], we get
7:{”=C in CHy(Y)q by (3.1.1). So it is sufficient to show z4{”=0 in CHa(X")q
where /': Y’—X’. By definition, 74{” is the intersection of {’ with X,7;[Y.],
and it is enough to show {;=>17,[},]=0 in CH'(X")q. We have cI™3({,)=7"-/1
by definition of ¢,, where fi:Q% —QF is the natural morphism. Using the
dual diagram of (3.7.1), 7’-f1 corresponds to 7-f,;=0 by adjunction. So we get
cIMP(Z,)=0, and the assertion is reduced to the case d=n—1 and follows from
the next proposition.

(3.8) Proposition. Lel X be an n-dimensional variely. Then we have a
cycle map

3.8.1) cl'': CH, _(X)q —> Ext¥2(Q¥%, D¥(1—n)),

(cf. [16] [17, 1]), and it is bijective, where Exty=Exthomumcxy. Moreover, (0.3-4)
are injective for d=n—1.

Proof. It is enough to show the first assertion, because (0.3-4) are factorized
by (3.8.1). If X is smooth, the assertion is proved in [17, I, (3.4)]. Here X
may be not necessarily pure dimensional, because the (n—1)-dimensional case
is clear. In general, let #: X’—X be the normalization. Let Z be a closed
subvariety of X such that dimZ<n—2. Let U=X\Z. Then the natural
morphisms

(3.8.2) CHyi(X)q —> CHai(U)e
Exti*"(Q%, D¥(1—n)) — Ext§*"(Qy, Dif(1—n))

are isomorphisms. In fact, the first isomorphism is clear. For the second, we
use a long exact sequence associated with a triangle like (2.14.1) together with
the adjunction isomorphisms as in (2.2,v). Then the assertion follows from
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[16, (4.5.6)] and [17, II, (4.5)].

We denote by X, the union of the irreducible components of dimension </k.
Let Y=X,_,USing X, Z’=Sing YUY ,_,\Ua(Sing X’). Then dim Z'<n—2. We
take Z containing Z’. Replacing X by U, we may assume X’ smooth and
X,_1USing X smooth of pure dimension n—1. We may assume also X is purely
n-dimensional, because X,_; does not intersect with an n-dimensional irreducible
component if we delete the intersection.

Let Y=Sing X, and Y'=z"%(Y). We may also assume that #'=xz|Y’:Y’'=Y
is étale, because we can take Z containing n'(Sing z’). We have a distinguished
triangle

> w3 DY —> DY} —>

(3.8.3) — Ker (z3 DY — DY)

using base change by /:Y—X, and we get the commutative diagram

7
Ker (CHy_1(Y")q = CH, (Y )g) —> Extp(Q¥, Ker (z:QF — QF))

l |

(3.8.4) CHz_«(X")q —‘i Exty*(Q%, D¥(1—n))
CHy1(X)o —>  Exty*(Q¥, D¥(1—n))
| |
0 0,

where the vertical sequences are exact. By [17,1, (3.4)], B is bijective, and it
is enough to show the bijectivity of 7. Here we may assume Y} connected by
restricting to each connected component. Let %2 be the number of the connected
components of #7!(Y). Then the source and the target of 7 are both @-vector
spaces of dimension k—1 and we get the bijectivity of 7, where we use the
adjunction for =’ together with a splitting of the surjective morphism = Q%
—QF.

(3.9) Theorem. Let X be an n-dimensional variety. Then (0.3) for d=n—1
is bijective, and
(3.9.1) cI™¥: CHp (X)) —> EXty 3n+i(Q¥, DE(1—n)),
for d=n—1 is also bijective.

Proof. By (3.8) it is enough to show the surjectivity. Let &<
Ext¥ 2<n1(@%, D¥(1—n)). By (L.1.7), it is enough to find an open subvariety

U of X such that dim X\U<n and the restriction of & to U is zero. Then
the assertion for (0.3) is clear by (2.1.3). For (3.9.1), the assertion follows
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from an argument similar to the proof of (2.10). In fact, we may assume X
smooth, and £§=&&, for &,SEXt) gicnii(M,, M, )=Exty o(M,, M,_;) with M,=
Q%n], M,=Q¥%[n](—1), and M,=H°w,.Q¥[n+1] for a smooth projective mor-
phism 7z :} —X of relative dimension 1. Then it is enough to show that &, are
induced by divisors in Y=1 X y X, because we can choose the divisors so that
they do not intersect by restricting X. Here we may consider &, in MHM (X)
by the injectivity of Ext} co(M,, M, )—Exti{M,, Al,_;). Then the assertion
follows from (3.8).

(3.10) Theorem. Let X be as in (3.1). Then (0.3) for d=n—2 is bijective.

Proof. The injectivity follows from an argument similar to the proof of
(3.1). Here the assumption (3.1.1) is satisfied by (3.8), but (3.1.2) is not, unless
the Hodge conjecture is assumed. But (3.1.2) is used only to construct a cycle
{'=CHg41(X")q such that p’=cIl™*(’). For the proof of this, it is enough to
show that the restriction of %’ to an open dense subvariety of X' is zero by
(1.1.7). Here we may replace 5’, X’ by », X by definition of %’. Then the
assertion is clear by (2.1.3), because 7 is defined in D*MHM (X)&,.

The surjectivity follows from the surjectivity of (3.9.1), because the restric-

tion of E€EXtz*¢ caim x(Q¥%, D¥(—d)) to an open dense subvariety is zero by
(2.1.3).

Remark. We have a morphism

(3.10.1) Extz® % caim x(QF, D¥(—d)) — Extyt%icaim x(QF, (ax)xD¥(—d))

by direct image (2.3) and the restriction morphism (2.8). But it is not clear
whether it is bijective. If it is injective, Bloch’s conjecture [4] would follow
by an argument similar to [17, II, (4.12)].

(3.11) Remark. By (0.8), the injectivity of (0.5) is reduced to the surjec-
tivity of (0.9) and (0.10). The surjectivity of (0.9) would be true if the cycle
map of Bloch’s higher Chow group CH?(X, 1), [5] to Ext¥z5(Q%, Q¥(p)) is sur-
jective, cf. (3.12) below. In general, CH?(X, r)q is related with

(3.11.1) Hu«(X, Q)=Exty .o(Q¥%, Q¥(j)  for i=2p—r, j=p

by the cycle map. In fact, with the notation of [loc. cit.], we can construct
a cycle map of N;Kerd; to (3.11.1), and the well-definedness is reduced to its
invariance by a deformation parametrized by A!, which can be checked using
the direct image by a smooth morphism with fiber A'. Since an element of
CHP(X, r), is represented by a cycle of dimension dim X+4r—p, there is no
reason to expect the surjectivity of (0.12) for A/[=Q¥, N=Q¥(p), i=2p—r, n=
dim X, when r>p (i.e. i<J).
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For an irreducible variety X, let

(3.11.2) Him(Rat(X), Q)= I_lUlg HyU, Q7))

where U runs over (smooth) nonempty open subvarieties of X, cf. [6]. If we
have the surjectivity of the cycle map onto Hyn(U, @(7)), then

(3.11.3) Him(Rat (X), Q(5)=0 for i>7,

and Hyn(Rat(X), Q7)) would be expressed in terms of Tate variations of mixed
Hodge structures up to finite covering, and would be related with Milnor K-
theory. Note that (3.11.3) for i=2p, j=) is equivalent to the Hodge conjecture
by induction on dim X.

(3.12) Remark. We have the surjectivity of (0.9) if
(3.12.1) Hir'(Rat(X), Q(p))=0 for p>1

for any irreducible variety X (cf. (3.11.2)) using induction on dim X. In fact,

we can decrease dim X and p inductively using the long exact sequence as in

(2.14), and reduce to the case p=1. So we consider this case in the following.
Let X be a smooth variety. We have

(3.12.2) Extimvone(@%, @¥(1)=Exthumx(Q%, Q¥(1)=1'(X, 0$)X:Q .

Here the last isomorphism with Z-coefficients seems to have been known to
some specialists, where the extension in MHM(X) is replaced by that in the
category of admissible variations of mixed Hodge structures. If X=pt, the last
isomorphism is due to Carlson, Morgan. This induces a morphism

(3.12.3) a: Extynmn(@F, Q¥(1) — I'(X, 09HR:Q .

In fact, we have & : Extimmcxn(@F, Q¥(1)—I'(X?, O%an/R yan)=1(X*",0%2xR2Q),
where R denotes the roots of unity of C, and R ., the constant sheaf on X3
Since each g=l'(X*", O%an/R yan) determines a morphism of =.(X, x) into R,
whose image is a finite group, we get I'(X?", O%an/R yan)=1(X*", 0%::)R2Q.
Let eeExthuvn(Q%, Q%(1)). We have to show a(e)=l(X, 0%R,Q. Replac-
ing X by a finite covering, we may assume a(e)=/ (X", 0%,,) by the above
argument. By GAGA, it is enough to show that a(e) is meromorphic on a
smooth compactification X’ of X. By Remmert-Stein (applied to the graph),
we may assume X'\ X is smooth deleting the singular points. Then the asser-
tion is easily checked using the condition of admissible variation of mixed Hodge
structure (i.e. extendability of the Hodge filtration). On the other hand, we
have

(3.12.4) B:I'(X, 0%)&Q2Q —> Extimmn=(Q¥, @F(1))
as follows. Let U=SpecC[t, t™'], U'=U~\{l}, Y=XXU, Y'=XXU’ with
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7:Y’'>Y. For g=I'(X, 0%), let i, : X—Y be the inclusion defined by the graph
of g. If g#1, we have a natural morphism ;,QF(1)—(i,)«Q%(1). Taking the
direct image w4 by the projection = : ¥ =X, we get 8(g2)EExtyumx =o(Q%, Q%(1)),
where p(1) is defined by 0. Restricting to each point of X\g7%(1), we can
check a-fB=id (choosing the sign appropriately). In fact, the assertion is reduced

to Srdx/x-——log x by calculating the period of the mixed Hodge structure corre-
1

sponding to the extension class. So we get (3.12.2), because a is injective by
(17, 1, (4.5)].

Let X be an algebraic variety of pure dimension n, X; (1<i<r) the irre-
ducible components of X, and Rat(X)*=TI;Rat(X,)*, where Rat (X,)* is the
group of non zero rational functions on X,;. Then

(3.12.5) Extinilineo(@F, DE¥(1—n)=Extiihr(Q¥, D¥(1—n))

={g=Rat (X)*Q;Q|div g=0}.

This follows from (3.12.2) and the exact sequence

Extindli e QF, DE¥(1—n)) —> Exthmman(QFf, QF (1)
0

—> Extiifine(QF, DE(1—n)),

where Z=Sing X and U=X\Z. In fact, (3.12.5) is reduced to (3.12.2) if X is
smooth (i.e. X=U), and it is enough to show that o coincides with
div: I'(U, 0§)R;Q—PQ, where Extidl zreo(QF, D¥(1—n)) is identified with a
direct sum of @ by (1.1.7). Since the assertion is local in the classical topology,
it is reduced to the case X=A! Z={0}. In this case, 0 is identified with
Extyaman(QF, QF (1)—~Homyusox(R”, H'(U, @).1)) in [18, (3.6)], and the asser-
tion follows from the proof of [loc. cit.], because it is enough to consider the
case g=id.

If (3.12.1) is true for any X, Extifl xeo(Q%, D¥(1—d)) is generated by
g=Rat (£2)*®zQ such that div g=0, where Z is a closed subvariety of pure
dimension d. This suggests a strong relation with higher I{-theory and Bloch’s
higher Chow groups [5].

(3.13) Remark. Let k be a field of characteristic zero, and <(k) the cate-
gory of reduced and separated varieties over 2. Assume k is embeddable into
C, and for any XecU(k), there exists an abelian category M(X) with a
forgetful functor rat: M(X) —Perv (X¢, Q) satisfying the formalism of mixed
sheaves (e.g., existence and strictness of weight filtration, semisimplicity of
pure objects, stability of its derived category by standard functors compatible
with rat, and existence of Q"= .M(Spec k) such that rat(@¥)=@Q and DQY
=Q", etc.), where Perv (X¢, Q) is the category of @Q-perverse sheaves on Xo=
XRrC=XXspec rSpec C with stratification defined over .. Here an embedding
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of & into C is chosen. We define the full subcategory #(X) of H(X) consist-
ing of the objects of geometric origin as in [17, II]. Then most of the argu-
ments in this paper and [17, II] would apply to this setting, Here the Hodge
conjecture would be replaced by the surjectivity of the cycle map

(3.13.1)  Gricl”: GriCH?(X)q —> Homcspec 1> (@, H**(ax)+(axy*Q"(p))

for X smooth projective. If %k is a number field, #(X)" might be defined by
the category consisting of objects (M, F), K,, K;; W) where (M, F) is a filtered
holonomic 9-Module on X, K, is a Q-perverse sheaf on X,=AX), ,C for each
embedding ¢: k—C, K, is an étale @Q,-perverse sheaf [3] on X=X®,k with
action of Gal(k/k) for each prime number /, and W is a finite filtration on M,
K,, K,, such that they have comparison isomorphisms as in [9][10][13] (using
[3]) and (M. C, F), K, ; W) is a mixed Hodge Module on X, for any ¢. In
this case, the surjectivity of (3.13.1) would be equivalent to a conjecture that
an absolutely Hodge cycle [9] is algebraic [137.
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