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Invariants of 3-Manifolds Associated with
Quantum Groups and Verlinde's Formula

By

Toshie TAKATA*

Abstract

We obtain a projectively linear representation of SL(2, Z) from invariants defined
by Reshetikhin and Turaev and prove 'Verlinde's formula' for SC7(2) based on the com-
putation of invariants. Using an algebra associated with 'Ising model', we constract in-
variants of links and 3-manifolds.

Introduction

In [16], Witten obtained new topological invariants of closed 3-manifolds
and links in 3-manifolds from the quantum field theory. Shortly afterwards,
in [13], Reshetikhin and Turaev defined related invariants of closed oriented
3-manifolds and links in such 3-manifolds, by means of representations of
quantum groups. More precisely, they use quantized universal enveloping
algebra Uq(sl(2, C)), which is a ^-deformation of the universal enveloping algebra
of s/(2, C) discovered independently by Drinfeld [1] and Jimbo ([3], [4]). The
algebra Uq(sl(2, C)) has a structure of a Hopf algebra. Reshetikhin and Turaev
introduced the additional structure in the case ^—exp(2m7rV— 1/r) called a
'modular' Hopf algebra to define invariants of 3-manifolds. They obtain in-
variants of 3-manifolds as a combinational formula using invariants of framed
link associated with the algebra Uq(sl(2, (7)). This is based on the fact that
any closed connected oriented 3-manifold is obtained by Dehn surgery [12] of
S3 along a framed link [9].

As an application of the invariants, we construct a projectively linear
representation of SL(2, Z). Let Z(T2) be an (r—l)-dimensional vector space
over C and {0i}r=0

z a basis of the vector space Z(T2) and we associate to a
basis element et a solid torus Ut which has a link in the interior. Gluing such
two solid tori Ut and Uj by an element X of the mapping class group of the
torus T2, we obtain a closed 3-manifold Mx with a link. We denote the in-
variant of the resulting manifold Mx by Xtj. We define an action p of SL(2, Z)
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on the vector space Z(T2) by the formula

*. (7=0, • • - , r-2).
t=0

For generators S and T of SL(2, Z), we obtain the equations

Si ,=J — sin
V r

This matrix (S^) is the unitary matrix and the representation of SL(2, 2T) by
means of the matrices above was discovered by Kac and Peterson [5] to discribe
the modular property of the character of the affine Lie algebra and was also used
by Kohno [7] to define invariants of 3-manifolds. The above representation

p : SL(2, Z) — > GL(Z(T2))/<C>,

where <C> is the cyclic group generated by a root of unity C —
exp( V^TC— ̂ +(3;rm/2r)— (7T/2))), is a projectively linear representation. Here (p
is determined from the following Gauss sum :

As an application, we prove 'Verlinde's Formula' for SU(2) [15]. This is
given by the following formula :

where
if

0 otherwise.

We verify it by computing the invariant of S2xS1 with a link in two ways.
The proof is similar to that by Witten [16], but our approach is based on
representations of Uq(sl(2, C)) with q=exp(2mxv/:::l/r).

Finally, instead of the above modular Hopf algebra, we consider an algebra
associated with 'Ising model'. Recently, it has been discovered that this algebra
is related for example to the conformal field theory (see for example [2], [10]),
the representation theory of the infinite dimensional Lie algebras. This algebra
is an associative algebra with 3 generators 1, a, <ji whose relations are 0-^=1,
(/>'ff = a-(p=ff, 0-0 = l+</>, and has the conformal dimensions A1=0, A^=l/2,
Atf = l/16. Using this algebra, we define C-linear operators for tangle diagrams
and construct invariants of framed links. Then, by the same way as in [13],
one can obtain invariants of closed oriented 3-manifolds. The topological in-
variance follows from the invariance under Kirby moves [6].
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The paper is organized as follows. In § 1, we review some of the results
in [13]. We explain a representation of a modular Hopf algebra and define
invariants of links and 3-manifolds derived by Reshetikhin and Turaev. In § 2,
using the invariants derived in § 1, we establish a representation of SL(2, Z).
The action of generators S and T on the vector space Z(T2) is represented by
matrices and it is shown that they satisfy their relations. In § 3, a proof of
'Verlinde's formula' for SU(2) is presented. To compute the invariants, we
make use of the idea in § 2. In § 4, an algebra associated with Ising model'
is described. Based on the algebra, we define invariants of framed links and
obtain invariants of 3-manifolds by means of the link invariants by a similar
way as in § 1 .

§ 1. Review

1.1 Modular Hopf Algebra Ut

In [13], Reshetikhin and Turaev give Ut as an example of 'modular' Hopf
algebra. In this paper, we consider the definition of topological invariants of
3-manifolds for this modular Hopf algebra Ut. We explain this modular Hopf
algebra Ut. For a non zero q^C, Uq(sl(2, C)) is the Hopf algebra which is a
<7-deformation of the universal enveloping algebra of Lie algebra s/(2, C). Let
us recall the definition of Ut due to Reshetikhin and Turaev. Let q be a root
of unity and £=exp(7r V— lm/2r) where m and r are mutually prime integers
with odd m, 2r—l^m^l, r^2 and q=t4. We fix an integer r satisfying r^2.
We define Ut to be the associative algebra with unit over the cyclotomic field
Q(0 with 4 generators K, K"1, X, Y satisfying the following relations :

z— ~z

(1.1.1)

(1.1.2) XK=t~2KX, YK=tzKY

(1.1.3) #4r=l, Z r=F r=0.

The relations (1.1.1), (1.1.2) define the algebra Uq(sl(2, £)). The structure
of Hopf algebra in Uq(sl(2, C)) induces a structure of a Hopf algebra in Ut. The
action of comultiplication A, counit e, antipode f are given on the generators
by the following formulas.

(1.1.4)

(1.1.6)

(1.1.7)

0.1.8)
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The structure of the ribbon Hopf algebra in Uq(sl(2, C)} induces a structure
of the ribbon Hopf algebra in Ut. Thus Ut has the universal ^-matrix R^
Ut®Ut due to Drinfel'd [1] which satisfies Yang Baxter equation, u^Ut defined
from R, and v^Ut which is a central element of Ut. If we write as sum
R=^iai&fii, then w=S«7(j80«< and v=uK~z. Moreover, Ut satisfies six axioms
(see [13, § 3]) and has a structure of modular Hopf algebra. We describe the
representation of modular Hopf algebra Ut. Let 1 be a finite set of integers
{0, 1, • • - , r—2}. For an integer *e/, VT denotes (*-fl)-dimensional irreducible
representation of Ut. It is an (z+l)-dimensional Ut-module. The action p of
the generator K of Ut on Vt has the following matrix representation:

0
(1.1.9)

' 0

For any [/^module Vt we provide the dual linear space FY=Homc(F, C)
with the action of Ut:

The matrix representation of this action is given by the following matrix:

I'" ,-,., 0
(1.1.10) |0Fy(/O'—>

\ 0 ' >

Let Vif Vj be Ut-modules and pVi (resp. ^p the action of Ut on F< (resp.
Fj). Their tensor product is the C/t-module F^Fj equipped with the action
of Ut defined by the formula for

Here A is the comultiplication of Ut. One may consider the category RepUt

of finite dimensional linear representations of Ut. The objects of RepUt are
left £7rmodules

where i^I, eze{±l}, Ft^F^, V^=Vyi9 l^l^k. The morphisms of RepUt

are Z7rlinear homomorphisms.

Definition 1.1. Let F be an object of RepUt. For any linear operator
/ : F->F, we define its quantum trace trg/ to be the ordinary trace over C of
the linear operator

/': V —. >V,f'W=p(u'
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In particular, if / is the identity map idv, then we denote trqidv by dimQF
and call it the quantum dimension of V. Note that if V=VJf for /e7, then
using v=uKz and (1.1.9), we get

(1.1.11)

where [n]=(f2B-r2n/fa-r2)=(sin (7rmn/r)/sin(7rra/r)).
In [13], Reshetikhin and Turaev proved the following theorem.

Theorem 1.2 (Reshetikhin-Turaev). Let V$(fe7) be an irreducible repre-
sentation of Ut- There exists a decomposition

(1.1.12)

as a Ut-module, where k satisfies the following conditions

(1.1.13) i—j

(1.1.14)

Moreover Zi3 is a Ut-module with the following property. For any integers
i, j'e/ and any Ut-linear homomorphism f : Z^—>Zi;, the quantum trace of f is
equal to zero :

(1.1.15) tr,/=0.

1.2 Ribbon Graph

An oriented, directed, homogeneous ribbon tangle is a collection of ribbons
and annuli as illustrated in Fig. 1 ([13], [14]).

A ribbon (annulus) is oriented if it has an orientation as a surface in R*.
By the shaded regions, we express that the tangle is oriented (Fig. 1). A

Fig.
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tangle is homogeneous if each twist of all ribbons and annuli in the tangle is
a full twist. A ribbon tangle is directed if the cores of its ribbons and annuli
are provided with directions. For each ribbon tangle we assign to each com-
ponent a finite dimensional irreducible representation Vt of Ut, where / is called
its colour. The procedure is called colouring and we denote it by L In Fig. 2,
elementary coloured ribbon tangles are sketched. We consider ribbons which
are called coupons. A small neighborhood of each coupon Q is depicted in
Fig. 3, where the rectangle illustrates the coupon. A colour of each coupon is
a C-linear homomorphism defined from the colours and directions of the ribbons
gluing to it. We add coupons to the tangle.

c»

Fig. 2

Fig. 3

Let us introduce the category M of ribbon graphs. The objects of M are
sequences

7=(0'i» £i)> •" > (*'*» £*)) (*i» ••' > ik^l, 61, ••• , e*e{l, —1}).

We denote the set of such sequences by TV. If i], ij'^N, then a morphism y—>
f]r is a coloured ribbon graph (considered up to isotopy) such that the sequence
of colours and directions of the bottom (resp. top) ribbons is equal to y (resp.
i)'\ The composition F'°F of such two morphisms F: y—>rj', Ff: TI'-^TI" is
the ribbon graph obtained by gluing the bottom ends of F' with the corres-
ponding top ends of F. The tensor product of objects ^5 -q' is their juxtaposi-
tion f], ?]' (see Fig. 4).
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r r'

r <g>r '
Fig. 4

r ' o r

1.3 Invariants of Closed 3-Manifolds

Reshetikhin and Turaev show that there exists a unique covariant functor
from M to RepUt with five properties (see §2.5 in [13]). They define £/rlinear
homomorphisms corresponding to elementary coloured ribbon graphs pictured in
Fig. 2 and graphs pictured in Fig. 5.

Since the graphs /t, Jl, Xfjf Xl'J, ai} bi} ci} di generated the category JC,
the compositions and tensor products of the corresponding homomorphisms de-
termine F(F) for a coloured ribbon tangle F. In particular, a coloured (0, 0)-
ribbon tangle F defines C-linear homomorphism C-»C, i.e. a multiplication by
a certain element of C. The element is a regular isotopy invariant of F. It
is also denoted by F(F).

Example 1.3. Let F be a coloured (0, 0)-ribbon tangle in Fig. 6. Then
F(F)=F(bi)°F(ct) and an easy computation shows F(F)=dimqVi.

Fig. 5 Fig. 6

Let us recall that dim^F* is equal to the quantum trace of identity homo-
morphism. The following lemma generalizes this computation.

Lemma 1.4. Let F be a coloured (k, k}-ribbon graph which corresponds to an
endomorphism of a certain sequence f ] ^ N . Let L be the coloured (0, ty-ribbon
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k
r L

Fig. 7

tangle obtained by closing F (see Fig. 7). Then F(L)=trqF(F).

We introduce the presentation of closed 3-manifolds via framed links. A
framed link in the 3-sphere is a finite collection L of disjoint smoothly embed-
ded circles LI, • • - , LI in S3, each component Lk of L is provided with a
framing which is an integer n«. Let o) be an orientation of L. We may
regard each component Lk of the annulus with nk full twists. This identifica-
tion gives us a (0, 0)-ribbon tangle F(L, CD). The notation a) may be thought
of as the directions of the annuli. Let 1 be a colouring of F(L, w). Then
F(F(L, a), X)) is a regular isotopy invariant of coloured (0, 0)-ribbon tangle
F(L, a), Z). By means of the above results, we define invariants of closed 3-
manifolds. The idea of their construction is reduced to the following theorem
which relates framed links to closed 3-manifolds.

Theorem 1.5 (Lickorish [9]). Each closed connected oriented 3-manifold can
be obtained by Dehn surgery on S3 along a certain framed link.

Let M be a closed connected oriented 3-manifold and L a framed link in
S3 with components LI, • • • , Lt and framing n1} • • • , nL which can be related to
M by the above theorem. Dehn surgery is the following process. We remove
an open tubular neighborhood of each Lk and on the resulting total boundary
we glue / solid tori such that their meridians are identified with the curves on
the boundaries. We consider such a pair (M, L). Let a) be an orientation of
the framed link L. By col(L) we denote the set of colourings of the (0, 0)-
ribbon tangle F(L, o>). Put

(1.3.1) F(M9 L)=C*<L>
^

Here C, dk(k=Q, • • • , r—2) are constants contained in the data of the modular
Hopf algebra Ut and given by the following formulas:

(1.3.2) C
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'2 cin "*(* + !)*
k = * — sin-

r r

where

st n A\ / 3?rm ;r(1.3.4) d = v-—— + --9

the number ^ being determined from the following Gauss sum

(1.3.5) V2rexp(v/IIl»=2|]1exp(VzT^^2m/2r).
fe=0

The notation <j(L) stands for the signature of the linking matrix of the framed
link L. We remark that the normalization coincides with that in [8].

Theorem 1.6 (Reshetikhin-Turaev). For a closed connected oriented 3-
manifold M, F(M, L) is a topological invariant of M.

We may denote F(M, L) by F(M\ The invariant is multiplicative with
respect to a connected sum :

(1.3.6)

We have the following relations between invariants with opposite orientations

F(M}=F(-M),

where the bar is the complex conjugation.

Example 1.7. The formula (1.3.6) implies that
Since SzxS1 is obtained by Derm surgery on S3 along an unknotted circle

with framing 0, we have

(1.3.7)

Here we used the equation dimgFi=sm(m(z'+l)7r/r)/sin(ra7r/r). In the case m—
1, F(S*XS1) is equal to Kohno's invariant <f>K(SzxS1} with K=r+2.

Let M be a closed connected oriented 3-manifold and T be a coloured (0, 0)-
ribbon tangle in M. As above, let us present M as the result of surgery on
S3 along a framed link L with components LI, ••• , Lt. The ribbon tangle
T\jF(L, a), X] may be thought of as a coloured (0, 0)-ribbon tangle in S3. We
put

(1.3.8) F(M, T)=C f f C L > S
^efoZ(L) k = i

In particular, we have F(S\ T)=F(T).
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§2. A Representation of SL(2, Z)

Using the invariants defined in § 1, we establish a projectively linear repre-
sentation of SL(2, Z). Let Mt be the mapping class group of torus T2. We
fix a basis a, b in //i(T2)^Z0Z as depicted in Fig. 8.

The group Ml may be canonically identified with SL(2, Z\ A presentation
of SL(2, Z) is given by

(2.1) SL(2, Z)=<S, T; S4=/,

where 5=f n \ T=(~ A Let Z(T2) bean (r-l)-dimensional vector space

over (7 and {eQ, el} ••• , e r _ 2 } a basis of the vector space. We associate to each
et a solid torus Ut with an annulus Tt in the interior, depicted in Fig. 9. We
suppose that the colour of annulus Tt is z'e{0, ••• , r— 2} and the direction as
in Fig. 9. We construct a projectively linear representation

p : SL(2, Z) — > GL(Z(T2))/<C>,

where C is given by (1.3.2) and <C> means the cyclic group generated by C-7,
when I denotes the identity matrix.

Fig. 8 Fig. 9

For any element X of SL(2, Z\ put

(2.2)

Let [/i] be an isotopy class in MI corresponding to X. The map h is a degree
1 homeomorphism T2—>T2. We identify dUt and 9£7^ using /z. The resulting
closed connected 3-manif old with the (0, 0)-ribbon tangle consisting of two annuli
Tit TJ is denoted by Mx. Then XtJ in (2.2) is defined by the following formula:

(2.3) Xt,=F(MZt T,UT,)/F(S2XS1).

Clearly, it follows from the definition that Xlj does not depend on the choice
of the representative element of the isotopy class.

Theorem 2.1. The following homomorphism constructed above is a projectively
linear representation.

p : SL(2, Z) —> GL(Z(T2))/<CX
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where <C> means the cyclic group generated by C-l in GL(Z(T2)} with C given
by (1.3.2). The values of Sij} Ii3 and Ti3 are given by the following formulas:

~2 .

Proof. Let Ch be the mapping cylinder of the homeomorphism h : T2— VT2.
We parametrize T2x{0} via the identity and T2X{1} via /?. Using the para-
metrization, we glue solid tori Ut and U3 to C7i. Then we obtain a closed 3-
manifold Mx with two annuli Ti} Tj. If isotopy classes [/i], [g]eMi, then
the cylinder Ch.g splits into a composition of Cg and CV Let X (resp. F) be
an element SL(2, C) corresponding to the isotopy class [/z] (resp. [g]). Gluing
t/z and f/j to the composition ChCg, we obtain a closed 3-manifold M^F. Let
Lx (resp. LF) be a framed link in S3 which we obtain Mx (resp. Mr) by Dehn
surgery along. We consider (Af*, TtwT*), (MF, Tk\jT3} and (Mzr, T^Tj}.
Connecting the annulus T*. in Lx\JTk\jTl in S3 with the annulus T* in
LY\JTk\jT3, a new ribbon tangle Lx\jLY\jLQ\jT%\jTj is constructed, where
Lo is a circle determined by TV We denote it by L. We can get (MXY, Ti\jT 3}
by Dehn surgery along the framed link L in S3. From the definition of dk and
a homomorphism corresponding to the composition of tangles, it follows that

F(MXY, T tur,)=C» s ( M ; r , Tt\jTk)F(MY,

with n = a(L)-a(Lx)-a(LY). This shows that
Let us compute Sljf I t J , and T7J.
(1) the case X=S
MS is the 3-sphere S". Two annuli 7\, T^ are linked in Ms and make up

the Hopf link (see Fig. 10).
Therefore we get F(MS, Tl\jTJ)=F(Tl\jTJ\ One computes

(2.4)

Fig. 10 Fig. 11
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Applying (2.3) with (1.3.7) and (2.4), we get

(2) the case X=I
MI is S2X51. In M/, 7\ and T^ are unlinked unknotted annuli with no

twists (see Fig. 11). Let us consider S3 with the above annuli and the unknotted
circle L that links a pair of the annuli and that has the zero framing as illus-
trated in Fig. 12a.

The Derm surgery on S3 along L produces S2x5: with 7\ and T3 depicted
in Fig. 11. To calculate F(T>uT,wF(L, a), Z)\ we can use the formula (1.1.2)

Let us replace Tl and T 3 with a unknotted annulus Tk which runs parallel to
Tl and T3- (Fig. 12b). We assume that Tk has a colour k and the same direc-
tion as two annuli. Then Tk\jF(L, a), X) is a (0, 0)-ribbon tangle in S3.

Fig. 12a Fig. 12b

The property (1.1.15) of the L/Vmodule Z^ ensures the equation

(2.6)

where the summation runs over k satisfying (1.1.13) and (1.1.14). As Tk\j
F(L, a), X) is the Hopf link, we can apply (2.4) to the computation of
F(L, a), ̂ )). If ^(L)=/, then we obtain

(2.7)

Thus, we get

where k satisfies the conditions (1.1.13) and (1.1.14). We have the following
formula :

r-2 . .
(z.8) 2] sm - sin

l= o ^
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Using (2.8), we show the formula:

The condition (1.1.13) of k asserts that k is equal to zero if and only if i—j.
Therefore we get

(2.9) /0=3t,.

(3) the case X=T
MT is also S2xS1. But the unknotted annulus Tt with no twists links the

unknotted annulus Tj with one full twist (Fig. 13). To obtain (MT, Ti\jTj\
we start from S3 with the two above annuli 7\ and T} and with an unknotted
circle L which has the zero framing and which links them (Fig. 14a). Carry-
ing out the Dehn surgery on S3 along the circle L turns S3 into Mr=52x51.

Fig. 13

One claims that we can use of the idea of the case X=I to calculate
F(Tl\jTJ^jF(L, a), ̂ )). We deform the annulus 7\ adding the same twist as
the annulus T3. One denotes the resulting annulus by T'im The computaion in
[13, the proof of Lemma 7.1] implies

F(T't\jT,vr(L, to, «)=(i;l)-
1F(TiuTJur(L, to, X)),

where vl=tl<ii+z\ A full twist can be expressed by a curl (Fig. 14b). It follows
from it that we can turn T(\jTj into two parallel annuli with no twists (Fig. 14c).

Let Tk be an annulus of colour k provided with the same twist and direc-
tion as two annuli. We replace two annuli by Tk (Fig. 14d).

Then, applying Theorem 1.2, one gets the following equation

F(T't\jT,\jr(L, to, Zfi= S F(Tk\jr(L, to, X)),

i+j+k&ZZ
i + j + -

Thus

here X(L)=l. Substituting vx=tHi+2\ we obtain

(2.10) Ti;
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s3

Fig. 14c Fig. 14d

We put /,*=(/„), S=(StJ) and T=(Ti;). They are (r-l)X(r-l) matrices.
We show the following :

(2.11) S*=Iid

(2.12) (ST)8=S8 m o d C - / .

One easily computes

(2.13) S2=Iid.

Note that the equation (ST)3=S2 is equivalent to the equation STS=T~1ST"\
It is easy to compute that an (i, /)-entry of T~1ST~1 is

(2.14)
r r

Using ^=exp(7rVIIIm/2r) and Gauss sum (1.3.5), an (i, /)-entry of STS is

(2.15) C,/!r'<<+»>-"+•) 8inm(t'+1Xy"+1)g.
\ r r

It follows from (2.14) and (2.15) that

(2.16) STS=T-lST-1-Clid.

(2.13) implies (2.11) and (2.16) implies (2.12). D
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§3. Proof of Verlinde's Formula

As another application of the invariants given in § 1, we prove 'Verlinde's
formula' (see [15]). It is given by the following formula.

(3.1) SjjStk — r^sttN[ k

where m and r are mutually prime integers with odd m, l<^;i^2r—1, 2^r,
and

,09^(3.2)

1 if \i-3

0 otherwise.

Proof of Verlinde's formula. Let us consider S2xS1 with three parallel
non-twisted annuli T/, TJf Tk in the interior (see Fig. 15). The directions of
them is as in Fig. 15 and the colour of Tt (resp. T3, T'*) is / (resp. /, &).

Fig. 15

We call this configuration of three annuli Lijk. The idea of the proof is
to evaluate F(S2xSl, L i J k ) in two ways.

Let us begin with the surgery representation of (S2xS1, LZ ; f t). Let L be
an unknotted circle with the zero framing which links Lijk in S3 (Fig. 16a).
The Dehn surgery on S3 along the circle L produces (S2XS1, Lijk).

In the first evaluation, we use an analogue of the computation of Ii} and
Tij in §2. We replace T3 and Tk by an unknotted non-twisted annulus Tp

with colour p and the same direction as them (Fig. 16b). Then applying Theo-
rem 1.2 with i replaced by /, we obtain the following equation :

F(LJk\jr(L, o), X)}= S F(T,uTpwr(L, a), X)) .P

Here p satisfies the conditions (1.1.13) and (1.1.14) replaced i by p.
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Fig. 16a Fig. 16b

Then we can apply the formula (2.9) to the computation. Thus we get

7?fC2vci /^ \__ y<2 j
JL \^J /\ wJ , LJ I J K J ' > I*

t = 0 \ p

= F(S2XS1)

It follows from the condition of p that

(3.3) F(S*XS1, iTjkY-

To evaluate F(SzxS1, L i j k ) in the second way, we rotate the (0, 0)-ribbon tangle
Lijk\jF(L} in S3 (Fig. 17a). The result may be thought of as the closure of
the (1, l)-ribbon tangle BlJk illustrated in Fig. 17b. F ( B l J k ) is the homomor-
phism Vt—>Vt. Moreover, it may be thought of as the composition of three
homomorphisms determined by (1, l)-ribbon tangles rf, rj, ri illustrated in
Fig. 17c.

r(L)

Fig. 17a Fig. 17b Fig. 17c

The map F(ri) is a C-linear homomorphism yf->Ft and Vt is irreducible,
by Schur's lemma, it is a multiplication by an element of C. We denote this
element by b\. Similarly, F(rty (resp. F(rJD) is a multiplication by an element
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bj (resp. bl
k) of C. The closure of the (1, l)-ribbon tangle rj makes up the Hopf

link. We denote this invariant by stt. Analogously, the invariant which cor-
responds to TJ (resp. ri) is denoted by stj (resp. s t k ) . Using (2.4), we derive

. m(t + l)((jL+Y)K / . mn
sJ jU=sm — - - -^- - — / sin — ,

^ r I r

where ^e{/, /, k}. Note that stQ=dimqVt. Then Lemma 1.5 shows that

(3.4) St^tfp dimqVt

The above discussion and (3.6) imply that

(3.5) F(5i;*)=tre(F(ri)o

=bt
lb

t
Jb

t
kdimqVt.

Using (3.4) and (3.5),

(3.6) F(S*xSl, L^O=S

__ -
— 2j fl t

'=0

Multiplying (3.3) and (3.6) by sti and summing up over l=Q, ••• f r—2, we get

/o 7N(3.7) 11=0 \ r /

We remark that

,n ox , -(3.8) di= — sm

Substituting (3.8) in (3.7), we obtain

(3.9) 22si^(S2xS1)^V0/JZ=0

The value S^ is related to si} by the formula

Thus (3.9) implies (3.1). D

§ 4. Ising model

Instead of the modular Hopf algebra Ut in § 1, we consider a fusion algebra
A over C corresponding to 'Ising model' [10]. It has generators 1, a, <p and
their relations are
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(4.1) (p'Cp^l, <b' 0 = 0 •(f)=ff, G-ff — l-}-^.

It is known that this algebra describes the fusion rule for the critical Ising
model (see for example [2]). The algebra A has the conformal dimensions:

(A 9s) A —0 A — A , —\-t-AJ £Al U, L*a 1^, L1Q ry .lo ^

It is analogous to the case m=l and r=4 in the algebra Ut. But the element
in Ut corresponding to Aff has a different value. Using the algebra A, we
construct invariants of links and 3-manifolds. As an application, we obtain a
projectively linear representation of SL(2, Z] and an equation similar to Ver-
linde's formula.

Let L be a framed link in S3 with m components L1} ••• , Lm and F(L) a
diagram of L. We assign to each component L% of L one of generators of A.
We denote the assignment by /(, which gives a colouring

{L1? • • • , Lm} —> {1, a, <p}.

Next, we assign an element (or colour) of the set {1, #, <p} to each region of
T(L). This assignment follows the fusion rule (4.1) in the following sense.
We assign 1 to the unbounded region. Let A1 and Az be adjacent regions and
the component of L between Al and A2 have colour ;^{1, a, $}. A colour a%

of the region At for i=l, 2 satisfies the following equation:

{ 1 or <p if ai=j=0 ,

di'j otherwise.

When a colour of the link L in Fig. 18 is a, all the colourings of regions are
given in Fig. 19.

Fig. 18 Fig. 19

Any horizontal line co which avoids crossings and extreme (maximum or
minimum) points hits F(L) in a finite number of points as pictured in Fig. 18.
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We assume that the critical points occur in distinct levels. We may then de-
compose the diagram F(L) level by level as the composite of a number of ele-
mentary diagrams, which each diagram contains just one critical point. In each
elementary diagram, one of the four diagrams (b)-(d) shown in Fig. 20 exists,
while the rest of the diagrams consists of the strings passing from the top to
the bottom without crossings as (a) shown in Fig. 20.

jl J2 Jl 32

Fig. 20

We associate to any horizontal line CD a vector space Vw. If the colours of
the regions which the line CD passes through are in the order 1, a1} • • • , at, 1,
the vector space Vw has a base element ei®eai® ••• ®^az®^i- If the colour of
the link L in Fig. 18 is a, the vector space V(tiQ corresponding to the line CDQ

has a basis

Finally, we associate a C-linear homomorphism C->C to the diagram F(L}. Let
us denote a linear operator over C for a diagram T by FT. The operators for
elementary diagrams shown in Fig. 20 are determined by the following formulas.
The notation a^ (resp. j\) represents a colour of a region (resp. a string) in
Fig. 20.

(a) Fj is the identity homomorphism Fj: eai®ea^eai®ear

(b) Let us consider a tangle diagram pictured in Fig. 21.

Fig. 21
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The operator for this diagram is a multiplication by F*J .2 .3 . The

matrix F\ ^ — (^ ^ ) *s called 'fusing matrix'. Explicitly, we have
1-7 1 74J \ Lji 74-]'^'

[-(7 CJ] j /I 1\
F = 4J , F

[a a\ V 2 \ l -I/

and the other fusing matrices Fr.2 •7.8]=1. The operator for (b) in Fig. 20 is
k/l ^4-J

determined from the fusing matrix and the conformal dimensions Ai, A f f , A^,

and we denote the entry of the matrix for the operator by Btj\J.z . The

matrix B\J.2 ;.8~| = (r£op.2 ;.3]N) is called ^braiding matrix' and related to the
L7i jJ V bi ;J/«

fusing matrix and Ai, A f f , A^ by the following equation :

r/2 y8] r/2 y3i _ r/2 y3B -F-1 e diagk (exp TT ̂ -l(A*-A,g-A,,))F
L/i y4J L/i y4J L/i /4

where
1 or ^ if J2=js=a ,

2 •/ 3 otherwise,
and

1 otherwise.

These fusing matrices and braiding matrices satisfy the pentagon relation and
the hexagon relation (see [10]).

(1) the case j\^a or j^a

FX-$J is a multiplication by scalar B \ \ = s exp TrV^KA*— A3l—A,2),

where k=j\'j2 and
if {/i, J2\ = {ff, <£K ^e{ai, ^3},

1 otherwise.

(2) the case j\=jz=ff

= 77^exP ^^ , . x

tfl f(T (7l F(7 C7] \<J ff

\=B\ =r, B =B
i iJ [</> d Li ^J L^ i
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(b') FXJ j is the inverse map of F*+ .

(c)
if /e{l, </>},

if y=<7, <2ie{I, 0},

where a2=

(d)
if

Zl if y=0i=£

We make a list of the above operators in Fig. 22.

A homomorphism for any link diagram is a composition of homomorphisms
obtained by combining the operator for only one critical point with identity
operators for strings passing from the top to the bottom without crossings.
By the definition of the operators, for any link diagram F(L\ we obtain a
homomorphism Frcz,)". C—>C. Thus Frcz,) is a multiplication by some complex
number /*. We put TL,I~H>

Theorem 4.1. For any coloured framed link L and any colouring map %,
TL.I is invariant under regular isotopy for the diagram F(L). Let T, be a dia-
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gram pictured in Fig. 23. The homomorphism FTj is a multiplication by

exp27rv /— lAj=v3.

zrexp

Fig. 23

Proof. By the definition of the operators Fx+^ FU]} FUJ} we can show that
FT. is a multiplication by the exp 2n V—lAj. To prove invariance under regular
isotopy, it is enough to show that the homomorphisms defined by the isotopic
diagrams in Fig. 24 are equal, for any colouring 1 ([8], [11], [17]). We can
verify it by an easy calculation. D

Fig. 24

We give some examples.

Example 4.2. Let L be an unknotted circle with zero framing. If
which is an element i of the set {1, a, <p}, then we denote TL,X by dt.

Then we deduce: ^=^=1, «<J = VT.

Example 4.3. Let H be the Hopf link which have zero framings. We as-
sume that one component is assigned with i and another with /. Then we
write the invariant of F(H) by 5^-. Let us put

and

Ql S O C
al *~J G a ^ ad

We deduce
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1 A/2 1

1 '~2~ 0 -V~2

L -VT 1

In the same way as in [13], we construct invariants of 3-manifolds, using the
above invariants of link diagrams.

Let M be a closed connected oriented 3-manifold and L a framed link with
components LI, ••• , Lm such that M is homeomorphic to 3-manifold ML obtained
by Dehn surgery of S3 along L. We denote the set of colourings of F(L) by
col(L} and the signature of the linking matrix of L by a(L\ Then put

(4.2) r(M; L)=C"L> 2
AecoicD i=i

where C and di for /'={!, tf, 0} are complex numbers characterized by

(4.3) 2 Cdgitvt=v-lS,,
i (= ( i , I? , <•/' j

for any ;'e{l, a, (/>} and

(4.4) C= S î W,.
i ed . f f . 0 )

Here <5i is the same as in Example 4.2. More explicitly, we have

Theorem 4.4. Le? M 6e a closed connected oriented 3-manifold and let L be
a framed link so that M is the result of surgery along L on S\ Then r(M; L)
is a topological invariant of M.

The proof of this theorem is similar to that of Theorem 1.6 (see [13]).
To prove Theorem 4.4, we need the following lemma.

Lemma 4.5. Let F^i, /), Fz(j) be the clour ed (1, l)-tangles shown in Fig. 25.

cSo-
Fig. 25

lo
r2(;)

Then
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Proof. From the fact that dt satisfies the following equation (4.3)

S CdiSijV^vjWj,
ied, a,<p}

we can obtain this lemma. D

Let us introduce new tangle diagrams and operators corresponding to them.
We consider tangle diagrams shown in Fig. 26. The corresponding operators
are defined from fusing matrices.

In Fig. 26, j is equal to 1 or <p if j\=j2=a and jl-jz otherwise.

(e)

In other cases,

Ui

where a is uniquely determined from a1} a2, j\, j*.

(f) FYj jt is a multiplication by a scalar.

U 1 J 2

In terms of the above operators, we obtain the following lemma.

Lemma 4.6. Suppose k^2. Let rt, Fiip, F2 and /\p be tangle diagrams
pictured in Fig. 27, where the indices present colours assigned to strings, i.e.,
elements of the {1, a, </>}. Then
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c
"

— •*
>O

Proof. The diagram 7\p is gained by applying the moves depicted in
Fig. 28 to A.

Moreover, in addition to the above moves, we can obtain F2,p by applying
the moves shown in Fig. 28 to Fz. Thus it is enough to prove simply invari-
ance of the homomorphism under these moves.

In the case I, let the colours of the regions and the strings be as in Fig. 29.
Then we show that the homomorphism ^p=i,(/}FTp is the identity homo-

morphism. A vector space Vl with basis {eff®eaz®ea}a2=i,(/) is assigned to the
bottom line of the diagram Tp and a vector space Vz with basis {eff0ea^ea}a^i,6
is assigned to the top line. With respect to these basis, the matrix representa-
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tions for the homomorphisms FTl: Vl-^Vz and FT^: Vl—>V2 are

;). v.
by the definition of the operators for diagrams Yaff and Yaa.

Then the homomorphism *2p=i.$FTp is the identity. Except for the above
case, the in variance of the homomorphisms under move I is trivial.

In the case II, II', III and III', we need some more elementary calculations.
For example, we consider the case pictured in Fig. 30.

<7 a cr a
Fig. 30

Let Vi be a vector space over C with basis {eil®ea®ei^)ea}il,iz--i,(jJ and Vz

a vector space over C with basis {0i©0i, e^®e^}. The restriction of FTl and
FTZ to Vi determines (7-linear homomorphisms FI—>F2.

The matrices for their are -/yL Q 1 A one gets FTl\Vl=FT2\Vz.

Similarly, comparing the matrix for FTl with that for FTz on the restriction of
FTl and FTz, we can prove that FTi=FTz.

Let us consider the cases IV and V. The definition of the operators in (e)

and (f) implies that for any fusing matrix F\

[a dl Id c
F\ \=F\

lb c] [a b.

Invariance of the homomorphisms in these cases follows from this. This com-
pletes the proof of the lemma. D

Now we are in position to prove the theorem.
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Proof of Theorem 4.4. It suffices to verify that two Kir by moves on L do
not change r(M\ L) (see [13]). The invariance under the first move, which is
an elimination or insertion of an unknotted component with framing ±1, can
be derived from the definition of scalars C and dt. The second move is called
Kir by (+l)-move, under which two diagrams are related as shown in the two
above pictures in Fig. 27. Let us prove invariance under this move. It is
enough to show the equation

(4.6) S CdiFr^Fr,.
i<E(l,ff,<p]

We show it by induction with respect to k. When k=l, (4.6) follows from
Lemma 4.5. Suppose that it is true for k—l. We modify the diagram A illus-
trated in Fig. 26 to 7\p in Fig. 26. The diagram /\P may be regarded as
the composition of three diagrams 7\, F(, and 7% illustrated in Fig. 31. Simi-
larly, we modify the diagram L2 in Fig. 31 to the diagram f2ip. The diagram
rz,p may be thought of as the composition of three diagrams A, Pi, Fs in Fig. 31.

Fig. 31

Then from the assumption of the induction, it follows that

Thus

Lemma 4.6 implies (4.6). This completes the proof. D

We put r(M; L)=r(M).

Example 4.7. Since S3 is obtained from an unknotted circle with framing 1,

Since SzxSl is obtained from an unknotted circle with framing 0,
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rCS'xS1)^ 2 di5t=2.
iE.(l, a,(p)

Proposition 4.8. The invariant r(M} has the following properties.
(1) r(A
(2) T(— M)=r(M), i#/z0re '—M' zs a 3-manifold M with reversed orientation

and the bar is the complex conjugation.

Proof. For (1), let us ML be a 3-manifold obtained by Dehn surgery along
a framed link L in S3. Choosing framed links Ll and L2 with MLl=Mi, MLz

=A/2, we obtain the equation ML^jLz=Mi^M2f where LiUL2 denotes disjoint
union (Ll and L2 are separated by a 2-sphere), We note that for fixed colour-
ing h of Li (i=l, 2),

where ^iU^2 denotes the colouring of L^Lz induced from the colourings ^15 ^
of Li, L2. So (1) follows from the definition T.

For (2), one knows that (— ML)=Mi, while L is the mirror image of L.
Since r^^rZTI from the definition of homomorphisms in (b) and a(L}= — a(L),
one derives (2). D

Remark 4.9. For the lens spaces L(7} 1) and L(7, 2),

r(L(7, l ) )=expw^l, r(L(7, 2))-

r(L(m, 1))=

is T is not a homotopy invariant. In general, for the lens space L(m, 1),

exp ^n~ Q—— if m is odd,
o

expf—rc ~ Vl+expm?r ~ j if m is even.

For the lens space L(m, 2),

f 1 if m=4/+l, /=!, 2? •••

r(L(m, 2))=j exp(_jrVEI\ if m=4/-lf /=l, 2, -.

Let M be a closed connected oriented 3-manifold and T a coloured (0, 0)-
tangle diagram in M. For a pair (M, T), put

By the same discussion as in §2, we may have a projectively linear repre-
sentation

p : SL(2, Z)
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where corresponding matrices S, T are defined by the formulas

1 V~2 1 \ II

0 -VTl T=

1 -VY 1 / \

We can also obtain 'Verlinde's formula' for this algebra.
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