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§1. Introduction and Results

Let P be a linear partial differential operator in R"™ with C= coefficients
and z be a point in 7*(R™). Pis said to be microhypoelliptic at z if z¢&W F(Pu)
implies z¢W Fu for any u=9’. For z=(x°, §)eT*(R"), z&W Fu if there exists
a function ¢g=C7(R™) with ¢=1 near x° and a conic neighborhood I" of &° such
that for every positive M we have with a constant Cj

Ba@|<Cul+1E1)", gl

Here © denotes the Fourier transform of ».
In this paper, we shall study the microhypoellipticity of the following
operator in R"=R;'XR}?

(LD L=a(x, y, Da)+8(x)b(x, ¥, Dy)

satisfying the following conditions. (Throughout this paper, the coefficients of
differential operators are assumed to be C*.)

(A.1) g(0)=0 and g(x)>0 for x=+0.

(A.2) a(x, v, D;) is a differential operator of order 2/ and
Re a(x, v, H=C, 1™

holds for sufficiently large |&].

(A.3) b(x, v, D,) is a differential operator of order 2m and

Re b(xy Y, ﬂ)gCZI 77|Zm
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holds for sufficiently large |y|. Here C,, C, are positive constants and [, m
are positive integers.

In Morioka [5], we have shown that L is hypoelliptic, i.e.,
(1.2) sing supp u=sing supp Lu for us9’

if (A.1)-(A.3) are satisfied. This is the improvement of Morimoto [3]. Actually,
in [3] the following condition (G) was required to show (1.2) in case of m=2:

(G) There exist constants C and ¢ (0<tz<1/(2lm+2m—2[)) such that
|D2g(x)] < Cg(x)r-rtal near x=0,

for any multi-index a with |a|Z2lm+2m—21.
Our main result concerning the microhypoellipticity of L is the following :

Theorem 1. Let z=(x°, »°; & 3" be a point in T*(R") (x°, & =R™ and »°,
' R™) with |7°|#0. Let L be the operator (1.1) satisfying (A.1)-(A.3).
(i) In the case where [=m, L is microhypoelliptic at z.
(ii) In the case where [<m, L is still microhypoelliptic at z if g(x) satisfies the
following condition.

(A.4) There exist constants C and v (0<z<1/(2m—2l)) such that
{Dzg(x)|<Cg(x)"*'*"  near x=0,
for any multi-index @ with |a|<2m—2[.

The condition (A.4) is always satisfied whenever (G) holds for g(x). If
n,=1, xR and g(x)=x*, (A.4) is equivalent to the condition £>m—I. By
Parenti-Rodino [6], it is known that if 0<k<m—I, the hypoelliptic operator
D%+ x2: D™ (in R®) is not microhypoelliptic. Roughly speaking, Theorem 1-(ii)
implies that the large vanishing order of g(x) makes L be microhypoelliptic at
z, under the assumption concerning the magnitudes of derivatives of g(x). We
wish to consider the case where g(x) vanishes infinitely at the origin (i.e.,
D*g(0)=0 for any a) and does not satisfy (A.4) in the forthcoming paper [4].

Now we explain our idea. The main tool of the proof of Theorem 1 is the
following proposition.

Proposition 1.1. Let L be the operator (1.1) satisfying (A.1)-(A.3). Assume
moreover the following condition.

(A.5) L is microhypoelliptic at any 2=(%, 7; &, #)=T*(R™) with |&||5]|+0.

Then L is also microhypoelliptic at any z=(x°, »°; 0, °) with |n°|=1.

In the case where [=m, Proposition 1.1 completes the proof of Theorem



MicronyrPoELLIPTIC OPERATORS 131

1-(i). It is clear that (A.5) are satisfied without any additional conditions if
[=m. Indeed, if we choose a conic neighborhood V of (%, 7; &, #) such that
&l~1In| for (x, y; & n)cV, we have with a positive constant C

Re p(x, 3, & p=CA+ &P+ (n]®)"  for (x, y; & V.

Here we supposed that |£] |%1+#0 and p is the symbol of L. In the case where
[<m, we shall see that (A.5) are satisfied under the additional condition (A.4).
We give the proof of Proposition 1.1 in Section 1, by refining microlocally Sec-
tion 3 of [5]. In Section 2, we show that (A.5) follows from (A.1)-(A.4). (A.4)
is used only to see that (A.5) are satisfied in the case where [<m.

§ 2. Proof of Proposition 1.1

Let L be the operator (l.1) satisfying (A.1)-(A.3) and (A.5). Since L is
semi-elliptic in {(x, y)€R": x=0}, L is microhypoelliptic at z=(x°, »°; &°, 7°) <
T*(R™) if |x°|+#0. See also [2, Chapter 2, §5]. So we restrict our considera-
tion to the case where x°=0. Our purpose is to show that z&WFu if z¢
WF(Lu), where z=(0, »°; 0, ) with |9°|=1. We may assume u<&’. Since
the proof is long, we devided it into three steps. (A.5) are used in Step 1 and
(A.1)-(A.3) are in Step 2.

(Step 1)

We choose two smooth functions 7(§, ) and a(n) as follows. Let /', and
[’; be small cones in R" such that (0, °)=/", and I"\&[',. The support of 7
is in [, and r=1 in "'\ {[&|*+|n[*=1}. Let F; and F, be small cones in R,*
such that p°eF, F,€F, and {(0, p)eR": e F}&l’,. The support of « is in
F, and a=1 in FiN{|n|=1}. Moreover 7ES! (R™) and a=S? (R").

Next, take ¢,(x, y)=C3(R™) with ¢,=1 near (x, y)=(0, ¥°). Assume that
zEWF(Lu). Then we have

(2.1) 7(Dq, Dy)(¢1Lu)E]_[w

by taking the support of ¢,(x, ) and 7(§, n) sufficiently small. Take moreover
&(x, ¥)=X(x))(y) with X(x)E C3(R™), X=1 near x=0, ¢(y)=C5(R"), ¢=1 near
y=y® and ¢&¢,, i.e., the support of ¢ is contained in a neighborhood of the
closed set where ¢,=1. Then from (2.1) we have

(2.2) &(x, YDz, Dy)LucsH=.
Moreover we see that
(2.3) a(DXPLy(Dz, Dyu)y=algy Lu)—alelr, Llu).

On one hand, the asymptotic expansion gives
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[r(Dz, Dy), L]”"’IEEI(F‘!)—1L<#>7’(’”(Dx: Dyu,

where L,»,=(D% ,LX%, y, Dz, D,) and 7*(D., D,)=(0% ,7) Dz, D,). On the
other hand, we may assume

(2.4) a(Dy XL usr*(Da, Dy)u)sH”

for |p|=1. The reason is that L satisfies (A.5) (i.e., L is microhypoelliptic
at any 2=(%, 7;§, 7)eTHR") with 1&||7]|#0) and 7, 7)=0 on I'\N
{1€]*+|9|*=2} in case of |u|=1. Notice that {(0, p)eR":ncsuppal<l,.
Therefore it follows that a(¢ly, L]u)e H*. Thus in view of (2.2) and (2.3),
we have

(2.5) a(D XPLY(Dz, Dyu)ysH=.

(Step 2)
From (2.5) we see that

(2.6) apLlyu=adLrutad[ L, X]ru .

Recall that ¢(x, y)=X(x){(y). Noticing that the support of [ L, X]ru does not
intersect {x=0}, it follows that

@.7) a(D,)$Lv)=H=,

where v=2X7(D;, D,)u.
Now let @(t)e CZ(R™) be a non-negative function satisfying

ot)=1 in {t:|t|<r'}
and
D(t)=0 in {t:t|=r}.

Here we supposed that 0<r'<r<1.
We define a,(n) and B(y) as follows:

an(n)=@(%—n°), B()=D(y—y"),

where n is a positive integer.
Choose r>0 sufficiently small such that suppa,&F, and B&¢. Then we
have the following lemma.

Lemma 2.1. If we fix p and q,
lai?(Dy X B LV)| L2crny=0(n"*)

holds for any positive number s. Here aiP and B, denote 02a, and DyB, re-
spectively.

Remark. In general, ¢,=O(n"*) means that there exists a constant B such
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that |¢,| = Bn~*, when n is large.

Proof of Lemma 2.1. For the sake of simplicity, we restrict our considera-
tion to the case where p—=¢=0 since the proof in the other case is similar.
Let us take w=Lv and consider the following estimate :

n¥lanfw =l n'an(rXBw)E, D
<const.a,(7XEw)E, 7)Xny**<const. | 18w, n)i*cpyrdédy,

where <(p>=(1+[75|*)"?. Recall that ¢'n<|p|<cn for n<suppa,. Since
a=1 on F;N{|n|=1}, we obtain the desired estimate in view of (2.7). Q.E.D.

Lemma 2.2. [t holds that
lan(D ) BV L2cremy=0(n"%)

for any positive number s.

Proof of Lemma 2.2. Our arguments in the proof of the above lemma is
quite analogous to those in Section 3 of Morioka [5]. So we refer to [5] for
some calculus which we omit.

Now take h, p,=aPBplv and v, , ,=a$PBwv. Then the asymptotic
expansion gives

(28) Re(LUn,p @ vn\nq)LZ(R")

=Re ("_l:av(lp),@(q): L:|U‘|'hn,p,q; Un,p.q)LZ(R")

:ReEEIL

k=1

with
11:_ > (fl)wl(y!)_1(/"!)—l(g(x)bgl;/))y7L,[1+y,rﬁuy Un‘p,q),
1gip+visN-1p+q|

-[2:_(g(x)771¥,p,qv, Un p q)y

I;=— > (#!)_l(a(p)vn,pﬂz.q: 1"n.p.q):

1giplsN=-1p+q!
]4:_(7% pqls Vn.p q):
Iaz(hn,p,q: Un\p,q)y

where N is a large integer whose definition will be given later.
Remark. ([P By, a1, Va,p.o)=Is+1,and ([ai?’ B, (x)bT, va, p.o) =11+ 1.

Now we can estimate |/,| and |I;| as follows, by using the Garding’s in-
equality with respect to y and x variable, respectively.
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(2.9) FAES 2 {K(CiRe (8(x)bvu, p.o» Vu. 9.0+ Cellvn, p.oll*)

1Sipe+visN -1 p+ql

+K7’l_2w|<cs Re (g(x)bvn, pp, g+ Un, p+p,q+u)+ Cullva, p+/:.q+v“2)},

(210) |]s] = > {Kﬂ(cs Re(avn.p,q’ Un,p.q)+cs||vn,p.q||2)

1sipgisNV-1p+ql
+K(C,Re (ava,, p+e e Un, p+,u,q)+ Csllva, p+ﬂ,q”2)} .

Here each C, are positive constants. We estimate |/.|, |/,| and |/s]| in the
following way.

(2.11) | <Klrd 5+ K va, 5ol
(2.12) | LIZK|28 5. 0lP K vn, p.ql°
(2.13) 5| K[ ha p.ol>+ K va, p.oll*

Remark. In (2.9)-(2.13), K is an arbitrary positive constant and each C,
are independent of the choice of K.

Take cp,=n®/®0?171ab_ Then for any s>0 there exists a large integer N
such that

(2.14) llcpar 2, o,V [|=0(n"*)
and
(2.15) leaaTh p.qvl|=0(n"*)

hold for |p+q|<N.

Take wa, p,q=CEqVn.p.q and observe that cj,=n" /= ¥oen, ... Let s>0
be a given number. We choose N such that (2.14) and (2.15) hold. Then from
(2.8)-(2.13) we have for any >0

1

1
(2.16) Re (aw,, p.q wn,p,q)—l-?Re (@(x)bwa, p.g» Wa,p.q)

]l

In

K > n~ ' #(CyRe (Z(x)bWn, pap, qrvr W, pip.qsv)
Is|p+visN-1p+qi

+c10”wn,p+y,q+v“2)+K 2 n—llu(cll Re(awn,p+p,q; wn.p+,u.q)

111N -1 p+ql
+ Cizlwa, p+/1.q”2)+5”wn.p.q“z‘l‘]{“cgqhn,p,q”z‘l‘O(n—“);

by taking K sufficiently large.
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Summing up the both sides of (2.16) with respect to (p, ¢) satisfying |p+q|
<N, then we see that

L L

(217) ZAN,n_l" ZBN,n
SKCiyn'Ay o +KCun'By n+2eSy, o+ KTy o+0(n7*),
where
AN,n: 2 Re (awn,p,q; wn,p,q):
Ip+qIsN
BN,IL: Z Re (g(x)bwn,p,q: wn,p,q);
ID+qIsN
SN,n: E “wn,p,qnzy
1D+g1sN
Tyn= X IICZq/ln.p.qHZ .
1P+gIsN

By Garding’s inequality with respect to vy variable, By, ,=0 holds for suffi-
ciently large n. In view of Lemma 2.1, it holds that Ty ,=0(n"*). There-
fore we have

2.18) 3 A nSeSy 0t Oln™™).

If we choose the support of %(x) sufficiently small, then we have
Ay 2208y »

for some 6>0. See Lemma 3.2 in Morioka [5]. Therefore we see that
Sy, n=0(n"?).

Recall that & can be any positive number. Since [a,Bv[*<Sxy ., the proof is
completed.

(Step 3)
Let us now observe that

(2.19) ian(n)zn“"zconst. ¥

for 5 contained in some conic neighborhood Fy(&F;) of %° with || =1. Taking
AeES! (R™) with supp AEF, and A=1 on F,N\{|7n|=2}, we see that

(2.20) AD ) BvyeH=,

where F, is a small cone in R"® such that #°€F, and F,EF;. Indeed, from
(2.19) and Lemma 2.2 we have for any s>0
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[§iaon11gute, micp»dean

<const. 33 lanfolfnt ([ 1A, mircpyrdedy

<o,

Noticing that [£|<c|%! in the support of 7(§, ), we obtain (2.20).

Now take 7.(§, 7)ES)(R") with 7.&€7 and 7,=1 on [ ;N {|&|%+ |n|*=2}.
Here ', is a small cone in R™ such that (0, ")l and [,&l’,. Then we
have

AD 1Dz, DyX@ou)=71A(p2¥ 1)+ AT10(1—7)u ,

where ¢@.(x, y)=X(x)B(»). Since 7.€r, it follows that 7,9, (1—7)ucH=. So
from (2.20) we have A7.(@.u)=H>. This implies z¢&WFu and the proof of
Proposition 1.1 is completed.

§3. Proof of Theorem 1-(ii)

Throughout this section, we assume that /[<m. Now we prepare the fol-
lowing proposition.

Proposition 3.1. Let 2=(%, 5; &, ) be an arbitrary point in T*(R") with
[€117]#0. If (A.1)-(A.4) are satisfied, then L is microhypoelliptic at 2.

The proof of Theorem 1-(ii) is completed by combining Propositions 1.1 and
3.1. So we give the proof of Proposition 3.1. The main tool is the following
Hormander’s result, which we refer to Theorems 3.8 and 3.12 in Chapter 10 of
Kumano-go [2].

Lemma 3.2. Let P be a differential operator in R" of order k and X be
a conic neighborhood of z,=T*(R"). Let p(x, &) be the symbol of P. Assume
that p(x, &) satisfies the following conditions.

(B.1) It holds that
|p(x, &)1 = Col§1* in YN{1§1zM}
for some constants M>0, C,>0 and k'<k.
(B.2) There exists a constant 0<1 such thal
1D (x, )/ p(x, OIS Cpulél? 7 in IN{|E| =M}

for some constant C, >0, any indices p and v. Here p{ denotes 0£D%p.

Then P is microhypoelliptic at z,.
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From now on, we show that (A.1)-(A.4) lead us to (B.1) and (B.2) if p is
the symbol of L and z,=(%, 7; &, %) with £||#|#0. For the sake of simplicity,
we restrict our consideration to the case where x, y=R (n,=n,=1) since the
argument in general case is similar. According to the notations used in Lemma
3.2, we write x,, x,, &, & instead of x, y, & 7 below. So the symbol of L is

p(x, )=a(x, &)+-8(x)b(x, &.).

Moreover we have

v
B

In view of (A.1)-(A.3), (B.1) is satisfied with k’=2/ if we choose the conic
neighborhood ¥ of z, such that [&]|~|&]| in Y. So we check (B.2). Since
[§11~ &l in X, we get

P, H=a(x, &)+ 5 (5 )82, &).

| D& (x, 8)/b(x, )| =Cp 17711t in Z'=IN{[§| =M},

when y=0. Here A/ is a large constant. Now, consider the case v+#0. In this
case, we have

|p8/p1<BIEI (1+ 3 min{lgep()ge) L [8ep(e) 167))
]
in 3’, where j=m—[ and B is a large constant. From (A.4) we have

[P/ p éBiEI_"(l-%-C ﬂ}_} min {g(x,)""*, g(l’l)l_f'ﬂf%j})
]

in Y’, when |v|<2j. On the other hand, we see that

SEV <1 = g(xy)' PEp <61V,
g(x)EPz1l = g(x,) AL & VP
Thus it follows that
[P/ PISCy |5 in Y’
with d=2jr, when |v|<27. When |v|>27, we have the above estimate with

0=25/(27+1). Since max (257, 2;/(27+1))<1, we see that (B.2) holds.
Now in view of Lemma 3.2, the proof of Proposition 3.1 is completed.
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