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A on the C°°-Goursat Problem II

By

Yukiko HASEGAWA*

§1. Introduction and Results

Let us consider the following operator with constant coefficients:

(1.1) &(dt,dx,dy)= £ afrd}d&, a^: constant,

d, = d/dt , dx = d/8x , dy = (d/dyi, s/dy2, ..., d/dj .
In this paper we assume that the hypersurface t = 0 is m2-tuple characteristic,
namely

1) aijat = 0 for i 4- j + |a| = m , i > m — m2 = m1 ,
2) I a^CW 0.

j+|a|=m2

We consider the following Goursat problem:

(G)

, x, y) = ^.(x, 3;) e <%j37) , 0 ̂  i ̂  mi - 1 ,

, 0, y) = ^(t, y) 6 *(ffy) , 0 g j g m2 - 1 ,

(x eRl,ye Rn, teR\(ort€ Rl_)) ,

^where d&(09 y) = 5/^(0, y) , 0 ̂  i ̂  TO! - 1 , 0 ̂  j ^ m2 - 1 .

We say that the Goursat problem (G) is ^-wellposed for t g: 0 (or for t ^ 0) if
for any data {^J {^} there exists a unique solution u(t, x, y) e <?<,,*, y) for t ^ 0
(or t ^ 0). If the Goursat problem is <f-wellposed for t ^ 0 (or for t ^ 0) then
the linear mapping {{^}, {^/}} ~>u(t, x, y) is continuous from f]%,y) x Il^f.y)
into S(ttXty} for t ^ 0 (or for t ^ 0). T. Nishitani [3] had considered the follow-
ing operator:

(N) I fl^/5^;, am-m 2 ,m 2 ,0^0,
i+j+|a|^m
i^m— m2
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and he had obtained a necessary and sufficient condition for if-wellposedness.
For this operator (N), we obtained Lev! condition [2]. Let us call the operator
(N) which was treated by Nishitani "N-type". In this paper we will show that
if (G) is <f-wellposed then $? is N-type.

Remark 1.1. "Operator <£ is N-type" means that

0m l f m 2 ,o ^ 0 and aijt0l = 0 for i>mi.

Theorem., // the Goursat problem (G) is $-wellposed for t g: 0 and for t ^ 0
then 5£ is N-type.

Remark 1.2. In [1] we proved this theorem under some assumptions.
The paper "A remark on the C°°-Goursat problem I" does not exist, but we
regard [1] as "A remark on the C°°-Goursat problem I".

Proposition 13. If (G) is S'-wellposed for t^Q then am^m^Q ^ 0.

The proof is given in [1].

§ 20 Case (where X does not include dy)

At first we treat the operator which does not include dy. Taking account
of Proposition 1.3, we consider the following operator:

(2.1)

m = ml + m2 , atj : constant , atj = 0 for i + j = m, i ^ m1 ,

(2.2) L(d,,3Ju = 0.

Let the following Goursat problem be (G'):

(Gf)

3/u(0, x) = ^(x) 6 ̂  , 0 g i ̂  mi - I ,

diu(t9 0) = ^(0 **<> 0 g j ^ m2 - 1 5

, 0 ̂  i ̂  m1 - 1 , 0 ̂  j ^ m2 - 1 ,

( t ^ O o r t ^0 9 x e K 1 ) .

We set

(2.3) fl = {(i,»;fl^0}, ( (m l 3 m 2 )^0) .
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Theorem 2.1. // there exists (i, j) in Q such that i > m± (i + j < m) then the
Goursat problem (G') is not S'-wellposed for t g; 0 or for t ^ 0.

For to prove Theorem 2.1, we are going to show that the continuity from
data to solution does not hold under the assumption of the theorem 2.1. More
precisely we construct Goursat data {^(x; £), \l/j(t; £)} which have the following
properties:

1) The growth order of Goursat data is at most polynomial of |£|,
2) We denote the solution of (G') with previous Goursat data by u(t, x; £).

The growth order of d™lu (0, x^; £) is exponential of |£|, where x^ is bounded for
large |£|.

Under the assumption of theorem 2.1, we consider Q in R+. Let / be the
straight line through (m l5 m2) which has the following properties:

1) All elements (i, j) in Q exist under / or on /,
2) There exists at least one element (i, j) in Q on /.

Let the slope of / be — p/q. (0 < q < p, p and q are relatively prime). Here
we put m1p + m2q = J and

(2.4) r(k) = {(ij);pi + qj = k,(i,j)eQ}, k = 0, 1,..., J .

Obviously, it holds that

(2.5) (J r(k) = Q .
k=0

Let

(2.6) LJ(T, 0 = tm 'Cm2 - X a0-T'CJ'

and consider the roots of Lj(l, () = 0. We put

where p ^ 0, af ^ a,- if i / j, laj ^ |af| > 0, o^ is ^(i)-tuple root and p +
w(2) + • • • + n(N) = m2. Let (2.8) be a formal solution of (2.2):

(2.8) u(t,x) = ^ur9St
rxs/r!sl.

r,s

We consider the following Goursat data:

'uriS = 0, O g s ^ p - 1 ,

Mr)S = 0, s ^ m 2 , 0 ̂  r ^ mx - 1 ,

namely
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(2.9')

•- 0) = I K>!K = (KI^V S (£prA-!)f = (a^«y exptf't),
r r

s=p

Putting (2.8) in (2.2) and comparing the coefficients of trxs, we have

(2.10) "r+mt.s+mj = . Z Wr+i.s+J '

Here we introduce the following notion.

Definition 2,2. The order of w^ is higher than the order of ur,s, (or the
order of ur,s, is lower than that of urs) if and only if pr + qs> pr' + qsr or else
pr + qs = pr' + gs' and s' < s.

By (2.9) and (2.10), we can determine urs successively and we have the
following estimate.

Lemma 2.30 uVtS is a polynomial of £ with degree pr -h ^5 and has the
following estimate:

(2.11) K,I^C'|£r+" for large |£|,

where C is a constant independent of r, s and £, .

Proof. We prove this by induction. Taking C as |ax| < C, Goursat data
(2.9) satisfy (2.11). Suppose that wrV satisfies (2.11) if its order is lower than that
of M r+mi>s+m2 , then the following holds:

(2.12) \ur+mifS+m2\^A X Nr+M+,-1
(i,j)e0

^A X cs+7|{|J^+l)+«Cf+/)
> where 4 = max \av\ .

(i/)6i3 ( i , / )6fi

If (i, j) e F(J), (i, j) is on /. So, we have

(2.13) F(J) c {(mi +q9m2- p\ (m1 + 2q, m2 - 2p\ . . . , (mx + fc0^f, m2 - h0p)} ,

Thus, (2.12) becomes

x<A
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^ Cs+m-\^r^s+J{(Ah0/C
p) + (yUViC-Vlfl)} ,

where N1 is the number elements of Q .

Here we can suppose C > 1. First we take C large enough to have (Ah0/C
p) <

1/2. Next we take |f| large enough to have (AN^Cm^/\^\) < 1/2. Then we
have

n \A\ \1M ^ /^s+m2\ K\p(r+m1)+q(s+m2)
lA1^/ \ur+mlts+m2 ^ ^ 1*1

q.e.d.

By Lemma 2.3 we have

Proposition 2A The formal solution (2.8) of the Goursat problem (2.2)-(2.9)
converges uniformly.

Then (2.8) is a true solution of (2.2)-(2.9). By Lemma 2.3, we can put

pr+qs

(2-15) u r,s= £ n»tf *•+<•-*.
fc=0

The following holds:

Lemma 2.5. For r ^ mt and s ^ p, tftg leading coefficient of urtS is aj,

(2.16) *4°s) = asi /or r ^ mx , s ^ p .

Proof. We prove this by induction. Putting (2.15) in (2.10) and com-
paring the coefficient of <^r+«s+J

j we have

(2.17) u^mi,s+m2= X «X+W
(U)eT(J)

Goursat data (2.9) satisfy (2.16). Suppose that the every term of right-hand
side of (2.17) satisfies (2.16). We have

(2.18) u^s+m2 = X a,<J

Here we used the fact that ax is a root of Lj(l, C) = 0. q.e.d.

By (2.8) we have

(2.19) #"u(0,x)= I>mi,s/s!)xs.
s^O

So we must estimate wmi)S. The lower order terms of umitS on f have the
following estimate.
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Proposition 2068 For p ^ 5 < |£|^? 0 < /^ < 1/p', there exists constant C and
a > 0 SMC/Z

(2.20) |i*mi,s - af^mi+^| g CMs\^\pmi+qs-ff .

Concerning p, re/er to (2.7) a^d we set p' = max n(fc).
l^/i^JV

This proposition is the most important estimate to prove Theorem 2.1.
The proof of proposition 2.6 is complicated. So we prove this later in § 3.

Now let us prove theorem 2.1. We set

(2.21) x% = l/|£|e, where Q<q~[i<&<q.

The following holds:

(2.22)

Let the argument of a x be 0 and let the argument of ^ be — 0/q, that is

(2.23) a

and

(2.24) £ = |

Then we have

(2.25) a i«« = |ai| exp(0i)|{|* exp(-ft') = |ax|

Using Proposition 2.6, (2.22) becomes (2.26):

(2.26) \d^u(Q9x^-r

where Rl and K2
 are the second and third terms of the right-hand side of (2.22)

respectively. By Lemma 2.3, we have

(2.27) *i= I K..l*?/s!g I Cs\tr^s\trs/sl .
s>\e\* 5>i«i"

Here we recall Stirling's formula:

(2.28) s! = y^ss+(1/2) exp(-s + (ff/l2s), Q ^ f f ^ l .
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By (2.27), (2.28) and (2.21), we have the following for large

(2.29) KI ̂  Z Cs\t\miP+(q-e*es/ss ^ Z

< constant/^ I (for large |£|).

By the same way, we have

(2.30) R2 ^ constant/^ | .

Dividing (2.26) by |£|miP expdajl^l9"8) we have

(>j T-t} ~t "\~9~ri i W\ P0 . \ _ C

=

for large |^|, where a > 0, C; positive constant.

Now, we recall Goursat data (2.9'). Because of £p = |£|p sxp( — pi0/q), if the real
part of Qxp( — pi9/q) ^ 0 (or ^0) we consider the Goursat problem for t ^ 0 (or
t ^ 0), then Goursat data have at most polynomial order of |£|. So if we
assume the <f-weliposedness then the solution u(t, x) has at most polynomial
order of |£|. When |£| -> oo, (2.31) becomes 1^0 because of q — s > 0. This
is a contradiction. q.e.d.

§ 3, The Proof of Proposition 2.6

Recall (2.9), (2.10), (2.15) and (2.16):

(2.9) < ur = %l £pr+qs
 5 p < s < m — 1 , r > 0 ,

ur>s = 0, s ^ m 2 , 0 ^ r ^ m2 — 1 ,

(2.15)

(i.j)efl

(2.16) "i?s) = ai for r ^
Because of (2.4) and (2.5), we rewrite (2.10):

j
Z aijUr+i,S+j •

d=0 pi+qj=J-d

Putting (2.15) in (3.1) we have

J J
J^(k) tpr+qs+J-k _ y Y y (fc') zpr+qs+J-d-k'

^ "r+mLS+mz^ " L L aij L Ur+i,s+j$
k=0 d=0 pi+qj=J-d k'^0
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Comparing the coefficient of £Pr+«s+J-k^ we have

(3.3) «$„,,.,+„, = Z Z «</«£&.; , OZkZpr + qs + J.
d=0 pi+qj=J-d

At first we notice that

Lemma 3.1. When r ^ m^fc + 1), *4^ w independent of r.

We prove this lemma by induction with respect to k and s. Moreover we
have the following lemma. This is the key lemma to prove Proposition 2.6.

Lemma 3.20 When r ^ m^k + 1), w^s /?os r/ie following expression:

N n(h)k

(3.4) «*> = X Z Z»(v,fc)(s-p)'<xj,
^ = 1 v = o

where 0° = 1 and (s - p)v = 0 for s - p < 0 , v ̂  0 .

Here Zj,(v, fc) is independent of r and has the following estimate:

(3.5) \zh(v, k)\ ^ MjMf°k-v/v! , (M1? M2; constant) .

Concerning the definition of n(h\ refer to (2.7).

The proof of Lemma 3.2 is fairly complicated. So we prove this later in §4.
In the proof of Proposition 2.6, we use the following:

Corollary 3.3. When r^m1(k+ 1), u(*l has the following estimate:

(3.6) li^Jl^Cla^MV'*,

where p' = max n(h) and C, M are constants.

Proof. By Lemma 3.2 we have

N n(h)k

(3.7) |ii*>|^ Z E \zh(v,
h=l v=0

Z V(v!AfJ)
v=0

MV*. q.e.d.

In order to prove Proposition 2.6 we prepare some lemmas. By (2.10) we have
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/"3 Q\ ,, — V n 11
\J.Q) Ur s — 2_t aijur+i-ml,s+j-m2

= X aiJi /L ai2J2Ur+ii+i2-2rnl,s+jl+j2-2m2'"

Especially, for r = ml5 it becomes

C39) u = V a- • ---a- • u _ , _ • _u .j.- _*- 4.- +...+ • _r\ / WIj,!! / .1 l ljl IK.JK. J W l T l l T " " i IK A.WIl ,H Tji T * ~rjK A.IW2 *

^i^'i • • • IK.JK

In the right-hand side of (3.9), we replace wrV by lower order ones successively.
Finally each term of the right-hand side of (3.9) arrives at the Goursat data.
By Lemma 2.3, um^n is the polynomial of £ with degree pml + qn. Let us pay
attention to the coefficient of £i"»i+«»-*. We recall the Goursat data (2.9).
We are going to seek for Goursat data urs which satisfy (3.10):

(3.10) pr + qs = pml + qn — A , p ^ s ^m2 — 1 .

Lemma 3.4. The set of integers {qn — /I — qk; p ^k ^ p + p — 1} is equal
to the set of integers {0, 1, 2,..., p — 1} modulo p.

By (2.13) we have p = m2 — hp, 1 ̂  h ^ [m2/p]. So there exists one of
Goursat data uftS which satisfies (3.10). Let it be Mr0fSo, namely

(3.11) pr0 + gs0 = pmx + qn — X , /? ̂  s0 g m2 — 1 ,

and

(3 12) 2 i = ro = (Pmi + «i - A - s0q)/p ,
1" + Jl + J2 + ' ' ' + JK - Km2 = S0 •

We are going to estimate the coefficient of wrojSo in the right-hand side of
(3.9). For this, we want to estimate K in (3.12). By (3.12) we have

(3 13) i 2 * i i qn-- s0q ,
[qn + q(j1 + J2 + • • • + jx) - qKm2 = qs0 ,

therefore the following holds:

(3.14) p(i, +i2 + "- + iK) + qfa + J2 + • • • + ;K) - X(pm! + qm2) = - A .

Considering pmx + qm2 = J, (3.14) becomes the following:

(3.15) Z(pi* + «/*-J) = -A.
/t=i

Let the number of (ik,jk)er ( = Q — T(J)) in (3.15) be K7. The number of
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(ik, jk) € F(J) becomes K — K'. According to the definition of F(fc) it holds that

t + q/k - J = 0, for (ik9 jk) E F(J),

By (3.15) and (3.16), we obtain

(3.17) J T ^ A .

Recall the first equation in (3.12). The following holds:

(3.18) (ik-mi) = (qn-l.-
k = l

According to the definition of F(J) it holds that

(3.19) it-m^qZl for (ik, jk) e T(J) .

By (3.18), (3.19) and (3.17), it holds that

(3.20) l(K - K') - m.K' ^(qn-1- s0q)/p ,

that is,

K £ (q/p)(n - s0) + (m, + l)K' - (A/p) .

Thus we arrive at

K £ (q/p)n + (TO! + 1)A .

Finally we have

(3.21) K < n + (TO! + 1)A .

Therefore the coefficient of i^0jSo is estimated by (^J¥1f
+(mi+1);t. Here Nj is

the number of the elements of Q and ^4 is a constant satisfying \a^\ ̂  A for
(i, j) in O. On the other hand, the number of MrjS

5s which satisfy (3.10) is at
most m2. Then we obtain the following lemma.

Lemma 3«50 Let

pmi+qn

(3.22) u m i , n = X uL«,f'"'+«"-A.
A=0

It holds that

(3.23) |<,n ̂ Q^)^^1^,

where Q, C2 are constants independent of n and L

This lemma is a very rough estimate. We use this lemma for large L For
small A, we need more delicate estimate. To obtain this, we use Corollary
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3.3. In the right-hand side of (3.9), the Goursat data ur^s with r > m^A + 1) +
m2 must pass through urjS with m1(/l+ l ) ^ r ^ m 1 ( A + 1) 4- m2. Let us notice
ur>s with mx(A -f 1) g r ^ m^A -h 1) + m2. Let one of them be urotSo:

(3.24) m^l + 1) ̂  r0 ^ m^A + 1) 4- m2 ,

(3.25) pm1 + grc — A ̂  pr0 + #s0 ^ /??% + gn ,

i + ii + h + ''' + IK - Kmi = ro ,
+ Ji + J2 + "' + JK ~~ Km2 = s0 .

Let us estimate K which satisfies (3.24), (3.25) and (3.26). By (3.26) we have

K

(3.27) Z (pik + qjk -J) = pr0 + qs0 - (pm1 + qn).

Let the number of (ik9 jk) e F' in (3.27) be K". Then the number of (ik, jk) e
becomes K - K". By (3.16), (3.25) and (3.27) we have

(3.28) K" ^ /i.

The first equation of (3.26) is

(3.29) ZiO't-'n1) = ro-m 1 .

By (3.19) and (3.29), it holds that

(3.30) (K-in- if i iK^ro-m!.

Therefore we have

= ^(2m1 + 1) + m2 .

Then the coefficient of urojSo in the right-hand side of (3.9) is estimated by

(3.32)

wro So is the polynomial of £ with degree pr0 + gs0. We want to estimate the
coefficient of degree pm1 + qn — X of wro>So- Putting

(3.33) pr0 + gs0 — A' = pm-L + gw — A ,

/I' satisfies

A' = A + pr0 + gs0 - (pmj -h qn)

and

(3.34) 0 ^ A' ̂  A .
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According to Corollary 3.3, we have

(3.35) K?sol g CK W<A'

By (3.10) and r > mx(A + 1) + w2, It holds that

(3.36) A < (qn — qs — pm2)/(pm1 + 1), /? g s :g m2 — 1 .

After all we have the following:

Lemma 3,6. When

(3.37) X < (qn — qm2 — pm2 + q)/(pml 4- 1)

it holds that

(3.38) i#>t J g (ANlY
(2m^+l}+m^C\^l\

nM^np'^(m2 + 1)

^ C1C2
A|a1|llnp'A , where Cl9C2 are constants.

Finally let us prove Proposition 2.6. Putting

(3.39) q/(pml + 1) = o^ and (qm2 + pm2 - q)/(pmv + 1) = o)2 ,

(3.37) becomes (3.40):

(3.40) 1 < co^ — o)2 .

Recall

(3-22) V.. = Zi4AU'"1+f""*.

and let

(3-41) Q= I <.„«-*•
A^l

By Lemma 2.5, (2.20) is equivalent to (3.42).

(3.42) iei<C|a1 |" |£r r , ^ > 0 9 for p g n ^ l ^ .

Hereafter we are going to prove (3.42). We decompose Q as follows:

(3.43) Q= Y, <U-A+ E <..«"*
l ^ A < C 0 1 W —0>2 A ^ C O i W — G>2

= Qi + 62 •
First we consider Ql. According to Lemma 3.6 and assumption of Prop. 2.6
we have

(3.44) iejg E K,nii^rA
1 ^ A<co 1 w—co 2

gct x c2iai|V'i$rA
1 ̂  A<co1n—co2
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^C3|a1r^r'-1 for |{| large,

where C3 is constant and ^p' < 1 .

Next we consider Q2. By Lemma 3.5 we have

(3.45) ie 2 is £ K,nii<rA

A^aji i i— co2

k^ co^n — Q}2, that is, « ^ W&>i) + (a}2/a)i) •>

and

^ constant ^ (C2
(mi+2)/|^|);i ^ constant l^"1 for large

A^l

Thus we have proved (3.42).

§48 The Proof of Lemma 3.2

Putting (3.4) into (3.3), we have

N n(h)k

(4.1) I I ZH(V, k)(s + m2- p)X+"2

N n(h)(k-d)

I a« Z Z z*(v>fe - <0(s +; - p)X+J'
=0 (iJ)er(J-d) fc=l v=0

Using the following equality;

(S + m2 - Pr = {(s -P) + m2r = zn=o

we rewrite (4.1) and obtain (4.T);

N n(h)k v /v\

(4-1') Z Z E*»(v,*) (5 - p)"m2
v-X+m2

h=l v=0 n=0 \W/

J N n(h)(k-d) v= z I ** z i z ^(v, * -
d = 0 (iJ)er(J-d) h=l v = 0 n = 0
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We take the coefficients of (s — pfa^ of both sides of (4.1') equal. We have

kn(h) /v\ kn(h) /ykn(h) /v\(4.2) z zftou)
v=n \n/

J (k-d)n(h)

= t V a- Y zh(v, k - <LJ LJ ij Z-i * « V K » v

d=l (i,j)e F(J-d) v=n

0 ^ n ̂  fen(ft), i ^h ^ N .

When (fc — l)n(ft) < n ^ fcn(ft), the right-hand side of (4.2) vanishes and the
left-hand side is the following:

(4.3) knfZh(v,k)(V}L-ap- E a«r»*A.
v=n ' \nj [ (iJ)eF(J) ^ J

According to the equality:

(4.4) y* = t ftgy(y - l)(y - 2 ) . . . ( y - g + 1)

it holds that

(4.5) m^r - Z au/aft = Z b9 \ m2(m2 - 1)... (m2 - gf + l)ah
mz

- Z Mj-iJ-o'-

As ah is the w(fc)-tuple root of Lj(l, C) = 09 the following holds:

(4.6) (d/d&Lj(l, aj = 0 , 0 ̂  g £ n(h) - 1 .

By (4.5) and (4.6), we have (4.3) = 0. Therefore (4.2) holds for (k - i)n(h) <n<>
kn(h) and for any {zh(v, k); (k — i)n(h) < v ^ kn(h)}. Next we consider (4.2) for
n ^ (k — l)n(h). By (4.6) we can rewrite (4.2) as follows:

(4.7) zh(n + n(h), k)

kn(h)
V~nr/m2 V n iv~nr/® ~ aijJ ®

v=n+n(h) + l \nj I (iJ)eF(J)

J (k-d)n(h)

Z Z «0 Z ^(v,k-
d=l (iJ)er(J-d) v=n

0 g n g (fc - l)Fl(fc) .
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As ah is the n(h)-tup\Q root of Lj(l, C) = 0? we have

(4.8)

Therefore if we assume that the right-hand side of (4.7) is given then zh(v, k)
(n(h) g v ̂  kn(h)) is determined by (4.7). However (zh(v, fc); 0 ^ v g n(ft) - 1}
are not determined by (4.7). These are determined by the following way.
Recall (3.4):

N n(h)k

(3.4) u*i = X Z **(v, fc)(s - p)X .
fc=l v=0

By (2.9) and (2.15), we have

(4.9) i4« = 0 , (Ic £ 1, 0 g s £ m2 - 1) .

In the case 0 g s ^ p — 1, it holds that s - p < 0. Then the right-hand side
of (3.4) vanishes. We consider the case p ^ s ^ m2 — 1, and set the right-hand
side of (3.4) 0. We have

N n(h)k

(4.10) X I z»(v, *)(s - P)X = 0 , p £ s ̂  m2 - 1 .
h=l v = 0

More precisely, (4.10) becomes

h=l

N n(h)-l N n(h)k

(4.10')

(s = P

n(h)k

v=~0 fc=l v=n(h)

N n(h)-l N n(h)k

X Z *»(v, *)(«i - IW"1 = - Z Z zfc(v, fc)(mi - irajp'1,
ft = l v = 0 ^=1 v=w(/i)

(s = m2 — 1 = m'2 4- p — 1 and m'2 = m2 — p) •

We consider that (4.10;) is a system of equations and it's unknowns are {zh(v, k);
0 ^ v ̂  n(h) - 1, l^h^N}. Let the coefficient matrix of (4.10') be A. We
have

(4.11)
Nn («i - ^•)n(t>°") n ar®^0

Therefore if we assume that the right-hand side of (4.10') is given, [zh(v, k);
0 fg v g n(h) — 1, 1 ^ ft ^ AT} are determined uniquely.
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Now we determine {z/,(v, k)} in the following way. First, by (2.16) and
(3.4) we have

(4.12) z1(Q,Q)=l, z*(0,0) = 0 l<h^N.

Assuming that {zh(v, k'); kf < k} are already determined, we determine
zh(kn(h)9 k) by (4.7). Next, we determine zh(kn(h) — 1, fe) by (4.7), and so on.
At last we determine zh(n(h\ k) by (4.7). Finally we determine {zft(v, Ic);
0 g v < n(h\ l^h-^N] by solving the system of equations (4.10'). We can
prove (3.5) by induction. Thus we complete the proof of Lemma 3.2.

Remark 4.1. The coefficients {zfc(v, Jc); 0 ^ v g kn(h\ i^h^N} which
satisfy (4.2) and (4.12) are determined uniquely. (4.2) is a sufficient condition
for (4.1). However (4.2) is not a necessary condition for (4.1), therefore the
expression in the right-hand side of (3.4) is not unique.

§5. General Case

At last we consider the general case where the operator <£ includes 3y;

(5.1) &(dt, dX9 d,)u(t, x, y) = 0 .

Putting

(5.2) u(t9 x, y) = exp(iw)v(t, x) , ij e R" ,

(5.1) becomes (5.3):

(5.3)

If j£?(df, dx9 dy) is not N-type, J^(3f, dx9 irj) is not N-type with respect to some
YI, too. So we can reduce the general case to the case of §2.

At the end the author wishes to thank Professor S. Mizohata and Professor
W. Matsumoto for their valuable suggestions.
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