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A Remark on the C*-Goursat Problem II

By

Yukiko HASEGAwWA*

§1. Introduction and Results
Let us consider the following operator with constant coefficients:

(1.1 L0, 0,,0,)= Y  ay0/0i0F, ay,: constant,

i+jt+lal<m
0,=0/0,, 0,=0/6,, & =(0/0,,0/0,,....0/0,).

In this paper we assume that the hypersurface t = 0 is m,-tuple characteristic,
namely

1) ap=0fori+j+|a|j=m,i>m—m,=m,,
2 Z_ A, LM # 0.
We consijgg;tmhze following Goursat problem:
(Pu=0,
0/u(0, x, y) = ¢(x, y) € b, » 0Zi<m, -1,

G)

AL

aJ{u(t9 07 J’) = l//j(ta y)E (git,y) s 0 é J é m,; — 1 5
(xeR, yeR" teR} (orteRl)),

\Where 5§¢;(0,J/)=6:‘//1(0,Y), Oéléml—'ls 0§]§m2'—1

We say that the Goursat problem (G) is &-wellposed for t = 0 (or for t £ 0) if
for any data {¢;} {y;} there exists a unique solution u(t, x, y) € &,,,) for t =20
(or t £0). If the Goursat problem is &-wellposed for ¢ = 0 (or for ¢t < 0) then
the linear mapping {{4;}, {¢;}} - u(t, x, y) is continuous from [[ &, x [,
into &, , for t 20 (or for t £0). T. Nishitani [3] had considered the follow-
ing operator:

(N) Z aijaatiaga; ] am—mz,mz,o # 0 H

i+jtlalSm
iSm—my
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and he had obtained a necessary and sufficient condition for &-wellposedness.
For this operator (N), we obtained Levi condition [2]. Let us call the operator
(N) which was treated by Nishitani “N-type”. In this paper we will show that
if (G) is &-wellposed then & is N-type.

Remark 1.1. “Operator & is N-type” means that

Ay, my, 0 #0 and i jo= 0 for i> my .

Theorem. If the Goursat problem (G) is &-wellposed for t = 0 and for t <0
then & is N-type.

Remark 1.2. In [1] we proved this theorem under some assumptions.
The paper “A remark on the C®-Goursat problem I” does not exist, but we
regard [1] as “A remark on the C®-Goursat problem I”.

Propesition 1.3. If (G) is &-wellposed for t = 0 then a,,  ,, 0 # 0.
The proof is given in [1].

§2. Simple Case (where # does not include d,)

At first we treat the operator which does not include d,. Taking account
of Proposition 1.3, we consider the following operator:

(2.1) L(3,8) = omoy> — ), ay0,0],

i+j<m
m=my; +m,, a;; - constant , a; =0 for i+j=m, izm,,
(2.2) L6, 0,)u=0
Let the following Goursat problem be (G'):
(L3, d)u=0

ou©,x)=¢(x)eé,, O0ZLi<m —1,
(@) 1 0ut,0)=y)ed, O0=<j=<m—1,
046,(0) = 3,y;;(0), 0Zism -1, 0j<m,—1,
t=0o0rt<0,xeR).

We set

(2.3) Q={Gjray#0}, ((m,my)¢Q).
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Theorem 2.1. If there exists (i, j) in Q such that i > my (i + j < m) then the
Goursat problem (G’) is not &-wellposed for t = 0 or for t < 0.

For to prove Theorem 2.1, we are going to show that the continuity from
data to solution does not hold under the assumption of the theorem 2.1. More
precisely we construct Goursat data {¢,(x; &), ;(t; &)} which have the following
properties:

1) The growth order of Goursat data is at most polynomial of |£],

2) We denote the solution of (G') with previous Goursat data by u(t, x; &).
The growth order of 9"u (0, x;; £) is exponential of |£|, where x, is bounded for
large |&|.

Under the assumption of theorem 2.1, we consider 2 in R%. Let ¢ be the
straight line through (m,, m,) which has the following properties:

1) All elements (i, j) in € exist under £ or on 7,

2) There exists at least one element (i, j) in 2 on 7.

Let the slope of £ be —p/q. (0 <q <p, p and q are relatively prime). Here
we put m;p + m,q = J and

2.4) rk)={Gjspi+aji=kGjel}, k=01,..J.

Obviously, it holds that

~

2.5) 'k =2Q.
k=0
Let
(2.6) Lyt,)=1t™m — ) aijTiCj

@i, j)e I'(J)

and consider the roots of L;(1,{) =0. We put
2.7 Ly(1,0) = {P(€ — o))" — o). (C — ag)™™,

where p 20, a; # o if i # j, |oy| = o] > 0, o; is n(i)-tuple root and p + n(1) +
n(2) + -+ n(N) = m,. Let (2.8) be a formal solution of (2.2):

(2.8) u(t, x) =Y, u, ;¢"x°/ris!.

We consider the following Goursat data:

u, =0, 0<s=p-—-1,
(29) ur,s=ai§pr+qsa Pésémz—l,
U =0, s=m,, 0sr<m, -1,

namely
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(6iu(t,00=0, 0<j<p—1,
Aiu(t, 0) =Y (u, ;/r))t" = (0, E9Y Y (EP"/rN)e" = (a, E9) exp(EPe),

no<
@9) p<js<my—1,
my—1

ou(0,x) =27 Y, (@i¢®/shx’, O0<i<m —1.
- s=p

Putting (2.8) in (2.2) and comparing the coefficients of t"x*, we have

(210) ur+m‘,s+m2 = Z aijur+i,s+j .
i.))e 2

Here we introduce the following notion.

Definition 2.2. The order of u,, is higher than the order of u,, (or the
order of u,. is lower than that of u,,) if and only if pr + gs > pr’ + gs’ or else
pr+gs=pr' +gqs'and s’ <s.

By (2.9) and (2.10), we can determine u,, successively and we have the
following estimate.

Lemma 2.3. u,, is a polynomial of ¢ with degree pr + qs and has the
Jollowing estimate:

(2-11) lu, | < C°[E)Pr™e for large |¢],
where C is a constant independent of r, s and & .

Proof. We prove this by induction. Taking C as |a;| < C, Goursat data
(2.9) satisfy (2.11). Suppose that u,. satisfies (2.11) if its order is lower than that
Of 4, 4 1n, s+m,> then the following holds:

(212) Iur+m1,s+mzl é A Z ,ur+i,s+j,

@i,)e R
<A Y CHH|gperitast) - where A= max |ayl.
e e ())e

If (i, j)e I'(J), G, j) is on . So, we have

(2.13) 1) < {(m, + g, my — p), (my + 2q, my — 2p), ..., (my + hog, my — hop)} ,
ho = [m,/p] .

Thus, (2.12) becomes

[ty S €72 e
1s 2! —

X {A Z Ci-mz|§|—1+(pi+qj) + Z ch—mzlérﬂ(piﬂi)}
@, j)e I\J) G, )¢ 1)



C®-GOURSAT PROBLEM 211

< Com2|gPrratI{(Ahy /CP) + (AN, C™/IED)}
where N, is the number elements of Q.

Here we can suppose C > 1. First we take C large enough to have (4h,/C?) <
1/2. Next we take |£| large enough to have (AN,C™/|¢|) < 1/2. Then we
have

(214) syl < O 7[R
q.e.d.

By Lemma 2.3 we have

Proposition 2.4. The formal solution (2.8) of the Goursat problem (2.2)—(2.9)
converges uniformly.
Then (2.8) is a true solution of (2.2)-(2.9). By Lemma 2.3, we can put

prtgqs

(2.15) U, =y, ulgrrraTk
The following holds:

Lemma 2.5. For r2m, and s 2 p, the leading coefficient of u,, is af,
namely

(2.16) u® =a} for rzmy,s=p.

Proof. We prove this by induction. Putting (2.15) in (2.10) and com-
paring the coefficient of E7"*#*7 we have

2.17) © = Y au®

ur+m‘,s+m2 . ij%r+i,s+j -
(i, HerWJ)

Goursat data (2.9) satisfy (2.16). Suppose that the every term of right-hand
side of (2.17) satisfies (2.16). We have
(218) uf-(-)i-)ml,s-kmz = Z aijai+j

G)ery

N

= o s+m; .

a;of = ajo? = of
(i,))el(J)

Here we used the fact that o, is a root of L,(1, {) =0. g.e.d.
By (2.8) we have

(2.19) (0, X) = Y (th,.o/sDX .

So we must estimate u, ;. The lower order terms of u, , on ¢ have the
following estimate.
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Proposition 2.6. For p < s < |é|*, 0 < u < 1/p', there exists constant C and
o > 0 such that
(2.20) [, s — 0§ EP™MTE] < Clayy F|E[P™M 977

Concerning p, refer to (2.7) and we set p' = max n(h).
1<hsEN

This proposition is the most important estimate to prove Theorem 2.1.
The proof of proposition 2.6 is complicated. So we prove this later in § 3.
Now let us prove theorem 2.1. We set

(2.21) xe = 1/|¢°, where O0<g—pu<e<gq.
The following holds:

(2.22) ;) Upy,,sX5/S! — E™P Zo (o ETPx;/s!

S Y Nty — E™MP( £ x5/ + |t 5| X/51

s<|g s> g

+1¢™* loey EPxg/st .

s>

Let the argument of «; be 0 and let the argument of £ be —6/g, that is

(2.23) o, = |a, | exp(6i)

and

224 ¢ = ¢l exp(—0i/q) .

Then we have

(2.25) oy &7 = |oy | exp(6i) || exp(—0i) = fary | |17 .
Using Proposition 2.6, (2.22) becomes (2.26):

(2.26) |8m1u(0, xg) — E™P exp(|ay|1£]*7°)]

= CleI™P 7 exp(lay |[€177°) + Ry + R,

where R, and R, are the second and third terms of the right-hand side of (2.22)
respectively. By Lemma 2.3, we have

(2.27) Ry= ) |ty lxg/s! < Zm Cegfrmras|g|7=st .

s>[gH

Here we recall Stirling’s formula:

(2.28) s = /2ns** 02 exp(—s + (0/12s), O0<@ <1.
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By (2.27), (2.28) and (2.21), we have the following for large |&|:
(2.29) Ry S Y Colgmrrades/ss< 3 (eCy|g|mptasms

sSTE s>Te

< constant/|&| (for large |£]) .
By the same way, we have
(2.30) R, < constant/|¢] .
Dividing (2.26) by |&|™? exp(|et,|[£]77%) we have

amu(0, x;) < my po ) c
31 —
@31) &7 explay 1679 P\ 7 g B

for large |&|, where ¢ > 0, C’; positive constant .

pS

Now, we recall Goursat data (2.9). Because of &7 = |&|P exp(— pif/q), if the real
part of exp(—pif/q) = 0 (or <0) we consider the Goursat problem for t < 0 (or
t = 0), then Goursat data have at most polynomial order of |£|. So if we
assume the &-wellposedness then the solution u(t, x) has at most polynomial
order of |£|]. When |£| — 00, (2.31) becomes 1 < 0 because of g — & > 0. This
is a contradiction. q.e.d.

§3. The Proof of Proposition 2.6
Recall (2.9), (2.10), (2.15) and (2.16):

u, =0, 0<s=p-—-1,
29) U =il p<ss=my—1, rz0,
u, =0, szmy, 0sr=m,-—1,
(210) ur+m1,s+m2 = Z aijur+i,s+j ’
@i,j)e @
pr+gs . . X
(2.15) Upg = ), UEPTETE,
k=0
(2.16) u® =af for r2m;, s=p.

Because of (2.4) and (2.5), we rewrite (2.10):

J
(31) r+m1 stmy = Z Z aijur+i,s+j .
d=0 pi+qj=

Putting (2.15) in (3.1) we have

pr+gs+J

J

k -—

(32) Z ul('-gml s+m2€pr+qs+] k = Z Z l] Z ur+l s+] pr+qs+J 4K
k=0 =0 pit+qj=J—d
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Comparing the coefficient of £P"*#+/~% we have

(33) ug-?m,,s+m2 = Z Z a; uf'ﬁ—lds)+1 5 0 é k é pr + qs +J.
d=0 pi+qj=J—d

At first we notice that
Lemma 3.1. When r = my(k + 1), u%, is independent of r.

We prove this lemma by induction with respect to k and s. Moreover we
have the following lemma. This is the key lemma to prove Proposition 2.6.

Lemma 3.2. When r = my(k + 1), u®, has the following expression:

14 @ _ N n(h)k K s
() urs"Z ZO Z;,(V, )(S p)ah,

where 0°=1 and (s—p)’=0 for s—p<0, v=0.

Here z,(v, k) is independent of r and has the following estimate:
(3.5) |zp(v, k)| £ MEME®E/y1 - (M,, M,; constant) .
Concerning the definition of n(h), refer to (2.7).
The proof of Lemma 3.2 is fairly complicated. So we prove this later in §4.
In the proof of Proposition 2.6, we use the following:

Corollary 3.3. When r = m,(k + 1), u%) has the following estimate:
(3.6) [u®)| < Clay [*M*s?™*,

where p' = max n(h) and C, M are constants.
1<h<N

Proof. By Lemma 3.2 we have

h)k

G.7) lufl < Z ZO za(v, K)I(s — p)” lol?

=

]

=

(M"M" (s — p)lay

=
Il
e

IA
M=
i1

p'k
< Nloy's"*MiM5* Zo 1/(vIM3)

= |o s (M, M§ )N exp(1/M,)
< Cla, FM*s?™ | qed.

In order to prove Proposition 2.6 we prepare some lemmas. By (2.10) we have
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(38) ur,s = Z aijur+i—m1,s+j—m2
i,)eR

Z Qi Z QiyjpUr+iy+iy—2my,s+jy+j—2my '
LSWA 12J2

ol M Oy, Qi Uiy ip - Hig—Kmy, s+ jy g+ o+ jg—Kmg ¢
11J1t2J2. - IkJK

Especially, for r = m,, it becomes

(3.9) u

min = Gy Qg Umy iy o ik —Kmyn+ ju+ oo+ jc—Kma
Eyjre-igix

In the right-hand side of (3.9), we replace u,.,, by lower order ones successively.
Finally each term of the right-hand side of (3.9) arrives at the Goursat data.
By Lemma 2.3, u,, , is the polynomial of ¢ with degree pm; + gn. Let us pay
attention to the coefficient of &P™*e"~4  We recall the Goursat data (2.9).
We are going to seek for Goursat data u,, which satisfy (3.10):

(3.10) pr+qgs=pm; +qn— 1, pSs=m,—1.

Lemma 3.4. The set of integers {qn — A —qgk; p <k < p + p — 1} is equal
to the set of integers {0,1,2,...,p — 1} modulo p.

By (2.13) we have p=m, — hp, 1 £ h < [m,/p]. So there exists one of
Goursat data u, ; which satisfies (3.10). Let it be u, ,, namely

(3.11) Pro + qso =pm; +qn— 4, p=so=m;—1,

and

(3.12) {ml+i1+i2+-'-+iK—Km1=ro=(pm1+qn—-/1—s0q)/p,
' n+ji+jo++ jx— Kmy=s,.

We are going to estimate the coefficient of u, , in the right-hand side of
(3.9). For this, we want to estimate K in (3.12). By (3.12) we have

(3 13) {pm1 +p(i1 + i, +"'+iK)_me1 = pm, +qn__i_s0q,
' an + qUjs + o+ + jx) — aKm; = gso,

therefore the following holds:
(314) pliy + i+ +ig) +q(jy + 2+ + jx) — K(pmy + gmy) = — 4.

Considering pm; + gm, = J, (3.14) becomes the following:
K

Let the number of (i, j,)e I’ (=2 — I'(J)) in (3.15) be K. The number of
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(i, ji) € T'(J) becomes K — K'.  According to the definition of I'(k) it holds that

(3.16) P+ i —J =0, for (i, i) e I'J),
. P+ g —J=—1, for (i, ji)el”.
By (3.15) and (3.16), we obtain

3.17) K <.

Recall the first equation in (3.12). The following holds:
K
(3.18) k; (i —my) = (gn — 4 — 509)/p -

According to the definition of F(J) it holds that
(3.19) b—m=qgzx1 for (i, ju) e I'(J).
By (3.18), (3.19) and (3.17), it holds that
(3.20) WK - K') —mK' < (qn— 4 — s09)/p
that is,

K = (a/p)(n — s0) + (my + DK' — (/p) .
Thus we arrive at

K = (g/p)n + (my + 1A

Finally we have
(3.21) K<n+@mg +1)4.

Therefore the coefficient of u, , is estimated by (AN,)"*™*D* Here N, is
the number of the elements of € and A4 is a constant satisfying |a;| < A for
(i, j) in 2. On the other hand, the number of u, /s which satisfy (3.10) is at
most m,. Then we obtain the following lemma.

Lemma 3.5. Let

pm;+qn

(3.22) U, on = Z us'f-l)’népmﬁqn—l )
i=0

It holds that

(3.23) D | < Cy(Cy)r e+,

where C,, C, are constants independent of n and A.

This lemma is a very rough estimate. We use this lemma for large 4. For
small A4, we need more delicate estimate. To obtain this, we use Corollary
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3.3. In the right-hand side of (3.9), the Goursat data u, ; with r > m;(4 + 1) +
m, must pass through u, ; with m;(A + 1) =r <m,;(A + 1) + m,. Let us notice
u,, with my(A+1)<r<m;(A+1)+m,. Let one of them be u

(3.24) mA+D)<roS<m@A+1)+m,,
(3.25) pm; + qn — A < pro + qso < pm; + qn,

(3.26) {m1+i1+i2+---+iK—Km1=ro,

n+j1 +j2+"'+jx—‘Km2=So.
Let us estimate K which satisfies (3.24), (3.25) and (3.26). By (3.26) we have

K
(3.27) k; (pix + i — J) = pro + qso — (pmy + qn) .

Let the number of (i, j,) € I in (3.27) be K”. Then the number of (i, j,) € I'(J)
becomes K — K”. By (3.16), (3.25) and (3.27) we have

(3.28) K'<12.
The first equation of (3.26) is
K
(3.29) k; (e—m)=ro—m,.
By (3.19) and (3.29), it holds that
(3.30) (K—K")Y—mK"<ry—m,.
Therefore we have
B31) K=(m+DK"+rp—m <(m;, + DA+m@A+1)+my, —m,
=iA@2m; + 1)+ m,.
Then the coefficient of u, , in the right-hand side of (3.9) is estimated by
(3.32) (AN, )HEmit1)Ftms

U, s, is the polynomial of ¢ with degree pro + gs,. We want to estimate the

coefficient of degree pm; +gn— 4 of u, .. Putting
(3.33) pro +qso — A =pm; +qn— 1,
A" satisfies

A=A+ pro + qso — (pmy + qn)
and

(3.34) 0<V<i.
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According to Corollary 3.3, we have
(3.35) [u?) | < Clay[*"M*s§* < Cla,["M*n®"* .
By (3.10) and r > m,(4 + 1) + m,, it holds that
(3.36) A< (gn — gs — pm,)/(pm, + 1), p<s=<m,—1.
After all we have the following:
Lemma 3.6. When
(3.37) A< (qn — gm, — pm, + q)/(pm, + 1)
it holds that
(3.38) [ulP | < (AN @™ D mCla, "M *A(m, + 1)
< C,Cay|"n?*,  where C,,C, are constants .
Finally let us prove Proposition 2.6. Putting
(3.39) gq/(pm; +1)=w, and (gm, + pm, — g)/(pmy + 1) = w,,
(3.37) becomes (3.40):

(3.40) A<wn—ow,.

Recall

(3.22) l = T U GO

and let

(3.41) 0= Azl up Er

By Lemma 2.5, (2.20) is equivalent to (3.42).

(3.42) 19 < Cloy["&I™, 6>0, for p=n=|g*.

Hereafter we are going to prove (3.42). We decompose Q as follows:

(3.43) 0= 1<,1<Z U W&+ . DI
=0:+0,.

First we consider Q,. According to Lemma 3.6 and assumption of Prop. 2.6
we have

(3.44) Y O 7 {14

1Si<wijn—w,

sC ) Ciaym™ g

1fi<wjn—ow,
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= Gyl 1; Ci(Emy¥ e

= Cilay" Y (CylE1# )

124

< Cylay "€ for |¢| large,

where C; is constant and up' <1.

Next we consider @,. By Lemma 3.5 we have

(3:45) 101 X lu g™

my,n
Zwin—w;y

SC Y (TR

AZon—w,

=Cilagl” Y (Colloy |y CEmrAE™,

Zon—0;

A= wn— w,, thatis,

n £ (Aw,) + (w,/w,),
and

(345) 19,1=C, ,12‘1 (Cp)HHortmi+Di | g =2

< constant ) (Cy™*?/|&])* < constant |¢|™!  for large |£].
i1

Thus we have proved (3.42).

§4. The Proof of Lemma 3.2
Putting (3.4) into (3.3), we have

N n(h)k
“4.1) h; Zo zy(v, K)(s + my — p)laj™2
J N n(h)(k—ad) .
=Y Y a;Y Y zmk—d)(s+j—p)oti.
d=0 (i,j)e I'(J—d) h=1 v=0

Using the following equality;

v v -
(s+my—p)={(s—p)+m} = ZO <n>(s —pf'my"",
we rewrite (4.1) and obtain (4.1');

n(h)k

N v v
@1 ¥ A k)< )(S — p)'my* et
h=1 v=0 n=0 n

J N v v .
= a; z,(v, k —d s — p)'j St
dZO (i,j)ezru—d) d h; V=0 HZO wl )<n (s = p)'j" "o

219
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We take the coefficients of (s — p)"a; of both sides of (4.1") equal. We have

kn(h) y kn(h) v ,
@2 X k)(n>m;‘"a:."z— YL ayn(, k)(n>j“‘"<a,,)f

v=n (i,j)e I'(J) v=n

J (k—~d)n(h) v
= z 2 aij Z Zh(V, k— d) <n>]v na}l ,

d=1 (i,j)e I'(J—d) v=n
0nLknh), 1£h<N.

When (k — 1)n(h) < n < kn(h), the right-hand side of (4.2) vanishes and the
left-hand side is the following:

kn(h) v o
(4.3) > za(v, k)( ){mz”_"d;'."’ I A
v=n n ) e I

According to the equality:

4.4) y'= 21 byyy—D(y—2)...0 —g + 1)
=
it holds that

t
4.5 mhur—  »  ayjlai= ) b, {mz(m2 —1)...(my — g + Doy
(i,))e I'(J) g=1

- Z a;j(j—1...(j —g + 1)“{.}

(i, )€ I
t
= Zl byaii(d/dl)L,(1, o) -
=
As a, is the n(h)-tuple root of L,(1,{) =0, the following holds:

(4.6) (@d/dyL,1,0,)=0, O0=g=n(h)—1.

By (4.5) and (4.6), we have (4.3) = 0. Therefore (4.2) holds for (k — I)n(h) <n <
kn(h) and for any {z,(v, k); (k — 1)n(h) < v < kn(h)}. Next we consider (4.2) for
n < (k — 1)n(h). By (4.6) we can rewrite (4.2) as follows:

h
@D zln+ b, b (" o )) ALY L1, 2)
kn(h) v _ i
=— Y  z k)( >{mzv agr — ) aijjv—"“{:}
v=n+n(h)+1 n i, ))e I'd)
J (k—d)n(h) v\
+ Z Z aij Z Zh(vsk_d)< )]v "o
d=1 (i,j)e I(J—d) v=n n

0=n=(k-—Dnh).
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As a, is the n(h)-tuple root of L,(1,{) =0, we have
(4.8) (d/dly"PLy(1, o) # 0.

Therefore if we assume that the right-hand side of (4.7) is given then z,(v, k)
(n(h) < v < kn(h)) is determined by (4.7). However {z,(v,k); 0 <v < n(h) — 1}
are not determined by (4.7). These are determined by the following way.
Recall (3.4):

N n(h)k
(34) wh= 3 3 a0,k — '

h=1 v=0
By (2.9) and (2.15), we have
(49) =0, (kz1,0<s<m—1).

In the case 0 <s<p — 1, it holds that s — p <0. Then the right-hand side
of (3.4) vanishes. We consider the case p < s < m, — 1, and set the right-hand
side of (3.4) 0. We have

N n(h)k
(4.10) Y 2 a6 —pre;=0, p=<s<m,—1.
h=1 v=0

More precisely, (4.10) becomes

-

M=

z(0,k) =0, (s=p),

h=1
N n(h)—1 N n(h)k
Z 2, (v, K)oy, = Z Z z(v, K)oy, (s=p+1),
h=1 v=0 h=1 v=n(h)
N n(h)—-1 N n(hk

(4101) 3 Z Zh(V, k)2va’2l Z Z zh(v, k)Z”af . (S =p+ 2)
h=1 v=0 h=1 v=n(h)

n(h)k

WOk , N
Z z,,(v, k)(m’z — 1)"(1,""2—1 - Z: Z z,,(v k)(m2 _ 1)" my—1 ,

v=0 v=n(h)

||Mz

L s=my—1=my+p—1 and my=m, — p).

We consider that (4.10') is a system of equations and it’s unknowns are {z,(v, k);
0<v=nh)—1, 1 <h=<N}. Let the coeflicient matrix of (4.10') be 4. We
have

N
(4.11) |det 4] = |TT (o — 2y @0 [] ay@e0-1} 2 0.
i<j i=1

Therefore if we assume that the right-hand side of (4.10) is given, {z,(v, k);
0<v=n(h)—1, 1 <h=< N} are determined uniquely.
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Now we determine {z,(v,k)} in the following way. First, by (2.16) and
(3.4) we have

4.12) 2,0,00=1, 2(0,0=0 1<h<N.

Assuming that {z,(v,k’); k' <k} are already determined, we determine
z,(kn(h), k) by (4.7). Next, we determine z,(kn(h) — 1, k) by (4.7), and so on.
At last we determine z,(n(h),k) by (4.7). Finally we determine {z,(v, k);
0<v<n(h),1=<h=< N} by solving the system of equations (4.10'). We can
prove (3.5) by induction. Thus we complete the proof of Lemma 3.2.

Remark 4.1. The coefficients {z,(v,k); 0 <v <kn(h), 1 <h =< N} which
satisfy (4.2) and (4.12) are determined uniquely. (4.2) is a sufficient condition
for (4.1). However (4.2) is not a necessary condition for (4.1), therefore the
expression in the right-hand side of (3.4) is not unique.

§5. General Case

At last we consider the general case where the operator £ includes 0,;

(5.1) Z(0;, 0y, 0,)u(t, x,y) =0.
Putting

(5.2 u(t, x, y) = exp(iny)v(t, x) , neR",
(5.1) becomes (5.3):

(5.3) Z(0,, O, inv(t,x) =0.

If £, 0,,0,) is not N-type, Z(,, 0,, i) is not N-type with respect to some
n, too. So we can reduce the general case to the case of §2.

At the end the author wishes to thank Professor S. Mizohata and Professor
W. Matsumoto for their valuable suggestions.
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