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Canonical Forms of 3 x 3 Strongly
Nonstrictly Hyperbolic Systems with Complex

Constant Coefficients

By

Yorimasa OSHIME*

§ 1. Introduction

Consider an m x m system of differential equations

where u is an m-vector and A{ are complex constant m x m matrix coefficients.
Here the independent variables x,- (i = 1,..., n) and t are real.

It was Yamaguti and Kasahara [4], [9] who gave the definition and a
criterion for the system (1.1) to be strongly hyperbolic (see Theorem 2.4 below
for their criterion). Later, Strang [8] proved that (1.1) is strongly hyperbolic
if and only if its initial value problem is L2-wellposed. However, few attempts
have been made to find out all the canonical forms of strongly hyperbolic
systems (1.1). It is perhaps because the criterion of Yamaguti and Kasahara
is stated in terms of the linear combinations of Al9 A2, ..., An and seems
difficult to verify directly. The only exception is the case of m = 2 ( 2 x 2
systems). In fact, Strang [8] proved that every strongly 2x2 system can be
reduced to a symmetric system (see Definition 2.5). However, the case m > 3
is much more delicate.

In a previous paper [6], the present author classified the strongly hyper-
bolic 3x3 systems with real constant coefficients, using the above mentioned
criterion of Yamaguti and Kasahara (see also [7]). The purpose of this paper
is to study the same problem for the 3 x 3 systems with complex constant
coefficients, limiting ourselves to nonstrictly hyperbolic systems (see Definition
2.6 below).
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All the results of this paper shall be summarized in the last section in
terms of matrix families.

§ L

Throughout this paper, we consider only complex square (actually 3 x 3 )
matrices and their linear combinations with real coefficients. We usually de-
note real constants by lower case greek letters, complex constants by lower
case roman letters, matrices by upper case roman letters unless otherwise
indicated.

2.1. Let Aj ( j = 1, 2, . . . , n) be m x m complex matrices. The
set of all their linear combinations

= A(£19 £29 . . . , O = £j=i tjAj with S, e M (j = 1, 2, . . . , n)

is said to be the matrix family spanned by Al9 A2, ..., An and is denoted by
<,Al9A29...9AHy.

2020 A matrix family <A l 9 A2, ..., Any is called real-diagonaliza-
ble if for every A(£)e (Al9 A2,..., Any, there exists a matrix S(£) (called a
diagonalizer) such that

is a real diagonal matrix.

Definition 23o A matrix family <A l 9 A2, ..., Any is called uniformly real-
diagonalizable if it is real-diagonalizable and there is a diagonalizer S(£) such
that there exists a constant M > 0 independent of £ for which

when £, runs over Rn. Similarly, a matrix family is called non-uniformly real-
diagonalizable if any diagonalizer is unbounded when £, runs over Mw.

We quote here the most fundamental theorem concerning the equation
(1.1).

Theorem 2A (Yamaguti-Kasahara [9]). Equation (1.1) is strongly hyper-
bolic if and only if the matrix family (Al9 A2, ..., Any is uniformly real-
diagonalizable.

Remark. As mentioned in Introduction, strong hyperbolicity is equivalent
to L2-wellposedness in the case of constant coefficients. For the proof of
Theorem 2.4, see Yamaguti-Kasahara [9], Kasahara-Yamaguti [4] (B°°-theory)3

or Strang [8] (L2-theory).

We now introduce the most important subclass of the real-diagonalizable
matrix families.
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Definition 2,5. A matrix family (Al9 A29...9 Any is called hermitian if all
of Al9 A2, ..., An are hermitian. In addition, equation (1.1) with those Aj's is
called a symmetric hyperbolic system.

Remark. In this case, as a diagonalizer S(£), we can take a unitary
matrix depending on £. Consequently, any hermitian family is uniformly real-
diagonalizable.

The following is the very class of the 3 x 3 matrix families we shall classify.

Definition 2.6. A matrix family (Al9 A2,..., Any is said to have multiple
eigenvalues if some A(£) e (Al9 A2,..., Any with £ ^ (0,..., 0) does. In addi-
tion, a strongly hyperbolic system (1.1) is said to be strongly and nonstrictly
hyperbolic if ^Ai9A29...9Any has multiple eigenvalues.

Let us now consider what kind of equivalence relation should be intro-
duced for matrix families. It is easy to see the following three operations
(Ai9..., Any -> <B l 5 . . . , Bn,y do not affect the real-diagonalizability (uniform or
not) of matrix families.

a) Change of basis.

B1 = m11A1 + ml2A2 + ••• + mlnAn

B2 = m2lAv + m22A2 + ••• + m2nAn

Bn = mnlA1 + mn2A2 + • - • + mnnA

where M = (m^) is a real nonsingular n x n matrix.
b) Addition of scalar multiples of identity.

Bn = An 4-

where 1 is the identity matrix and /^- (1 < i < n) are reals.
c) Similarity transformation.

B2 = T~1A2T

where T is some complex nonsingular m x m matrix arbitrarily fixed.
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Let us consider how the above three operations transform the original
differential equation (1.1). First, a) corresponds to a change of the space
variables:

(*!, X2, . . . , Xnf = M(X19 X2, - . - , Xnf -

Second, b) corresponds to a change of the time-space variables of the type:

x. = Xi - ^1 (l<i<n).

Note that if some space variables disappear from (1.1) by these operations,
they can be regarded as parameters of the initial data for the reduced equation.
Finally, c) corresponds to a change of the unknowns:

(u1,u29...,iinf = T~1(ul9u29...,unf .

Combining the above operations a), b) and c), we can define the equivalence
relation among matrix families as follows.

Definition 2.70 Matrix families (Al9A2,...9Any and <B19 B29 . . . , Bn,> are
called equivalent if there exist a nonsingular matrix T and ^ e E ( j = 1, 2, . . . , n)
such that

And we denote this equivalence relation by

By using the above operations a) and b), it is easy to see that any matrix
family is equivalent to some <5l5 ..., Bn> where Bl9 B2) ..., Bn are linearly
independent and none of their nonzero linear combinations is equal to a scalar
multiple of identity. Let us define a word indicating this property for later
convenience.

Definition 2.8, A matrix family <y4 l5 A2,...9 Any is called nondegenerate
if 1, Al9 A2, ..., An are linearly independent over the field of real numbers.

Note that the definitions in this section are valid for the square matrices
of an arbitrary size, although we limit ourselves to study 3x3 matrix families
which are uniformly or non-uniformly real-diagonalizable. And we shall treat
the problem purely as that in the matrix theory and shall not refer to the
differential equation (1.1) any more.

§ 3, Preliminaries

In this paper, we study exclusively real-diagonalizable 3x3 matrix families
such that at least one of their nonzero members has a multiple eigenvalue. For
such a family <v41? A29...9 Any, changing the basis if necessary, we may assume
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Al has a multiple (real) eigenvalue. If this multiple eigenvalue is triple, the
3x3 matrix A1 must be a real multiple of identity and we may ignore this
case (see Definition 2.7). So we may assume A1 has a double eigenvalue.
Multiplying A1 by a suitable real and adding to it a suitable real scalar
multiple of identity, we may assume the eigenvalues of At are 1, 0, 0. Hence,
by use of the similarity transformation diagonalizing Al9 we may further assume

1 0 0"

0 0 0

0 0 0

To investigate the property of an arbitrary Be (Al9A29...9 Any, let us quote
the following lemma from [7].

Lemma 3.1. Let /(A, £) be a cubic polynomial of the form

/(A, {) = A3 4- a±k2 + a2A 4- «3 + £(b0A, + b^A, 4- b2)

where al, a2, a3, b0 / 0, bl9 b2 are real constants and £ is a real parameter.
Then the cubic equation

has only real roots for any £ e E if and only if

and

have only real roots, say, o^ < a2 < a3 for the first equation and ^ < f$2 for
the second, and the inequality

OCj < Pi < OC2 ̂  P2 — a3

holds.

The following lemma will be also useful in the sequel.

Lemma 3.2. Let Ojfa), eijfa), crjtfa), ^fa) be polynomials in r\ = fa1? r\2,..., rjn)
ith real coefficients. Suppose that either

is r^al and positive or

0,-fa)

for any choice of q e W. Then there exist polynomials jufa), /(fa), cp(rj),
\jj(r\) with real coefficients which satisfy
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and

1) fj,(ri) and jl(ri) have no common factors other than nonzero constants,
2) sgn (p(rj) = sgn \j/(ri) for all fj e Ew unless fi(r]) = fi(rj) = 0. Especially,

sgn (Tjfa) = sgn ak(n) ,

/or a// ^ € Rn.

Proof. Because the imaginary part of

always vanishes for any r\ e R", we have

(3.6) 0j(l)ffM = ~ <rM°j(l) •

We may assume that neither oj-(^) nor G^YJ) is identically zero because otherwise
we have o^rj) = Gj(rj) = 0, Gj(rj) = Gk(rj) = 0 or o-(fy) = Gk(v\) = 0 and the conclu-
sion is immediate. Put

(3.7) a/iy)

where ufa) and p,(rj) have no common factors. So (3.6) implies

Because /j(j/) and /t(fy) have no common factors, we further obtain

(3.8) <7kfa)

where \l/(rj) is a certain polynomial with real coefficients. By (3.7) (3.8),
the assumption of the lemma becomes as follows: Either

(oyfo) + iSj(*l)}{ak(fi) + 1&M] = 9(lW(l){(n(l))2 + (Ml))2}

is positive or

0j(ri) + iffjfa) = <p(*i){iJi(ri) + ifi(f])} = 0

and

hold simultaneously, for any choice of 17 e EM. This fact implies

sgn <p(rj) = sgn
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unless

= 0 .

Thus the proof is complete. D

Applying Lemma 3.1 to the characteristic equation of ^Al + B, we have
the following lemma.

Lemma 33, Suppose that <>4 l 5 X2 , . . . , Any is a real-diagonalizable family
with

1 0 0
0 0 0

L0 0 0

Suppose also that

B =
^22

is an arbitrary member of (Al9 A2,..., Any. Then the right-lower submatrix of
B:

22

has only real eigenvalues and bli is real

Proof. Because ^A{ + B e <A19 A2,..., Any is real-diagonalizable and has
only real eigenvalues, its characteristic equation turns out to be

det(-A/
bl2 "22

&21

Therefore, from Lemma 3.1, we know that

has only real eigenvalues. Consequently, its trace

^22 + ^33

is real. On the other hand, the real-diagonalizability of B assures that its trace
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bll +b22 + ^33

is also real. Thus bll is real as the difference of these two real numbers. Q

It is clear that the right-lower 2x2 submatrices of the members of
(Al9A2,...9Any form a 2x2 matrix family. Thus the above Lemma 3.3
asserts that this 2x2 matrix family has only real eigenvalues. Now we can
proceed just in the same way as in Strang [8] and conclude that the 2 x 2
matrix family is equivalent to a hermitian family or an upper-triangular
family. Using another similarity transformation with a diagonal matrix, if
necessary, this 2x2 matrix family is reduced to one of the following 1), 2),
..., 8).

/
\

2) /

3) ^
^ /4) (

5) /
\

* /6) (

/

7) ^

"0

.0
"i
_o
"i
0

"i
0

"0
0

"0
_0

"1
_0

/n8) \LO

0"
0

0"
-1

0"
-1

0"

r
0

r
0

0"
_ 1

0"
-1_

\
/•

>.
'

'

"o r
_1 0_

"0 1"
1 0

\
/'

'

J

9

"o r
0 0

"o r
0 0

"0 1"
0 0ir° nJ'Lo oj

Let us denote by f the transformation (in the form of 2 x 2 matrix ) for this
reduction. Now let us turn to the 3 x 3 matrix family. Note that the similarity
transformation with

_p ol
LO fj'

and some change of basis and a certain addition of real multiples of identities
reduce the right-lower submatrix family to the above 1), 2),..., 8). Note also
that the similarity transformation with f does not affect the real (1, l)-entry
of each A(£) e <^4 l5 A2,...9Any. Thus the 3 x 3 matrix family can be reduced
to one of the following 1), 2),..., 8).
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i)

2)

3)

4)

1 0 0
0 0 0
0 0 0

0 bi b2

b3 0 0
&4 0 0

"1 0 0"
0 0 0
0 0 0

J

" 0 b, b2~

b3 1 0
fe4 0 -1

'

0 cl c2

c3 0 0
c4 0 0

"1 0 0"

0 0 0
0 0 0

5

" 0 bi b2~

b3 1 0
b4 0 -1

9

"0 G! c2~
c3 0 1

c4 1 0
?

~0 d t d2~

d3 0 0

d4 0 0

"1 0 0"
0 0 0
0 0 0

3

0 b± u2

b3 1 0
ft4 0 -1

3

"0 cl c2~

c3 0 1
c4 1 0

,
" 0 d1 d2

d3 0 ~i

d* i 0

0 e1 e2

e3 0 0

e4 0 0

"1 0 0"

0 0 0
0 0 0

3

0 &! b2

b3 0 1
fc4 0 0

5

0 c1 c2

c3 0 0
c4 0 0

"1 0 0"

0 0 0
0 0 0

?

"0 bi b2~
b3 0 1
b4 0 0

?

"0 ci c2~

c3 0 i

c4 0 0
»

"0 ^ d2~

d3 0 0
d4 0 0

"1 0 0"

0 0 0

0 0 0
9

0 bt fe2 "

b3 1 0

&4 0 -1
3

"0 C! C2"

c3 0 1

c4 0 0
,

0 MI dj

d3 0 0

d4 0 0

5)

6)

7)

8)

0 el e2

e3 0 0
e4 0 0

where bl5 62, ..., e3, e4 are certain complex constants. We shall consider
each case separately in the sequel.

"1 0 0"

0 0 0

0 0 0
3

" 0 fcj b2 "

b3 1 0
&4 0 -1

3

"0 Ci c2"
c3 0 1

c4 0 0

,
" 0 dj d2

d3 0 i

d4 0 0



"1 0 0"
0 0 0
0 0 0

, ,. "0 &! b2~

b3 0 0

b4 0 0
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§4 Families fey Two Maurices

The discussions in this section is almost the same as that in Section 3 of
[6]. So we shall omit most of the proofs.

Proposition 4.1. Put

,4=

where bj (j = 1, ... , 4) are complex constants. Then the matrix family (A, B>
spanned by the above A, B is real-diagonalizable if and only if b^b^ + b2b4 is
real and positive:

Proof. The same argument as in Proposition 3.2 of [6] is valid if we
take some care about the complexity of bj. So we omit the detail Q

Proposition 4S20 Let the matrix family <v4? By spanned by

,4=

be real-diagonalizable. Then there exists a certain nonsingular T such that
T~1AT and T~1BT are simultaneously hermitian. Moreover

"1 0 0"
0 0 0
0 0 0

, B =
"0 bv b2~
b3 0 0
&4 0 0

"1 0 0"

0 0 0

0 0 0

Here a > 0 is some real constant.

Proof. From Proposition 4.1, we have

0 1 0

1 0 0

0 0 0

b2b4 > 0 .

By putting

a = .

T =

we obtain the conclusion, n



COMPLEX STRONGLY HYPERBOLIC SYSTEMS 233

Proposition 4.3. Put

A =

"1 0 0"
0 0 0

0 0 0
, ,- " 0 &! b2

b3 1 0

b4 0 -1

"1 0 0"

0 0 0

0 0 0

B =

" 0 b, b2~
b3 1 0

b4 0 -1

where bj (j = 1, . . . ,4) are complex constants. Then the matrix family <^4, By
spanned by the above A, B is real-diagonalizable if and only if both of the
following 1) and 2) are satisfied.

1) b^3 >0 or &! =b3 = 0.
2) b2b4 > 0 or b2 = b4 = 0.

Proof. The same argument as in Proposition 3.4 of [6] is valid if we
take some care about the complexity of bj. So we omit the detail again. D

Proposition 4A Let the matrix family (A, B> spanned by

A =

be real-diagonalizable. Then it is simultaneously symmetrized by some T as
follows.

T~1AT =

where a, /? are some real constants.

Proof. From Proposition 4.3, we have

bl &3 > 0 or bl = b3 = 0

and

b2b4 > 0 or b2 = b4 = 0 .

By putting

u\=Tl l J t ;= I ,= .

"1 0 0"
0 0 0

0 0 0
T~1BT =

"0 a fi

a 1 0

p o -i

t;
= P/b2 (if b2b4 > 0)

= 1 (if b2 = b4 =
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"i o o"
0 u 0
0 0 v

we have the desired result.

Let us now consider the case where the 2 x 2 submatrix family contains
a non-diagonalizable member.

Proposition 4.5. Put

"1 0
A = 0 0 0 , B = b3 0 b5 (bs + 0)

"1 0 0"

0 0 0

0 0 0

, B =
"0 bi b2~
b3 0 b5

&4 0 0

where fy (j = 1,..., 5) are complex constants. Then the matrix family <^9 B>
is real-diagonalizable if and only if one of the following holds.

1) fti&a >0 and b4 = 0.
2) b2b4 > 0 and bl = 0.

Proof. The same argument as in Proposition 3.6 of [6] is valid if we
take some care about the complexity of bj. So we omit the proof. D

Proposition 4«,60 The following holds.
1) Let b1b3>0 and b5 + 0. Then

2) Let b2b4p>0 and b

1 0 0"

0 0 0

0 0 0

0 0 b2

b3 0 b5

0 0

1 0 0'
0 0 0
0 0 0

0 1 0
1 0 0
0 1 0

And both matrix families are non-uniformly real-diagonalizable.

Proof. We begin with 1). By putting

T =

l/i>3 0 0

0 I/a -b2/blb5

0 0 l/65

we obtain
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"1 0 0"
1 0 0 0

0 0 0

0 b^ b2

t?3 0 t?5
0 0 0

T =
"1 0 0"
0 0 0
0 0 0

T = a

,

"0 1 0~
1 0 1
0 0 0

On the other hand, the case 2) can be reduced to the transpose of 1) because

1 0 0"
0 0 1
0 1 0

"1 0 0"
0 0 1
0 1 0

-1

-1 "1 0 0"
0 0 0
0 0 0

"0 0 b2~
b3 0 bs

b4 0 0

"1 0 0"
0 0 1
0 1 0

"1 0 0"
0 0 1
0 1 0

=

=

"1 0 0"
0 0 0
0 0 0

"0 b2 0"
b4 0 0
b3 b5 0

To complete the proof, we have only to show the real-diagonalizability of

1 0 0

0 0 0

0 0 0

0 1 0
1 0 1
0 0 0

is not uniform. For this purpose, it suffices to calculate its three eigenvectors
and construct a diagonalizer. See Kasahara-Yamaguti [4] for the detail. D

The results obtained in this section are summerized as follows.

Theorem 4.7. Let <^4 l9 A2y be a nondegenerate 3x3 matrix family. Then
the following holds.

1) Suppose <C>415 A2y has multiple eigenvalues and is uniformly real-diago-
nalizable. Then (Al9A2y is equivalent to a hermitian family.

2) The family (Al9 A2y is non-uniformly real-diagonalizable (consequently,
(Al9A2y must have multiple eigenvalues) if and only if (Al9 A2y is equivalent
to either

or its transpose,

1 0 0"
0 0 0
0 0 0

1 0 0

0 0 0

0 0 0

0 1 0"
1 0 1
0 0 0

0 1 0
1 0 0
0 1 0
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§5o fey Three Matrices

In this section, we study nondegenerate real-diagonalizable families9 say,
{A, B, C>, spanned by three matrices. From the arguments of Section 4, we
may assume that <^4, B, C> Is one of the following three types.

"1 0 0"
0 0 0
0 0 0

"1 0 0"
0 0 0
0 0 0

"1 0 0"
0 0 0
0 0 0

?

9

?

"0 1 0"
1 0 0
0 0 0

,c

"0 ft ft"

ft i o
_ft 0 -1_

"0 1 0"
1 0 1
0 0 0

,c

with ft, ft reals,

We begin with the first two cases, i.e., the families each of whose members
has a right-lower 2x2 submatrix similar to a real diagonal one. Changing
the basis If necessary, such a matrix family must be equivalent to one of the
following types.

(5.1)

(5.2)

(5.3) ( 0 0 0 , a 1 0 , c O e ) (ef > 0).
\ 0 0 0 jg 0 -1_ d f 0 /

The property ef > 0 of (5.3) is derived as follows. Since every member of (5.3)
must have a right-lower 2x2 matrix similar to a real diagonal one, we have
e = / = 0 or ef > 0. In the first case, however, (5.3) reduces to (5.2). So we
may assume ef > 0. Furthermore, we can reduce (5.3) by the similarity trans-
formation with

"1 0 0"
0 0 0
0 0 0

"1 0 0"
0 0 0
0 0 0

"1 0 0"
0 0 0
0 0 0

J

?

?

"0 1 0~|
1 0 0 ,
0 0 OJ

0 ci c2

c3 0 0
c4 0 0

"0 ft ft"
ft 1 0

_ft 0 -1_

"0 a )3~
a 1 0
P 0 -1

3

\y/
0 cx c2

, c3 0 0
c4 0 0

"0 a b~
c 0 e

d f 0

\}/

T =

' 1 0 0
0 Jfje 0

0 0

to
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" 1 0 0
0 0 0
0 0 0

•)

' 0 &! b2 ~
b3 1 0
ft* 0 -1

3

0 c1 c2

c3 0 1
c4 1 0

(5.3')

We shall treat (5.1), (5.2), (5.3') separately.

Proposition 5*1. The nondegenerate matrix family (A, B9 C> spanned by

A =

is real-diagonalizable if and only if (A, B, C> is equivalent either to

"1 0 0"
0 0 0
0 0 0

, B =

"0 1 0"
1 0 0
0 0 0

, c =
" 0 cl c2

c3 0 0
c4 0 0

"1 0 0"
0 0 0
0 0 0

J

"0 1 0"
1 0 0
0 0 0

•)

1 1
0 —c + - c + -

c c

c-- 0 0
c

c + - 0 0
c

where c =£ 0 is a?t arbitrary complex constant, or to

"1 0 0"
0 0 0
0 0 0

y

"0 1 0"
1 0 0
0 0 0

5

"0 -i -f
i 0 0

0 0 0

or to the transpose of the last;

"1 0 0"
0 0 0
0 0 0

?

"0 1 0"
1 0 0
0 0 0

5

"0 -i 0"
i 0 0
i 0 0

"1 0 0"
0 0 0
0 0 0

3

0

n + C3
C4

n + ct
0
0

C2

0
0

In every of these cases. (A, B, C> is uniformly real-diagonalizable.

Proof. Let us first prove the necessity. Clearly, the subfamily

C> =

Is real-diagonalizable for an arbitrarily fixed r\. By applying Proposition 4.1,
we have

(5.4) fa + cjfa + c3) + c2c4 = ??2 + (c1 + c3)i/ + CiC3 + c2c4 > 0 .

Because this inequality holds for an arbitrary r\ e R,

C1 +C3
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Is real. So, replacing C by

C--(c1+c3)B,

we may further assume

(5.5) c3 = -c, .

From (5.4) and (5.5), we have

(5.6) -C1
2 + c 2 c 4 >0.

Let us first assume
c2c4 7^ 0.

Then, replacing C by its appropriate real scalar multiple, we may also assume

(5.7) -Cl
2 + c2c4 = 4.

Now considering a suitable similarity transformation with

(d / 0: complex),
"1 0 0
0 1 0
0 0 d

we may further assume

(5.8)

and we have, from (5.7),

(5.9)

Now putting

(5.10) c. .
C)

with some complex c i=- 0, we can solve (5.9) with respect to c2 and get

(5.11) C

From (5.5), (5.8), (5.10), (5.11), we have

(5.12)

"1 0 0"
0 0 0
0 0 0

5

"0 1 0"
1 0 0
0 0 0

9

1 1"
0 —c + - c + -

C C

c-- 0 0
c

c + - 0 0
c
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1 1"
— c + - — c

c c"1
0
0

0
0
0

0"
0
0

j

"0
1
0

1
0
0

0~|
0
0

5

0

1
c

— c —

,B , C> ~ ( 0 0 0 , 1 0 0 , c - - 0 0

However, the second case reduces to the first if we use the similarity transforma-
tion with

^1 0 0"
0 1 0
0 0 - 1

Thus we have the first family of the requirement.
Let us now consider the case

c2c4 = 0.

From (5.6), we know that c1 is purely imaginary. So replacing C by its
appropriate real multiple, we have

c1 = -i.

We may further assume c2 =£ 0 or c4 ^ 0 because if c2 = c4 = 0 the matrix
family is equivalent to (5.12) with c = i. Now, using an appropriate similarity
transformation with

T =
1 0 0"
0 1 0
0 0 d

(d =£ 0 : complex),

<A, B, Cy can be reduced to one of the last two families of the requirement.
Let us now prove the uniform real-diagonalizability of the matrix families

just obtained. It suffices to consider

"1 0 0"
0 0 0
0 0 0

5

"0 1 0"
1 0 0
0 0 0

5

" 0 Cl c2~
-c1 0 0

c4 0 0

where

-C!2 + c2c4

Put
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<p = 9(1, o = iy + (-<u2

Sfa,

S(05

0 =
"i
0 fa

0) = / =

"1
0

0

0

C4C/

0

1
0

0

0/<p ~c2C/9

0"

0
i

for fa,

Thus we obtain the uniformity of Sfa, 0 and Sfa, Q 1 as well as

') 0 0

0 0 0

Thus £A + qB + £C is uniformly real-symmetrized. Therefore (A, B, C> is
uniformly real-diagonalizable. Q

Lemma §2. The following matrix families are not equivalent to any hermitian
family:

1
/

1

1

1)(
\
\

1 0 0

0 0 0

0 0 0
?

0 1 0

1 0 0 ,

0 0 0
\
\

where the constant c j^ 0 satisfies \c

12) (\
/" (\

"1 0 0"

0 0 0

0 0 0

"1 0 0"

0 0 0

0 0 0

3

3

~0 1 0"

1 0 0

0 0 0

~0 1 0"

1 0 0

0 0 0

1 1
0 -c + - c + -

c c
1

c-- 0 0
c
1

c + ~ 0 0
c

*i;
"0 -i -i~\ \

i 0 0 );
o o oj /

"0 -i Ol \
i 0 0 V
i 0 OJ /

Proof. In order to prove the lemma by contradiction, we assume that
there exists T such that

T-*AT, T~IBT, T~ICT

are simultaneously hermitian. So we can diagonallze T~1AT by a unitary U
as following.
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1 0 0

0 0 0

0 0 0

= A.

This means that A and TU commute. Hence replacing TU by its appropriate
complex scalar multiple if necessary, it has the following form:

TU =
1 0 0
0 a b (ad - be ^ 0).
0 c d

we define another unitary matrix U1 by

"1 0

0

0

Then Tx = TUUl has the following form:

71 =

where a > 0 is a real, c' and d' are complex constants. Since

1 0 0
0 a 0
0 c' d'

is hermitian, its (2, 1)- and (1, 2)- entries are complex conjugate and so are its
(3, 1)- and (1, 3)- entries, namely,

I/a = oc> 0 ,

-c'/ad' = 0.

From this we have a = 1 and c' = 0, that is, 7i has the following form;

"1 0 0"
(d' 7^ 0: complex).0 1 0

0 0 d'

On the other hand,

must also be hermitian. However, its (2, 1)- and (1, 2)- entries (or its (3, 1)- and
(1, 3)- entries) are not complex conjugate in each of the cases 1), 2), 2'). This
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fact can be verified by a straightforward calculation. We are thus led to a
contradiction. Q

Now we investigate the families of the form:

"1 0 0"
0 0 0
0 0 0

5

"1 * *"
* 1 0
* 0 -1

?

"0 * *
* 0 0
* 0 0

where each * stands for a certain complex constant. Let us prove that they
are equivalent to a hermitian family, in a generalized form.

Proposition 53. Let a nondegenerate matrix family <4, B9Cl9...9 Q> (n > 1)
be spanned by

1 0 0'
,4= 0 0 0

0 0 0

j83 + ij53 1 0
O _i_ j O f\ 1

0 7/i + iJn yj2 + ;

7/3 + '̂7/3 0 0

A3 A, 7jfc, 7/fc (7 = 1,..., n; fe = 1,..., 4) arg arbitrary real constants. The
matrix family (A, B9 C l 5 . . . , Cn> fs real-diagonalizable if and only if it is equiva-
lent to a hermitian family.

Proof. It suffices to prove the only-if part. For any fixed rj = (rjl9... 9 rjn) e
En

9 we have

A,B-i

= <

n

'&">

1f

\̂

"1

0
0

•Cj/
0
0
0

)

0"
0
0

J T3(rj) + i<J3Of) 1 0

T4(ri) + ioM} 0 — 1

is real-diagonalizable where

]j=i 7/fc^j) ~^" A (fc = 1 , . . . 3 4),

M + & (fc = l , . . . , 4 ) .

So, from Proposition 4.3,
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frifa) + tfifa)} {*3 (n) + i*M} > 0

or

ffifa) + iff! fa) = (73fa) + iff 3 fa) = 0

holds for any arbitrarily fixed rj e R". Similarly,

{(72fa) + f(72fa)} {(T4fa) + *<74fa)} > 0

or

cr2fa) + iff2fa) = <74fa) + W4fa) = 0

holds for any 77 eR". Therefore Lemma 3.2 is applicable. Let us begin with
GI fa) + iff i fa) and cr3fa) + i<73fa). From the last assertion of Lemma 3.2, we
have

sgn difa) = sgn (j3fa) , sgn o\fa) = -sgn ff3fa) .

Since the polynomials are all linear, these equalities mean that

(J3fa) = a^ifa) , <73fa) = -oii&M

where ax > 0 and aj > 0 are positive constants. Let us show ax = at. We
may assume that neither o^fa) nor ffxfa) is identically zero, because otherwise
we can clearly equate ax > 0 and ax > 0. Recall now that

+ ocjffifa)} + !(«! - aJtJifa^fa)

must be real for all ?/ e R". Therefore we must have 6t1 = oc1. This means

(5.13) <73fa) = a^ifa) , ff3fa) = -a^ifa) (ax > 0) .

We can proceed in the same way for the pair a2fa) 4- iff2fa) ancl °4fa) + ^4fa)»
and we find a positive constant a2 > 0 such that

(5.14) <j4fa) = a2o-2fa) , ff4fa) = -

From (5.13) and (5.14), we obtain

7/3 = «i7ji , 7/3 = -
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with

«! > 0 , a2 > 0 .

Therefore (A, B, Cl5 ..., Cn> is equivalent to a certain hermitian family through
the similarity transformation with

T=
1 0 0
0 v/o^ 0
o o

Thus the proof is completed. D

Let us now investigate the families of the form:

"1 0 0"
0 0 0
0 0 0

5

"0 * * "
* 1 0
* 0 -1

3

"0 * *
* 0 1
* 1 0

where each * stands for a certain complex constant.

Proposition 5.4 Let a nondegenerate matrix family (A, Bl9 52> be spanned
by

1 0 0

A= 0 0 0

0 0 0

0

013 + $13

0 ftl +$21 022 + $22

'23 + $23 0 1

'24 + $24 1 0

where 0,-t, 0j7[ (j =1,2, k = 1,2,3,4) are arbitrary real constants. Then
'(A,B1,B2y is real-diagonalizable if and only if it is either equivalent to

1 0 0

0 0 0

0 0 0

0 a -i(<x-2y)d
a 1 0

i(a-2/)<5 0 -1

0 0-iyd y- i
P + iy'8 0 1
/ + ifi'd 1 0

where the real constants a, j?, j?', y, y' and 5 satisfy

a > o , y>
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or equivalent to a hermitian family. And in both of these cases, <,4, B l 9B2>
is uniformly real-diagonalizable.

The proof of Proposition 5.4 is somewhat lengthy. So we split it into
several lemmas.

Lemma 5.5, Let A, Bi9 B2 be the same as in Proposition 5.4. Let also
the polynomial with real coefficients, ff^rj), (J^rj), a3(?7), ffsfa) be defined as

0"ifa) = fai2 ~ *?22)(£ii*7i + £12*72) + 2rj1rj2(p2lril + £22^2) >

<?ifa) = fai2 - *72
2)(£n*7i + £12??2) + 2i71jf2(/J21i71 + $22*12) ,

Suppose further that (A, Bl9 B2) is real-diagonalizable and is not equivalent to
any hermitian family. Then Gi(r\\ o'ifa), 0"3fa)5 ^3 fa) are factorized as follows:

and \l/(ri) are positive definite quadratic forms without common factors.
Further, fi(rj) and fi(rj) are homogeneous linear polynomials at least one of which
does not vanish identically.

Proof. Consider

0 p^) + ipi(YJ) p2(rj) + ip2(rj)

with any fixed r\ = (rjl9 rj2) e R2\{(0, 0)}. Here

PJ(I) = £ufai2 -
ft-fa) = £ijfai2 -

for j = 1, 2, 3, 4. Note that

<4, (?h2 -rj2
2)Bi

is clearly real-diagonalizable. Define a real-orthogonal matrix V(rj) by

1 0 0
0

LO

where
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By the similarity transformation with this V(rj),

is equivalent to

'1 0 0"

0 0 0

0 0 0

1-1.
0 cr^iy) H- iffifa) flr2(iy) + i&2(*l)

3

-iw2

where
ffi(l) = (*li2 ~ *l22)(0ii1i + 0i2l2) + 2rj1ri2(@2lril 4-

-02112),

-f

~ 023*12) ,

~ 013*12) + 2*1 1*1 2(024*1 1 ~ 023*12) •

Note that

°2(ll> *l2) = Vl(*l2> ~*ll) , $2(*ll> *12) = °l(l2> ~*ll) >

G4(*ll, *12) = ^Oh* -*ll) , $4(*ll, *l2) = ^3^2? ~*ll) •

From Proposition 4.3, either

{erifa) + MM} {(73(iy) + iffM} > 0

or

*ifa) + ^iW = ^W + »3W = 0

holds for any rj e E2. So Lemma 3.2 is applicable and we have

(5.15)
(5.16)

where ^(f/), /x(^), <p(fy), ^r(fy) are homogeneous polynomials with real coefficients

such that

(5.17) sgn <pfa) = sgn
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for all r\ e R2. The last fact is a consequence of the following. The poly-
nomials //(??) and p.(ri) have no common (nontrivial) real zero points because
they are homogeneous polynomials with two variables that have no common
factors. Note also that (p(rj) and 1 (̂17) are of the same degree equal to or less
than three (see (5.15) and (5.16) and observe that ^(rj) and a3(rj) are both
cubic).

Before proceeding further, let us prove if cp(rj) is a positive constant multiple
of \j/(rj) then (A, Bl,B2y is equivalent to a certain hermitian family. Putting

= ct<p(ri)

with a real constant a > 0, we obtain

From the definition of a^rj) and o"3(^), this means

fta = afti , ft4 = aft2 ,

ft3 = -aft l 5 ft4 = -aft2,

for 7 = 1 , 2. Then through the similarity transformation with

T =
a 0 0

0 1 0
0 0 1

(A,Bl9B2y is equivalent to a hermitian family.
In order to make our problem easier, let us divide the case according to

the degree of (p(rj) and \l/(rj). Assume first that they are constants or linear
polynomials. Then clearly (5.17) means that each of them is a positive constant
multiple of the other. Therefore (A, Bl9 B2y is equivalent to a hermitian family
and we may exclude this case. Assume now that they are (homogeneous)
quadratic polynomials. If one of them is an indefinite form, the zero points
of (p(rj) and if/fa) on the unit circle of R2 would coincide by virtue of (5.17)
and so we would have q>(r\) = ai^(fj) for some positive constant a, and hence
(A,Bl9B2) would be a hermitian family. Therefore, <p(f/) and \l/(rj) must be
definite forms, which can be assumed to be positive, because otherwise we
may take —(p(rj), —il/(rj)9 —n(n) and —fifa) instead of q)(rj), \li(rj)9 n(rj) and
ft(rj). Also, we can exclude the case where (p(rf)/\l/(if) is a constant, as above.
Thus the lemma is proved when q> and i// are quadratic. Assume finally that
<P(*I 11*12) and ^(^1^2) are (homogeneous) cubic polynomials. In this case, cp
and \l/ have three complex linear factors of which just one or three are
real. And their real linear factors must be common by virtue of (5.17). There-
fore, by the same argument as in the quadratic case, two cases are possible,
namely either (p(rj) and \l/(rj) have the form:
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<p(n) =

where 0(rj) is linear and both of jpfa) and $(T/) are (distinct) positive definite
quadratics, or each of them is a positive constant multiple of the other (see
(5.17) again). The second case is impossible because it implies that <>4, Bl9 S2>
is equivalent to a hermitian family. So, only the first case can occur. Then,
regarding nWOfa) as /ifa), /Zfa)0fa) as /Zfa), <pfa) as <pfa), fa) as ^rfa) in (5.15)
and (5.16), the proof of the lemma is completed also in the present case. Q

Lemma 5«,60 Let the assumptions be the same as in Lemma 5.5. Then
<v49 Bi,B2y is equivalent to a matrix family of the same form but with additional
restrictions as follows:

0 1 1 = 0 1 3 = 0 , 012 = 014 = 0-

Proof. Let 01(77) and 02(77) be the same as in the proof of Lemma 5.5.
Now we prove that a value of

ff2fal» fa) + W2fal» fa) = *l(fa, -fa) + Wl(fa> -fa)

becomes the product of

0i(fa> fa) + ^1(^1. fa)

and a purely imaginary number for some (77 19 ^2)
 e M2\{(0, 0)} . Let us express

the two linear forms fi and ft as

with some real constants jils ^2, /2 l9 /22. Thus we have only to find (T/J, 7/2) 6 E2

such that

and

are linearly dependent over the field of real numbers. For this purpose, let
us consider the real zero points of

0*i fa
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This polynomial in ql9 rj2 has nontrivial real zero points because its coefficients
of r\^ and r\2

2 are of opposite signs. Fixing now (rjl, r\2) as such a nontrivial
zero point, we find that

is the product of

and a purely imaginary number for the above fixed (f / l 9 r\2) e R2\{(0, 0)}.
Through the similarity transformation with

1 0 0

o nJ\\n\\ -WW
o

we can reduce the matrix family

to the one where the ratio of the (1, 2)- and the (1, 3)- entry of Bi is purely
imaginary. Hence we can assume the (1, 2)- entry of B^ is real and its (1, 3)-
entry is purely imaginary by use of the similarity transformation with

T =

c 0 0
0 1 0
0 0 I

(c ^ 0 : complex).

Finally, we can conclude that (2, 1)- entry as well as (1, 2)- is real and that
(3, 1)- entry as well as (1, 3)- is purely imaginary. This is obtained by applying
Proposition 4.3 to (A9 B^. Thus the proof is complete. D

We can thus specify B^ in <^4, Bl9 J32> by Lemma 5.6. Now let us further
specify B1 by the following Lemma 5.7.

5o70 Let a nondegenerate matrix family <A, Bl9 B2y be spanned by

"1 0 0"

A= 0 0 0

0 0 0

/\ /? i/?

j8l3 1 0

ij}l4 0 -1

0 &1 + &1 fe2 +

B2= ^3+^23 0 1

024 + '024 1 0
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where fijk, J3jk (j = 1, 2, fc = 1, 2, 3, 4) are arbitrary real constants. Suppose that
(A,Bl9B2y is real-diagonalizable and is not equivalent to any hermitian family.
Then </4, Bl9 B2y is equivalent to a matrix family of the same form but with
an additional condition:

Proof. Note first that either ^ll + 0 or /?12 + 0 holds, because otherwise
(i.e., /?n = J?n = ft2 = 0i2 = 0) Lemma 5.5 yields a contradiction to the fac-
torization of ov(r\) and a^rj). Note next that the case /?X1 =0 and j812 ^ 0,
can be reduced to the case ft11 ^0, by the successive use of the two similarity
transformations with

0 1 0"
1 0 0
0 0 1

i 0 0
0 1 0
0 0 1

respectively. Let us now apply Proposition 4.3 to <A B^ with /?n ^ 0. Thus
we have

Hence, by use of the similarity transformation with some matrix

'p 0 0"
0 1 0 (p * 0: real),
0 0 1

(A, Bl9 B2y turns out to satisfy

011= 013 > < > .

Thus the proof is complete. D

Lemma 5.80 Let the assumptions be the same as in Lemma 5.7. Let also

011= 013 >0

be fulfilled. Then there exists a real 8 such that

Proof. In the present situation, Oifo), ffiW, ^(f?) and a3(j;) in Lemma
5.5 take the form
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ffifo) = »h{0i2(>7i2 - »h2)

*3fo) = 'h^isfoi2 ~ >h2)

ffsfa) = »fc{&*fai2 ~ 122)

And the same lemma assures that CTI (»/)/>/ 1 and ff^(rf)ln\ are positive definite
quadratic forms (cf. j?n = j813 > 0). It also assures that there exists a real 6
(possibly zero) such that

The conclusion follows immediately from these facts. D

Let us consider the converse.

Lemma 5.9. Let

011= 013 >0,

022>^l1+021
2/01l),

012 = -^(011 -2022). 021 = -^022 . 022 =-<5021>

be fulfilled for some real o. Then the matrix family {A, B1,B2> spanned by

A =
1 0 0
0 0 0
0 0 0

C\ /? i /?

013 1 0

'014 0 -1

0 /?21 + i/?21 022 + '022

023 + J023 0 1

024 + '024 1 0

is uniformly real-diagonalizable.

Proof. Let us diagonalize

Note that
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is a map from E2 onto M2 because

fai + ̂ 2)2 = (ni2 - *l22) + 2ii/1iy2 .

Let F(fy) = K f a i s f f a ) be a real orthogonal matrix defined by

" 1 0 0

0 rjJM -Ti2/\M

_ 0 f / 2 / H f f l l

and

7(0,0) = J =

fo * (0, 0))

1 0 0
0 1 0

^ 0 1

Thus, for rj ^ (0, 0), we have

tl9 rj2)

(»?i + 3

Here

are positive definite quadratic forms as a consequence of the assumption. (See
also the comments in the first part of the proof of Lemma 5.5). Let us now
introduce a diagonal matrix D(tj) by

" 1 0 0

0 [ ) 0
\<p(tyi, ^2)7

_ 1/2
o """ "

for v\ / (0, 0) and

"1 0 0"
0 1 0
0 0 1
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Thus we know that

is hermitian and that

\\V(fi)D(ri)\\ 9 IKn^Wr1 II < const.

Hence M(^, f / l 5 ^ 2 ) i§ uniformly real-diagonalizable. Q

Proof of Proposition 5.4. To prove the necessity, we specify B± by succes-
sive use of Lemma 5.6 and 5.7. Then Lemma 5.8 proves the necessity. To
prove the sufficiency, we have only to apply Lemma 5.9. D

The matrix family indicated in Proposition 5.4 is generically not equivalent
to any hermitian family as will be proved in the following proposition.

Proposition 5.10,, Let the matrix family <A, Bl9 B2y be spanned by

1 0 0"

0 0 0

0 0 0

0 a — i(a — 2y)d

a 1 0

0 -1

0 ft - iyd y - ifid

ft + iy'S 0 1

y' + ifi'd 1 0

where the real constants a, /?, ft, y, y', d satisfy

a > 0 , \fi — f$'\ + |y — Y\ > 0 .

Then (A9 Bl9 B2y is not equivalent to any hermitian family.

Proof. Assume, to the contrary, that there exists a nonsingular T such that

T~IAT, T'1B1T9 T~1B2T
are simultaneously hermitian. Now we can proceed just in the same way as
in the proof of Lemma 5.2 and we may assume that

T =

1 0 0
0 p 0
0 b d

(p > 0: real, b, d: complex).

Further the (2, 3)- and (3, 2)- entries of T 1B1T must be complex conjugate,
and so must its (1, 2)- and (2, 1)- entries. From this, we have p = 1, b = 0,
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namely,

T =

1 0 0
0 1 0
0 0 d

(d: complex).

Let us now consider T 1B2 T. Its (2, 3)- and (3, 2)- entries must be complex
conjugate, namely, d = d'1. This means that \d\ = 1 and T is unitary. There-
fore A, Bl9 B2 themselves must be simultaneously hermitian. This contradicts
the assumptions. Q

Let us work on the third matrix families mentioned at the beginning of
this section, namely,

(5.18)

1 0 0
0 0 0
0 0 0

0 1 0
1 0 1

0 0 0

with some matrix C, or its transposed family. Note that they are non-
uniformly real-diagonalizable by virtue of Proposition 4.6. We shall consider
(5.18) without loss of generality.

Proposition 5.11. Let a nondegenerate matrix family (A, B, C> be spanned
by

A =

C =

where jj (j = 1,..., 5), %• (j = 1,..., 5) are certain real constants. Then
<v4, B9 C> is (non-uniformly) real-diagonalizable if and only if it is equivalent to

"1 0
0 0
0 0

0

7s + i'
> + i'

0"
0
0

5 =
"0 1 0"
1 0 1
0 0 0

7i + iJi 72 + %"
?3 0 7s + %
?4 0 0

7*

"1 0 0"
0 0 0
0 0 0

'
"0 1 0"
1 0 1
0 0 0

'
0 — i a + ia
i 0 )8 + i/?
0 0 0

where a, a, jS, /? are arbitrary real constants.

Proof. First notice that, replacing C by C — y1 B, we may assume

7 i = 0 .

Then the succeeding Lemma 5.12 is applicable. Thus we have also



"1 0 0"
0 0 0
0 0 0

J

0

n + 73 + *7s
74 + %

i + iyi
0
0

72 + ''72

n + 75 + iy5
0
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73 = ~7i ^ = 0 , 73 = 74 = 74 = 0.

So replacing C by — 7i~1C, we have the conclusion. Q

Lemma 5.12. Let a nondegenerate matrix family (A, 5, C> be spanned by

" 1 0 0 " ] [0 1 Ol f"0 17! 72 + J'72"

4 = 0 0 0 , B= I 0 1 , C = 73 + iy3 0 75 + 175

0 0 0 0 0 0 7 4 + 1 7 4 0 0

where 7, (j = 2,... , 5), ^ (j = 1,..., 5) are certain real constants. Then
<4, B, C> is (non-uniformly) real-diagonalizable if and only if

73 = -7i 7^0 , 73 = 74 = 74 = 0-

Proof. Taking an arbitrary ry e R, the subfamily

is also real-diagonalizable. From Proposition 4.5,

(74 + 1*74) fa + *7i) = 0

and

fa + *7i)fa + 7s + Jfs) + (72 + %)(74 + ^4) > 0

unless v\ + y5 = ys = 0. The first equality implies one of the requirements,

74 = 74 = 0 .

Thus the second inequality reduces to

unless rj + y5 = ys = 0. This means also some of the other requirements,

Now it remains to show 71 + 0. We assume that

Because of 73 = — 7i and 73 = 0 as well as the above y4 = y4 = 0, we would
obtain

c=
0 0 *"

0 0 *

0 0 0



~1 0 0"
0 0 0
0 0 0

, B =
"0 1 0"
1 0 1
0 0 0

, c =
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where each * is a complex constant. However, this C can not be real-
diagonalizable. Thus we are led to a contradiction. Q

Proposition 5J30 Let a nondegenerate matrix family <^4, B, C> be spanned
by

0 ft+ifc y2 + %

7s + % 1 7s + %
74 + 174 0 -1

where ty (j = 1, ...,5), y,- (7= 1, . . . ,5) are all real constants. Then (A,B9t
is (non-uniformly) real-diagonalizable if and only if it is equivalent to

0 p-id -y + -/f.

P(l - a) + i<5 1 id
-2a 0 -1

where the real constants satisfy

0 < a < l , y> i ( / J 2 -45 2 ) .
O

Froo/. First note that, replacing C by C — y5B, we may assume

7 5 = 0 -

Then the following Lemma 5.14 is applicable and we have also

"1 0 0"
0 0 0
0 0 0

?

"0 1 0"
1 0 1
0 0 0

9

- 2 < 7 4 < 0 5 y2 <-{4y1
2-71

2}.
o

So introducing new parameters a, /?, 7, d by

7i = P , 7i = ~ ^ 72 = -7 > 74 = -2a ,

we have the conclusion. D

Lemma 5B14e Let a nondegenerate matrix family (A, B, C> be spanned by

"1 0 0"
0 0 0
0 0 0

, B =

"0 1 0"
1 0 1
0 0 0

, c =
0 y! + ift y2 + iy2~

73 + iJi 1 iys

_?4 + Z74 0 -1

where yj (j = 1, ...,4), fy (j = 1, ..., 5) are all real constants. Then <^43 B, C>
is (non-uniformly) real-diagonalizable if and only if
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- 2 < y 4 < 0 , y 2 < { 4 y i 2 - 7 i 2 } .
O

Proof. Let ?/ e R be arbitrarily fixed. Consider the similarity transforma-
tion for the subfamily (A, ^ + C> with

T =

This leaves

intact and we also get

"1 0
0 1
0 0

"1
0
0

i 01
— -(*/ + 175)

2 i
0 0"
0 0
0 0

0 a\(n) + ia\(l) 02(1) + w^fa)
+ iff3(rj) 1 0

i + id An) 0 -1

where

747s + 273} 9

^2W -~2

°2(n) = ~2

<**(n) =2

^3W =r 1^4

aM = 74 ,

SM = 74 -

By virtue of Proposition 4.3, we can apply Lemma 3.2 to o2(r\} + i

^4(?/) 4- i^4.(n)' Then /x(?y), /!(?;), ^(ry) must be constants while <p(ri) must be a

quadratic. Thus we have d2(
r\) — 0 an(i ^4^) = 0> tnat i§>

, 1 . 1 « « A
7s = -7i? 72 =-7i7s =--7i7i3 74 = 0 •

So o)(?y), dj(r]) (j = 1,...,4) are reduced to
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Now, applying Lemma 3.2 to 0^ + idl and o-3 H- za35 we have

°*(n) =2 (^ + 2)°"i W ' ^aW = ~2^4 + 2)eiW
or equivalently .

73=2Tl^4 + 2^' ^3 = ~^-

So ffjfa), 5j(ri) (j = 1, . . . , 4) are reduced to

-{?l2 + yiij + ?!2 - 2y2}

E 0 ,

-

= o .

So applying Lemma 3.2 again, we know that o-2(i/) is negative definite and that

? 4 < 0 ? 74 > -2.

The first condition is equivalent to

4(7i 2 -2y 2 ) -y 1
2 >0,

namely,
72<-{47i2-7i2}.

o
The converse is clear from the above calculations. Q



COMPLEX STRONGLY HYPERBOLIC SYSTEMS 259

Let us write down the summary of this section as a theorem.

Theorem 5.15, Let (Al9A2,A3y be a nondegenerate 3x3 matrix family
with multiple eigenvalues. Then the following 1) and 2) hold.

1) Suppose (A1,A2,A3y is uniformly real-diagonalizable and is not equiva-
lent to any hermitian family. Then (Al9 A2, A$y is equivalent either to

"1 0 0"
0 0 0
0 0 0

5

"0 1 0"
1 0 0
0 0 0

5

0 -c + - e + -
C C

C-- 0 0
C

c + - 0 0
c

where c ^ 0 is an arbitrary complex constant, or to

"1 0 0"
0 0 0
0 0 0

J

"0 1 0"
1 0 0
0 0 0

5

"0 -i -i
i 0 0
0 0 0

or to its transpose,

"1 0 0'
0 0 0
0 0 0

?

"0 1 0"
1 0 0
0 0 0

3

"0 -i 0
i 0 0
i 0 0

or

"1 0 0"
0 0 0
0 0 0

J

0 a -i(aL-2y)5
a 1 0

i(a-2/)<5 0 -1
9

0 p-iyS y- i/?<5
/?' + iy'5 0 1
y' + ifi'd 1 0

where the real constants a, j8, jS', 7, y' and d satisfy

jS2

a > o ,

2) Suppose now that <^4, B, C> is non-uniformly real-diagonalizable. Then
<>1, B, Cy is equivalent to either

"1 0 0"
0 0 0
0 0 0

'
0 1 0"
1 0 1
0 0 0

'
0 -i c1

i 0 c2

0 0 0

where cl9 c2 are arbitrary complex constants, or
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"1 0 0"
0 0 0
0 0 0

J

"0 1 0"
1 0 1
0 0 0

5

0 p-id -7 + ^jSc5
2

j8(l - a) + id I id
-2a 0 -1

where the real constants a, /?, 7 a?id <5 satisfy

or their transposes.

§60 Spanned by Four

Let us begin with matrix families of the form:

'1 0 0"

0 0 0

0 0 0

0 * *"
* 0 0

* 0 0

where each * stands for a complex constant.

Proposition 6.1. Let a nondegenerate matrix family (A, Bl9 B29 B$y be
spanned by

A =

where bkj (k = 1, 2, 3; j = 1, 2, 3, 4) are complex constants. Then <>4, J3l9 B2, S3>
is real-diagonalizable if and only if it is equivalent to either

"1 0 0"
0 0 0
0 0 0

, Bk =

"0 bkl bk2~
bk3 0 0
bk4 0 0

"1 0 0"

0 0 0
0 0 0

'
"0 1 0"
1 0 0
0 0 0

3

"o o r
0 0 0
1 0 0

5

0 -c + - -i(c + -J
c V c)

c-- 0 0
c

i(c + -| 0 0
. V c/

with c ^ 0 an arbitrary complex constant, or

"1 0 0"
0 0 0
0 0 0

,

0 1 0"
1 0 0
0 0 0

5

"0 -a 1"
a 0 0
1 0 0

5

0 _ i ( i + 7 ) ^ + l-^
i 0 0

(l-y)(0-i-} 0 0
V yj

where 0 < a < 1, /? / 0, 7 ^ 0 are real constants satisfying f$ y < 1 — a , or
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0
0

"1 0 0"
0 0 0
0 0 0

,

"0 1 0"
1 0 0
0 0 0

J

0 -a 1"
a 0 0
1 0 0

5

0
i

i(a -

where 0 < a < 1 and y are real constant, or

"1 0 0"
0 0 0
0 0 0

J

0 1 0"
1 0 0
0 0 0

,

0 -a 1"
a 0 0
1 0 0

j

0 — i (fa + y)
i 0 0

(m - y) 0 0

where a and y are rea/ constants satisfying 0 < a < 1 and a2 + y2 < 1.
Moreover, in all of these cases, <A, J51? 52, B3> is uniformly real-diago-

nalizable.

Proof. By Propositions 4.1 and 4.2, we may specify

(6.1) Bl =
0 1 0
1 0 0
0 0 0

Hence, by the same argument as in the proof of Proposition 5.1, we may also
assume

(6.2) bkl + bk3 = Q (k = 2, 3).

By a suitable change of basis, we may further assume either

(6.3) 52 1(=fo2 3) = 0

or

(6.4) 621 = -1 (b23 = 1), 631 = -i (k33 = i).

Let us begin with the first case. Applying Proposition 4.1 to <4, 52>,
we have

So, after using the similarity transformation with

"1 0 0~
T= 0 1 0 (d: complex),

0 0 d]

we may assume b22 = b24 = 1 (recall also b21 = &23 = 0), that is,

"0 0 1
(6.5) B2 = 0 0 0

1 0 0
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Because <^4, r]B2 + B4y (TJ: arbitrarily fixed) is real-diagonalizable, b32 + b34 must
be real. Replacing B3 by

^3 - 2^32 + ^34)52 >

we may further assume

(6.6) b32=-b34

as well as b3i = — b33. On the other hand, a necessary and sufficient condition
for <4, Bl9 B2, B3y to be real-diagonalizable is that

is real-diagonalizable for any (f?1? fy 2 , yy3) e E3. By virtue of Proposition 4.1,
the last condition is equivalent to

Replacing B3 by its suitable real scalar multiple, we may assume

(6.7) -b33
2-b34

2 = 4.

So putting

633 = c - - 9

we have

Here the minus sign can be excluded by the similarity transformation with

T =

"1 0 0"

0 1 0

0 0 - 1

Thus we have obtained the first family of the requirement.
Let us now consider the second case. Applying Proposition 4.1 to <^4,

we know

^21^23 + ^22^24 = ~1 + ^24 > 0 -

So using a similarity transformation with

T =

'I 0 0"
0 1 0
0 0 d

(d + 0: complex),
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we can assume that b22 = b24 > 0. Thus we may assume

"0 -a f
(6.8) B2 = a 0 0

1 0 0
(0 < a < 1),

replacing B2 by its suitable real scalar multiple. Let us apply Proposition 4.1
to <4, £B2 + j/fl3> with (& rj) e E2\{(0, 0)} arbitrarily fixed. Thus it suffices to
find the condition that

(6.9) (1 - a2)£2 + (b32 + 634 - 2ia

is real and positive for all (£, q) E R2\{(0, 0)}. Since b32 + b34 — 2ia is real,
we may put

(6.10) fc32 = c + ia + jS , h34 = -c + ia + j8

where c is complex and /? is real. Thus (6.9) becomes

(6.11) (1 - «2)f2 + 2jB<Eiy + {1 - c2 + (fa + $)2}n2 .

We split the case according to jS 7^ 0 or j8 = 0. Let us begin with the case
j8 7^ 0. Since (ia + j8)2 — c2 is real, we may put

(6.12) c = f- + j8y
y

for some real y / 0. The quadratic form (6.11) then becomes

(1 _ a2j£2 + 2pft + K - a2

Now, one quarter of the discriminant of this quadratic form is

So our condition is, (recall 0 < a < 1),

(6.13) £2y2 < 1 - a2 .

Let us turn to the case j8 = 0 in (6.11). This now becomes

(\ N \P I (\ st^1 ry \yi^i. LA ji^ i" ^x c (A jfi .

This quadratic form is positive definite if and only if c is a pure imaginary
or is a real satisfying

(6.14) c2 + a2 < 1 .

Putting c = iy or c = y, we obtain the last two families of the requirement.
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Finally, to prove the uniform real-diagonalizability, we need only repeat
the same procedure as in the proof of Proposition 5.1. D

Most of the matrix families indicated in Proposition 6.1 are not equivalent
to any hermitian family as will be shown next.

Proposition 6.2. Neither of the following 1), 2), 3), 4) is equivalent to any
hermitian family.

1)

with an arbitrary complex constant c^Q satisfying \c\ ^ 1.

2)

"1 0 Ol
0 0 0

0 0 0

?

0 1 0

1 0 0

0 0 0
9

0 0 1

0 0 0

1 0 0
9

r i / ivi
0 -c + - -i(c + -

c V c)^ \ ^ /

1
c-- 0 0

c
/ i\

i C + -) 0 0
. V c/

"1 0 0~[
0 0 0
0 0 0

9

0 1 0
1 0 0
0 0 0

9

0 -a 1
a 0 0
1 0 0

9

0 -j (1 +y ) ( fl + i")

\ TV
i 0 0

(l-7)^-i^ 0 0

'1 0 0"
0 0 0
0 0 0

9

"0 1 0"
1 0 0
0 0 0

9

"0 -a 1"
a 0 0
1 0 0

9

where 0 < a < 1, /? ̂  0, 7^0 are real constants satisfying f$2y2 < 1 — a2.

0 -i i(ct + y)
3 ) ( 0 0 0 , 1 0 0 , a 0 0 , i 0 0

(a-y) 0 0

where 0 < a < 1 and y are real constants.

0 -i (fa + 7)
4 ) ( 0 0 0 , 1 0 0 , a 0 0 , i 0 0

(ia - 7) 0 0

where a and y are real constants satisfying 0 < a < 1 and a2 + y2 < 1.

Proof. Let us begin with the first family. Denote the matrices by A, Bl9

B29 B3. Assume, to the contrary, that there exists a nonsingular matrix T
such that

(6.15) T~1AT9 T-^T, T~1B2T, T^B^T

are simultaneously hermitian. By the same argument as in the proof of Lemma
5.2, we may assume

"1 0 0"
0 0 0
0 0 0

9

"0 1 0"
1 0 0
0 0 0

9

"0 -a 1"
a 0 0
1 0 0

9
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1 0 0"
0 1 0
0 0 d

(d ^ 0: complex).

Since the (1, 3)- and (3, 1)- entries of T 1B2T are complex conjugate, we have
d= l/d, that is, \d\ = 1. Thus T is unitary and (6.15) means that

A, B19 B29 B3

are hermitian. However, B3 is not hermitian because \c\ =£ 1. We are thus
led to a contradiction.

The same argument is valid for the families 2), 3), 4). So we omit the
proof for these cases. Q

Let us turn to the other types of matrix families. In Proposition 5.3, we
have already proved that any real-diagonalizable matrix family of the form:

"1 0 0"
0 0 0
0 0 0

5

~o * *"
* 1 0
* 0 -1

5

"0 * *~
* 0 0
* 0 0

is equivalent to a hermitian family. We will prove that the real-diagonalizable
family of the form:

"1 0 0"
0 0 0
0 0 0

5

0 * *
* 1 0
* 0 -1

5

"0 * *
* 0 1
* 1 0

•)

"o * *
* 0 0
* 0 0

is also equivalent to a hermitian family.

Proposition 6.3. Let a nondegenerate matrix family <4, Bl9 B2, Q,..., Cn>
(n > 1) be spanned by

0 0"
A= 0 0 0

0 0 0

ft3 + ift3 1 0

_ft4 + ^14 0 -1

0 ftl+iftl ^22 + ^22

ft3 + ^23 0 1

_/»24 + ^24 1 0

V,-d. + ,̂-d. 0 0

B2 =
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where fijk, j}jk, yjk, yjk are arbitrary real constants. If (A, Bl9 B2, Cl9 ..., CB> is
real-diagonalizable, then it is equivalent to a hermitian family.

Proof. Consider

0 Pifo,0 + *Pifo,0 P2fo, 0 + V2fo, f )"
, 0 + i/53fa, 0 *h2-*?22 2^2
, C) + ip4fa, 0 2ih*h -^?i2 + f|2

2

with any fixed (ij, C) 6 12+W\{(09 0)}. Here

pkfe 0 = A^i2 - r,2
2)

A(^ 0 = $lk(*ll2 - YI2
2}

for fc = 1, 25 3, 4. Note that

is clearly real-diagonalizable. Define a real orthogonal matrix V(rj) by

' 1 0 0
0

L.0

where

By the similarity transformation with this V(rj)9

is equivalent to

1 0 0

0 0 0
+ ifftfa C) o-2(^? 0 + i&2(n> 0"

3 o
0 0 0

where

(6.16) M f f c O ^ f o i 2 -

(6.17) *Ji(^0 = Oh2-

0 -f »4fe 0
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(6.18) ff2fo, 0 = Oh2 - l22)(Pi2*li 4- /Jnfh) + 2i/1f/2(j322f/1 - j321f?2)

(6.19)

(6.20)

(6.21) ff3(iy, Q -

(6.22) <j4(^ 0 =

(6.23) (f4(?/, C) =

+ Z;=i (7/4^1 -7/

Note that all of ak(rj, Q and <rfe(?/, C) (^ = 1, ..., 4) are linear polynomials with
respect to £ = (Ci> • • • > CJ and each of the coefficients of £k (fc = 1, ..., w) is a
linear polynomials in ?? = (^i,^2). Let us apply Proposition 4.3 and Lemma
3.2 to

and

Thus we have

?7, 0,

Recall that o)(^, C) and 0)(f/, C) are linear with respect to C and their coefficients
of C are linear polynomials in rj. Consequently there exist positive constants
a > 0 and a > 0 such that

(73fa, C) = a^i(»/, C) , ^fe 0 = -^(f/, 0 .
Meanwhile

{^(17, C) + i^ (17, 0} {ff3fa, C) + iff3(iy, 0}

= {^i(^ 0 + tfifa, 0} {affife C) ~ iaffi^, C)}

= afofa, C)}2 + «{*!(!/, O}2 + i(a - dOffi(f / , Offito, C)
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must be real for all (q, Q e M2+n. Thus we obtain a = a > 03 that is,

(6.24) (T3(fj, C) = affjfj, C) , ff3(f?, 0 = -«*ifo, 0 (a > 0) .

Hence, these identities imply

Pj3 = afti , ft'4 = a#2 , $3 = -a/^ , #4 = -a#2 ,

for j = 1, 2 and

for fc = 1, . . . , n. Therefore A, Bl9 B2, Cl5 . . . , Cn can be transformed simultane-
ously to hermitian matrices through the similarity transformation with

T =
a 0 0

0 1 0
0 0 1

The proof is completed. D

Let us now prove that the real-diagonalizable family of the form:

"1 0 0"
0 0 0
0 0 0

5

"0 * *
* 1 0
* 0 -1

?

"0 * *"
* 0 1
* 1 0

3

"0 * * "
* 0 -i
* i 0

is also equivalent to a hermitian family.

Proposition 6A Let a nondegenerate matrix family (A, B{, B2, B3> be
spanned by

A =
1 0 0
0 0 0
0 0 0

0 /*„ + &! Pl2 + iPi2
As + ^13 1 0

.014 + &4 0 -1

0 021 + i021 &2 + i~P22

023 + '023 0 1

024 + 0̂24 1 0

0 031 +'031 032 +'032

033 +'033 0 -I

034 + '034 ' 0
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where f}jk, j}jk (j = 1, 2, 3, fc = 1, 2, 3, 4) are arbitrary real constants. Suppose
that (A9Bi9B29B3y is real-diagonalizable. Then (A,B1,B29B3y is equivalent
to a hermitian family.

Proof. Consider

(Vi2 + >?22 - *h2)^i + 2ih 1/3*2 + 2i/2f/3B3

o
Pa fa) + I'Pafa)

P4fa) + ^P4W

with any fixed i\ = (^ l9 ?/25 fj3) e M3\{(0, 0, 0)}. Here

4-

for j = 1, 2, 3, 4. Note that

04, (^i2 + rj2
2 - ri^B, + 2i/1ij3J52

is clearly real-diagonalizable.
We define a unitary matrix U(rj) by

1 0 0
0 (rfi — irj2)/\\rj\\ ~*?3
0 i

where

By the similarity transformation with this U(i\\

is equivalent to

'1 0 0"

0 0 0
0 0 0

,1-1, 3

4-

0
r4fa) + ^4 fa) 0

where

(6.25) 0"ifa) = fai2 + ??22 ~~ n
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(6.26) dM = (?h2 + rj2
2 -

(6.27)

(6.28) ff2(iy) = (f/!2 + ^2
2 - *b2)(ft2*h + ft2^?2 ~ ftii/3)

- jS21IJ3)

- )831iy3) ,

(6.29) cr3(iy) = (17^ + ^2
2 - ^

(6.30)

+ £33^2 +

(6.31) ir4(ij) = (riS + ^2
2 - *?

+

(6.32) 8M = (nS + V22 ~ ^

From Proposition 4.3, either

or

holds for any ?; 6 M3. By applying Lemma 3.2, we have

(6.33) er2fa)

(6.34) oM
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where n(r\\ /£(??), cpfy), ils(rj) are polynomials with real coefficients such that

(6.35) sgn <p(ri) = sgn \l/(r\)

for all YI e R3 unless ju(f?) = jl(rj) = 0. Note that <p(rj) and \l/(rj) are polynomials
of the same degree, equal to or less than three (see (6.33) and (6.34) and
remark that a2(

ll) and 04(17) are both cubic). Similarly, we have also

(6.36) ^fa) =

(6.37) <73fa) = /

where jU0(^), ju00?)5 <Po(*?)> ^o(^) are polynomials with real coefficients such that

(6.38) sgn <p0(ri) = sgn ^0(i/)

for all rj eR3 unless ju007) = AoC^) = 0-
Before proceeding further, let us prove if each of (p(rj) and \l/(rj) is a positive

constant multiple of the other, then <^L, Bl9B29B3y is equivalent to a hermitian
family. Putting

\jj(r\) = Gupfa)

with a real constant a > 0, we obtain

04fai> ^2, ̂ s) = a^^!, iy2, f /3) .

From the definition of o2(n) and 0^4 (17), this means

for j = 1, 2, 3. Through the similarity transformation with

T =
0 0

0 1 0

0 0 1

<4, Bl9B29 B^y is equivalent to a hermitian family. Similarly, we can prove
if each of <p0(rj) and \l/0(rj) is a positive multiple of the other then <A, Bls B2, B3>
is equivalent to a hermitian family.

Let us now prove that (A9Bl9B29B3y is equivalent to a hermitian family
by contradiction. Assume the contrary. By the above-mentioned remark, we
may further assume that cp(rj) is not a positive constant multiple of \l/(rj), nor
is q>o(ri) a positive constant multiple of ^0to-

First let us prove

a2(ri) + iff2(rj) = <r4fa) + i&4(ri) = 0
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for some TJ e E3\{(0, 0, 0)}, by contradiction. Assume the contrary. We may
also assume that ju(^) and ft(ri) do not simultaneously vanish because

would mean

<r2(l) + i&2(n) = 04(1) + 104

from their definition. Thus the equality

(6.39) sgn <pfa) = sgn \l/(r\)

mentioned in Lemma 3.2 is valid also for r\ with pfa) = p,(rj) = 0, hence for
all f] e R3. Moreover, ^(rj) and fi(rj) must have even degree because otherwise
they would have a common nontrivial real zero point. Because q>(rj) and \//(fj)
are linear or cubic (recall fj,(rj) and jl(rj) are of even degree), they have nontrivial
zero points which must be common from (6.35). In order to prove this fact
rigorously, we need only regard (p(rj) = 0 and \l/(rj) = Q as two algebraic curves
in RP2 and apply the Bezout theorem (see, for example, Brieskorn-Knorrer [1]).
Note that the curves cpfa) = 0 and if/fa) = 0 have an odd number of common
(complex) points in CP2. Note also that common complex zero points of <pO/)
and \l/(rj) appear with their conjugates. Therefore, there must be at least one
real nontrivial common zero point. Thus we have proved

02(l) + I02(l) = a4(l) + I04(l) = 0

for some Y\ e 13\{(0,0, 0)}.
The fact just proved means that through the similarity transformation

with unitary matrix

' 1 0 0

0 (*h -
0 \

with YI = Oh, ^23 ^3) found above,

becomes

0 0\(l) + i<
i + iffaW \\1\\3

'4(1) + 104(1) 0 —

where

02(1) + 102(1) = 04(1) + 104(1) = 0 •
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By using this similarity transformation, we may further assume that

012 + $12 = 014 + $14 = 0

holds for Bl of (A, Bl9 B2, B3>. And by another similarity transformation with

T =
c 0 0
0 1 0
0 0 1

(c 7^ 0: complex),

the (1, 2)- and (2, 1)- entries of Bl9 namely, P11 + $n and /?13 4- $13 become
real (see Proposition 4.3). In other words, we have /?n = /?13 = 0. Summing
up, we may even assume

(6.40) fa = J813 = /J12 = 012 = /J14 = ft4 = 0 ,

without loss of generality. Therefore, G2(r\\ o2(r\\ o^Oj), a4(^) are reduced to

(6.41) (j2(i/) = i/3{-/»iifai2 + *?22 - to2)

(6.42) a2(iy) =

(6.43)

(6.44) ff4(iy) = 2ri3{rj1

By applying Lemma 3.2 again, we have

Here <p(?y), ^r(^) must have a common factor f|3. Let us divide the case accord-
ing to the degree of (p(rj) and if/fa). Assume first that they are linear. In this
case, they are both constant multiples of f?3. And the equality

sgn <p(i/) = sgn il/fa) unless 0fa) = fifa) = 0

means that each of <p(rj) and i/s(rj) is a positive multiple of the other, which
contradicts our assumption. Similarly, we reach a contradiction also in the
case where <p(rj) and \l/(rj) are quadratic polynomials which have ?/3 as a factor.
Finally we assume that (p(rj) and \l/(rj) are cubic polynomials which have rj3 as
a factor. Then jLt(fj) and /«(^) become nonzero constants. Therefore, &2(ri)/G2(ri)
and ff4(ij)/(J4(»/) are nonzero constants. Hence (6.41) and (6.42) mean /Jn = 0,
considering the coefficients of *?3

3. Similarly (6.43) and (6.44) mean /?13 = 0.
Thus we have
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(6.45)

Now If <7207)/J/3, o^fa)/^, °4fa)/>/3> <*M)ln$ were linear polynomials with respect
to rj3 then each of (p(rf) and ij/(rj) would be a positive constant multiple of
the other, because of sgn (p(rj) = sgn if/fa). This means that <72fa)///3,

j 04fa)A/3 are constants with respect to i/3, that is,

(6.46) /?21 = /J2 ! = /J3 ! = /?31 = $23 = /J23 = ]833 = /J33 = 0 .

Now let us consider a^rj) + iffifa), <73(^) 4- itffa):

o"i fa) = 2*?

Here we have used (6.40), (6.45), (6.46). Again from Lemma 3.2, there must
be a positive constant a > 0 such that

(6.47) <r3fa) = a*ifa),

(6.48) £3fa)= -affifo).

This would mean that <>4, Bl9 52, B3> Is equivalent to a hermitian family as
pointed out before. We are thus led to a contradiction. Q

Before ending this section, we shall consider non-uniformly real-
diagonalizable families. In other words, we shall consider

"1 0 0"
0 0 0
0 0 0

?

"0 1 0"
1 0 1
0 0 0

?

"0 * *"
* o *
* 0 0

J

"0 * *"
* 0 *
* 0 0

or

"1 0 0"
0 0 0
0 0 0

9

ro i o"
1 0 1
0 0 0

5

"0 * *"
* 1 *
* 0 -1

5

0 * *
* 0 *
* 0 0

where each * stands for a complex constant.

Proposition 6.5. Let a matrix family (A, B, C l 5 . . . , Cw> (n > 2) be spanned
by

A =
"1 0 0"
0 0 0
0 0 0

, .- "0 1 0"
1 0 1
0 0 0
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0 7/i + '7/i 7/2 + '7/2

7/3 + '7/3 0 7,5 + '7/5

7/4+ '7/4 0 0

fc> 7/fc (J' = 1,.. - j w; fe = 1,..., 5) are rea/ constants. If (A, B9Cl9...9 Cn>
is real-diagonalizable, then it is degenerate.

Proof. Assume, to the contrary, that (A9 B, Cl9..., Cny is nondegenerate.
Then by a suitable change of basis, we may further assume

~ f\

Hence we are led to a contradiction, by applying Lemma 5.12 to (A9 B, C^). D

Proposition 6.6. Let a nondegenerate matrix family (A, B, C> be spanned
by

A =
"1 0 0"

0 0 0
0 0 0

B =
"0 1 0"
1 0 1
0 0 0

0 7i + '7i 72 + '72 "

73 + '73 1 7s + '7s
_74 + '74 0 -1

,

D =
0 d^ + idi 62 + id 2

0$ ~h 1^3 0 $5 -j- iu$

64 + id4 0 0

where yj9 yj9 SJ9 fy (j = 1, . . . ,5) are real constants. Then <^4, B, C, D> is (non-
uniformly) real-diagonalizable if and only if it is equivalent to

"1 0 0"

0 0 0
0 0 0

0 1 0"
1 0 1
0 0 0

0 0 -y

/J ( l -a ) 1 0
0 -i

1 0
0 0

where the real constants satisfy
1 2 1 2

' 7 g 2
Remark. By using a further change of basis and similarity transformation,

we can assume

d = 0

in the above matrix family.

Proof. Let us prove the only-if part. First note that, replacing C by
C - y5B, D by D - 35B9 we may assume

(6.49) 75 = 0, <55 = 0 .
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Let us apply Lemma 5.14 to <^4, B, C> and <A B9C + D>. Thus we have
especially

73 = ~7l , ?4 = 05 75 = -?1»

and

73 + 4 = ~7i - ^i > 7s + ^s = -7i - <5i •

Combining these, we have also

Then we apply Lemma 5.12 to <^4, B, D — 8lBy, we have

Therefore, replacing C by C — (y1/dl)D, D by — (l/SJD, we may assume

(6.50) 75 = ft = y3 = 74 = y5 = 0 ,

(6.51) §!=—!, 83 = SS = 19 81 = <S3 , 84 = 84 = 85 = 0.

Now applying Lemma 5.14 to <A, B9 C>, we obtain

(6 52) f2 = 7ly, =0 73 = 1 7l(y4 + 2) -2 < ?4 < 0 y <-i y 2

2 ®
Next let us apply the same Lemma 5.14 to <^4, B, C + ^D> with arbitrarily
fixed TI e R. So we must have

- _ !

namely

holds for all Y\ e R. Thus we obtain

Now, it suffices to consider <^4, 5, C + fjDy with arbitrarily fixed »y e E
because <^t, 5, D> is real-diagonalizable as easily seen. So let us apply Lemma
5.14. Thus the required condition is that the following hold as well as (6.49),
(6.50), (6.51), (6.52).

72 + ^<-(V~7i2) for all 17 e R .
8

As easily seen, the last inequality holds if and only if
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Finally, introducing new real parameters a, ft, 7, d by

yi=P, 72=-7, 7 4 =-2a , <52 = d,

we complete the proof of the only-if part. The if part is clear by the last
argument. Q

Let us summarize the results obtained in this section as a theorem.

Theorem 6.7. Let <./4l3 A29 A39 A4y be a nondegenerate 3x3 matrix family.
Then the following 1) and 2) hold.

1) Suppose that the family (Ai9 A29 A39 A^y has multiple eigenvalues and
is not equivalent to any hermitian family. Then it is uniformly real-diagonalizable
if and only if it is equivalent to either

"1 0 0"
0 0 0
0 0 0

5

0 1 0"
1 0 0
0 0 0

J

"0 0 1
0 0 0
1 0 0

5

o -c+i -i(c+iy
c \ c)

c-- 0 0
c

i(c + -) 0 0_ v c/
wit/i c a complex constant satisfying \c\ ^ 0, 1, or

0 -i (1 +

1 0 0
\

-i- 0 0
y/

where 0 < a < l , jS^O, 7 7^ 0 are real constants satisfying f$2y2 < 1 — a2, or

"1 0 0"
0 0 0
0 0 0

J

"0 1 0"
1 0 0
0 0 0

5

"0 -a 1"
a 0 0
1 0 0

j

"1 0 0"
0 0 0
0 0 0

5

"0 1 0"
1 0 0
0 0 0

5

"0 -a 1"
a 0 0
1 0 0

?

0 -i i(a + y)
i 0 0

i(a - 7) 0 0

where 0 < a < 1 and y are real constants, or

"1 0 0"
0 0 0
0 0 0

'
"0 1 0"
1 0 0
0 0 0

9

"0 -a 1"
a 0 0
1 0 0

'
0 - i (z'a + 7)
i 0 0

(ia - 7) 0 0

where a and y are real constants satisfying 0 < a < 1 and a2 + y2 < 1.
2) The family <,41? A2, A3, A4y is non-uniformly real-diagonalizable (neces-

sarily with multiple eigenvalues) if and only if it is equivalent to
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1 0 0"
0 0 0
0 0 0

0 1 0"
1 0 1
0 0 0

0 ft -y
0(1 - a) 1 0

-2a 0 -1

0 -i d + -
2

1 0 i
0 0 0

where the real constants a, /?, 7 and d satisfy
1 2 1 2

' ^ g P 2 '
or £/zeir transposes.

§7o Families Spanned by Five or More Matrices

Let us begin with the families of the form:

"1 0 0"
0 0 0
0 0 0

'
"0 * *"
* 0 0
* 0 0

'
"o * *
* 0 0
* 0 0

Proposition 7J0 Let a nondegenerate matrix family (A, Bl9..., 54> be
spanned by

A =

where bkj (fe, j = 1, 2, 3, 4) are complex constants. Then <^4, Bl9..., jB4> is real-
diagonalizable if and only if it is equivalent to

"1 0 0"
0 0 0
0 0 0

Bk =
" 0

t>k3

_bk*

bki bk2
0 0
0 0

"1 0 0"
0 0 0
0 0 0

3

"0 1 0"
1 0 0
0 0 0

5

"0 0 I'
0 0 0
1 0 0

?

"0 -a -i
a 0 0
i 0 0

3

0 -i a
i 0 0

-a 0 0

with a real constant a satisfying 0 < a < 1. Moreover, in this case, (A, Bl9...9 H4>
is uniformly real-diagonalizable.

Proof. Repeating the same argument as in the proof of Proposition 6.1,
we may assume

"0 1 0"
1 0 0
0 0 0

, B2 =
"o o r
0 0 0
1 0 0

and

bki = -bk3, bk2=-bk4 (fc = 3,4).

By a suitable change of basis, we may also assume that b33 is real and 543

is purely imaginary. Applying Proposition 4.1 to (A, B3> and to <4, B4>? we
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have

&31&33 + &32&34 = ~^ ~ ^ > 0 >

and

&41&43 + &42&44 = ~&432 ~ &44* > 0 .

So we know that every entry of B3 and B4 is either real or purely imaginary.
Let us apply Proposition 4.1 to <^4, £B3 + fyB4> with ^, r\ arbitrarily fixed
reals. Thus the necessary and sufficient condition is that the inequality

holds for all (£, r\) e R2\{(0, 0)}. From this, the conclusion immediately follows.
As for uniform real-diagonalizability, we need only proceed in a similar way
to that for the proof of Proposition 5.1. Q

"1 0 0"
0 0 0
0 0 0

. BJ =

"0 bn bJ2~
bj3 0 0
bj4 0 0

Proposition 12, Let a matrix family <A, Bls . . . , 5W> (n > 5) be spanned by

,4=

where bjk ( j = 1, . . . , 5; k = 1, . . . , 4) are complex constants. If (A, Bl9...9 $„>
is real-diagonalizable, then it is degenerate.

Proof. Assume, to the contrary, that <>4, Bl9 ..., Bny is nondegenerate.
Hence we can proceed just in the same way as in the proof of the preceding
Proposition 7.1. So we may also assume

"0 1 0
1 0 0
0 0 0

, B2 =
"o o r
0 0 0
1 0 0

and

bki=-bk3, bk2=-bk4 (k = 3,4,5).

By a suitable change of basis, we may also assume that &33 is real, b43 is
purely imaginary and

^ 5 3 = 0 .

Applying Proposition 4.1 to <A, B3>, <4, 54>, and <A, B5y we have

>o,

^51^53 + ^52^54 = ~b54.
2 > 0 .
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Thus, multiplying B3 and B5 by suitable real scalars, we may assume

"0 -a -il |~0 0 -f
B3 = a 0 0 , B5 = 0 0 0 (a: real).

"0 -a -i
a 0 0
i 0 0

, B5 =
"0 0 -f
0 0 0
i 0 0

Since <4, B l 9 . . . , J3n> is nondegenerate, we have B3 — B5 ^ 03 that is a / 0.
Now, B3 — B5 must have imaginary eigenvalues ± ia. We are thus led to a
contradiction. D

As already proved in Proposition 5.3, the family of the form:

"1 0 0"
0 0 0
0 0 0

5

0 * *
* 1 0
* 0 -1

9

0 * *
* 0 0
* 0 0

9

"0 * *
* 0 0
* 0 0

is equivalent to a hermitian family. Similarly, by virtue of Proposition 6.3,
the family of the form:

"1 0 0"
0 0 0
0 0 0

9

~o * *
* 1 0
* 0 -1

J

"0 * *~
* 0 1
* 1 0

?

~o * *
* 0 0
* 0 0

is also equivalent to a hermitian family. Let us now prove the family of the
form:

'1 0 0
0 0 0
0 0 0

0

1 0
0 * *
* 0 1

0 * *

0 -i*
0 - 1 * 1 0 * i 0 * 0 0

0 * *'
* 0 0

is also equivalent to a hermitian family.

Proposition 7.3. Let a nondegenerate matrix family </i, Blt B2, B3, C l 5 . . . ,
CB> (n > 1) be spanned by

A =

B,=

1 0 0"
0 0 0
0 0 0

0 0H + I&! Pi2 + iPi2
As + $13 1 0
.014+ &* 0 -1

0 021 + $21 022 + $22'

023 + '023 0 1

024 + $24 1 0
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0 031 + 031 032 + #

033 + 033 0 -i

_034 + 034 I 0

0 yn + iyn yj2 + iyj2

7,3 + ijj* 0 0
_ 7/4+ '7/4 0 0

where 0jk, j8jk, y^k, yjk are arbitrary real constants. If <y4, Bl9 B29B3,Cl9 . . . 9 Cn>

is real-diagonalizable, then it is equivalent to a hermitian family.

Remark. The proof is similar essentially to that of Proposition 6.3 rather
than to that of Proposition 6.4.

Proof. Consider

0 PlfoO + l'PlfoO P2^ 0 + ^2(^

3(^ 0 + *'p3fa> 0 ??i2 + n22 - n*2 in*(n\ - ^2)
4(ij, C) + ^P4(^ 0 21/3(1?! + z?/2) -f?!2 - r\2

2 + ??3

with any fixed fo, 0 = ( f J i , f / 2 , ^ Ci, - - - , C») e R3+"\{(0? 0, ..., 0)}. Here

Pj(l) = filial2 + ^?22 - n*2) + 2^! 1/3 + 2J837I/2I73 +

for j = l , 2, 3, 4. Note that

is clearly real-diagonalizable. We define a unitary matrix Ufa) by

" 1 0 0

where

IMI = (?h2 + *?22 + *?32

By the similarity transformation with this Ufa),

(A, fa,2 + n2
2 - n^B,

is equivalent to
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0 ffifo.O + tfifo.O^fo.O + '^fo.O"

<r4fo, o + tf*fo, 0 o -W\3

"1 0 0"
0 0 0
0 0 0

where

4-

122 ~ I32)(fill1l ~ Plll2

~ Pl2l2 ~

~ 01312

~ 02312

122 ~

2rj 2rj 3(

122 ~

-f

~ 02412 ~

Zfe=l (Vk4ll - Jk4l2 ~
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Note that all of ak(rj, 0 and dk(r\, f) (k = 1, . . . ,4) are linear polynomials with
respect to £ = (d, . . . , £„) and each of their coefficients of £k (fc = 1, . . . , n) is a
linear polynomial in 17 = (^15 fy2 , ^3)- Let us apply Proposition 4.3 and Lemma
3.2 to

and

<73(?7, 0 + tfsfo 0 -

Thus we have

sgn e^fa, C) = sgn (j3(»/, 0

sgno^fa, 0 = -sgn<73(i?, 0.

Recall that a(rjy 0 and d(r\, 0 are linear with respect to f and their coefficients
of C are linear polynomials in r\. Therefore the same reasoning is valid as
for Proposition 6.3. And we obtain

cr3(^, C) = ex^fa, C) , $3(11, C) = -«ffi(^ C)

for some a > 0. As a consequence, we have

ft-3 = «Pji > Pj4 = *Pj2 , h = -xfin , fa = -xpj2 ,

for j = 1, 2, 3 and

for fe = 1, ..., n. Therefore A, Bl, B2, B3, Cl5 ..., Cn can be transformed to
hermitian matrices by the similarity transformation with

T=
0 0

0 1 0
0 0 1

The proof is completed. Q

Finally, let us turn our attention to non-uniformly real-diagonalizable
families. We need only consider

"1 0 0"
0 0 0
0 0 0

5

"0 1 0"
1 0 1
0 0 0

9

"0 * *"
* 0 *
* 0 0

5

"0 * *"
* 0 *
* 0 0

or

"1 0 0"
0 0 0
0 0 0

?

"0 1 0"
1 0 1
0 0 0

9

"0 * *"
* 1 *

* 0 -1
J

~o * *
* 0 *
* 0 0
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Here, we can ignore the first one because we have discussed it in Proposition
6.5. So let us consider the second one.

7A Let a matrix family (A9B,C9Dl9...9Dn) (n>2) be
spanned by

A =
~1 0 0"
0 0 0
0 0 0

B =
"0 1 0"
1 0 1
0 0 0

, c =

0 dkl -f idkl dk2 H~ i$k2

4s + tfk3 0 4s + *As
_44 + ^4 o o

0 7i + iy\ 72 + '̂72
y3 4- iy3 1 75 4- iy5

j4 + ij4 0 -1

yj9 yj9 dj9 fy (k = 1, . . . ,n; j= 1,...,5) are real constants. If the family
<^? B, C, D1 ? . . . , Dn> is real-diagonalizable, then it is degenerate.

Proof. Apply Proposition 6.5 to (A,B,Dl9..., Dw>. D

The results obtained in this section are summarized as follows.

Theorem 70§0 Let <^1 ? . . . , Any be a nondegenerate 3x3 matrix family
with multiple eigenvalues. Then the following 1) and 2) hold.

1) Suppose n>6 and that <>4 1 ? . . . , Any is real-diagonalizable. Then it is
equivalent to a hermitian family.

2) Suppose n = 5 and that <4 l 9 . . . , Any is real-diagonalizable. Then it is
uniformly real-diagonalizable. In this case, it is equivalent either to

"1 0 0'
0 0 0
0 0 0

?

"0 1 0"
1 0 0
0 0 0

?

"o o r
0 0 0
1 0 0

5

"0 -a -f
a 0 0
i 0 0

?

0 -i a"
i 0 0

- a 0 0

with a real constant a satisfying 0 < a < 1, or to a hermitian family.

§ 80

As a summary of this paper, we reprint here Theorem 7.5, 6.8, 5.15, 4.7,
in this order. However, we rename them for the present section to look
natural as a classification table.

Theorem 80L Let (Al9...9Any be a nondegenerate 3x3 matrix family
with multiple eigenvalues. Then the following 1) and 2) hold.

1) Suppose n>6 and that <4 l 5 . . . , AB> is real-diagonalizable. Then it is
equivalent to a hermitian family.

2) Suppose n = 5 and that (Al9..., Any is real-diagonalizable. Then it is



" 1 0 0

0 0 0
0 0 0

?

"0 1 0"

1 0 0

0 0 0
J

"0 0 1"

0 0 0

1 0 0
J

"0 -a -i

a 0 0
i 0 0

?
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uniformly real-diagonalizable. In this case, it is equivalent either to

0 -i a"

i 0 0
-a 0 0

with a real constant a satisfying 0 < a < 1, or to a hermitian family.

Theorem 8.28 Let (Al9 A2, A3, A4y be a nondegenerate 3x3 matrix family.
Then the following 1) and 2) hold.

1) Suppose that the family <^41? A2, A3, A4y has multiple eigenvalues and
is not equivalent to any hermitian family. Then it is uniformly real-diagonalizable
if and only if it is equivalent to either

"1 0 0"

0 0 0

0 0 0
5

"0 1 0~
1 0 0

0 0 0
5

"0 0 1
0 0 0

1 0 0
9

i ( iM0 -c + - -i\c + -\
c V c/

c-- 0 0
c

j(c + -| 0 0
_ V c/

wit/i a complex constant c satisfying \c\ + 0, 1, or

"1 0 0~|

0 0 0

0 0 0

,

0 1 0
1 0 0
0 0 0

J

0 -a 1
a 0 0

1 0 0
5

i ( -aV
\ y)

i 0 0

(l-y)(p-i^\ 0 0

where 0 < a < 1, /? / 0, y ^ 0 are real constants satisfying f$2y2 < 1 — a2, or

"1 0 0"
0 0 0
0 0 0

5

"0 1 0"
1 0 0
0 0 0

3

"0 -a 1"
a 0 0
1 0 0

5

0 -i i(a + y)

i 0 0

z(a - y) 0 0

where 0 < a < 1 and y are real constants, or

0 -i (ia + )
1 0 0

(ia - y) 0 0

where a and y are real constants satisfying 0 < a < 1 and a2 -f y2 < 1.
2) The family <^4 l5 A2, A3, A4y is non-uniformly real-diagonalizable (neces-

sarily with multiple eigenvalues) if and only if it is equivalent to

"1 0 0"
0 0 0
0 0 0

5

"0 1 0"
1 0 0
0 0 0

J

~0 -a 1"
a 0 0

1 0 0
J
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'I 0 0"
0 0 0
0 0 0

0 1 0"
1 0 1

0 0 0

0 $ -y

/»(!-.) 1 0

0 -i 5 + -^

1 0 i
0 0 0

the real constants a, /?, y and 8 satisfy

or their transposes.

Theorem 8.3. Let (Al9 A2, A3y be a nondegenerate 3x3 matrix family.
Then the following 1) and 2) hold.

1) Suppose that the family <^4 l3 A2, A3y has multiple eigenvalues and is
not equivalent to any hermitian family. Then it is uniformly real-diagonalizable
if and only if it is equivalent to either

"1 0 0"
0 0 0
0 0 0

?

"0 1 0"
1 0 0
0 0 0

5

i r
0 -c + - c + -

c c

c-~ 0 0
c

c + - 0 0
c

w/iere c is an arbitrary complex constant satisfying \c\ ^ 0, 1, or

or its transpose

"1 0 0"

0 0 0

0 0 0

1 0 0
0 0 0
0 0 0

"0 1 0"
1 0 0
0 0 0

0 1 0
1 0 0
0 0 0

or

1 0 0
0 0 0
0 0 0

0 a -i(a-2y)d
a 1 0

i(a-2y')<5 0 -1

0 -i -i
1 0 0
0 0 0

0 -i 0
1 0 0
i 0 0

0 p - iyd y - i
$' + iy'd 0 1
yf + ift'S 1 0

where the real constants a, j8, j3'3 y, y' and d satisfy

i f B 2 \ I f B'2\
a > 0 , y > -a + ̂ - ), y' > -a + ^- , |/? - ff\ + |y - y'| > 0 .

z\ a/ 2\ a /
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2) The family (Al9 A2, A3y is non-uniformly real-diagonalizable (necessarily
having multiple eigenvalues) if and only if (Al9 A2, A3y is equivalent to

"1 0 0"

0 0 0
0 0 0

J

0 1 0"
1 0 1
0 0 0

J

0 -i ci

i 0 c2

0 0 0

where cl5 c2 are arbitrary complex constants, or

"1 0 0~|
0 0 0
0 0 0

5

0 1 0
1 0 1
0 0 0

5

i
0 ft -id -y + ^fid

j8(l - a) + id 1 id
-2a 0 -1

where the real constants a, jS, y and 3 satisfy

0 < a < 1 , 7 >- (ft2 — 4<52),
8

or tfceir transposes.

Theorem 8.4. Let (Al9 A2y be a nondegenerate 3x3 matrix family. Then
the following holds.

1) Suppose that the family (Al9 A2y /zas multiple eigenvalues and is uni-
formly real-diagonalizable. Then (Al9 A2y is equivalent to a hermitian family.

2) The family (Al9 A2y is non-uniformly real-diagonalizable (consequently,
it must have multiple eigenvalues) if and only if (Al9 A2y is equivalent to either

1 0 0
0 0 0

0 0 0

0 1 0"
1 0 1

0 0 0

or its transpose.
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