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Fundamental Solution for a Degenerate
Hyperbolic Operator in Gevrey Classes

By

Kenzo SHINKAI* and Kazuo TANIGUCHI*

Introduction

In [9] Ivrii proved that the Cauchy problem of a degenerate hyperbolic
operator

1) D? — t**D? + at*D,

with [ — 1>k =1 is well-posed in a Gevrey class of order x if and only if
1<k <@ —k/l—k—1) and the Cauchy problem of

) D2 — x2'D? + ax*¥D,

with I'> k' =20 is well-posed in a Gevrey class of order x if and only if
1<k < Q@' —k)/(I'— k). Combining these degeneracy we study, in the pre-
sent paper, second order hyperbolic operators including

3) D} — t*'x*'D? + at*x*D,

as a prototype. Let ¢ be a constant

) o=max((l —k—1)/2l—k), (' =Kk)QI'-Kk)) (<1/2)
and ¢’ be a constant satisfying

&) o<a <l/k, dz(1+0 —-Do)lx—-1+1)

for ¥ such that 2 <k < 1/6. We construct the fundamental solution for the
Cauchy problem and show that it is estimated by Cexp(C,<{&)»"). Then we
can obtain not only the well-posedness of the Cauchy problem but also the
branching properties for the propagation of Gevrey singularities. We note that
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Itoh and Uryu [8] have already proved that (3) is well-posed in a Gevrey class
of order k¥ with 1 <k < 1/o for ¢ defined by (4).
The operator treated in this paper is

©) L =D —'gxf" Y. a,(,x)D,D;,
IJ=

+ () ), at, x)D, +c(t,x)  on [0,T].
j=!

We assume the following:

A-1) I-12k=20,I'2Zk'=21and I'22

(A-2) k=2 and ko <1 with ¢ in (4).

(A-3) The function g(x) belongs to a Gevrey class of order k¥ with a
uniform estimate

@) |Dg(x)| < CM™g!*  for all xeR".

The coefficients q; ;(t, x), a;(t, x) and c(t, x) are analytic in ¢t and of a Gevrey
class of order x in x with a uniform estimate (7).

(A-4) a; ;(t, x) are real-valued and there exists a positive constant C such
that

Y a; .t x)EE 2 CIEF for all (t,x)e [0, T] x R}.
JJ’
Then, we have

Theorem 1. We assume (A—1)—(A—4). Set p=1— (1 — o)/l'. Then, for a
small Ty (£ T) we can construct the fundamental solution E(t,s) for the Cauchy
problem
®) Lu=20 on [s, Ty],

u(s)=0, o,u(s) = uq
with se [0, T,) in the form
©) E(t,s) =) I4,(t, )EL(t, 5) + Eq(t, 5) + E (2, 9) -
e

Here, I; (1, s) are Fourier integral operators with the symbol 1, and E(t, s), j =0,
+, oo, are pseudo-differential operators with symbols e(t, s; x, £) satisfying

(1) lesh s x &) S CMT=*A((a + B + (o + HIoCEyi-9)
x (& exp ({7,
A leo(t 5% &I S CMT= (o + B + (@ + B2,

x (&7 exp (CKE™ — &yt g(x)I"<EY ™),
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for a positive constant &, and the constant ¢’ satisfying (5). Moreover, for any
multi-index o there exists a constant C, such that

(12) leo@(t, 55 x, &) < C,M VIR exp(— e, (EH'™)
for a positive constant g,.

We remark that the condition ¢’ = (1 + (I' — 1)o)/(I't — I' + 1) in (5) and
the analyticity of the coefficients of (6) enable us to construct the fundamental
solution of (8) as a sum of Fourier integral operators with only simple phase
functions as in (9).

Combining this theorem with discussion in [18], we obtain the branching
properties as follows. Let WFg,,(u) be the Gevrey wave front set of a ultra-
distribution u (cf. [7], [23]), and, setting

12
A’i(ta X, é) = itlg(x)ll {Z' aj,j’(ta x)ij&j’} s

let {g*, p*}(,s; x, &) be the solution of

(da= .. dp*
g = ), e = Ras D) (6StST),

k{qi’ pi}|t=s = (y7 ’1)

+

and {G*, p*}(t, s; y, ) be the solution of

qu:: di*
= VA3, e =Vau ) 0SS T),

{35 P =0 = {a7> P7} (0, 55y, 1) .

Theorem 2. Consider a Cauchy problem (8) with s <0. Then we have,
when t > 0, for a solution u(t) of (8)

(13) WF () = L(OUIL@U T (U@ U T,

where
(0 = {(a*(t, s; y, m), p*(t, 53 y, ); (v, 1) € WFg(uto), ] > 1},
T.(6) = {@@*( 53y, 1)y DE( 55 9, 1)) (9, 1) € W (uo)s |1 > 1}

and
Io@®) = {(y, n); (y, 1) € WFg, (o), g(y) = 0} .

This theorem corresponds to the branching property for the C*-case, that
is, for the Cauchy problem of the operator (1) with k =1 — 1 (see [1], [24] and
[18]). We note that the first author gave WFg,,(u(f)) exactly by using the
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exact form of the fundamental solution for the operator (1) with [ — 1>k =0
(see [19], [20]). In(A-2)—(A-3)we assumed x = 2. But, in case | <x <2,
the problem (8) for (6) is always y*-well-posed for any lower order terms and in
this case the propagation of singularities (13) for a solution of (8) is obtained in

[15].

The outline of this paper is as follows. In Seciions 1 and 2 we give
caluculus of pseudo-differential operators and Fourier integral operators. In
Section 3 we introduce symbol classes of pseudo-differential operators and give
lemmas. In Section 4 we reduce the Cauchy problem (8) to the Cauchy prob-
lem of a perfectly diagonalized system and state Theorera 3, which is the version
of Theorem 1 for a hyperbolic system. Sections 5 and 6 are devoted to the
proof of Theorem 3.

§1. Caleulus of Pseudeo-differential Operators

Throughout this section the real numbers p, 6 and x always satisfy 0 <
0<p=ld<l,k(l—90)=1,kp=1and k> 1.

Definition 1.1. i) Let w(f) be a positive and non-decreasing function in
[1, o) or a function of the type 8™ for a real m. We say that a symbol p(x, &)
belongs to a class S, 5 6. [W] if p(x, &) satisfies

(1.1 PG (x, &) £ CMTHPl(q* 4 g1ep()A=PN)
X (B + BIE ) B ((E)

for all x and &, where p§) = df(—id,)’p. (cf. [14], [10]). We say that inf
{C of (1.1)} is a formal norm of p(x, £) and denote it by |p; M.

ii) Let w(@) be the same as above. We say that a symbol p(x, £) belongs
to a class SWF; 5 gu[W] if p(x, &) belongs to a class S, ; g,)[W] and there exists
a formal sum ) p;(x, &) of symbols p;(x, &) satisfying

(1.2) P& (x, &) < CM~UI+B+y)
X ((IBI+ D) + (IB] + a7 PD)
x KEHTMW(E)  for ¢z

with a constant ¢ (= 1) and

N—-1
(1.3) 1680k (p(x, &) — Y. pj(x, &) S CM U+ lEi+Myy
j=0

X (1B + N)I* + (|B] + N)I<0=9g381+N)
x (T NwKEY)  for (&) 2 c(lal + N)F
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for any N. In this case we say that the formal sum ) p;(x, &) is the formal
symbol associated with p(x, £). As in i) we say that inf{C of (1.1)-(1.3)} is a
formal norm of p(x, &) and denote it by |p; M]||.

iii) We say that a symbol p(x, &) (€ S™®) belongs to a class %, if for any
o there exists a constant C, such that

(1.4) P (x, Ol = CM PRI exp(—e{EHM™)

hold with a positive constant ¢ independent of o and . We call a symbol in
R a regularizer. We also denote inf{C, of (1.4); || < k} by |p; M|, and call
it a formal semi-norm of p(x, &).

Remark 1. 1In the following we call a function w(@8) in i)—ii) of Definition
1.1 an order function.

Remark 2. When w(0) = 0™ for a real m we denote S, ; . [w] and
SWF| 5,600[W] bY 875,600 and SWFT5 G-

Remark 3. When w(f) = exp(C8°) for a ¢ > 0, the classes S, ; 6., [w] and
SWF, 5 64)[W] are symbol classes of exponential type, and these correspond to
the classes investigated in [25] and [2].

Remark 4. Formal symbols are investigated in [25] and [16].

Proposition 1.2. Let wi(0), j =1, 2, be order functions such that
(1.5) wi(0) < Cexp (e0')  for any £>0 (j=1, 2)

and let P; = p(X, D,) be pseudo-differential operators with symbols in S, 5 Guo[Ww;].
Then, choosing an order function w(0) satisfying w(0) = w,(20)w,(0) there exist
symbols q(x, &) in S, 5 u[W] and r(x, ) in Rg, such that the product P, P, can
be written in the form

(1.6) PP, =q(X,D,)+ r(X,D,).

Remark. In the above proposition we say that the symbol g(x, &) is a
main symbol of P, P, and denote it by o,,(P; P,).

Proof. Write the symbol o(P, P,) as

(1.7) o(P P)(x, &) = Os'Jf e ' Mp (x, & + n)py(x + y, E)dxdn

B Os-jw[ e_iy."(th)”+1p1(x5 é + I’I)pz(x + Vs é)dyd" 9

where dy=@2n)™"dn and L,' is the transposed operator of L, =
(1 + <&+ mPyIP) M1 + iK€ + n)*°y-V,). Denote x(¢) a function in y*® satis-
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fying
(1.8) 0sys1, =1 (&5, x=0 (&z=1/2)
and divide (1.7) as

a(PPy)(x, &) = q(x, &) + r(x, §),

q(x, &) = 0,- | | €LY py(x, €+ mx(m/<EY)
X py(x + y, E)dydy ,

rr

r(x, &) = Oy | | € (LY py(x, &+ m(1 — x(n/<E))

LVRY,

X py(x + y, &)dydn .

Then, it is easy to prove g € S, 5 goy[W]. Next, we write r(x, &) as
0= f f eV LYo(Ly Yy (x, & + 1)
Inlsé

x (1 = x(/<KEN))pa(x + y, E)dydn

s

+

fj e—iyw(zt)lo(Ll')""’l {p10x, &)1 — x(m/<E))
1 EN* < [n| SEN+1)*

N

X (—iln|™2n -V, pa(x + y, &)} dydn ,

where L = (1 + (&Y?|n2)™ (1 — (&)*4,) and I, = [#/2(1 — 6))] + 1. Then,

using (1.5) we obtain r € Zg,, if we take ¢ sufficiently large.

Remark. In (1.7) the integral is an oscillatory integral, which can be

defined as in Section 6 of Chap. 1 in [12].

In order to investigate the product of pseudo-differential operators in

SWF| 5.649[W] we prepare

Lemma 1.3. Let w(0) be an order function and let ) pix, £) be a formal
symbol satisfying (1.2) with a constant ¢ (= 1). Then, there exists a symbol

p(x, &) in SWF, ; guo[w] such that we have (1.3) for any N.

Proof. We follow [6]. Let {y;(£)} be a sequence of functions satisfying

for a parameter R
Y =1 if <O2R" Y)=0 if & =Rj2,
10"y (&)] < CMHPRIBICEY™ 0 for o] < 2.

Here, constants C and M, are independent of j and R. Define
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p(x, &) = i pi(x, EWLE) A — 2(E/3)

for a fixed large constant R and a function y(&) in y® satisfying (1.8). Then, as
in [6] we can prove

(1.9 IPE(x, &) < CM™Plal (B + B =AW Hw((ED)
for <& = Rlal*

and (1.3). So, by (1.9) an inequality (1.1) holds for p{} when <) = R|a|* and it
remains to prove (1.1) for (&) < R|a|* in order to prove p(x, &) € Sy 5 6wl
Note

J S (/R < 2Y|a]  on supp Y

when (&> < R|a|*. Then, we can write p(x, £) in the form

P68 = 3, pie WO — £(E/BO)  for <& Rlal

and obtain the estimate (1.1) for p@(x, &) in (&) < R|a|*. This proves the
lemma. Q.E.D.

Proposition 1.4. Let pj(x, {) be symbols in SWF, s ulw;] (j = 1, 2) with
wi(0) satisfying (1.5). Then, taking an order function w(0) satisfying w(0) =
wy(0)w,(0), there exist symbols q(x, &) in SWF, ;5 gu[w] and r(x, &) in Rg, such
that (1.6) holds and we have for any N

1
(1.10)  [9¢DE(a(x, &) — X V—!P?’(x, P2 (%, )

I7I<N
< CM—(|a+p|+N)a!((|m + N)!x + (|/3| + N)!x(1-6)<é>6(lﬁl+N))
x CETVTEWEEY)  for €] Z c(lal + N)<.

Proof. Let ) p; i(x,¢) and ) p, {(x, &) be formal symbols associated to
p1(x, &) and p,(x, &), respectively. Define

1
qj(xn &)= Z “,P(ly,)j'(x, 5)P2,j"(y)(X, ).
FHIF=i Y
Then, gj(x, ) satisfies (1.2) for an order function w(f) satisfying w(0) =
w;(0)w,(0). Hence, from Lemma 1.3 there exists a symbol g¢(x, &) in
SWF, 5 6u[w] with a formal symbol qu(x, &) and q(x, &) satisfies (1.10). Now,
define

(L1 r(x, &) = Os-ff e ?py(x, & + mpy(x + v, E)dydn — q(x, &) .
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Then the equality (1.6) holds. To prove r € Z¢, we write r(x, {) as

r(x, &) = {OS- f J eV p (x, &+ mam/<ED)pa(x + v, E)dydn — q(x, é)}

+ Os-ff e py(x, & + m) (1 — x(m/<EX)p2(x + y, E)dydn

= rl(x’ é) + r2(x= é) .
Then, as in the proof of Proposition 1.2 it easily follows r, € £, For the

proof of r; € R, We fix a multi-index « and write r{?(x, £) as

(112) r{(x, &) = ¢ {I ;N %p?’(x, E)P2y(x, &) — q(x, é)}

+ 3 Y %65{}1(1—0)'“ {03- He
PI<N y'T=1 V* 0

x pPCx, &+ mx P m/<ENET

X p2(y+y')(x + Oy’ 5)dyd’1} dg}
1
TN {’11[ (=6 {OS'f j e pP(x, & + 1)
l7I=N Y Jo

< 2(/<ENP2i(x + 0, f)dydn} dﬂ}

(cf. (6.16) of [22]).

Then, for a small constant ¢ > 0 we can prove from (1.10) that, an inequality
(1.13) I @ e, O < C(BY + BrU=AEM) exp (—edEH)

holds for ¢ satisfying C;(N + |a|) S E> S C(N+ 1+ |a]) (N =0,1,...) if we
take a constant C, large enough. Since r,{)(x, &) satisfies (1.13) for {¢) =C, |a[*
from (1.11), we have proved that r,(x, £) belongs to %) Q.E.D.

Remark. 1In the second term in the right hand side of (1.12) only the terms
with |y’| = 1 appear, and this enables us to obtain (1.13) from (1.12).

Now, we turn to the multi-product of pseudo-differential operators.
Propesition 1.5. Let pi(x,$)€ S, ;60w j=1, 2, ..., and satisfy (1.1)

with constant C and M independent of j. Assume that for any v

(1.14) [T wi0) < W,,exp(0')  for any ¢>0.
Jj=1
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Then, the multi-product Q,., = PP, ... P,.; of pseudo-differential operators
P, = pi(X, D,) has the form

(115) Qv+1 = qv+1(Xa Dx) + rv+1(X5 Dx)

and qv+1(xa 5) and Ty+1 (xs é) Satisfy
(1.16) 4y418)(x, &) < AC*FIMTIHPl(Ix 4 qlred gyi-plld)
X (BI* + BIC=OENINCENTNG, , (KED)

v+1

with an order function W, (0) satisfying W,,,(0) = [] w;(26) and
Jj=1

(1.17) 141 0x, O < AC*TC, Wy y (MY 11
X (ﬂpc + B!K(l—é)<£>&|ﬁl) cxp(_8<£>1/x)

for a positive constant . Here,
- v+1
VVv+1,s = Sup{(ﬂ W(G)) exp( 01/")}3
] Jj=1

and A and M, are constants determined only by the dimension n and M and the
constants C, are determined only by n and a. All the constants A, M, and C, are
independent of v.

Proof. For jwith 1 < j <v we write
pj(x, & x') = (LYW py(x, &),

with L = (1 + {&)*|x — x'|?)"%(1 — {&)*°4,). Then, the symbol ¢(Q,.,) of the
multi-product @,,, is written as

0(Qy4y) = OS-H eV ﬂl pj(x + ¥y &+l x + )
|

X pyr(x + y% Odyrdi®  (° =0),
where

\4

(1.18) Y= Z yiewmi =0 0" =0)

and djdij® = dy'...dy’dn*...dn*. Take an order function w),,(f) satisfying
v+1
wy41(0) 2 H w;(0). Then, the product H pi(x7, &4 X )py g (x7, &) (x° = x)
satisfies (1 20) below with w,.,(0) replaced by w,..(0). Hence, the proof of
Proposition 1.5 is reduced to the following lemma.
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Lemma 1.6. Let w,.(0) be an order function satisfying
(1.19) Wyi1(0) £ Wiy exp (e0Y%)  for any e>0

and let p,,q(x, &%, %7, E771) = B, (x, &L, x1, &%, ..., x", &**1) be a multiple symbol
satisfying

(1.20) |05 0% ... 08 0808 -+ 08 By (x, &Y, %Y, £V
N~ Vvt+1
< CM—(li"”IHﬂIHﬂ"I) H (“j!x + aj!kp<§j>(1—p)(a’l)
i=1

X (I + prea=ogtyolr

x [T (B0 + BI0-0(CEly + eIty )
j=1

x T (1 + eIt — xi)) o
j=1

X

~—

v+1 . . .

}_El <éj>—'all} Wv+1 (max <§1>) (xO = x) )

Jj= J

where |81 = |al| + -+ + |a**Y for @ =(al, ..., 0"") and |B¥| = |Bt| + - +

|B°| for B*=(B,..., B").
Then, the simplified symbol p,.,(x, &) defined by

Py (x, &) = Os-ffe‘iwﬁv+1(x, E+nlx+ L., E+ 0, x4y, E)dydi”

with W in (1.18) can be written in the form

pv+1(x9 é) = qv+l(x’ 6) + rv+1(xa é)

and q,.,(x, &) and r,.,(x, &) have the same estimates (1.16)—(1.17) in Proposition
1.5 with w,,.,(0) = w,,,(260) and

(1.21) Wys1,. = sup {4 (6) exp (—e6"")} .
[}

Proof. Following [10] we write
pv+l(x5 5) = qv+1(x’ é) + rv+1(x’ é) 5
gy (x, &) = OS-ffe"“’ Ul x7/<E)

X ﬁv+1(x’£+”1:x+y1,"-’6+ ”v’x_{_yv’ é)dyvdﬁv’
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s (% €) = Opr j f e‘“’(l - H1 x(nf’/<é>)>

X Prer (6 E+ L x + ¥ L E 0t x + Y, E)dPdi” .
Setting  Qo(j) = {(n%, ..., n"); 0’|l = max |n/|>2L&/5, In?I<In’] (j' <))
1<j'Sv

Il <c} and  Qu(j)={("....n"% I11j|=1max In7| > 2<&/5,  In"] <In’|

Sj'sSv
(j' < i) eN* Z 9’| £ c(N + 1)} (N = 1), we rewrite r,,;(x, £) as
o! v A v .
rv+1<‘§§(x, $) = Z —,‘,T‘Os'Jj‘e l/'ag <1 - H X(”IJ/<§>)>
wtar=q o't =1
X ag"Dgﬁv+1(x’ é + 1115 X + yla (RS ] é + ﬂv’ x + yv, é)dﬁvdﬁv
LA o! —iyAa’ - j'
35 s ([ ewar(i- [ o)
j=1 N=0 a’'+a”"=a O -0C": R, X 2n0) j'=1
x {—iln?|7207 - 0y + - + 0p)} Y07 DEP, 11 (%,
Etqgl,x+yh L 8+, x + %, E)dydi® .

Then, we have (1.16) and (1.17) by taking a constant ¢ large enough and using
Proposition 1.7 of [21] and the fact that an inequality

Wyt (maX &+ 'Ij'>> Swo Bln) £ W, 11,: €XP (3%%¢|n))
P

holds in U Qu(j) from (1.21). Q.E.D.
N

Propesition 1.7. Let p,e SWF, 5600wl 1=1, 2, ..., with {w(0)} satisfy-
ing (1.14) and let M be a constant independent of |. Assume that the formal norms
pi; Ml of pi(x, &) are independent of I. Then, there exists an order function
W, 4+1(0) such that

v+1

(1.22) W,+1(0) 2 [T wi(6)

and the symbols o(Q,+,) of multi-products Q,,, can be written in the form (1.15)
with the symbols q,.,(x, £) belonging to SWF, ;5 [ W,+,] and symbols r,,,(x, &)
satisfying (1.17). Moreover, there exist formal symbols Xq,., i(x, &) associated
with q,.,(x, ) such that

(1.23) |Gyer B0k, £)]  AYCY M (atBI iy
X ((1B1 4+ )+ (1] + r=e-agyaah)
x (T, (&) for Kz
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and

N-1
(1.24) ozD; (qvﬂ(x, Q) — Zo Qv+, (% «f))l

é Avcv+1M—(Ia+ﬁ|+N)a!
X (1B + NI + (1B] + N -0¢g)0e1+0)
x (TN, (KEY)  for &l = c(lal + N
Proof. Define sequences {q, ;}j-o,1,2,... inductively by

ql,j(xa é) = pl,j(xa 6) 9

(1.25) ]
qv+1,j(x> 6) = z . qua?;’(x> é)pv+1,j”(7)(X, 6) s

W+ Fir=i V!

where 2p, j(x,£) are formal symbols associated with p,(x, ). Then by the
induction on v we can prove

|Gy+1, 5%, )] < ACH My TR0 + 1B
X (1B + JY 1+ (1B] + =971 er
x (&I, (KE)  for ¢z c.

Hence, applying Lemma 1.3 we can find symbols g,,,(x, &) satisfying (1.16) and
(1.23)—(1.24). Now, write the multi-products Q,., as

(1.26) Q1 =PP,...P,,,
= ¢,+1(X, D,)
+ {a,(X, Dx)P,sy — 4y11(X, D,)}
+ {4y-1(X, D,)P, — q,(X, D,)} P,

+ {42(X, D,)Py — q5(X, D,)} Py... P,y
+ {ql(X, Dx)Pz - qz(X, Dx)}P:;...Pv_H .

Then, it follows from (1.23)—(1.24) that the terms except the first term in the
last member of (1.26) satisfy (1.17). This completes the proof. Q.E.D.

Combining Proposition 1.5 and Proposition 1.7 with discussion in Section
5 of [22] we obtain

Propesition 1.8, Let py(x, {) € S, 5,640[Wi] (resp. SWF, 5 6u[wi]) with a se-
quence {w,} of order functions w(0) satisfying (1.14) and let {1’} be a sequence
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of regularizers in R, Assume that for an M the norms |p;; M| of py(x, ) and
the formal semi-norms |rd; M|, of r(x, &) are independent of 1. Then, the
multi-product

Qvi1 = (Py + R)(P, + RY)...(Poss + RV,y)

of P+ R =p(X,D,)+r)(X,D,) can be written in the form (1.15) and the
symbol q,.,(x, &) belongs to S, ; o[ Wy+1] (resp. SWF 5 6u[W,+11) and satisfies
(1.16) (resp. (1.16) and has a formal symbol 2q,., j(x, &) satisfying (1.23)—(1.24)),
and r, ., (x, &) satisfies (1.17). Here, W,,,(0) is an order function satisfying (1.22).

Finnally we give a result on Neumann series.

Proposition 1.9. Let p(x, &) € SWF? 5 g and assume that its formal norm is

sufficiently small. Then, the inverse operator of I — P is represented as ) P’
v=0
and there exist symbols q(x, &) in SWFY ; o and r(x, &) in Rgq, such that

S P'=q(X,D)+r(X,D,) (=(—P)").
v=0

Proof. For a (v + 1)-th power P**! of P we apply Proposition 1.7. Then,
P**! is written as

Pv+1 = qv+1(X9 Dx) + rv+1(X’ Dx)

and gq,.,(x, &) and r,,,(x, &) satisfy (1.16)—(1.17) with Ww,,,(#) =1 and W,,, = 1
and for the formal symbols Xq,., j(x, {) we have (1.23)-(1.24). Now, assuming
Alp; M|| <1 for the formal norm |p; M| of p(x, £) we define

a5 ) =1+ p(x O+ 3, (5 9.
B0 O =1+ 5059+ 3, duol.9).

PEI=pEI+ 3 a0 (2D

and
58 = 3, nix 0.

where 2pj(x, £) is a formal symbol associated with p(x, £). Then, g(x, ) and
r(x, &) are desired symbols and Xg(x, £) is a formal symbol associated with
q(x, &). Q.E.D.
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§2. Calculus of Fourier Integral Operators

Following [22] we introduce

Definition 2.1. Let 0 <t < 1. We say that a phase function ¢(x, &)
belongs to a class (1) if ¢(x, &) belongs to a class Z(7) defined in [13] and
for J(x, &) = ¢(x, £) — x- & the estimate

0, O S TM D1 BIy( gy
holds for a constant M independent of « and f. We also set

Wc(x) = qu ‘@G(x)(r)'

For ¢(x,&) in %, and a symbol p(x, &) in S, ; g.[w] we denote by
P, = p4(X, D,) a Fourier integral operator with the phase function ¢(x, £) and
the symbol p(x, £) and especially we denote by I, the Fourier integral operator
with the symbol 1. Moreover, we denote by I,- the conjugate Fourier integral
operator with the phase function @(x, £) and the symbol 1.

In [22] we have proved

Lemma 2.2 (Proposition 2.5 in [22]). Let ¢;(x, &) belong to Z(t;), j =1,
2. Assume T, + 1T, is small enough. Then, there exist symbols p(x, £) in S?,O,G(K,
and r(x, &) in Ag such that

I¢1I¢2=P¢+R.

Here, &(x, &) is the #-product ¢, # ¢, of ¢,(x, &) and @,(x, &), which is
defined by

Q(x: f) = ¢1(xa E) - X-E+ ¢2(Xs é)
with the solution {X, Z}(x, &) of

{X = V§¢1(x, Z),
E = Vx¢2(X5 6) .

Lemma 2.3 (Corolary 2.8 of [22] and Proposition 2.2 of [21]). Let g€
P540(t) and assume that t is small enough. Then, there exist symbols p(x, ¢)
in 8% 0,609 and r(x, &) in Rg such that

For p = 1/2 we denote S, goy[Ww] = S, 1-,.669[w]. The aim of this section
is to prove the following proposition.

Proposition 2.4. Let ¢;, j=1, 2, be phase functions in P (t;) and let
p(x, &) be a symbol in S, ., [W] with p = 1/2 and an order function w(0) satis-
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fying
2.1 w() < C.exp(e6*)  for any £>0.

Then, there exists a constant t° such that if ©, + 1, < 1° we can find symbols
q(x, &) in S, Gu[W] for w(6) = w(cO) with a constant ¢ (2 1) and r(x, &) in R,
such that

I¢1PI¢2 = I¢.Q + R N
where @ = ¢; # ¢,.

For the proof we prepare two lemmas. Then, combining Proposition 1.2,
Lemma 2.2 and Lemma 2.3 we can obtain Proposition 2.4 by regarding discus-
sion in §2 of [21] (cf. Lemma 2.10).

Lemma 2.5. Let p(x, &) € S, oo[w] with p = 1/2 and with an order function
w(0) satisfying (2.1), and let ¢(x, &) € %) Then, there exist symbols q(x, &) in
S, 6u[W] with W(0) = w(20) and r(x, {) in R, such that we have

PI,=Q,+R.
Moreover, for any N there exists a symbol qy(x, &) satisfying (EX?P"VNqy(x, &) €
S, .cu[W]l with w(0) = w(20) such that
1 .

(22) q(xs 6) = | [ZN WD;'(p(y)(xa Vx¢(xa x,; é)))lx’=x + qN(xs 5) >

HRANE

1
where V (x, x'; &) = J V. d(x' + 0(x — x'), £)d0).

0

Proof (cf. Proposition 2.2 of [22]). From the proof of Theorem 2.2-1) in
Chap. 10 of [12], the symbol of PI; is written as

3 7Pl = OS'J J e p(x, 7 (x, x + y; &) + n)dydn .
Using y in y™® satisfying (1.8) we divide (2.3) as

a8 = Os'_[ f e, P, x + i &) + mn/<E>)dvdn

rx, &) = OS-“ e Mp(x, Vep(x, x + y; &) + m(1 — x(n/<E)))dydn .

Then, the symbols g(x, £) and r(x, £) are desired symbols when we use (2.1)
to prove r(x, {) € Ry For the proof of (2.2) we use the Taylor expansion
for q(x, £). Then, we have
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1 ~ - N [! _
Q(x’ é) = Z __'D;I(p(”(xa Vx¢(x5 x + Y5 é)))‘y=0 + Z, _?' Jﬁ (1 - H)N 1
lyI<N }: =N Y- Jo

yI<

X {Os-ff e™ 1Y DY p(x, Vop(x, x + y, &) + On)

x x(on/<¢>)}dydn} a6

and get (2.2). Q.E.D.

Remark. In the above lemma Q4 is a Fourier integral operator with
infinite order if w(f) is an exponential function. We note that Fourier integral
operators with infinite order are also considered in [5].

Lemma 2.6. Let p(x, &) €S, gu[w] with p = 1/2 and w(0) satisfying (2.1),
and let ¢(x, &) € Fyy. Then, there exist symbols q(x, &) in S, ., [W] with w(0) =
w(20) and r(x, &) in R, Such that we have

Proof. From the proof of Theorem 1.7 in Chap. 10 of [12] we have

o(l4+P4) = Os-ff e Vg (& +n,x + y, E)dydn
for

0 =
q’(ia xl9 6,) = {p(za él)ldetaV§¢(Z9 fa 5,)|_1}|z=l75¢‘1(x’;§,§’) 9

1

where 7§¢(x’; £ &)= J Ved(x', &' + 0(E + £'))d0, and z = £7§¢‘1(x’; ¢, &) is the

0
inverse function of x’ = V;é(z; &, &’). Now, we write

q(x, &) = O;- f f eVg (& + 1, x + p, O)x(n/<E)dydn

r(x, &) = OS-ff eV g (& + 1, x + y, &)1 — x(/<EY))dydn ,

with x € y* satisfying (1.8). Then, using Lemma 4.2-ii) in [22] we obtain the
lemma. Q.E.D.

§3. Preliminary

First, we introduce symbol classes which we use in the following sections.
Let p(f, x, &) be a symbol with a parameter f. In order to simplify the notation
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below, we also denote by S, 5 go[W] a class of symbols p(Z, x, £) satisfying the
following: p(t, x, &) is a continuous function in (f, x, £) with all continuous
derivatives with respect to x and ¢&; belongs to S, ; g.[W] for any fixed i and
for an M independent of f{ the formal norm |p(f -, -); M| is bounded in
i. Similarly we use SWF, ; gu[w] and %, for classes of symbols p(Z, x, £)
depending on a parameter ¢ and p(f, x, &) belong to the corresponding symbol
classes.
Let { be a parameter not less than 1 and denote

{u(x, & L) = (g(x)* (&Y + ()12,
ht,x, & 0) =t + {“ulx, & 077,

where I’ is an integer in (A-1), g(x) is in (A-3), o is defined by (4) and
o =1/1+1). In what follows, § is always equal to (1 — ¢)/I'. Following [17]
we introduce

(3.1)

Definition 3.1. i) Let p(t, x, ;) be a symbol with a parameter ¢t and
{. For real numbers m, m’, m" and p with § < p <1 we say that p(t, x, &; ()
belongs to a class S‘p,‘,,G(K,[m, m',m"] if p(t, x, & O)/{u(x, & O™h(t, x, & O™} be-
longs to S}'5 64 and its formal norm

lps M [m, m', m"1ll = lIp(t, -, -5 O{uC, 5 O, -, 5 O™} M|

is independent of ¢t and {. Moreover, we say that a symbol p(t, x, &;{) in
§p,5,G(K)[m, m',m"] belongs to a class S, ; g.[m, m',m"] if p(t, x, & () is also
infinitely differentiable with respect to t; 87p(t, x, &; {) belongs to §‘,,5,G(K)[m, m,
m” — ] for any y and there exist constants C and M independent of y such that

o p(, -, 5 O M [m,m',m" —y]| < CM™™y!.
i) Let p(t, x, 5;04’) be a symbol in S, ; g [m, m', m"]. We say that p(t, x, &; {)
belongs to a class S; 5 gulm, m', m"] if p(t, x, &; () satisfies in addition
107 Pt x, & D)l < CM 1Py
x (BY* + BT, & O
X ht,x, & O™ for |E|=c

for a constant ¢ > 0.

iii) Let p(t, x, £; () be a symbol in S, ; golm, m, m"]. We say that a
symbol p(t, x, &; () belongs to a class SWF, 5 gu[m, m', m"] if (0]p(t, x, &;
O)/{ulx, &; O™ h(t, x, &; )™ 77} belongs to SWFT' 5 4 and for a formal symbol
Y pit, x, &; 0, p(t, x, &; {) has uniform estimates similar to(1.2)—(1.3) with respect
to t and (.
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Remark 1. For the symbols u(x, &; () and h(t, x, & () in (3.1) we have
l"'(xa €a C) € Sl,&,G(k)[Oa 1’ O] and h(t9 X, és C) € SI,J,G(K)[Oa Oa 1]

Remark 2. For every p(t, x, &, () e Sol,,,,,;(x)[m, m', m"] we set po(t, x, & () =
p(t, x, & ¢) and pi(t, x, & {) =0 for j = 1. Then, ij(t, x, ;) is a formal sym-
bol associated with p(t, x, &; {). So, we can regard symbols in Sul, s,6ooLm, M, m"]
as symbols in SWF, ; gulm, m', m"].

For a symbol class of Hermite operators we introduce

Definition 3.2 (cf. [3]). Let m and m' be real numbers. We say that a
symbol p(t, x, £) belongs to a class 3] ; gulm, m'] if p(t, x, &) satisfies

1D, x, &)] £ CM™I=+Plgtx(B1e 4 BI<=A(£MIA)
X {E™ux, &)™ exp(—et' ulx, £))
for a positive constant g where u(x, &) = (g(x)*" (&)1 + )2 (= u(x, &; 1).

Remark. In [17] we assumed an estimate for derivatives of symbols
p(t, x, ) of Hermite operators with respect to ¢t. But, in the following we do
not need estimates for derivatives of p(z, x, £) with respect to t.

Lemma 3.3. Let h(t,x,&;() be a symbol in (3.1). Then, there exists a
{, such that for (= {, the operator h(t,X,D.;{) has an inverse operator
h(t, X, D_; {)' and it has the form
(32) h(t, X, D; ()™ = p(t, X, D,; {) + r(t, X, D,; ()
with symbol p(t, x, &; () in SWF, ; 40,0, —1] and r(t, x, &; {) in Rg(-
Proof. Set py(t,x, &) = hit, x, & 0)7 (€ 81,5,600[0, 0, —11).  Then, by

Proposition 1.4 there exist symbols p,(t, x, &; () in SWF, 5 w6 — 1, —1/I',0]
and ri(t, x, &) in g such that

pl(ta X3 Dx; C)h(ts X’ Dx; C) =1 + Pz(t, X, Dx; C) + rl(ts Xs Dx; C)

holds for (7'r(t, x, &;{) is bounded in R Comsider p,(t, x, ¢ () is the
symbol in SWF, ; 6.[0,0,0]. Then its formal norm is estimated by

Ipatt, -, 5 O < €.

So, from Proposition 1.9 and discussion in Section 5 of [22], there exists an
inverse operator of I + p,(t, X, D,; () + r,(t, X, D,; {) with the form

(I + pZ(ts X’ Dx’ C) + rl(t’ Xa Dxa C))—l = pS(ta X7 st C) + r2(t’ X: st C)

for ps(t, x, &; () € SWF, 5,640[0, 0, 0] and r,(t, x, &; {) € Ao if { 2 {; for a large
{i. Set

H-l = (I + Pz(t, X7 st C) + rl(t, X9 Dxa C))_lpl(t3 Xa Dxa C) -
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Then, H™! is a left inverse operator of h(t, X, D,;{) and it has the form
(3.2). It easily follows that H™! is also a right inverse operator and this
concludes the proof. Q.ED.

For y(¢) in »® with (1.8) we define

12
(3.3) Aolt, x, &) = <Z a;, (8, X)&;&; (1 — (&) + x(€/3)> .

Then, the (modified) characteristic roots of L in (6) are
(34) Ai(t: X, 6) = it’g(x)llio(t, X, é) .

Lemma 3.4. Let ¢.(t, s; x, £) be phase functions corresponding to A.(t, x, ).
Then, ¢.(t, s; x, &) belong to P, (clt —s|) for a constant c, and . (t,s;x,&)—x"&
belong to S{ , gu and satisfy

(35) ¢:t(ts 85 X, f) - X é = ig(x)l, Jr 07‘0(95 X, Vx¢i(es S5 X, 6))d0 .
This lemma follows from Proposition 3.1 in [22] and Proposition 3.1 in
[15].
Lemma 3.5. Define
3.6)  Ax, &) = {f' + {Mux, & )7 exp (— ™ u(x, & 0/0)}
x {g(x)" Ao(t, x, &) + <& exp (—ulx, & 0)/0)}
with Ao(t, x, &) of (3.3). Then, i(t, x, & () belongs to Sol‘t,,G(,c)[o, 1,1] and

(3.7 1A(t, x, & O] 2 Ch(t, x, & O p(x, & OKEY
holds with a positive constant C independent of (. For any fixed { we have
(38) Z(t, X, é: C) - t’g(x)l'lo(ta X, é) € ‘%ol,b,G(x)[o" CO] .

Proof. Set I, =t'+{®u(x, &) exp (—t" 1 u(x, &0)/0) and I, =
g(x) Ao(t, x, &) + iL<EY exp (—p(x, & {)/).  Then, writing u(x, &;() simply by
u, we have

Lzt 227t + (o)
when t = {“u™® and
Lz eYe ' z27e e+ (on )
when t < {“u™®, since we have 0 <t < T. Similarly, we have
L1 2 (19(x) Ao (2, x, &) + L€Y" exp (—u/0))/2
= Cul(x, & 0)<E)7.
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Combining these results we have (3.7). For the proof of (3.8) we write
e, x, & ) — £'g(x) 2o(t, x, &)
= exp (=" ulx, & 0)/0)
x g(x)" Ao(t, x, &) + iL<EY” exp (—plx, & 0)/0)}
+it'{<EX exp (—ulx, & 0)/0) -

Then, we get (3.8) since we have [¢/{<{>7exp(—ulx, &; /01 = CLEHulx, &) x
exp (—et'™ ! u(x, £)) with constants C and ¢ depending on (. Q.E.D.

Let {Ai(t, x, &)}, be a sequence of Ai(t,x, &) = A,(4,x, &) or At x, &) =
A_(t, x, &), and let ¢;(t, s) = @i(t, s; x, &) be the phase function corresponding to
Ai(t, x, £).  Then, using Proposition 2.4 in [21], the equation
{ j=g7§¢]( l,tJ’XJ 1 '“v ,

V¢]+l(t]5 t]+1a X\Jn :\{-H)s J= ls ey V

XP=x, 5" =&ty =1t, b, =)

(3.9)

has a solution {X{, Z}., ={X}, 5]}, 8% &) for =(y,....t)
satisfying

(3.10) 0

lIA
lIA

sS=t

IIA

=4 St=T

v

if Ty is sufficiently small. Hence, a multi-#-product @, , ,=®, +1(t £, 5%, &) =

(¢1(t5 tl) # ¢2(t17 tZ) #o# ¢v+1(tv» s))(x, é) Of ¢j(t -1 p X, é)a ] - 1 >V + 19 iS
defined by

(3.11) D,y = Y (G0, t; Xi71 ED) — XI- E)) + 4,41 (t, 53 X3, )
=
X7 =x).

Lemma 3.6. Let {XJ, Zi}_, = {X{, B]})_,(t, 1", 5; x, £) be a solution of (3.9).
Then, if T, is small enough, we can find a positive constant C such that
(.12 CHg) S lgXDI = Clgx)l  (G=1...,V)
hold for t¥ satisfying (3.10).

Proof. From (3.9) and (3.5) we have

M-

(3.13) X —x= (X’"—X'” )

Il
—-

m

Ms..

(V.§¢m(tm -1 m’ in 1’ E\:n _X:n_l)

1
-

m

gy f 0'7 (A (0, X, V' (6, L X3, EV)))O

Im

M-

1

3
[
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where A5(t, x, &) = +Ao(t, x, &) when A,(t, x, &) = +t'g(x)" Ao, x, &). Hence,
setting

G=max {|g(x)], lg&X) (=1,....,v}

we have

Hg(X3) —1g()l1 = [g(Xd) — g(x)| < CIX] — x|

J
é C Zl |g(X:n)|(tm—1 - tm)

<CTG.

Consequently, if T; satisfies C'T; < 1/3 we have

G=lg)I =26  (j=0,...,v)

N[ —

and (3.12). Q.ED.

Lemma 3.7. Assume o' satisfies (5). Then, for any positive constant ¢
there exists a constant M = M, such that the multi-#-product ®,,, of (3.11)
satisfies

(3.14) |6¢02 exp [Py — x- )]
< CM ™ Pl B gy exp [et™ u(x, &) + <&)7']
for (t, 1%, s) satisfying (3.10), where T, is the constant in Lemma 3.6.

Remark. We note that we can take the o’ satisfying (5) since we have
A+ —Do)/l'k—1"+1)<1/k by I'22 and k = 2.
Proof. Set
j;+1 = ~v+1(t9 Eva §5 X, 5) = ¢v+1(t: Ev’ S5 X, é) - x.é .

Then, from (1.25) in [13], (3.13) and (3.5) it follows that

V§'7v+1 = Veyia(ty, 55 X7, &) — x

= (V§¢v+1(tv5 S5 X\‘:s é) - X“:) + (X\‘JJ - x)

v+1

tm-1
= mz,l gy j; 0"V (Am(0, X, V. (0, t,i; X771, EV1)))dO

m

and similarly it follows that

- v+1 X Im-1
l7va+1 = 2 Vx(g(X;n-l)l j 01/131(09 X, Vx¢m(05 tm; X"r"—19 E\tn))do) .
m=1

tm
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Hence, using (2.12) in [22] and Lemma 3.6 we have for a + § #0

315 aaaﬂj < v+1 a!ﬁ!
(. ) | & Ux v+1l=mzlza'!al!,,.dj!ﬂ,!ﬁ1!-

FrIC
.o j'

X

Jj'=1

j tm—y
{ﬁ agf‘aff'g(x;"-l)} f 6'0% 08 70,40
tm

S M max {(Ja + Bl — 1)!
15jgle+pl
x (a4 Bl — Ay ey
where the second summation in the second member of (3.15) is taken over all
(jso'yay,..s 0, B, By,..., 8) such that 0Zj</V, o' + oy + - +oy=a p +
Bi+--+p=p and oy + B #0 (j'=1,...,j). Now, we set

Jott,a8 = CXP(—iJm)aE’@f exp (iJ,41) -
and use the induction on |« + f|. Then, since we have for (a, f) #0
Jv+1,u,ﬂ = ag”an’IJv‘l-l,a—u”,ﬂ—ﬂ" + iJv+1,a—a”,ﬁ—ﬂ"ag”af”‘lv+1

with some (a”, f”) satisfying «” <o, f” < f and |a” + 8’| =1, we can prove
from (3.15)

(3.16) [(35"6}?'.7'\,“,1'”' < MBI+

x max max{(la+ B+ a + | —m)!
1Sm<(a+p|

X (‘a + B + OC’ + ﬁ/l __j)!x—l(tl+lﬂ)m-j/l’<€>ma+j6—|a+a'|}

for (t, 1", s) satisfying (3.10), where p = u(x, &;{) and the second maximum in
(3.16) is taken over all j satisfying m <j < min(ja + f + o’ + f’|, ml’). Hence,
we have

(317 10¢0f exp (1)l S M*P max  max {(|a + B — m)!

tSmslatf]
X (Jo + Bl — I I (g

for (¢, ", s) satisfying (3.10). Here and in the next, max means that we take
J

maximum over all j satisfying m <j < min(Ja + 8], ml’). From (5) it follows
that (¢ + 6)/(x — 1 + 1/I') £ ¢’. Hence, using (3.17) we can prove
|0208 exp [i(DPy4y — x- &) < M7**P max max {(la + | — m)!

1=mglatf]

X (Ja + Bl — I Iyl
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S M;*P max  max {(la + B| — m)!
1Smslatpl

x (lo + Bl — )7 [m — j/I'][(mo + j&)/c"]!
x (&7 exp [t ulx, &) + <& 1}
< M Plat* By ™™ exp [et" u(x, &) + <7 ]
Hence, we have (3.14). Q.E.D.

§4. Systemization and Perfectly Diagonalization

In this section we reduce the Cauchy problem (8) of (6) to a system
equivalent to (8). In order to simplify the notation below, we write p(t, x, &; ()
simply by p(t, x, £). We also omit to describe the terms of regularizers and
the equality means that it holds modulo regularizers unless otherwise stated.

First, we factorize the operator L of (6). Let A.(t, x, &) be characteristic
roots of L, which is defined by (3.4). Then, from Proposition 1.4 there exists
a symbol b, (t, x, &) in SWF, ; [0, 0,0] such that

(4.1) L = (D, — 4_(t, X, D,))(D, — A.(t, X, D,))
+ t*g(x)¥by(t, X, D,) + by(t, X, D,),

where

Bo(t, x, &) = z a(x, ), + 15 K T A, %, &)t X, &)

=1
— il () T Aot x, ) + £*g(x) K Dot X, )
which belongs to S"LJ,G(,‘)[I, 0,0]. Now, we set
b(t, x, &) = t*g(x)* by (t, x, E)/(2A(t, X, £))
with A(t, x, £) in (3.6). Then, from (3.7) we have
@2) {1) b(t, x, 5)es°1,:,,6(,‘)[a, 0, —1],
ii) b(t, x, &) €Sy 5,60l + 0, =1/, =11 (IBl=1),
because from (4) and w = 1/(I + 1) we have
(I-o)d-kl<o,
o(l—k—1)—0/(1l-0)=0,
TS Clpg=) 2

and hence we have
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Ib(t, x, &) = Ct¥(g(x)" CEY oYL AWM= EH™
é Ch"—’;fl(g(x)"<§)1_")"'”'(§>(1_")(1 ~k'/l)
é Ch—lﬂw(l—k—l)—l(Mlczl)m<é>ﬂ
S Chiey

with a constant C independent of {, where m =k'/l' — {o — (1 — o)(1 — k'/I')}/
(l—-0)<1—w(l—k—1). Now, we write (4.1) in the form

L=(D,—A_(t, X,D,) — b(t, X, D,))
x (D, — A.(t, X, D,) + b(t, X, D,))
+ b,(t, X, D,) + #(t, X, D,)

with

(4.3) by(t, x, §) = —Db(t, x, &) — t'g(x) [A0 © blremny(t, X, £)
= [b o At Iremn)(ts X, )
+ ap(b(t, X, D,)?) + by(t, x, &)

and

(4.4) (e, x, €) = 2b(t, x, E){A(t, x, €) — t'g(x)" Zo(t, x, &)} .

Here, for symbols pjt, x,¢), j=1, 2, we denote [p;© pylremy(ts X, &) =
P ()P, (1)) (x, 0) — 1 (8, x, E)p,(t, x, &) (see Remark of Proposition 1.2 for the
notation oy(‘)). Now, we use (3.8). Then, we have e ;qwl20, 20].
Moreover, using (4.2)-ii) for the second term in (4.3) and using (4.2)-i) for
other terms we find that b,(t, x, &) belongs to SWF, ; ¢y[20,0, —2].

Let h(t,x, &) = h(t, x, &; () be a symbol in (3.1) and h(t, X, D,)”* be the
inverse operator constructed in Lemma 3.3. Here and in what follows we
assume (= {,. For a function u(t, x) we set U(t, x) = ‘(u,(t, x), u,(t, x)) with
u(t, x) = hit, X, D) D>u and u,(t, x) = (D, — A.(,, X, D) + b(t, X, D,))u.
Then, by the same discussion in [11], we can prove that solving the Cauchy
problem (8) for (6) is equivalent to solving the Cauchy problem

LU =0,
43 {U(S) = U,
for
_ b(t, X, D,) — bs(t, X, D,) —h“(Dx>"
“o £=b -2+ ( ba(t, X, D,) —b(t, X, Dx)>

0 0
(ke o) Resl0



FUNDAMENTAL SOLUTION IN GEVREY CLASS 193

where

@7 a0 = (,1+(:, X,D,) 0 ) ,

0 A_(t, X, D,)
b3(t’ X, é) = o-M([Dt - l+(t7 X: Dx) + b(t! X’ Dx): h_1<Dx>a]<Dx>_ah)
(e SWF, 5,600L0,0, —11),
b4(t9 X, 5) = O-M(bZ(L X’ Dx)<Dx>_ah)
with h = h(t, X, D,), R =7, X, D,), and R, 1(t) is a matrix of regularizers.

Summing up we have proved

Proposition 4.1. Let % be a hyperbolic system defined by (4.6). Then, we
can reduce the problem of solving the Cauchy problem (8) is reduced to the
problem of solving (4.5) for a system & of (4.6).

Next, we diagonalize the operator

E(t5 X! Dx) _h—1<Dx>d
b4(t, X: Dx) —b(t’ Xa Dx)

(b(t, x, &) = b(t, x, &) — bs(t, x, £))

perfectly modulo Hermite operators.

(4.8) & =D, —2(0) + <

Proposition 4.2 (cf. Theorem 2.2 of [17]). Let %, be a hyperbolic system
of the form (4.8). Then, there exist a diagonal pseudo-differential operator F(t)
with the symbol in SWF, ; giy[0,0, —1] and a pseudo-differential operator P(t)
with a symbol in SWF ; u[0, —1, —(I + 1)] such that

(4.9) LI+ P@) = + PO)(D, — D) + F©) + R() + Ry, ,(0),

where R(t) and R, ,(t) are matrices of pseudo-differential operators with the
symbols in ) ; gulo, @] and R, respectively.

Proof. Set
_ (b, Xx,D,) 0
B=B()= < 0 —b(t, X, Dx)> ’
- __ 7 _ 0 _h_1<DX>a
B' =B (t) - <b4(t, X, Dx) 0 )

and we will find an operator P = P(t) with the symbol in SWF, ; ¢[0, —1,
—( + 1)] and with zero diagonal elements such that it satisfies

(4.10) 9P — PP =P, + B + BP — PB— PBP
mod H# 5 [0, ®] + Rg »

where o(P,) = D,o(P). Then, defining a pseudo-differential operator F(t) by
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o(F(9)) = B(t) + o (B'(0)P(1) ,

we find that P(t) and F(t) satisfy (4.9) with an Hermite operator ﬁ(t) and an
regularizer R, ,(t).
In order to find P(t) we set

5 i, X, D,) 0
- 0 -, X, D,)

with A(t,x,¢) in Lemma 3.5. Assume that o(P(t)) € SWF; ;6405 —1,
—(+ 1)]. Then, by (3.8) the relation (4.10) is equivalent to

(4.10y 9P — PP =P, + B + BP — PB— PBP
mod #] 5 gulo, @] + R -

Since o(B(t)) and ay,(B'(t)) belong to SWF, ; gulo, 0, —1], they have formal
symbols ) o(B,(t)) and Za(Bj(t)). Now, we find o(P(t)) as a formal
sum Y, o(P,,) with o(P,,)€S; 56—y —8), —(m+ 1), —(m + 1)(I + 1)]

satisfying
@.11) a(Py,) = a(A)'a(By),

4.12) U(Po,m) = G(Z)—l {Dto-(PO,m—l) + 0(Bo)o(Po, m-1) — U(Po,m—1)0'(Bo)

- Z G(PO,m’)a(Bé))G(PO,m")} (m g 1) )

m'+m"=m—2

1

(4.13) o(P, ) = a(A)™* {G(BCH ’f'Z.I: E{G(Pv’,o)ma(é)(}’)_'a(g)(Y)a(Pv',o)(v)}

y#0
vz 1)

and

4.14) o(P, n) = o(A)! I:Dta(Pv,m—l)

1
+ Z o1 {U(Bv’)(v)o'(Pv”,m—l)(v) - O-(Pv’,m—l)(y)o.(Bv”)(v) }

vHvEy=y P

1
— (v +y2)
z . 4 110,274,31 G(Pvl,m')
Vi+vZHy34|yt| mAmT=m—2 Y Py
2y =y

X O‘(B(,z)g::;o‘(Pv:;,m,,)()'2+v3)
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1 ~ ~
+ > W{U(Pv',m)ma(@)m_0(9)(”0(1’ v'.m)m}:l

vi+fy=v V*
y#0

vzlm=1).

Here, when m = 1, we mean that the last term in (4.12) and the third term in
(4.14) do not appear, and

o 24(t, X, D,) 0
- 0 —21(t, X,D,))"

Then, as in Section 6 of [22] we find that o(P,,) satisfy
1070 (P, )@ < CMEPETHYmglylm!
X (|8 + W) + (|B] + )79 %o+)
x h(t, x, )7 (R )

by using a formal norm

_ 2(2n) V!
HoPonb MU= 0 & Tal)iom + v + 11+ 7!

% M2m+2v+|a|+|ﬂ|+y

x sup {|3/0(P, )|
X (18] + W+ (1B + vy
X (O EEETY (ol (4], [7]).

First, we use discussion in pp. 314-317 of [4]. Then, for a sequence {s,,} of
(2 x 2)-matrices s, of complex numbers satisfying

© 1/2
H{sm}ll = { > Ismlezz'"m!"‘} <
m=0
we find a matrix Y(0) satisfying

10§y (0)] < Cli{sn}IM37j16177  (6#0),

. N-1 gm
ag(we) -3 ﬁs,,)

< Cli{sm} IMzU™MINIONT (6 #0).

For a fixed v we apply this result to s, = a(P, ) X, & O)(h(, x, & O x
ulx, & 0))"m! with a parameter t, x, £ and {. Then, we find a function

U, (05 t, x, &) = §,(0; t, x, £; () satisfying
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1007050y, | S CM =T+ Dy ly L1
X (18] 4 W)I* + (18] 4 )19 gyoI+vy (pi+1 =1
x KRG for 0#0,

m=0

. N-1 gm
ojorozof {l/jv(e; t,x, &) — ). oy Smls X5 C)H
é CM—(|a+m+y+j+v+N)a!,y!j!N!

x (18] + W) + (|B] + v)IeA =gy (p1+1 =1
X (ETHTRTONT for 0#0.

Define pseudo-differential operators P, as

Then,

(4.15)

Now,

a(P,) = ¥, (1/{h(t, x, &) ulx, O} 1, x, &) .
a(P,) satisfy
(IQ’G(PV)E;?)] < CM BT+ 10
X ((Iﬁl + V)!'c + (|ﬂ| + v)!x(l—6)<€>5(Iﬁl+v))(hl+1#)—1
x (&R,

A

orazo! {a(Pv) -y a(Pv,m>}

m=0

é CM—([a+ﬂ+y+v+N)a!,y!N!

X (1B + V) + (|B] + v)IeA -9 gyo081+w)y
x (EY TRV (Rt )TN

-

we set
o(Ro) = {6(D)a(P,) — a(Po)a(D)} — {D,a(P,) + o(By)
+ 0(By)o(Py) — o(Py)o(By) — O'(PO)G'(Bé))U(Po)} s

o(R,) = {o(D)o(P,) - o(P,)o(D)} — {Dto-(Pv) +0(B)

1
+ Z ol {G(Bv’)(y)o-(Pv")(v) - G(Pv')(y)o-(Bv")(y)}

vy Fyl=v Y-
1

1492 3
— Z ——1' 2y 3'0'(Pv1)(y y)G(B;2)§¥1;O'(Pv3)(},2+v3)
VIHVZ 43yl p2+fy3=y VPV

+ X %{U(Pv')‘y’ﬂ@)(y)—0@)‘”0(&')‘”}} vz1).

viEpl=v ¥
y#0
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Then, from (4.15) we have

(4.16) lo(R,)@)] < CM~(=+fl+y)
X (11 + V) + (1B + V=9 ey )
x (EYTTHTVLe exp (—et' i)

for an ¢ > 0 independent of v. Next, we apply Lemma 1.3 to formal symbols
2o(P,) and Xa(R,). Then, we find symbols ¢(P) in SWF, ; 64[0, —1, —(I + 1)]
and o(R) in M) ; .lo, @] satisfying

@4.17) |oyogof <0(P) -y a(PJ)‘
v<N
< CM BN 1y (| B] + NI + (|B] + N)RA-9EH20BI1N)
x (W) IKETEHN for (&) Z (el + N
and
4.18) agol <a(R) - a(Rv)> < CM~+BEN (1] + NI
v<N

+ (18] + N)<E=DLEH0PN)
x (EHTTHNu exp (—et'™ )
for (&> = c(la| + N)*.

Consequently, from (4.16)—(4.18) we obtain (4.10)" and (4.9) for a Hermite opera-
tor R(f) and a regularizer R, ,(t). Q.E.D.

Since h(t, x, &; () u(t, x; {) 2 {, the formal norm |la(P); M|| of o(P)(t, x, &; 2)
satisfies

lo(P)y, M| = CC™*

if we consider o(P) as a symbol in SY; ¢., Hence, using Proposition 1.9 we
find an inverse operator (I + P)™! of I + P if { is sufficiently large. We fix
such a ( till the end of this paper. Then, from (4.8)-(4.9) we have for the
system % of (4.6)

(4.19) FUI+P)=(1+ P,

with

)= 0 0
L =D,—90t)+ F@t)+ I+ P) {R(t) + (ﬁ(DxY“h 0)(1 + P)}

+ (I + P){Ry () + Ry, 1 () + P)},
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where R(f) and R, 1(t) are operators in (4.6). We note that we used the
similar discussion in the proof of Proposition 1.4 in order to obtain the fact
that the main symbol of (I — P)™! times an Hermite operator also belongs to

’%,J,G(x)[o" (O]
Considering Proposition 4.1 and (4.19), Theorem 1 is reduced to the follow-
ing theorem.

Theorem 3. Let 9(t) be (4.7) with A.(t, x, &) in (3.4), F(t) be a diagonal
matrix of pseudo-differential operators with symbols in S; 5 ul0,0, —1] and
R(t) and R (t) be matrices of pseudo-differential operators whose symbols belong
to A, 5,6u0l0, @] and R, respectively. Then, for the Cauchy problem (4.5)
of a system

(4.20) L =D, — () + F(t) + R(t) + R (1)
we can construct the fundamental solution E(t,s) in the form
E(t,s) =3 1,,(t )EL(t, 5) + Eo(t, s) + E,(t, 9)
s b

Jor 0 <s<t < T, with a small constant T, and the symbols e(t,s; x, &), j =0,
+, o0, of Ejt,s) satisfy (10)—(12).

§5. Construction of the Fundamental Solution for a Hyperbolic Operator
We consider a hyperbolic operator
(51) L=Dt_l(t’X9Dx)+f(t’X9Dx)a

where A(t, x, £) is a real-valued symbol in S} , 6. and f(t, x, &) is a symbol
in §1,5,G(,€)[a, 0, —1] with ok <1. Let 4(t,s; x, ) be a phase function corre-
sponding to A(t, x, £) and denote by I,(t, s) the Fourier integral operator with
the phase function ¢(t, s; x, £) and the symbol 1. Set p=1—6. Then, we
have

Proposition 5.1. The Cauchy problem for L of (5.1) has a fundamental
solution E(t,s) in the form

(5.2) E(t, s) = I,(t, s)(E(t, s) + E(t, 5)) -
In (5.2) E(t, S) is a pseudo-differential operator with the symbol é(,s; x, &) in
Sp,609[Wol for
(5.3) wo(60) = exp [CO log {(t0°C =) + 1)/(s6°*~) + 1)}] (C>0
and E(t,s) is a regularizer in R G-
Proof. We seek E(t,s) in the form
E(t, s) = L(t, s)V(t, 5) .
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Operate L to E(t,s). Then, we have
(5.4) LE(t, s) = (14(t, 9)), V(t, 5) + 14(t, 9)Vi(z, 5)
- {A‘(t, X, Dx)1¢(t7 S)} V(t, S) + {f(t’ X: Dx)1¢(t7 S)} V(ta S) s

where (I4(t, s)), is the Fourier integral operator with the symbol D,d(t, s; x, £)
and V(t, s) is the pseudo-differential operator with the symbol D,a(V(t, s)). Use
(2.2) with N =1, p = 1 and w(f) = 6 in order to estimate the third term in (5.4).
Then, there exist symbols b, (t, s; x, &) in S 5 6o and ry(t, s; x, &) in g, such
that

(I¢(t, s))t - 'l(ts X, Dx)Irﬁ(ta S) = bl,qﬁ(ta S, Xa Dx) + rl(t’ S; X, Dx) .

Hence, using Lemma 2.5, Lemma 2.3 and Lemma 2.6 we find symbols
b,(t, s; x, &) and r,(t, s; x, &) such that (t + <EY*P")b, € 55 5 6y 2 € R and

LE(t, 5) = I,(t, )Vi(t, s) + I4(t, $)I4«(t, s)(P(t, s) + R(t, 5)){by 4(t, 5; X, D,)
+ r1(t, s; X, D) + f(t, X, D) 14(t, )} V(t, 5)
= I¢(t’ S){I/t(ta S) + (bZ(t’ s, X, Dx) + rZ(t’ S; X> Dx)) V(ta S)} .

Let
B(t, s) = b,(t, s; X, D,) + ry(t, s; X, D,) .
Then, V(t, s) must satisfy
(5.5) Vi(t, s) + B(t, s)V(t,s) =0.
Set
Vi(t,s) = —i ‘[t B(t', s)dt’,

(5.6)

t

Vi (t,s) = —i f B(t', s)V,(t', s)dt’ .

Then, V(t,s) =1+ Y V,(t s) is a “formal” solution of (5.5).
v=1
Now, we estimate symbols of V,,,(t,s). From (5.6) we have

t [ty t,
Vit s)=(—i)”+1fj J B(ty, $)B(ts, 5)... B(tysy, )dt,sy ... dt, .

N s N

Hence, modulo regularizers V,,,(t, s) is equal to the pseudo-differential operator
V5, (t, s) defined by

t L1, t,
Vit s) = (=)™ f j - J by(ty, 55 X, Dy)...by(ty41, 55 X, Dy)dt,y ... dty

N s s
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As in the proof of Proposition 1.5 we replace b,(t;,s; X,D,), j=1,
-V by bé(tp S5 Xa Dx3 Xl)’ Where bé(tja S5 X, f, xl) = {(1 - A§(<6>26')X(1
+ (&P x — x'[2)71 2D, (15, 55 x, £). Then, since we have

t ty ty, v+1
f J f H (¢ + 671" dr, . dey
s Js s J=
= [log {(:6°0~7 + 1/(s6°0~2 + D}T*/(v + 1)1,
V.%.(t, s) is expressed by a multiple symbol

- t [ty t v ._ o
p(t, s; x, ¢", X7, é)=f f b,y (t;, s; X771, &, x7)
s Js 1

s J=
X bZ(tv+1’ 3 x%, é)dtv+1 . 'dtl (xO =X, €v+1 = 5)
and it satisfies (1.20) with
wy11(0) = [07 log {(t0°C ™7 + 1)/(s6°" 77 + 1} 1" /(v + 1)!

and with C replaced by C}*' for a constant C,. Note that w,,,(f) satisfies
(1.19) with W, , = (C,)’"*(v + D)I71*7* for a ¢’ satisfying ¢ < ¢’ < 1/k. Hence,
applying Lemma 1.6, V%,(t, s) has the form

I/\'(-)(>1(t’ S) = vv+1 (ta S, X: Dx) + vv+1,oo(t9 S5 X’ Dx)

with
(5.7) [vy+1{pl < C M
X (lo+ BIM + o+ BIIe<EyE AP () kw1 (248D),
(5.8) Dyrt, iy S CeCy MBI (v + 11717 exp (—e(E>M¥)
(<o <l/k,e>0).
Repeating the above discussion again we can prove that a(V,, (¢, s) — ¥,2:(t, s))
has also an estimate (5.8). Hence, the sum io V,(t,s) has a meaning and

E(t,s) can be written in the form (5.2) with the desired symbol é(t, s; x, &) =
o(E(t, 5)) in S, 609[Wo] for we(0) in (5.3) and a regularizer E(t, s). Q.E.D.

§6. Construction of the Fundamental Solutiom for a Hyperbolic System
(Proof of Theorem 3)

In this section, we construct the fundamental solution of the system (4.20).
First, we apply Proposition 5.1 to each element of D, — 2(t) + F(t). Then, the
fundamental solution E°(t,s) of D, — 9(t) + F(t) is constructed in the form
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(Lits 0 E.t,sy O ~
”“”‘(0 qu( 0 E4m9+%“*

where Ei(t, s) are pseudo-differential operators with the symbols in S, gu)[Wo]
with wy(f) in (5.3) and E_(t,s) is a regularizer in Rsw) We seek the funda-
mental solution E(t, s) of (4.20) in the form

(6.1) E(t, s) = E°(t, 5) + Jt E°t, V(' s)dt’ .
Then, V(t, s) must satisfy

(6.2) Py(t, s) — iV(t, s) + ft Pyt t")V(t,s)dt' =0,
where

Py, s) = (R(t) + R,(t)E°(t, 5) -
Set

Vl(ts S) = -iPzt(ta S) 5

(6.3) ‘
Vit s) = —if Py, )V (¢, s)dt”  (v=1).

s

Then, we can get formally the solution V(t,s) of (6.2) in the form V(t,s) =
IRA)
v=1

Now, we estimate V,,,(t, s) in (6.3). From (6.3) V,,,(t,s) for v=1 has the
form

t [ty ty—y
I/M(t,s):(—i)““ff f Pyt t1)Py(ty, ty)... Py(t,, s)dt,...dt, .

s

As in Section 5 we will consider a main part of V,,,(¢,s). Then, modulo
regularizers, V,,;(t, s) is equal to the sum of operators of the form

t

Vit s) = (=i j

s

N t—y
j f ri(t, X, Do), (2, 1)

X él(ts tl; X: Dx)rZ(tls Xa Dx)1¢2(t13 t2)
X 52(t1, tZ; X: Dx) . rv+1(tv’ X’ Dx)
X Iqﬁ‘,”(tv’ s)év+1(tva S; Xs Dx)dtv e dtl .

Here ¢(t, s; x, {) are ¢.(t,s;x,&) or ¢_(t,s;x, &) in Lemma 3.4, rit, x, £) are
symbols in # ; gulo, @] and (t;—,, t;; x, {) are symbols in S, g[w;] with
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(6.4) w;(0) = exp [CO7 log {(t;-; 0"~ + 1)/(£;0°"~ + 1)}]
(tO = t’ tv+1 = S) .

Since 144 (t, X, &) € H# 5,600[0, ] < 8 56m[0,0, —1] it follows that
&ti—1, tj; X, D)ryy(t;, X, D) is a pseudo-differential operator with a main

symbol in S, 5 ge[W'], where

(6.5) wi(0) = 0°(t; + 07U ")Twy(0) .

Set @; 11 = Gj(tj—1, 1) # ** # by41(ty, 5) and Dy 4y = Byyy(t,, 5). Then, if we
assume 0 < s <t < T, we have ¢; € Z;,,(¢Ty) and D; ., € P, (CT,) for a con-
stant & Take T, such that T, < t°/(2¢) for a constant t° in Proposition 2.4.

Then, we can apply Proposition 2.4 to find symbols p;(x, &) = p}(tj-y, ..., t,, S;
x, &) and 7'(x, &) = 7 (t;—y, ..., t,, §; X, £) such that

(6.6) pi(x, &) €S, uolwicl  with  w;(60) = w}'(cO)
for a constant ¢ (= 1), r!,(x, &) € Zg,, and
I¢j(tj—1a t7)€{t;—1, t;; X, D)ripq(tjy X, D)

J+1,v+1 l'p
(j=1,...,v).

jv1

P'+R},

Hence, V,},(t, s) is equal to

Vi, S)—(—l)"“\[jﬂ f (6 X, Dlo,.,

x PLP}...Ple,,,(t,,s; X, D,)dt,..

modulo regularizers, where @,,, = @, ;.

Next, we use discussion in the proof of Lemma 2.5. Then, there
exist symbols py(t, £, s; x, &) = po(t, ty, ..., Ly, S; X, &) in H.5,600L0, ] and
19, (t T, 83 %, &) in Rg such that

rit, X, D)y, =Py o,, + Rclj,oo .

vt 1

Now, we consider the Fourier integral operator Py 4 ., as a pseudo-differential
operator with a symbol

p(l)(t’ i’v, 85 X, é) = pO(t’ fv’ S5 X, f) exp [i(¢v+1 - X é)] .
Let ¢’ be a real number satisfying (5), and assume that T, satisfies T, < T
for a constant T; in Lemma 3.6. Then, from Lemma 3.7 and py(t, t*, 5; x, &) €
H,.5.600L0, @], it follows that pi(t, i, s; x, &) satisfies
[Po@@| < CM I HPlg (1 4 BI<U=ACENIN ()~ exp (— et u(x, &) + CLEHT)

for an ¢>0. Here, the term {(&)°u(x, &)° is absorbed into exp (C{&)7).
Now, to each pseudo-differential operator Pj‘, j=0,...,v, we assign a
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pseudo-differential operator P? with the symbol {(1 — 44<&>**-)(1
+ (&P x — x'|?) 1} g(PY).  Then, V2(t,s) is equal to

t [ty Ly
V3., s)=(—i)"+1f j j PZP?...P%¢,,,(t,,s; X, D,)dt,...dt,

s s s

modulo regularizers. Let p,.,(t t*, s; x, E"*1, £**1, ) be a multiple symbol
corresponding to PZPZP?...P2%¢,,,(t,,s; X, D,) and set

. t (ty t, . -
Plea(t, s3x, E¥VFL, RVHL 5)=J j J Poialt, 1% 55 x, V1L, %¥FL &E)de,. .. dt, .
s s

N

Then, B,.,(t 2%, s; x, &+, %74, £) satisfies (1.20) with v replaced by v+ 1

and w,,, (max <£j)> replaced by W,,, <x, max <€f>>. Here, W,.,(x, 0)
j i

(= W,4,(t, 1% s; x, 0)) is defined by

Wya2(%, 0) = exp [~ et Ax, ) + CO7] (f[ w,%c(e)> Wy41(6)
j=1

for f(x, 0) = |g(x)|"6*"° + 1, w}(6) in (6.6), w,+,(f) in (6.4) and positive con-
stants ¢ and C. From (6.4)—(6.5) we have

1wl O, ©) = @0) [T (& + @0 0=2) TT w(ct)
j=1 i=1 =

v

< (c0) [] (¢ + (c0)™=¢ =)

x exp [C(ch)” log {(t(c0)°*~ + 1)/(s(c0)** ™ + 1)}]

and

t [ty tyey v
J..[ j IT @ + ()~ dx,...dt,
s Js s =1

= {log {(t(c0)"~ + 1)/(s(ch)" " + 1}}/v! .

Hence, setting
Wi, (x, 0) = exp [—et'i(x, 0) + CO° W, (cO)/v! ,
Ww,(0) = exp [CO7 log {(t0°* ™2 + 1)/(s6°*~ + 1)}]
x {67 log {(t0°1~7 + 1)/(s0°0~7 + 1)}}",
Blaa(t, s; x, EVFL ¥4 £) satisfies (1.20) with v replaced by v+ 1 and
Wiy (mgx (3,”')) replaced by W, , (x, max (éf)>. Although W}, ,(x, 0) is not an
j j

ordered function, it satisfies (1.19) and, setting
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Wi o(x, 0) = exp [—et"fi(x, §/2) + C(20)° 1W,(2cO)/V!

Wl ,(x, &) satisfies Wk ,(x, 0) < W2 ,(x, 0) when 0’/2 < 0 < 20’. Hence, we can
use the discussion of proving Lemma 1.6 and we find that V3,(t, s) is a sum
of pseudo-differential operators v2,,(t,s; X, D,) and v}y o(, s; X, D,) with
symbols v3,(t, 5; x, &) and v3,; (¢, s; x, &) satisfying

67 3@ s x, &) £ M
X (Jo+ I + Jo + BIIeC gy AN Al( gy
x exp [—et"g(x)["(<&)/2)* 77 + C(2(&))” ]
X W,(2¢¢&))
< Oy
X (Jo+ BIU + fo + BIIPEYI PR Epre
x exp [—et"g(x)|"<EHY! /2 + €K& T,
(6.8) 031,003 & 85 %, &) £ C*C,M P11 B¢ exp (—edEH").

Here, we used ¢ < ¢’ in (6.7). Summing up, we can prove that modulo regular-

izers V,,,(t, s) is equal to a pseudo-differential operator V5, (t, s) whose symbol

satisfies the similar estimate to (6.7). We can also prove that V,,(t, s) —

V5,(t, s) is a pseudo-differential operator with a symbol satisfying (6.8).
From the above discussion we can prove that the operator

t
f E°(t, )V (', s)dt’

N

in (6.1) can be written in the form
Eo(t, 5) + Ex(t, s)

with symbols ey(t, s; x, &) and e, (t, s; x, ) satisfying (11) and (12), respectively.
We note that by ¢ < ¢’ the operator E°(t, s) can be written (modulo regular-
izers) in the form

I, E.(t,s)+ 1, E_(t,5)

with pseudo-differential operators E, (¢, s) whose symbols satisfy (10). Conse-
quently, we have proved Theorem 3.
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