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Hyperbolic in Gevrey

By

Kenzo SHINKAI* and Kazuo TANIGUCHI*

In [9] Ivrii proved that the Cauchy problem of a degenerate hyperbolic
operator

(1) Df
2 - t2lD2 + atkDx

with / — 1 > k ^ 1 is well-posed in a Gevrey class of order K if and only if
l^K<(2l- k)/(l -k-l) and the Cauchy problem of

(2) D2 - x2l'Dx + axk'Dx

with I' > Ic' ̂  0 is well-posed in a Gevrey class of order K if and only if
1 ^ K < (21' — k')l(lr — k1). Combining these degeneracy we study, in the pre-
sent paper, second order hyperbolic operators including

(3) D2 - t2lx2l'D2 + atkxk'Dx

as a prototype. Let a be a constant

(4) a = max((/ - k - 1)1(21 - k), (/' - k)l(2l' - k')) (< 1/2)

and a' be a constant satisfying

(5) a<a'<l/K, a' ̂  (1 + (/' - I)<T)/(/'IC - / ' - h i )

for K: such that 2 ^ ?c < 1/cr. We construct the fundamental solution for the
Cauchy problem and show that it is estimated by CexpCCXO*')- Then we
can obtain not only the well-posedness of the Cauchy problem but also the
branching properties for the propagation of Gevrey singularities. We note that
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Itoh and Uryu [8] have already proved that (3) is well-posed in a Gevrey class
of order K with 1 ^ K < I/a for a defined by (4).

The operator treated in this paper is

(6) L = A2 - t2lg(x)21' _ £ i aJ9J.(t9 x)DXjDXj,

+ tkg(xf' t aj(t, x)Dx + c(t, x) on [0, T] .
j=i

We assume the following:
(A-l) / - 1 ̂  k £ 09 l'^k'^1 and l"£2.
(A-2) ic ̂  2 and KG < 1 with a in (4).
(A-3) The function g(x) belongs to a Gevrey class of order K with a

uniform estimate

(7) \D$g(x)\ g CM-|a|a!K for all x e Rn .

The coefficients ajtj.(t, x), a/t, x) and c(t, x) are analytic in t and of a Gevrey
class of order K in x with a uniform estimate (7).

(A-4) 0/fj'(t, x) are real-valued and there exists a positive constant C such
that

/or all (f, x) e [0, T] x R"x .

Then, we have

I. We assume (A-l) - (A-4). Set p = 1 - (1 - a)/lr. Then, for a
small T0 (^ T) we can construct the fundamental solution E(t, s) for the Cauchy
problem

* = 0 on [s5T0],
u(s) = 0 , dtu(s) = u0

with s e [0, T0) in the form

(9) E(t, s) = X I^(t, s)E±(t, s) + E0(t, s) + Em(t, s) .+
Here, I++(t, s) are Fourier integral operators with the symbol 1, and Ej(t, s), j = 0,
+ , oo, are pseudo-differential operators with symbols e j ( t , s ; x , £ ) satisfying

(10) |e±g>(t, s; x, {)| ^ CM-l^l((a + 0)1" + (a

(11) |«0g',(t, s; x, 01 ^ CM-la+*l((a + )S)!K + (a

x <£>-w exp (
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for a positive constant s1 and the constant a' satisfying (5). Moreover, for any
multi-index a there exists a constant Ca such that

(12) l^g'fe s; x, {)| ̂  CaM-'^5!Kexp(-£2<O1/K)

for a positive constant s2.

We remark that the condition a' ^ (1 + (/' - l)a)/(l'K - /' + 1) in (5) and
the analyticity of the coefficients of (6) enable us to construct the fundamental
solution of (8) as a sum of Fourier integral operators with only simple phase
functions as in (9).

Combining this theorem with discussion in [18], we obtain the branching
properties as follows. Let WFG(K)(w) be the Gevrey wave front set of a ultra-
distribution u (cf. [7], [23]), and, setting

l+(t, x, £) = ± tlg(x)

let {q±,p±}(t,s;x9^) be the solution of

'

and {q±, p*}^ s; 3;, ?/) be the solution of

Theorem 2. Consider a Cauchy problem (8) wit/z s < 0. Tten we
t > 0, /or a solution u(t) of (8)

(13) WFG(K)(M(f)) c r+(t) u r_(t) u f+(t) u f_(t) u r0(t) ,

-T± = < ! * , s ; y , i / , p , s ; j> , iy ; j ; , ly e

AW = {W1^ s; y, vi\ p±(f, 5; y, iy)); (y, ij) e WFG(K)(ti0), \r\\ » 1}

/L(0 = {(y, «); (y, n) e WFG(IC)(WO), g(y) = 0} .

This theorem corresponds to the branching property for the C°°-case, that
is, for the Cauchy problem of the operator (1) with k = I — 1 (see [1], [24] and
[18]). We note that the first author gave WFG(K)(w(t)) exactly by using the
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exact form of the fundamental solution for the operator (1) with I — 1 > k ^ 0
(see [19], [20]). In (A-2) - (A-3) we assumed K ̂  2. But, In case 1 < K < 2,
the problem (8) for (6) is always y(K}-well-posed for any lower order terms and in
this case the propagation of singularities (13) for a solution of (8) Is obtained in
[15].

The outline of this paper is as follows. In Sections 1 2 we give
caluculus of pseudo-differential operators and Fourier Integral operators. In
Section 3 we introduce symbol classes of pseudo-differential operators and give
lemmas. In Section 4 we reduce the Cauchy problem (8) to the Cauchy prob-
lem of a perfectly diagonallzed system Theorem 3, which Is the version
of Theorem 1 for a hyperbolic system. Sections 5 and 6 are devoted to the
proof of Theorem 3.

Throughout this section the real numbers p, d K always satisfy 0 :g
6 g p g 1, d < 1, K(l - d) ^ 1, Kp ̂  1 and K > 1.

.oL I) Let w(0) be a positive and non-decreasing function in
[1, oo ) or a function of the type 9m for a m. We say that a symbol p(x9 £)
belongs to a class SpiafG(K)[w] if p(x, f) satisfies

(1.1) |p{g(x, £)|

for all xand£, where p$ = dl(-idxfp. (cf. [14], [10]). We say that Inf
{C of (1.1)} is a formal norm of p(x, £) and denote It by [|p; M||.

II) Let w(9) be the same as above. We say that a symbol p(x, £) belongs
to a class SWF1>3iG(K)[w] if p(x, £) belongs to a class Slij5fG(ie)[w] and there exists
a formal sum J]Pj(x5 0 °f symbols p7-(x, ^) satisfying

(1.2) |p^>(x, 01

x

with a constant c (2> 1) and

(1.3) \dtdS(p(x, {) - Pj(x,
7=0

x ((|j8| + N)!K + (|j8| + jv)

for
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for any JV. In this case we say that the formal sum Y*Pj(x> £) *s

symbol associated with p(x, <!;). As in i) we say that inf{C of (1. !)-(!. 3)} is a
formal norm of p(x, £) and denote it by ||p; M||.

iii) We say that a symbol p(x, £) (e S""°°) belongs to a class MG(K} if for any
a there exists a constant Ca such that

(1.4) |p$(x, £)| ̂  C.M-1'l/n" exp(-e<O1/K)

hold with a positive constant e independent of a and /?. We call a symbol in
^G(K) a regularizes We also denote inf{Ca of (1.4); |oc| _^ fc} by ||p; M||k and call
it a formal semi-norm of p(x, £).

Remark 1. In the following we call a function w(0) in i)-ii) of Definition
1.1 an order function.

Remark 2. When w(0) = 0m for a real m we denote &p><5<G(K)[w] and
,G(K)[w] by Sp^,G(K) and

Remark 3. When w(0) = exp(C0ff) for a a > 0, the classes SpiijG(ie)[\v] and
,G(ic)[w] are symbol classes of exponential type, and these correspond to

the classes investigated in [25] and [2].

Remark 4. Formal symbols are investigated in [25] and [16].

Proposition 1.2. Let w7-(0), 7 = 1 , 2, l?e or^er functions such that

(1.5) uj(0) ̂  C£ exp (801/K) /or anj; e > 0 (7 = 1, 2)

let PJ = pj(X, Dx) be pseudo-differential operators with symbols in SptdiG(K}[wj'].
Then, choosing an order function w(0) satisfying w(0) _ w1(20)w2(0) there exist
symbols q(x, £) in SpidtG(K)[w'] and r(x, £) in &G(K) such that the product P1P2 can
be written in the form

(1.6) PlP2 = q(X9Dx) + r ( X 9 D x ) .

Remark. In the above proposition we say that the symbol q(x, £) is a
main symbol of P^P2 and denote it by

Proof. Write the symbol a(P1P2) as

(1.7) v(PiP2)(x, ^) = Os-

-b'^LSy^p^x, £ + i/)p2(x + y,

where ir\ = (2n)~n drj and L^ is the transposed operator of L1 =
(1 + <£ + ^>2 ' l3^l2)~1(l + K^ + f/>2V P,)- Denote ^(0 a function in y (K) satis-
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fying

(1.8) O g j t ^ l , *=1 (m

and divide (1.7) as

q(x, Q = 0,-
J J

x p2(x + y,

x p2(x + y9

Then, it Is easy to prove q e SptStG(Ky[w], Next, we write r(x, ^) as

where I = (1 + <OMkl2)"1(l - <O2^y)
 and /0 = [i/(2(l - 5))] + 1. Then,

using (1.5) we obtain r e ^G(JC) if we take c sufficiently large. Q.E.D.

Remark. In (1.7) the integral Is an oscillatory integral, which can be
defined as in Section 6 of Chap. 1 in [12].

In order to investigate the product of pseudo-differential operators In
,G(K)W we prepare

Lemma L30 Let w(0) be an order function and let ^Pj(x, £) be a formal
symbol satisfying (1.2) with a constant c (g; 1). Then, there exists a symbol
p(x, £) in SWFlja>G(K)[w] such that we have (1.3) for any N.

Proof. We follow [6]. Let {^/(<J)} be a sequence of functions satisfying
for a parameter R

if <o^r, ^/«) = o if
CMr|a+^|a|^!K<O"|a+^ /or |a| ^ 2j .

Here, constants C and Mx are independent of j and R. Define
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p(x, {) = £ Pj(x9 £)^
j=o

for a fixed large constant R and a function #({) in y(jc) satisfying (1.8). Then, as
in [6] we can prove

(1.9) |pg>(x, {)|

/or

and (1.3). So, by (1.9) an inequality (1.1) holds for pg>} when <£> ^ R\a\K and it
remains to prove (1.1) for <£> :g R\a\K in order to prove p(x, £,) e Slja>G(lc)[w].
Note

7 ^ (2<O/^)1/K ^ 21"<|a| on supp^

when <O ^ JR|a|K. Then, we can write p(x, £) in the form

P(x, o = 2f ft(x, o^/K)(1 - x«/(3c))) /^
j=o

and obtain the estimate (1.1) for p($(x, f ) in <O g J^|a|K. This proves the
lemma. Q.E.D.

Proposition 1A Let Pj(x, £) be symbols in SWFlt6tG(K}[yvj] (j = 1,2) with
Wj(8) satisfying (1.5). Then, taking an order function w(6) satisfying w(0) ^
w1(0)w2(0), t/iere exist symbols q(x, <J) m SWFlt^G(K)[w] a^ r(x, ^) in ^G(K)

that (1.6) fto/ds flfid we have for any N

(1.10) \d;D£(q(x,t)- I -^(x^^
|y|<^7 !

N)!K

Proo/. Let X^i,Xx» ̂ ) anc^ X^2,jfe £) be formal symbols associated to
, <J) and p2(x» £X respectively. Define

Then, ^-(x, ^) satisfies (1.2) for an order function w(0) satisfying w(0) ^
w1(0)w2(6). Hence, from Lemma 1.3 there exists a symbol q(x, £) in
S'W^i^.GdcjM wi^ a formal symbol ^qj(x, £) and g(x, <J) satisfies (1.10). Now,
define

(1.11) r(x, f) = Or 1 1 e-b-'p^x, t + r,)p2(x + y, Qdyjfi - q(x,
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Then the equality (1.6) holds. To prove r e 3%G(K} we write r(x, f) as

r(x, {) = OS-

+ os-

= r^x, f) + r2(x, £)•

Then, as in the proof of Proposition 1.2 it easily follows r2 e ffiG(K). For the
proof of r1 6 ^G(K), we fix a multi-index a and write r{a)(x, £) as

(1.12) r{a)(x, ^) = 5|

x p?>(x, { +

(cf. (6.16) of [22]).

Then, for a small constant e > 0 we can prove from (1.10) that, an inequality

(1.13) \T (<z)(x, (^)l < C (BIK + ^!K(1~

holds for { satisfying C^AT + |oe|)K ^ <O ^ C^N + 1 + |a|)K (JV = 0, 1,...) if we
take a constant Cl large enough. Since ^^(x, £) satisfies (1.13) for (O^C'il^r
from (1.11), we have proved that r^x, ^) belongs to ^G(K). Q.E.D.

Remark. In the second term in the right hand of (1.12) only the terms
with |/| = 1 appear, and this enables us to obtain (1.13) from (1.12).

Now, we turn to the multi-product of pseudo-differential operators.

L5o Let PJ(X, £) e S^Gt^lwj], j = 1, 2, ..., and satisfy (1.1)
with constant C and M independent of j. Assume that for any v

(1.14) fl w/0) ^ Wv E exp (s0llK) for any e > 0 .
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Then, the multi-product Qv+l = P1P2 ... Fv+1 of pseudo-differential operators
p. = Pj(x, Dx) has the form

(1.15) Qv+1 - qv+1(%, Dx) + rv+1(X9 Dx)

and qv+1(x, £) and rv+1(x, f) satisfy

(1-16) I

with an order function wv+1(0) satisfying wv+1(0) ^ f| w,-(20)

(1.17) |

x (^!K

/or a positive constant 8. Here,

ltB = sup w exp -
e L\j=i /

and ^4 and Mx are constants determined only by the dimension n and M and the
constants Ca are determined only by n and a. All the constants A, M1 and Ca are
independent of v.

Proof. For j with 1 g j :g v we write

with L = (1 + <£>2*l* - ^'I2)~2(l - <O2^)- Then, the symbol (7(QV+1) of the
multi-product Qv+1 is written as

-1^ fl ft'(^ + yj~l> t + ^J
5 x + y)

where

(1.18) i^= iy-(^-^+1) (w v + 1 =0)
j=i

and dyv$fjv = dy1 .. .dy^rj1 .. .$rjv. Take an order function Wy+1(0) satisfying

wi+1(0) ^ fl w/0). Then, the product f[ Pj^'1, ^J'5 ̂
J"+1)pv+i(^v

? T
+1) (^c0 = x)

j=i 7=1
satisfies (1.20) below with wv+1(0) replaced by w^+1(0). Hence, the proof of
Proposition 1.5 is reduced to the following lemma.
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Lemma Io6. Let wv+1(0) be an order function satisfying

(1.19) wv+1(0) ^ Wv+ltB exp (s91/K) for any s > 0

and let pv+1(x, £v, xv, £v+1) = Pv+iC^? 51? ^1
? £

2> - - • » ^v
? ^

v+1) ^ 0 multiple symbol
satisfying

+

l (IT™ wv+1 (max < ft) (x° = x) ,
'=l J j

where |av+1| = |a1| + ••• + |av+1| /or av+1 = (a1, ..., av+i) and |/?v| = |]81|

|]8V| for p = (p,. ..,?)•
Then, the simplified symbol pv+i(x, £) defined by

m (1.18) can be written in the form

and qv+i(x, £) and rv+1(x, E) have the same estimates (1.16)-(1.17) in Proposition

1.5 wirt wv+1(0) = wv+1(20) awd

(1.21) ^v + 1>£ = sup (wv+1(0) exp (-
9

Proof. Following [10] we write

pv+1(x? f) = ^v+1(x, ^) 4- rv+1(x3 {) ,

4-



FUNDAMENTAL SOLUTION IN GEVREY CLASS 179

j'=l

Setting Q0(j) = {(n\ ..., nv); \nj\ = max \n,j'\ > 2<£>A W'\ < W\ (/ < ]\

\rjj\ ^ c} and @N(j) = {(^y1, • - . , */v); NJ'| = max I?/-7"! > 2<O/5, I^ J"I < I^J"I

(/ < j), c]VK ̂  \nj\ ^ c(N 4- If} (AT ^ 1), we rewrite rv+1(x, 0 as

a '+a»=a a sot !

x d

'1 - nj= i j v=o «•+«»=« a !a

x { - i | ' + • • ' ,

5 + JJ1, x + y1, . . . ,5 + »?v, x + y\

Then, we have (1.16) and (1.17) by taking a constant c large enough and using
Proposition 1.7 of [21] and the fact that an inequality

wv+1 max < + r,y ^ wv+1 g W,+1,t exp er,
\ y J

holds in (J QN(j) from (1.21). Q.E.D.

Proposition 1.7. Let pjeSW^Flf,>G(ie)[W|], / = 1, 2, ..., wit/i {w,(0)}
ing (1.14) and Jet M be a constant independent of I. Assume that the formal norms
||pi;M|| of Pi(x9£) are independent of I. Then, there exists an order function
wv+1(0) such that

(1-22) wv+1(0) ^ fl w/0)
j=i

and the symbols v(Qv+1) of multi-products gv+1 can be written in the form (1.15)
with the symbols qv+l(x, £) belonging to SJPFlfd>G(IC)[wv+1] and symbols rv+1(x, <!;)
satisfying (1.17). Moreover, there exist formal symbols Zgv+ljJ-(x, £) associated
with qv+i(x9 £) such that

(1-23) kv+i
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and

( N~l

(1.24) d£D£Uv+1(x, f) - I ^v+i ,-(*,
V 7=0

x ((|]8| + JV)!* + (\P\ + N)lK(

x <O"N"Wwv+1«O) far |£| £ c(

Froo/. Define sequences {^vj}j=o,i,2f... inductively by

(1.25)

where ^ptj(x9 {) are formal symbols associated with p^(x9 £). Then by the
induction on v we can prove

JT"1 + (\P\ + jf (1^)

~Jwv+1«O) for | £ | ^c .

Hence, applying Lemma 1.3 we can find symbols qv+1(x, £) satisfying (1.16) and
(1.23)-(1.24). Now, write the multi-products Qv+l as

(1.26) Qv+i=PiP2'"Pv+i

{q*-i(X,Dx)Pv-qv(X,Dx)}Pv

+ {q1(X9Dx)P2 - q2(X,Dx)}P3...Pv+1 .

Then, it follows from (1.23)-(1.24) that the terms except the first in the
last member of (1.26) satisfy (1.17). This completes the proof. Q.E.D.

Combining Proposition 1.5 and Proposition 1.7 with discussion in Section
5 of [22] we obtain

Proposition 1.8. Let PJ(X, £)e SpiajG(K)[wj] (resp. SFFjF1><5)G(fC)[wj]) with a se-
quence {wj of order functions wt(9) satisfying (1.14) and let {rf } be a sequence
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of regularizers in ^G(Ky Assume that for an M the norms \\pt; M\\ of PI(X, £) and
the formal semi-norms ||rf ; M\\k of rf (x, <!;) are independent of I. Then, the
multi-product

o/ P, + Rf = pt(X9 Dx) + r?(X9 Dx) can be written in the form (1.15) and the
symbol qv+1(x, f) belongs to Spi,iG(lc)[wv+1] (resp. SJFFlfafG(ie)[wv+1]) and satisfies
(1.16) (resp. (1.16) and has a formal symbol Zqv+1J(x, £) satisfying (1.23)-(1.24)),

rv+1(x, £) satisfies (1.17). Here, wv+1(0) is an or^er function satisfying (1.22).

Finnally we give a result on Neumann series.

Proposition L9o Let p(x, ^) e SWFf><5>G(K) ^^J assume that its formal norm is
00

sufficiently small. Then, the inverse operator of I — P is represented as £ Pv

v = 0

anrf t/zere exist symbols q(x, £) in SWF^d^G(K) and r(x? £) in &G(K) such that

f P* = q(X, Dx) + r(X, Dx) (= (/ - P)'1) .
v = 0

Proof. For a (v + l)-th power Fv+1 of P we apply Proposition 1.7. Then,
Pv+1 is written as

and qv+1(x, f) and rv+1(x, £) satisfy (1.16)-(1.17) with wv+1(0) = 1 and Wv + 1 = l
and for the formal symbols Eqv+1J(x9 £) we have (1.23)-(1.24). Now, assuming

|| < 1 for the formal norm ||p; M|| of p(x, £) we define

q(x, 0 = 1 + p(x9 £) + X
v = 2

and

v=2

v=2

where £pj(x, £) is a formal symbol associated with p(x, £). Then, q(x9 £) and
r(x, ^) are desired symbols and Zqf(x, £) is a formal symbol associated with
q(x, {). Q.E.D.
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§20 Calculus of Fourier Integral Operators

Following [22] we introduce

Definition 2.1. Let 0 ^ t < 1. We say that a phase function ^(x, 0
belongs to a class £PG(K}(i) if ^(x, £) belongs to a class ^(t) defined in [13] and
for J(x, £) = ^(x, ^) — x • ̂  the estimate

holds for a constant M independent of a and /?. We also set

%o= U %oM.
0^t<l

For ^(x, £) in ^(K) and a symbol p(x, £) in SptdtG(K)[w] we denote by
P$ = P<fi(X, Dx) & Fourier integral operator with the phase function ^(x, £) and
the symbol p(x, £) and especially we denote by /^ the Fourier integral operator
with the symbol 1. Moreover, we denote by /^* the conjugate Fourier integral
operator with the phase function ^(x, f ) and the symbol 1.

In [22] we have proved

Lemma 22 (Proposition 2.5 in [22]). Let ^-(x, f) belong to ^G(K}(^J\ j = 1,
2. Assume il 4- T2 is small enough. Then, there exist symbols p(x, 0 iw ̂ ?,0,G(K)

r(x, ^) in ^G(JC) such that

Here, <P(x, f) is the # -product ^ # ^2 of ^(x, <J) and ^2(x, ^), which is
defined by

with the solution {X, S}(x, £) of

23 (Corolary 2.8 of [22] and Proposition 2.2 of [21]). Let (f>e
^J(K)(T) and assume that T is sma// enough. Then, there exist symbols p(x, ^)
i n S ? O G C

For p ^ 1/2 we denote Sp>G(IC)[w] = Sp>1_p>G(ie)[w]. The aim of this section
is to prove the following proposition.

Proposition 2A Let <f>j9 j = 1, 2, i?e phase functions in ^G(rc)(T/) and let
p(x, ^) 5^ a symbol in Sp>G(K)[w] witft p g: 1/2 and an ord^r function w(9) satis-
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fying

(2.1) w(0) ̂  CE exp (s61/K) for any s > 0 .

there exists a constant T° such that if i1 + T2 ^ T° we caw /md symbols
q(x, £) in SP)G(JC)[W] /or w(0) = w(c0) with a constant c (^ 1) and r(x9 £) in $G(K)

such that

where 0 = fa # (f>2.

For the proof we prepare two lemmas. Then, combining Proposition 1.2,
Lemma 2.2 and Lemma 2.3 we can obtain Proposition 2.4 by regarding discus-
sion in §2 of [21] (cf. Lemma 2.10).

Lemma 2.5. Let p(x, £) e SpfG(K)[w] with p ^ 1/2 and with an order function
w(9) satisfying (2.1), and let ^(x, £) e ^(K). T&en, t/iere exist symbols q(x, £) in
SpjG(K)[w] wit/i w(0) = w(29) and r(x, ̂ ) in ^G(K) such that we have

Moreover, for any N there exists a symbol qN(x, £) satisfying <O(2p I)N<}N(X> £) 6

SP,G(K)[W] ™itn #(0) = w(20) such that

(2.2) q(x, f) = Z -y0£(P(y)fo ^x^(^ ^'; ^)))|x'=x + QN(X> 0 »

wtere Fx^(x, x'; f) = Fx^(x; + 0(x - x'), f )d0).
Jo

Proof (cf. Proposition 2.2 of [22]). From the proof of Theorem 2.2-1) in
Chap. 10 of [12], the symbol of PI+ is written as

(2.3) <r(PIj = Os-\\ e-b'Wx, Fx^(x, x +
J J

Using x in 7(K) satisfying (1.8) we divide (2.3) as

q(x, $) =0S-H e-b'Wx, Fx^(x, x + y; f) +

, {) = Os- JJ <r*-*p(x,r(x, {) = Os- <r*-*p(x, Fx^(x, x + y; {)

Then, the symbols q(x, £) and r(x, <^) are desired symbols when we use (2.1)
to prove r(x, <!;) 6 ^G(K). For the proof of (2.2) we use the Taylor expansion
for q(x, £). Then, we have
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N y\ y

(o..

and get (2.2). Q.E.B.

Remark. In the above lemma Q^ Is a Fourier Integral operator with
Infinite order If w(0) is an exponential function. We note that Fourier Integral
operators with infinite order are also considered in [5].

Lemma 2B6= Let p(x, £) e SptG(K)[w'] with p ^ 1/2 and w(0) satisfying (2.1),
and let ^(x, ^) 6 ̂ (fc). Tlign, tliere exist symbols q(x, £) in Sp>G(K)[w] with w(0) =
w(20) anrf r(x, <J) in ^G(K) such that we

/^^ = 6 + R •

Proof. From the proof of Theorem 1.7 In Chap. 10 of [12] we have

ff(VP,) = Os- e-b'Vq'tf + ly, x + y,

for

f i
where F^(x'; ^9 {') = F^(x'9 {' 4- 0(^ + {'))dfl, and z = P^V; f, {') Is the

Jo
Inverse function of x' = F^(z; ^5 (J'). Now, we write

iy, x

with x e 7(K) satisfying (1.8). Then, using Lemma 4.2-ii) In [22] we obtain the
lemma. O.E.D.

First, we Introduce symbol classes which we use In the following sections.
Let p(i, x, £) be a symbol with a parameter r. In order to simplify the notation
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below, we also denote by SpidiG(K)iwJ a class of symbols p(t, x, £) satisfying the
following: p(t, x, £) is a continuous function in (?, x, £) with all continuous
derivatives with respect to x and £; belongs to Sp><5>G(K)[w] for any fixed t and
for an M independent of t the formal norm ||p(t, •, -);^ll *s bounded in
t. Similarly we use SWFlidtG(K)[w'] and $G(K) for classes of symbols p(f, x, £)
depending on a parameter t and p(t, x, £) belong to the corresponding symbol
classes.

Let C be a parameter not less than 1 and denote

(3.1)

where I' is an integer in (A-l), g(x) is in (A-3), a is defined by (4) and
a) = l/(l + 1). In what follows, <5 is always equal to (1 — a)/l'. Following [17]
we introduce

Definition 3.1. i) Let p(t, x, £; Q be a symbol with a parameter t and
£. For real numbers m, m', m" and p with d ^ p :g 1 we say that p(£, x, £; C)
belongs to a class Sps,,G(K)[m, m', m"] if p(t9 x, {; C)/{/^(x, ^ Qm'h(t, x, {; Cf"} be-
longs to S™8tG(K) and its formal norm

||p; M; [m, m', m"]|| = ||p(f, -, •; C)/{M'5 S Cr'*fe ', '\ C)m"}; M ||

is independent of t and C- Moreover, we say that a symbol p(t, x, <!;;£) in
Sp,a.G(ic)[^'w/>'w"] belongs to a class SpfjiG(IC)[>i, m', m"] if p ( t 9 x 9 £ , £ ) is also
infinitely differentiate with respect to t\ dt

yp(t, x, £ ; C) belongs to 5p55jG(K)[m, m',
m" — 7] for any 7 and there exist constants C and M independent of 7 such that

\\d?p(t9 -, •; C); M; [m, m', m" - y]|| ^ CM^yl .

ii) Let p(t, x, ^; Q be a symbol in Slj(5jG(K)[m, mf, m"]. We say that p(f, x, ^; C)
belongs to a class S1>ifG(ie)[m, m', m"] if p(t, x, ^; Q satisfies in addition

x (jgi- + jS!K

x fcfe x, £ Cr"'7 /or | c ^ | ^c

for a constant c > 0.
iii) Let p(t, x, ^; Q be a symbol in S l j5jG(K)[m, m', m"]. We say that a

symbol p(t, x, £ ; £ ) belongs to a class SfT.F1>ajG(K)[m, m', m"] if (d/pfo x, <!;;
^ Om'M^ ^ ^ C)m""y} belongs to 5FwV,«,G(K) and for a formal symbol

t, x, £; Q, p(r, x, ^; C) has uniform estimates similar to(1.2)-(1.3) with respect
to t and C-
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Remark 1. For the symbols ji(x9 f ; Q and h(t, x, f ; £) in (3.1) we have
, f ; 0 e Sifa.G<K)[0, 1, 0] and fcfc x, £ C) e Sl5,,G(K)[0, 0, 1].

2. For every p(f, x, £; C) e Sl5<5>G(K)[m, m', m"] we set p0(t, x, £; Q =
p(t, x, f; C) and p/t, x, & f) = 0 for j ^ 1. Then, .̂(t, x, & C) is a formal sym-
bol associated with p(t, x, <!;; C). So, we can regard symbols in SljgjG(fC)[m, m', m"]
as symbols in SWFltdiG(K}[m,m'9m"].

For a symbol class of Hermite operators we introduce

Definition 3.2 (cf. [3]). Let m and m' be real numbers. We say that a
symbol p(t,x,£) belongs to a class ^^(^[m, m'] if p(£, x, f) satisfies

x

for a positive constant e, where //(x, £) = (^(x)2l'<O2(1~ff) + 1)1/2 (= A*(x, 5; 1)).

Remark. In [17] we assumed an estimate for derivatives of symbols
p(t, x, £) of Hermite operators with respect to t. But, in the following we do
not need estimates for derivatives of p(t, x, £) with respect to t.

Lemma 330 Let h(t, x, ^; C) fee fl symbol in (3.1). TAen, tftgre exists a
d SMC/I t/iat for C = Ci the operator h(t, X, Dx; Q has an inverse operator
h(t, X, Dx; f)"

1 and it has the form

(3.2) h(t, X, Dx; C)-1 = p(f, JT, /),; C) -h r(t, X, D,; C)

wiffe symfeo/ p(r,x, (J ;C) in SWFlia§G(lc)[0,0, -1] and r(t, x, & C) w *Gw

Proof. Set Pl(t, x, {; C) = fc(t, x, f ; Q'1 (e S°1>5jG(f£)[0, 0, - 1]). Then, by
Proposition 1.4 there exist symbols p2(t, x, £; Q in SWFlfiiG(je)[5 - 1, — I/I', 0]
and r^t, x, £; f) in ^G(K) such that

Pl(t, X9 Dx- C)fc(t, Z, Dx; C) = / + p2(r, X, Dx; C) 4- M*, X, Dx; C)

holds for C"1r(r, x, {; C) is bounded in ^G(K). Consider p2(f, x, ^; Q is the
symbol in SWFltdtG(K)[Q, 0, 0]. Then its formal norm is estimated by

So, from Proposition 1.9 and discussion in Section 5 of [22], there exists an
inverse operator of 1 + p2(t, X9 Dxi Q -f r^t, X, Dxi C) with the form

(I + p2(t, X, Dx; C) + r,(t9 X, Dx; C))'1 = p3(t, X, Dx; C) + r2(t, X, Dx; 0

for p3(t, x, {; C) e S*Wlia§G(IC)[0, 0, 0] and r2(t, x, {; C) e @G(K) if C ̂  Ci for a large
d. Set

H-1 = (/ + p2(t, X, Dx- C) + r,(t9 X, Dx; QrlPi(t, X, Dx; Q .
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Then, H"1 is a left inverse operator of h(t, X, Dx; Q and it has the form
(3.2). It easily follows that H~l is also a right inverse operator and this
concludes the proof. Q.E.D.

For %(£) in y(K) with (1.8) we define

l/2
(3.3) A0(t, x, £) = £ ajtj.(t, x)Gj£j.(l -

W

Then, the (modified) characteristic roots of L in (6) are

(3.4) *,±(t9x,t)=±tlg(xf'i0(t9x,t).

Lemma 3.4. Let ^+(t, s; x, £) fee phase functions corresponding to A±(t, x, £).
Then, ^±(£, s; x, £) belong to ^G(K}(c\t — s\) for a constant c, and $±(t,sm,x, £,) — x-£
belong to Sli0fG(K) and satisfy

(3.5) f±(t, s;x,t)-x-t= ±g(xY 6l^(0, x, rx<j>±(9, s; x,
Js

This lemma follows from Proposition 3.1 in [22] and Proposition 3.1 in
[15].

Lemma 3.5. Define

(3.6) l(t, x, £; C) = {tl + r'M*, fc fr0" exp (-t'+V(*. f ; 0/0}

x {^(xy'Ao(t, x, £) + iC<O" exp (-MX, ^ 0/0}

with A0(t, x, 0 o/ (3.3). Then, I(t, x, £; Q belongs to SliaiG(K)[cr, 1, /] awd

(3.7) |I(t, x, <^; 01 ^ Ch(t, x, & tfp(x, ^ £)<£>*

/zo/rfs w/t/i a positive constant C independent of C- For any fixed C we have

(3.8) l(t, x, fc C) - tlg(xf'^(t, x, {) e ̂ 1,,,G(K)[a, a>] .

. Set /1 = tI + C<"IMx,f;Crf l"exp(-tI+V(x,{;0/0 and /2 =
ff(x)l'A0(t,x,f) + »C<«>'exp(-Mx,f;0/C). Then, writing p(x,t; f) simply by
ji, we have

/! ^ t' ̂  2~'(t + O"")'

when t S C>~ro and

/! ̂  (Fp-^e-1 ^ 2~le-\t + O'10)'

when t ^ C™^"10, since we have 0 ^ t ^ T. Similarly, we have

)''l0(t, x, f )|

, <^; CXO* •
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Combining these results we have (3.7). For the proof of (3.8) we write

JL(t, x, £ 0 - t*g(xn<>(t, *, {)

'A0(r, x, 0 4- if<O" exp (-/*(x, & 0/0}

Then, we get (3.8) since we have |tIC<CXexp(-|i(x, £; 0/0 1 ̂  C<O'rt*, ^ x

exp( — etl+ 1//(x, 0) with constants C and s depending on £. Q.E.D.

Let {A,.(t, x, 0}j°=i be a sequence of A/t, x, £) = l+(t, x, f ) or A/r, x, 0 =
A_(t, x, 0? and let ^-(t, s) = ^-(t, s; x, 0 be the phase function corresponding to
Aj-(f, x9 0. Then, using Proposition 2.4 In [21], the equation

09)V ' ; = ,+1

(AV = x, *sv = £; t0 = t, tv+1 = s)

has a solution {*£ ^}}=1 = {^, ^}]=1(ts ?
v

s s; x, {) for ?v = (f l s . . . . tv)
satisfying

(3.10) O g s ^ g — g*! ^ t^ T;

if 7i is sufficiently small. Hence, a multi- # -product 0v+1=@v + 1(t9 1\ s; x, f) =
(^(t, tj # ^2(tlf t2) # • • • # ^v+1(tv, s))(x, 0 of ^--i? ^ x, 0? j = 1, . . . , v + 1, Is
defined by

(3.11) 0V+1 = (4j(tj-l9 tjl X~ E) - X'E + v + 1 t v , s; X],

(^v° = x) .

Lemma 3.6. Let {X{9 El}]=l = {XJ
V, 3i}v

j=1(t9 1\ s; x, ^ &e a solution of (3.9).
TTien, if 7\ is small enough, we can find a positive constant C such that

(3.12) C-l\g(x)\£\g(Xb\£C\g(x)\ (./ = 1, . . . . v)

/or Fv satisfying (3.10).

Froo/. From (3.9) and (3.5) we have

(3.13) X{-x=
m=l

m=l

~\ s?we..
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where ft(t,x9t)=±A0(t,x9£) when Am(t, x, {) = ±tlg(x)l'A0(t, x, f). Hence,
setting

G = max{|0(x)|,

we have

| - \g(x)\ | ̂  |0(^) - g(x)\ ^ C\Xi - x\

Consequently, if 7i satisfies C'Ti ^ 1/3 we have

and (3.12). Q.E.D.

Lemma 3.78 Assume a' satisfies (5). 77ien, /or anj; positive constant s
there exists a constant M = ME such that the multi- # -product ^v+1 of (3.11)
satisfies

(3.14) l

^ CM~l«+"a!*j8!*<5>~1"1 exp [ef I

/or (t, tv, s) satisfying (3.10), where Tt is t#ie constant in Lemma 3.6.

Remark. We note that we can take the a' satisfying (5) since we have
(1 + (/' - l)<T)/(/'ic -/' + !)< I/K by /' ^ 2 and K ̂  2.

Proof. Set

Jv+1 = Jv+1(t, t
v, s; x, £) = (Pv+1(t, t\ s;x,Z)-x-£.

Then, from (1.25) in [13], (3.13) and (3.5) it follows that

and similarly it follows that

tm~l Oll°m(0y x, F^M(0, tm;
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Hence, using (2.12) in [22] and Lemma 3.6 we have for a 4- j8 + 0

(3-15) | W+1| * ^^.

max {(|a + jS| - 1)!

where the second summation in the second member of (3.15) is taken over all
( j 9 < * ' 9 * l 9 . . . 9 < x j 9 p ' 9 p l 9 . . . 9 P j ) such that O ^ j ^ / ' , a' + «! + ••• + a, = a, j8' 4-
Pi+'" + Pj = P> and a,v 4- $, ^ 0 ( / = 1, . . . , j). Now, we set

JV+I.M = exp(- Vv+1)d%d£ exp (Jv+1) .

and use the induction on |a 4- j8|. Then, since we have for (a, j8) + 0

Jv+l,a,p = V$ MX Jv+l,<z-a",p-p" + ^v+l,a-a",0-0"^f ^x ^v+1

with some (a'7, jB") satisfying a" ^ a, jS'; g J? and |<x" + ]8"l = 1, we can prove
from (3.15)

(3.16) |

x max max{(|a + ^ + a' + j8'| - m)!
l^m^|a+)5|

x (|a + P + a' 4- j8'| -</)!K

for (f, P, s) satisfying (3.10), where ^ = p(x9 £; C) and the second maximum in
(3.16) is taken over all j satisfying m ̂  j ^ min(|a + P + a' + /T|, m/'). Hence,
we have

(3.17) |5|5jf exp ( v + 1 ) | g Mr|a+^' max max {(|a + P\- m)l
l^m^|a+^| j

x da + p\ -^p-^t'+vr
for (r, P, s) satisfying (3.10). Here and in the next, max means that we take

j
maximum over all j satisfying m g j ^ min(|a + j8|, ml1). From (5) it follows
that (a + &)/(K — 1 4- I/I') ̂  tr'. Hence, using (3.17) we can prove

Mr|a+^ max max {(|a + j8| - m)!
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max max

x <£>-!«< exp

Hence, we have (3.14). Q.E.D.

§4 Systemlzation and Perfectly Diagonalfzatlon

In this section we reduce the Cauchy problem (8) of (6) to a system
equivalent to (8). In order to simplify the notation below, we write p(t, x, <!;; £)
simply by p(t, x, £). We also omit to describe the terms of regularizers and
the equality means that it holds modulo regularizers unless otherwise stated.

First, we factorize the operator L of (6). Let A+(t, x, <J) be characteristic
roots of L, which is defined by (3.4). Then, from Proposition 1.4 there exists
a symbol b^(t9 x, f) in SWFlfatG(IC) [0,0,0] such that

(4.1) L = (A - A_(t, X, DJ)(A - A+(t, X, DJ)

where

J=l

which belongs to 5 l t^ fG(K)[l, 0, 0]. Now, we set

b(t, x, f) = tkg(x)k'b0(t, x, f )/(2l(f, x, f))

with 1(£, x, £) in (3.6). Then, from (3.7) we have

(4'2) '^ L % X, «) 6 SM,G(K)[<7 + (5, - I//', - 1

because from (4) and CD = l/(l + 1) we have

o)(/ - fc - 1) - <r/(l - tr) g 0 ,

and hence we have
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\b(t, *, {)| ̂  a*to(x

with a constant C independent of £, where m = k'/l' — [a — (I — o)(l — k'/l')}/
(1 — a) ̂  1 - co(l - k — 1). Now, we write (4.1) in the form

L = (Dt-l-(t,X,Dx)-b(t,X9Dx))

x (A - A+(£, Jf, DJ + 6(f, X, DJ)

+ 62(t, X, Dx) + f(r, Jf, Dx)

with

(4.3) i2(*, x, f ) = -Drife ^ f ) -

and

(4.4) rfe x, {) = 26(t, x, {) (l(t, x3 f ) - t'0 (x)1' A0(t, x,

Here, for symbols p/t, x, f), j = 1, 2, we denote [pt o p2]1?em(1)(£, x, f) =
^M^iW^zW)^ 0 —Pi(t, x, ^)p2(t, x, f) (see Remark of Proposition 1.2 for the
notation aM(-)). Now, we use (3.8). Then, we have f e J^1>(5jGOc)[20-, 2co].
Moreover, using (4.2)-II) for the second term in (4.3) and (4.2)-I) for
other terms we find that b 2 ( t 9 x 9 £ ) belongs to SWFltStG(K)[2(T909 —2].

Let h(t, x, f) = h(t, x, f; Q be a symbol In (3.1) and fe(f, X, BJ'1 be the
inverse operator constructed In Lemma 3.3. Here and In what follows we
assume C ^ C i - F°r a function u(t9x) we set I7(r, x) = \u^(t9 x), u2(t9 x)) with

Ul(t, x) = h(t, X9 Dx)~
l(DxYu and u2(t, x) = (Dt - A+(t, X, Dx) -f b(t, X9 Dx))u.

Then, by the same discussion In [11], we can prove that solving the Cauchy
problem (8) for (6) is equivalent to solving the Cauchy problem

(4.5)

for

(46) „ „ ^ , fb(t9X9Dx)-b3(t,X9Dx) -h'i<
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where
_ (l+(t9X9Dx) 0

(47) ®(t} = ( 0 l-(t,X9

&3fe x, f ) = MCA - A+fc *, Ac) + b(t, X, Dx\ h-1<D

>GOc)[<7,0, -1]),

with h = h(t,X9Dx)9 R = r(t,X,Dx), and /^^(t) is a matrix of regularizers.
Summing up we have proved

Proposition 4.1. Let & be a hyperbolic system defined by (4.6). Then, we
can reduce the problem of solving the Cauchy problem (8) is reduced to the
problem of solving (4.5) for a system <£ of (4.6).

Next, we diagonalize the operator

'b(t,X,Dx) -h~\Dx(4.8) i t .
b4(t, X, Dx) - b(t9 X, Dx)i

perfectly modulo Hermite operators.

Proposition 4,2 (cf. Theorem 2.2 of [17]). Let ^ be a hyperbolic system
of the form (4.8). Then, there exist a diagonal pseudo-differential operator F(t)
with the symbol in SWFltdtG(K)[a9 0, —1] and a pseudo-differential operator P(t)
with a symbol in SWFlfaiG(K)[0, -1, -(/+ 1)] such that

(4.9) J2i(/ + P(t)) = (I + P(t))(Dt - 2(t) + F(t)) + R(t) + R^^t),

where R(t) and R^^W are matrices of pseudo-differential operators with the
symbols in ^i,d,G(K)l_(7, &Q and &G(K), respectively.

Proof. Set
'b(t9 X, DJ 0

0

and we will find an operator P = P(t) with the symbol in SWFlidiG(K)[09 — 1,
— (/ + 1)] and with zero diagonal elements such that it satisfies

(4.10) 9P-P9 = Pt + ff + BP-PB- PB'P

mod JflfaiGOc)|>, co] + «G(K) ,

where 0(Pt) = Dta(P). Then, defining a pseudo-differential operator F(t) by
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we find that P(t) and F(t) satisfy (4.9) with an Hermite operator R(t) and an
regularize! R^W-

In order to find P(t) we set

~ = (2i(t9X9Dx) 0
V 0 -l(t,X9Dx)

with l(f, x, {) in Lemma 3.5. Assume that ff(P(t))eSWFltdtG(K}[09 —19

-(1+ 1)]. Then, by (3.8) the relation (4.10) is equivalent to

(4.10)' §P - P§ = Pt + B' + BP - PB - PB'P

Since cr(B(t)) and aM(ff(t)) belong to SWFlj5>G(K)[t75 0, -1], they have formal
symbols JV^jW) anc^ Za(^jW)- Now, we find a(P(t)) as a formal
sum E(T(PV,J with a(PVjm)eS l5 ,>G(K)[-v(l-^-(m-M),-(m +!)(!+!)]

v,m

satisfying

(4.11) <r(P0,0) = o(AYla(B'0) ,

~
(4.12) (j(P0.J = ff(A)

( m i l ) ,
m'+m"=m-2

and

(4.14)

v'+v"+|y|=v

V l + v 2 v 3 + | y l , m ' + m m _ 2

+Iy2 l+ |y3 l=v
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v' + M=v ,

(v = 1, m = 1).

Here, when m = 1, we mean that the last term in (4.12) and the third term in
(4.14) do not appear, and

~ = (2l(t9X9Dx) 0 \
V 0 -2l(t9X9Dx))'

Then, as in Section 6 of [22] we find that <7(Pv>m) satisfy

)!*+ (!/*!

by using a formal norm

+ vf- + ( i j s i + V ) K -
x <{>v+w(fcl+Vr+1fc7} (cf- [4], [7]) .

First, we use discussion in pp. 314-317 of [4]. Then, for a sequence {sm} of
(2 x 2)-matrices sm of complex numbers satisfying

II W 1 1 = 1 E |sm|2M2
2-m!-n <cx)

U=o

we find a matrix ^(0) satisfying

For a fixed v we apply this result to sm = <T(Pv,J(t, x, fc C)(fc(t, x, {; C)'+1 x
/i(x, <^; 0)mm! with a parameter t, x, £ and (. Then, we find a function
i^v(0; c, x, (J) = i^v(0; t, x, <^; C) satisfying
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x ((|/?| + v)P + (|/J| + v)!^1

x <£>~ |a|~vli~')'|0|~J' for

N-l 0m

9;t9x^)- ^ — -s m ( t ,x ,<
m=o ml

x ((|0| + v)!K + (|j8| + v)!K(1-

x ^yW-»h-v\6\N-j for

Define pseudo-differential operators Pv as

Then, <r(Pv) satisfy

(4.15)

x ((|/J| + v)!K

x

' - Z *tfV J
m = 0

Now, we set

a(R0) = {a(9)a(P0) - <r(P0)a(®)} - {Dta(P0)

E
v' + v" + |y|=v 7'

I
Vi+v2+v3+ |yi|+

+ I, ^H
=
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Then, from (4.15) we have

(4.16) \<r(RJI&\ ^

for an e > 0 independent of v. Next, we apply Lemma 1.3 to formal symbols
27a(Pv) and Za(Rv). Then, we find symbols a(P) in SWFltdtG(K)[09 -1, -(/ + 1)]
and o-(jR) in ^i^c^lX &>] satisfying

(4.17)
\ v<N J

'!((|)8| + ^)!K + (|)8| + N)

*l~N far <O^c( |a |

and

(4.18)
v<iV

JV)!K

x

for <O ^ c(|a| + Af)K .

Consequently, from (4.16)-(4.18) we obtain (4.10)' and (4.9) for a Hermite opera-
tor £(0 and a regularizer Rx,2(t)- Q.E.D.

Since h(t, x, {; C)i+V(t, x; f) ^ C, the formal norm ||<7(P); M|| of <r(P)(t, x, ^ z)
satisfies

If we consider a(P) as a symbol in S?j5)G(K). Hence, using Proposition 1.9 we
find an inverse operator (/ + P)"1 of 1 + P if £ Is sufficiently large. We fix
such a C till the end of this paper. Then, from (4.8)-(4.9) we have for the
system <e of (4.6)

(4.19) &(l + P) = (1 4-

with

^2 = A - ®(t) + F(t) + (! + P)
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where R(t) and Rmti(t) are operators in (4.6). We note that we used the
similar discussion in the proof of Proposition 1.4 in order to obtain the fact
that the main symbol of (1 — P)"1 times an Hermite operator also belongs to

Considering Proposition 4.1 and (4.19), Theorem 1 is reduced to the follow-
ing theorem.

Theorem 3. Let ®(t) be (4.7) with A±(t, x, f) in (3.4), F(t) be a diagonal
matrix of pseudo-differential operators with symbols in S l ta>G(K)[<7,0, — 1] and
R(t) and R^t) be matrices of pseudo-differential operators whose symbols belong
to ^i.a.GooIX ^1 an& ^G(K)> respectively. Then, for the Cauchy problem (4.5)
of a system

(4.20) J2? = A - 3(t) + F(t) + R(t) + KJf)

we can construct the fundamental solution E(t9 s) in the form

E(t, s) = X I++(t, s)E±(t, s) + EQ(t, s) + EJt, s)
+

for 0 :g s ^ t ^ r0 with a small constant T0 and the symbols eft, s; x, £), j = 0,
±, oo, of Ej(t,s) satisfy (10)-(12).

§5o Construction of the Fundamental Solution for a Hyperbolic

We consider a hyperbolic operator

(5.1) L = Dt - A(t, X9 Dx) + f ( t , X, Dx),

where A(f, x, £) is a real-valued symbol in Si>0jG(K) and f ( t 9 x , £ ) is a symbol
in Slt^G(K)[(7, 0, —1] with OK < 1. Let ^(f, s; x, £) be a phase function corre-
sponding to A(r, x, £) and denote by I^(t9 s) the Fourier integral operator with
the phase function $(t, s; x, £,) and the symbol 1. Set p = 1 — d. Then, we
have

Proposition 5.1. The Cauchy problem for L of (5.1) has a fundamental
solution E(t9 s) in the form

(5.2) E(t, s) = Ifi, s)(E(t, s) + E^t, s ) ) .

In (5.2) E(t9 s) is a pseudo-differential operator with the symbol e(t, s; x, £) in
Sp,GOc)I>o] for

(5.3) w0(0) = exp [Ceff log {(tO*1-* + l)/(s0w(1-ff) + 1)}] (C > 0)

^^(f, s) is a regularizer in $GM.

Proof. We seek E(t, s) in the form



FUNDAMENTAL SOLUTION IN GEVREY CLASS 199

Operate L to E(t, s). Then, we have

(5.4) LE(t, s) = (/,(t, s)\ V(t, s) + !#, s) Vt(t, s)

- {A(t, X, D,)/,(t, s)} V(t, s) + {f(t, X, D,)It(t, s)} F(t, s) ,

where (7^(t, s))t is the Fourier integral operator with the symbol D,$(t, s; x, £)
and Vt(t, s) is the pseudo-differential operator with the symbol Dta(V(t, s)). Use
(2.2) with N = 1, p = 1 and w(0) = 6 in order to estimate the third term in (5.4).
Then, there exist symbols b^t, s; x, £,) in S°<SiG(K} and r^(t, s; x, £,) in &GM such
that

(It(t, s)\ - A(t, X, DJIfa s) = &!.,(*, s; X, Dx) + rx(t, s; X, Dx) .

Hence, using Lemma 2.5, Lemma 2.3 and Lemma 2.6 we find symbols
b2(t, s; x, {) and r2(t, s; x, ^) such that (t + <O~*K1"*))&2 6 ^,a>G(K), r2 e ^G(K) and

LE(t, s) = It(t, s)Vt(t, s) + lt(t, s)Ir(t, s)(P(t, s) + U(t, s)){b1.^(t, s; X, Dx)

+ ri(t, s; X, Dx) + f(t, X, D,)I+(t, s)} V(t, s)

= It(t, s){Vt(t, s) + (b2(t, s; X, D,) + r2(t, s; X, Dx))V(t, s)} .

Let

B(t, s) = b2(t, s; X, Dx) + r2(t, s; X, D,) .

Then, V(t, s) must satisfy

(5.5) Vt(t, s) + B(t, s)V(t, s) = 0 .

Set

Vl(t,s)=-i\' B(t',s)dt',

K+ 1(t ,s)=-i \B(t',
Js

(5.6)

,s)V,(t',s)dt'.

Then, V(t, s) = I + K(^ s) is a "formal" solution of (5.5).
v=l

Now, we estimate symbols of Vv+1(t,s). From (5.6) we have

Fv+1(t,s) = (-0v+1 f P... rB(tl9
Js Js Js

Hence, modulo regularizers Vv+1(t, s) is equal to the pseudo-differential operator
Fv°+1(t,s) defined by

Fv°+1(t,s) = (-0v+1 f r... \b2(tl9s;X9Dx)...b2(tv+l,siX9Dx)dtv+l...dti.
Js Js Js
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As In the proof of Proposition 1.5 we replace b2(tj9 s; X, Dx)9 j = 1,
. . . ,v , by b'2(tj9 s; X, DX9 X'\ where bfa, s; x, f, x') = {(1 - ^«OM')x(l

l* - *'l2r1}["/21+1fe2(*/, 5; x, 5). Then, since we have

7=1
- [log {(f0w(1-ff) + l)/(s0ID(1-'r) + l)}]v+1/(v + 1)! ,

! (t, s) is expressed by a multiple symbol

t, 5; x, \ x\ £) =
x 2 t v + 1 ? s;

and It satisfies (1.20) with

wv+i(0) = E^ff log {(t00(1-ff) + IVtsfl^1-^ + l}]v+1/(v + 1)1

and with C replaced by Q+1 for a constant Q. Note that wv+1(0)
(1.19) with w;+lie = (C£)

v+1(v + l)!~1+ff'K for a a' satisfying a < a' < I/K. Hence,
applying Lemma 1.6, Vf+1(t,s) has the form

Vv
Q

+1(t, s) = i?v+1(t, s; X, DJ + i;v+liao(r, 5; X9 Dx)

with

(5.7) |t;v+1g)| g Cv+1M-l«+^

x (|« + /J|!« + |a 4-

(5.8) I»v+i.co8}l ̂  CBCJ+1Af-^/>!«(v + l)P1+ff'K exp (-

((7 < a' < 1/K, £ > 0) .

Repeating the above discussion again we can prove that cr(Vv+l(t9 s) — V^^t, s))
00

has also an estimate (5.8). Hence, the sum ]T Vv(t9 s) has a meaning and
v = 0

E(t, s) can be written in the form (5.2) with the desired symbol e(t, s; x, f ) =
e(E(t,s)) in Sp>G(K)[w0] for w0(0) In (5.3) and a regularizer E^fas). Q.E.D.

§60 Construction of the for a Hyperfeolc System
(Proof of Theorem 3)

In this section, we construct the fundamental solution of the system (4.20).
First, we apply Proposition 5.1 to each element of Dt — 2(t) + F(t). Then, the
fundamental solution E°(t9 s) of Dt — @J(t) + F(t) Is constructed in the form
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,s) 0 \(E+(t,s) 0 \ -
0 V(M)A 0 S.(t, s)J + E"(t' S)'

where E±(t9s) are pseudo-differential operators with the symbols in Sp>G(K)[w0]
with w0(0) in (5.3) and £«,(£, s) is a regularizer in ^G(K). We seek the funda-
mental solution E(t, s) of (4.20) in the form

(6.1) E(t, s) = £°(t, s) + I ' E°(t, t')V(t'9 s)dt'.
Js

Then, V(t, s) must satisfy

P(6.2) P,(t, s) - iV(t, s) + P,(r, t') V(t', s)dt' = 0 ,
Js

where

P^(f, s) = (R(t) + U00(t))£°(t, 5).

Set

(6.3) i r,
r
v+1(£, s) = -i \ Pj(t, t')Vv(t', s)dt' (v ̂  1).

Then, we can get formally the solution F(t, s) of (6.2) in the form V(t, s) =

Z Vv(t, s).
v = l

Now, we estimate Vv+1(t,s) in (6.3). From (6.3) Vv+1(t, s) for v ^ 1 has the
form

As in Section 5 we will consider a main part of Vv+1(t, s). Then, modulo
regularizers, Vv+l(t,s) is equal to the sum of operators of the form

x g^t, rt; JT,

x g2(t!, f2; JT, Dx)...rv+1(rv, X, Dx)

x /^¥+1(tv, s)ev+l(tv9 s',X, Dx)dtv...dti .

Here ^-(t, s; x, ^) are ^+(t, s; x, ^) or ^_(t, s; x, ^) in Lemma 3.4, r7-(t, x, <J) are
symbols in ^i^^wE0'? ^1 and ^/(f/-i» f/J ^? 0 are symbols in Sp ̂ ^[w^-] with
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(6.4) vv,.(0) = exp [C0ff log {(*,_! fl*1^ + IVfyfl*1-'" + 1)}]

(^0 = ^5 ^V + l = S) '

Since rj+1(tp x, £) E ̂ I,^G(K)[O-, CD] c Slj5jG(K)[(7? 0, - 1] it follows that
& j ( t j - i 9 t j 9 X 9 D x ) r j + l ( t j 9 X 9 D x ) is a pseudo-differential operator with a main
symbol in SMtG(ie)|>/], where

(6.5) w/(0) = fl'fy + O-*1-**)-1^) •

Set *J>+1 = ^j-i> tj)#"-# fa+1(tv9 s) and <Pv+l fV+1 = #v+i(*v> 4 Then> if we

assume 0 ̂  s ^ t ^ T0, we have ^ e ^G(K:)(cT0) and ^ fV+i e ^GOO(£?O) f°r a con~
stant c. Take T0 such that T0 ^ i°/(2c) for a constant T° in Proposition 2.4.
Then, we can apply Proposition 2.4 to find symbols pf(x, f) = P j ( t j . l 9 ...9tv,s;
x, £) and f/(x? ̂ ) = ^(^-i? • - - ,tv, s; x, {) such that

(6.6) P/(x,«6SpiG(iC)[w/e] with w/e(e) = w/

for a constant c (^ 1), ̂ ^(x, £)e^G(K) and

Hence, V^+^t, s) is equal to

1 '"' r^t, X,

x PlPl . . . Pfev+l(tv, s; X, Dx)dtv ...dtl

modulo regularizers, where 0v+l = <PI> V+I.
Next, we use discussion in the proof of Lemma 2.5. Then, there

exist symbols p0(r, t\ s; x, f) = p0(t, tl9 ..., tv, s; x, 0 in -#if a. GOO !>><»] and

rosQO(r, fv, s;x, f) in «G(ie) such that

Now, we consider the Fourier integral operator P0,0v+l as a pseudo-differential
operator with a symbol

pj(t, ?v, s; x, ^) = p0(t, t\ s; x, £) exp p(*v+i ~ x • £)] .

Let o-' be a real number satisfying (5), and assume that T0 satisfies T0 ^ Tx

for a constant 7\ in Lemma 3.6. Then, from Lemma 3.7 and p0(t9 ?v, s; x, ^) e
tff\,t,G(K)[G9Gi)]9 it follows that pj(t, fv, s; x, £) satisfies

for an s > 0. Here, the term <<J>ff//(x, £)" is absorbed into exp (C<£>ff ').
Now, to each pseudo-differential operator P^9 j = 0,..., v, we assign a
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pseudo-differential operator Pf with the symbol {(1 —
+ <O2l5|x - x'\2r1}W2}+1a(P>). Then, V2(t, s) is equal to

,s) = (-0v+1 f ["... r~* P2P2...
Js Js Js

P2ev+l(tv,s;X,Dx)dtv...dtl

modulo regularizers. Let pv+2(t, ?v, s; x, |v+1, xv+1, f ) be a multiple symbol
corresponding to P$P?Pj; ...Pfev+i(tv,s; X,DX) and set

t, s; x, , xv+1, f ) = f P - - - I Pv+2fc 'v> s; x, |v+1, xv+1, £)dtv . . . dt, .
Js Js Js

Then, pv+2(t, t\ s; x, |v+1, xv+1, 0 satisfies (1.20) with v replaced by v + 1

and wv+1 ( max <{'> J replaced by wv+2 f x, max <f '"> ) . Here, wv+2(x, 0)
\ J / \ 1 /

(= wv+2(t, P, s; x, 0)) is defined by

wv+2(x, 9) = exp [-Etm/I(x, 0) + C0*

for /l(x, 0) = ItfMfe1-" + 1, w^c(0) in (6.6), wv+1(0) in (6.4) and positive con-
stants e and C. From (6.4)-(6.5) we have

n < (0)wv+1(fl) ^ (C0r fi (o + (^)"a)(i~ff))"1 n w/ce)-

x exp [C(c0)ff log {(t(cer(1-ff) + IJ^cfl)^1"^ + 1)}]

and
rt rti rtv-i v... n(o+(c0)aKi"'T i&v...dt1

Js Js Js j=l

= (log {(r(c^r(1-ff) + IV^cfl)^1-^ + !}}v/v! .

Hence, setting

'}+2(x9 9) = exp [-e^+1/i(x, 9) + C0ff']^v(c0)/v! ,

v(0) = exp [C0ff log {(t0w(1"ff) + l)/(s0w(1-ff) + 1)}]

x {9* log {(tO*1-** + ^/(sfl^1-^ + 1)}}V ,

p'v+2(t, s; x, |v+1, xv+1, ̂ ) satisfies (1.20) with v replaced by v + 1 and

wv+1 max <£ j> J replaced by wv
x

+2 x, max <£j> J. Although wv
1
+2(x, 9) is not an

\ j / \ j /
ordered function, it satisfies (1.19) and, setting
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wv
2

+2(x, 0) = exp t-stl+1ii(x, 9/2) + C(20)*f]i»v(2c0)/v! ,

Wv+2(*> f) satisfies w^*, 0') ^ wv
2

+2(x3 0) when 072 ̂  0 ̂  20'. Hence, we can
use the discussion of proving Lemma 1.6 and we find that V*+i(t, s) is a sum
of pseudo-differential operators v^+1(t, s; X, Dx) and v*+itao(t9 s; X9 Dx) with
symbols v*+1(t, s; x9 f ) and v*+ltao(t, s; x, £) satisfying

(6-7) li^ffife s; x, 5) ̂  C'M-'^vr1

x (|a + P\\* + |a +

x exp [-^+%M

x (|a 4- j8|!IC + |a +

x exp [-erI+1|flf(x)

(6-8) 1^+i.coSU^ s' x' f )l ^ CvC.M-^v!-1+''"/J!" exp (-

Here, we used a < a' in (6.7). Summing up, we can prove that modulo regular-
izers Vv+l(t,s) is equal to a pseudo-differential operator Vf+1(t,s) whose symbol
satisfies the similar estimate to (6.7). We can also prove that Fv+1(r,s) —
V?+1(t,s) is a pseudo-differential operator with a symbol satisfying (6.8).

From the above discussion we can prove that the operator

EO(t,t')V(t',s)dt'

in (6.1) can be written in the form

E0(t, s) + £Jt, s)

with symbols e0(t, s; x, £) and 6^(1, s; x, £) satisfying (11) (12), respectively.
We note that by a < a' the operator E°(t, s) can be written (modulo regular-
izers) in the form

I^E+(t9 s) + I+_E_(t9 s)

with pseudo-differential operators E±(t,s) whose symbols satisfy (10). Conse-
quently, we have proved Theorem 3.
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