Fundamental Solution for a Degenerate Hyperbolic Operator in Gevrey Classes

By

Kenzo SHINKAI* and Kazuo TANIGUCHI*

Introduction

In [9] Ivrii proved that the Cauchy problem of a degenerate hyperbolic operator

(1)
$$
D_t^2 - t^2 D_x^2 + a t^k D_x
$$

with $l - 1 > k \ge 1$ is well-posed in a Gevrey class of order κ if and only if $1 \le \kappa < (2l - k)/(l - k - 1)$ and the Cauchy problem of

(2)
$$
D_t^2 - x^{2l'} D_x^2 + a x^{k'} D_x
$$

with $l' > k' \geq 0$ is well-posed in a Gevrey class of order κ if and only if $1 \le \kappa < (2l' - k')\ell' - k'$. Combining these degeneracy we study, in the present paper, second order hyperbolic operators including

(3)
$$
D_t^2 - t^{2l} x^{2l'} D_x^2 + a t^k x^{k'} D_x
$$

as a prototype. Let σ be a constant

(4)
$$
\sigma = \max((l-k-1)/(2l-k), (l'-k')/(2l'-k')) \quad (<1/2)
$$

and σ' be a constant satisfying

(5)
$$
\sigma < \sigma' < 1/\kappa \,, \qquad \sigma' \geqq (1 + (l' - 1)\sigma)/(l'\kappa - l' + 1)
$$

for κ such that $2 \leq \kappa < 1/\sigma$. We construct the fundamental solution for the Cauchy problem and show that it is estimated by $C \exp(C_1 \langle \xi \rangle^{\sigma'})$. Then we can obtain not only the well-posedness of the Cauchy problem but also the branching properties for the propagation of Gevrey singularities. We note that

Communicated by S. Matsuura, December 24, 1987.

¹⁹⁹¹ Mathematics Subject Classifications: 35L80 secondary 47G30

^{*} Department of Mathematics, University of Osaka Prefecture, Sakai, Osaka 591, Japan.

Itoh and Uryu [8] have already proved that (3) is well-posed in a Gevrey class of order κ with $1 \leq \kappa < 1/\sigma$ for σ defined by (4).

The operator treated in this paper is

(6)
$$
L = D_t^2 - t^{2l} g(x)^{2l'} \sum_{j,j'=1}^n a_{j,j'}(t, x) D_{x_j} D_{x_{j'}} + t^k g(x)^{k'} \sum_{j=1}^n a_j(t, x) D_{x_j} + c(t, x) \quad on \quad [0, T].
$$

We assume the following:

- $(A-1)$ $l 1 \ge k \ge 0$, $l' \ge k' \ge 1$ and $l' \ge 2$.
- $(A-2)$ $\kappa \ge 2$ and $\kappa \sigma < 1$ with σ in (4).

(A-3) The function $g(x)$ belongs to a Gevrey class of order κ with a uniform estimate

(7)
$$
|D_x^{\alpha}g(x)| \leq CM^{-|\alpha|}\alpha!^{\kappa} \quad \text{for all} \quad x \in \mathbb{R}^n.
$$

The coefficients $a_{j,j}(t, x)$, $a_j(t, x)$ and $c(t, x)$ are analytic in t and of a Gevrey class of order κ in x with a uniform estimate (7).

 $(A-4)$ $a_{i,i'}(t, x)$ are real-valued and there exists a positive constant C such that

$$
\sum_{i,j'} a_{j,j'}(t,x)\xi_j\xi_{j'} \geq C|\xi|^2 \quad \text{for all} \quad (t,x) \in [0,T] \times R_x^n.
$$

Then, we have

1. We assume $(A-1) - (A-4)$. Set $\rho = 1 - (1 - \sigma)/l'$. Then, for a *small* T_0 (\leq *T*) we can construct the fundamental solution E(t, s) for the Cauchy *problem*

(8)
$$
\begin{cases} Lu = 0 & \text{on} \quad [s, T_0], \\ u(s) = 0, & \partial_t u(s) = u_0 \end{cases}
$$

with $s \in [0, T_0)$ *in the form*

(9)
$$
E(t, s) = \sum_{\pm} I_{\phi_{\pm}}(t, s) E_{\pm}(t, s) + E_0(t, s) + E_{\infty}(t, s) .
$$

Here, $I_{\phi_+}(t, s)$ *are Fourier integral operators with the symbol* 1*, and E_j(t, s), j* = 0*,* \pm , ∞ , are pseudo-differential operators with symbols $e_i(t, s; x, \xi)$ satisfying

(10)
$$
|e_{\pm(\beta)}^{(\alpha)}(t,s;x,\xi)| \leq CM^{-|\alpha+\beta|}((\alpha+\beta)!^{\kappa} + (\alpha+\beta)!^{\kappa\rho}\langle\xi\rangle^{(1-\rho)|\alpha+\beta|}) \times \langle\xi\rangle^{-|\alpha|} \exp(C_1\langle\xi\rangle^{\sigma'}),
$$

(11)
$$
|e_{0(\beta)}^{(\alpha)}(t,s;x,\xi)| \leq CM^{-|\alpha+\beta|}((\alpha+\beta)!^{\kappa}+(\alpha+\beta)!^{\kappa\rho}\langle\xi\rangle^{(1-\rho)|\alpha+\beta|}),
$$

$$
\times \langle\xi\rangle^{-|\alpha|}\exp(C_1\langle\xi\rangle^{\sigma'}-\varepsilon_1t^{l+1}|g(x)|^{l'}\langle\xi\rangle^{1-\sigma}),
$$

for a positive constant ε_1 *and the constant* σ' *satisfying* (5). Moreover, for any *multi-index* α *there exists a constant* C_{α} *such that*

(12)
$$
|e_{\infty(\beta)}^{(\alpha)}(t,s;x,\xi)| \leq C_{\alpha} M^{-|\beta|} \beta!^{\kappa} \exp(-\varepsilon_2 \langle \xi \rangle^{1/\kappa})
$$

for a positive constant s2.

We remark that the condition $\sigma' \geq (1 + (l' - 1)\sigma)/(l'\kappa - l' + 1)$ in (5) and the analyticity of the coefficients of (6) enable us to construct the fundamental solution of (8) as a sum of Fourier integral operators with only simple phase functions as in (9).

Combining this theorem with discussion in $[18]$, we obtain the branching properties as follows. Let $WF_{G(\kappa)}(u)$ be the Gevrey wave front set of a ultradistribution u (cf. $[7]$, $[23]$), and, setting

$$
\lambda_{\pm}(t, x, \xi) = \pm t^{l} g(x)^{l'} \left\{ \sum_{j, j'} a_{j, j'}(t, x) \xi_{j} \xi_{j'} \right\}^{1/2},
$$

let $\{q^{\pm}, p^{\pm}\}(t, s; x, \xi)$ be the solution of

$$
\begin{cases}\n\frac{dq^{\pm}}{dt} = -\nabla_{\xi} \lambda_{\pm}(t, q^{\pm}, p^{\pm}), & \frac{dp^{\pm}}{dt} = \nabla_{x} \lambda_{\pm}(t, q^{\pm}, p^{\pm}) & (s \leq t \leq T_0), \\
\left\{ q^{\pm}, p^{\pm} \right\}_{|t=s} = (y, \eta)\n\end{cases}
$$

and $\{\tilde{q}^{\pm}, \tilde{p}^{\pm}\}(t, s; y, \eta)$ be the solution of

$$
\begin{cases}\n\frac{d\tilde{q}^{\pm}}{dt} = -\mathcal{V}_{\xi}\lambda_{\pm}(t, \tilde{q}^{\pm}, \tilde{p}^{\pm}), & \frac{d\tilde{p}^{\pm}}{dt} = \mathcal{V}_{x}\lambda_{\pm}(t, \tilde{q}^{\pm}, \tilde{p}^{\pm}) \quad (0 \leq t \leq T_{0}), \\
\{\tilde{q}^{\pm}, \tilde{p}^{\pm}\}_{t=0} = \{q^{\mp}, p^{\mp}\}(0, s; y, \eta).\n\end{cases}
$$

Theorem 2. Consider a Cauchy problem (8) with $s < 0$. Then we have, *when* $t > 0$ *, for a solution* $u(t)$ *of* (8)

(13)
$$
\mathrm{WF}_{G(\kappa)}(u(t)) \subset \Gamma_+(t) \cup \Gamma_-(t) \cup \tilde{\Gamma}_+(t) \cup \tilde{\Gamma}_-(t) \cup \Gamma_0(t) ,
$$

where

$$
\Gamma_{\pm}(t) = \{ (q^{\pm}(t, s; y, \eta), p^{\pm}(t, s; y, \eta)); (y, \eta) \in \text{WF}_{G(\kappa)}(u_0), |\eta| \gg 1 \}, \n\widetilde{\Gamma}_{\pm}(t) = \{ (\widetilde{q}^{\pm}(t, s; y, \eta), \widetilde{p}^{\pm}(t, s; y, \eta)); (y, \eta) \in \text{WF}_{G(\kappa)}(u_0), |\eta| \gg 1 \}
$$

and

$$
\Gamma_0(t) = \{(y, \eta); (y, \eta) \in \text{WF}_{G(\kappa)}(u_0), g(y) = 0\}.
$$

This theorem corresponds to the branching property for the C^{∞} -case, that is, for the Cauchy problem of the operator (1) with $k = l - 1$ (see [1], [24] and [18]). We note that the first author gave $WF_{G(x)}(u(t))$ exactly by using the exact form of the fundamental solution for the operator (1) with $l - 1 > k \ge 0$ (see [19], [20]). In $(A-2) - (A-3)$ we assumed $\kappa \ge 2$. But, in case $1 < \kappa < 2$, the problem (8) for (6) is always $\gamma^{(k)}$ -well-posed for any lower order terms and in this case the propagation of singularities (13) for a solution of (8) is obtained in [15].

The outline of this paper is as follows. In Sections 1 and 2 we give caluculus of pseudo-differential operators and Fourier integral operators. In Section 3 we introduce symbol classes of pseudo-differential operators and give lemmas. In Section 4 we reduce the Cauchy problem (8) to the Cauchy problem of a perfectly diagonalized system and state Theorem 3, which is the version of Theorem 1 for a hyperbolic system. Sections 5 and 6 are devoted to the proof of Theorem 3.

§1. Calculus of Pseudo-differential Operators

Throughout this section the real numbers ρ , δ and κ always satisfy $0 \leq$ $\delta \le \rho \le 1$, $\delta < 1$, $\kappa(1 - \delta) \ge 1$, $\kappa \rho \ge 1$ and $\kappa > 1$.

Definition 1.1. i) Let $w(\theta)$ be a positive and non-decreasing function in $[1, \infty)$ or a function of the type θ^m for a real m. We say that a symbol $p(x, \xi)$ belongs to a class $S_{\rho,\delta,G(\kappa)}[w]$ if $p(x,\xi)$ satisfies

(1.1)
$$
|p_{(\beta)}^{(\alpha)}(x,\xi)| \leq CM^{-|\alpha+\beta|}(\alpha!^{\kappa} + \alpha!^{\kappa\rho}\langle\xi\rangle^{(1-\rho)|c|}) \times (\beta!^{\kappa} + \beta!^{\kappa(1-\delta)}\langle\xi\rangle^{\delta|\beta|})\langle\xi\rangle^{-|\alpha|}\mathbf{w}(\langle\xi\rangle)
$$

for all x and ξ , where $p_{(\beta)}^{(\alpha)} = \partial_{\xi}^{\alpha}(-i\partial_{x})^{\beta}p$. (cf. [14], [10]). We say that inf *{C* of (1.1)} is a formal norm of $p(x, \xi)$ and denote it by $||p; M||$.

ii) Let $w(\theta)$ be the same as above. We say that a symbol $p(x, \xi)$ belongs to a class $SWF_{1,\delta,G(\kappa)}[w]$ if $p(x,\xi)$ belongs to a class $S_{1,\delta,G(\kappa)}[w]$ and there exists a formal sum $\sum p_j(x, \xi)$ of symbols $p_j(x, \xi)$ satisfying

(1.2)
$$
|p_{j(\beta)}^{(\alpha)}(x,\xi)| \leq CM^{-(|\alpha|+|\beta|+j)}\alpha!
$$

$$
\times ((|\beta|+j)!^{\kappa} + (|\beta|+j)!^{\kappa(1-\delta)}\langle \xi \rangle^{\delta(|\beta|+j)})
$$

$$
\times \langle \xi \rangle^{-j-|\alpha|}w(\langle \xi \rangle) \quad \text{for} \quad |\xi| \geq c
$$

with a constant $c \ (\geq 1)$ and

$$
(1.3) \qquad |\partial_{\xi}^{\alpha}\partial_{x}^{\beta}(p(x,\xi)-\sum_{j=0}^{N-1}p_{j}(x,\xi))| \le CM^{-(|\alpha|+|\beta|+N)}\alpha!
$$

$$
\times ((|\beta|+N)!^{\kappa}+(|\beta|+N)!^{\kappa(1-\delta)}\langle \xi \rangle^{\delta(|\beta|+N)})
$$

$$
\times \langle \xi \rangle^{-|\alpha|-N}w(\langle \xi \rangle) \qquad \text{for} \quad |\xi| \ge c(|\alpha|+N)^{\kappa}
$$

for any N. In this case we say that the formal sum $\sum p_i(x, \xi)$ is the formal symbol associated with $p(x, \xi)$. As in i) we say that inf{C of (1.1)-(1.3)} is a formal norm of $p(x, \xi)$ and denote it by $||p; M||$.

iii) We say that a symbol $p(x, \xi)$ ($\in S^{-\infty}$) belongs to a class $\mathcal{R}_{G(\kappa)}$ if for any α there exists a constant C_{α} such that

(1.4)
$$
|p_{(\beta)}^{(\alpha)}(x,\xi)| \leq C_{\alpha} M^{-|\beta|} \beta!^{\kappa} \exp(-\varepsilon \langle \xi \rangle^{1/\kappa})
$$

hold with a positive constant ε independent of α and β . We call a symbol in $\mathcal{R}_{G(k)}$ a regularizer. We also denote inf $\{C_\alpha$ of (1.4); $|\alpha| \leq k\}$ by $||p; M||_k$ and call it a formal semi-norm of $p(x, \xi)$.

Remark 1. In the following we call a function $w(\theta)$ in i)-ii) of Definition 1.1 an order function.

Remark 2. When $w(\theta) = \theta^m$ for a real *m* we denote $S_{\rho, \delta, G(\kappa)}[w]$ and $_{G(\kappa)}[w]$ by $S_{\rho,\delta,G(\kappa)}^{m}$ and

Remark 3. When $w(\theta) = \exp(C\theta^{\sigma})$ for a $\sigma > 0$, the classes $S_{\rho, \delta, G(\kappa)}[w]$ and $G_{(G(k))}[w]$ are symbol classes of exponential type, and these correspond to the classes investigated in [25] and [2].

Remark 4. Formal symbols are investigated in [25] and [16].

Proposition 1.2. Let $w_i(\theta)$, $j = 1, 2$, be order functions such that

(1.5)
$$
w_j(\theta) \leq C_{\varepsilon} \exp(\varepsilon \theta^{1/\kappa}) \quad \text{for any} \quad \varepsilon > 0 \quad (j = 1, 2)
$$

let $P_j = p_j(X, D_x)$ be pseudo-differential operators with symbols in $S_{\rho, \delta, G(\kappa)}[w_j]$. *Then, choosing an order function* $w(\theta)$ *satisfying* $w(\theta) \geq w_1(2\theta)w_2(\theta)$ *there exist symbols* $q(x, \xi)$ *in* $S_{p,\delta,G(k)}[w]$ *and* $r(x, \xi)$ *in* $\mathcal{R}_{G(k)}$ *such that the product* P_1P_2 *can be written in the form*

(1.6)
$$
P_1 P_2 = q(X, D_x) + r(X, D_x).
$$

Remark. In the above proposition we say that the symbol $q(x, \xi)$ is a main symbol of P_1P_2 and denote it by $\sigma_M(P_1P_2)$.

Proof. Write the symbol $\sigma(P_1P_2)$ as

(1.7)
$$
\sigma(P_1 P_2)(x, \xi) = O_{s^-} \iint e^{-iy \cdot \eta} p_1(x, \xi + \eta) p_2(x + y, \xi) dx d\eta
$$

$$
= O_{s^-} \iint e^{-iy \cdot \eta} (L_1^{y+1} p_1(x, \xi + \eta) p_2(x + y, \xi) dy d\eta,
$$

where $d\eta = (2\pi)^{-n} d\eta$ and L_1^t is the transposed operator of $L_1 =$ $(1 + \langle \xi + \eta \rangle^{2\delta} |y|^2)^{-1} (1 + i \langle \xi + \eta \rangle^{2\delta} y \cdot V_{\eta})$. Denote $\chi(\xi)$ a function in $\gamma^{(k)}$ satisfying

(1.8)
$$
0 \le \chi \le 1
$$
, $\chi = 1$ ($|\xi| \le 2/5$), $\chi = 0$ ($|\xi| \ge 1/2$)

and divide (1.7) as

$$
\sigma(P_1 P_2)(x, \xi) = q(x, \xi) + r(x, \xi),
$$

\n
$$
q(x, \xi) = O_s - \iint e^{-iy \cdot \eta} (L_1 t)^{n+1} p_1(x, \xi + \eta) \chi(\eta/\langle \xi \rangle)
$$

\n
$$
\times p_2(x + y, \xi) dy d\eta,
$$

\n
$$
r(x, \xi) = O_s - \iint e^{-iy \cdot \eta} (L_1 t)^{n+1} p_1(x, \xi + \eta) (1 - \chi(\eta/\langle \xi \rangle))
$$

\n
$$
\times p_2(x + y, \xi) dy d\eta.
$$

Then, it is easy to prove $q \in S_{\rho,\delta,G(\kappa)}[w]$. Next, we write $r(x,\xi)$ as

$$
r(x,\xi) = \int \int_{|\eta| \leq \tilde{c}} e^{-iy \cdot \eta} (\tilde{L}^t)^{l_0} (L_1 t)^{n+1} p_1(x,\xi + \eta)
$$

$$
\times (1 - \chi(\eta/\langle \xi \rangle)) p_2(x + y, \xi) dy d\eta
$$

$$
+ \sum_{N=1}^{\infty} \int \int_{\tilde{c}N^K \leq |\eta| \leq \tilde{c}(N+1)^K} e^{-iy \cdot \eta} (\tilde{L}^t)^{l_0} (L_1 t)^{n+1} \{p_1(x,\xi)(1 - \chi(\eta/\langle \xi \rangle))
$$

$$
\times (-i|\eta|^{-2} \eta \cdot V_y)^N p_2(x + y, \xi) \} dy d\eta,
$$

where $\tilde{L} = (1 + \langle \xi \rangle^{2\delta} |\eta|^2)^{-1} (1 - \langle \xi \rangle^{2\delta} A_y)$ and $l_0 = [n/(2(1 - \delta))] + 1$. Then, using (1.5) we obtain $r \in \mathcal{R}_{G(\kappa)}$ if we take \tilde{c} sufficiently large. Q.E.D.

Remark. In (1.7) the integral is an oscillatory integral, which can be defined as in Section 6 of Chap. 1 in [12].

In order to investigate the product of pseudo-differential operators in $G(\kappa)$ [*w*] we prepare

Lemma 1.3. Let $w(\theta)$ be an order function and let $\sum p_j(x, \xi)$ be a formal *symbol satisfying* (1.2) with a constant $c \geq 1$. Then, there exists a symbol $p(x, \xi)$ in $SWF_{1, \delta, G(\kappa)}[w]$ such that we have (1.3) for any N.

Proof. We follow [6]. Let $\{\psi_j(\xi)\}\$ be a sequence of functions satisfying for a parameter *R*

$$
\begin{cases} \psi_j(\xi) = 1 & \text{if } \langle \xi \rangle \geq Rj^{\kappa}, \quad \psi_j(\xi) = 0 \quad \text{if } \langle \xi \rangle \leq Rj^{\kappa}/2 \,, \\ |\partial_{\xi}^{\alpha+\beta}\psi_j(\xi)| \leq CM_1^{-|\alpha+\beta|}j^{|\alpha|}\beta!^{\kappa} \langle \xi \rangle^{-|\alpha+\beta|} & \text{for } |\alpha| \leq 2j \,. \end{cases}
$$

Here, constants C and M_1 are independent of *j* and R. Define

$$
p(x, \xi) = \sum_{j=0}^{\infty} p_j(x, \xi) \psi_j(\xi) (1 - \chi(\xi/(3c)))
$$

for a fixed large constant R and a function $\chi(\xi)$ in $\gamma^{(k)}$ satisfying (1.8). Then, as in [6] we can prove

$$
(1.9) \qquad |p_{(\beta)}^{(\alpha)}(x,\xi)| \le CM^{-|\alpha+\beta|} \alpha! \, (\beta!^{\kappa} + \beta!^{\kappa(1-\delta)} \langle \xi \rangle^{\delta|\beta|}) \langle \xi \rangle^{-|\alpha|} w(\langle \xi \rangle)
$$
\n
$$
for \quad \langle \xi \rangle \ge R |\alpha|^{\kappa}
$$

and (1.3). So, by (1.9) an inequality (1.1) holds for $p_{(\beta)}^{(\alpha)}$ when $\langle \xi \rangle \ge R |\alpha|^{\kappa}$ and it remains to prove (1.1) for $\langle \xi \rangle \leq R |\alpha|^k$ in order to prove $p(x, \xi) \in S_{1, \delta, G(\kappa)}[w]$. Note

$$
j \leq (2\langle \xi \rangle/R)^{1/\kappa} \leq 2^{1/\kappa} |\alpha| \quad on \text{ supp } \psi_j
$$

when $\langle \xi \rangle \leq R |\alpha|^{\kappa}$. Then, we can write $p(x, \xi)$ in the form

$$
p(x,\xi) = \sum_{j=0}^{2|\alpha|} p_j(x,\xi)\psi_j(\xi)(1-\chi(\xi/(3c))) \quad \text{for} \quad \langle \xi \rangle \leq R|\alpha|^{\kappa}
$$

and obtain the estimate (1.1) for $p_{(B)}^{(\alpha)}(x, \xi)$ in $\langle \xi \rangle \leq R |\alpha|^{\kappa}$. This proves the lemma. Q.E.D.

Proposition 1.4. Let $p_i(x, \xi)$ be symbols in $SWF_{1, \delta, G(k)}[w_j]$ (j = 1, 2) with $w_j(\theta)$ satisfying (1.5). Then, taking an order function $w(\theta)$ satisfying $w(\theta) \geq$ $w_1(\theta)w_2(\theta)$, there exist symbols $q(x, \xi)$ in $SWF_{1, \delta, G(\kappa)}[w]$ and $r(x, \xi)$ in $\mathscr{R}_{G(\kappa)}$ such *that* (1.6) *holds and we have for any N*

$$
(1.10) \qquad |\partial_{\xi}^{\alpha} D_{x}^{\beta}(q(x,\xi)-\sum_{|\gamma|
\n
$$
\leq CM^{-(|\alpha+\beta|+N)}\alpha!((|\beta|+N)!^{\kappa}+(|\beta|+N)!^{\kappa(1-\delta)}\langle \xi \rangle^{\delta(|\beta|+N)})
$$

\n
$$
\times \langle \xi \rangle^{-N-|\alpha|} w(\langle \xi \rangle) \qquad \text{for} \quad |\xi| \geq c(|\alpha|+N)^{\kappa}.
$$
$$

Proof. Let $\sum p_{1,j}(x, \xi)$ and $\sum p_{2,j}(x, \xi)$ be formal symbols associated to $, \xi$) and $p_2(x, \xi)$, respectively. Define

$$
q_j(x,\,\xi)=\sum_{j'+j''+|\gamma|=j}\frac{1}{\gamma!}\,p_{1,j'}^{(\gamma)}(x,\,\xi)p_{2,j''(\gamma)}(x,\,\xi)\,.
$$

Then, $q_i(x, \xi)$ satisfies (1.2) for an order function $w(\theta)$ satisfying $w(\theta) \ge$ $w_1(\theta)w_2(\theta)$. Hence, from Lemma 1.3 there exists a symbol $q(x, \xi)$ in $SWF_{1,\delta,G(\kappa)}[w]$ with a formal symbol $\sum q_j(x, \xi)$ and $q(x, \xi)$ satisfies (1.10). Now define

$$
(1.11) \t r(x,\xi) = O_s \int \int e^{-iy \cdot \eta} p_1(x,\xi + \eta) p_2(x + y,\xi) dy d\eta - q(x,\xi).
$$

Then the equality (1.6) holds. To prove $r \in \mathcal{R}_{G(\kappa)}$ we write $r(x, \xi)$ as

$$
r(x,\xi) = \left\{ O_s - \iint e^{-iy \cdot \eta} p_1(x,\xi + \eta) \chi(\eta/\langle \xi \rangle) p_2(x + y, \xi) dy d\eta - q(x, \xi) \right\}
$$

+
$$
O_s - \iint e^{-iy \cdot \eta} p_1(x,\xi + \eta) (1 - \chi(\eta/\langle \xi \rangle) p_2(x + y, \xi) dy d\eta
$$

$$
\equiv r_1(x,\xi) + r_2(x,\xi).
$$

Then, as in the proof of Proposition 1.2 it easily follows $r_2 \in \mathcal{R}_{G(k)}$. For the proof of $r_1 \in \mathcal{R}_{G(k)}$, we fix a multi-index α and write $r_1^{(\alpha)}(x, \xi)$ as

$$
(1.12) \quad r_1^{(\alpha)}(x,\xi) = \partial_{\xi}^{\alpha} \left\{ \sum_{|\gamma| \le N} \frac{1}{\gamma!} p_{1}^{(\gamma)}(x,\xi) p_{2(\gamma)}(x,\xi) - q(x,\xi) \right\} + \sum_{|\gamma| \le N} \sum_{|\gamma'|=1} \frac{1}{\gamma!} \partial_{\xi}^{\alpha} \left\{ \int_{0}^{1} (1-\theta)^{|\gamma|} \left\{ O_{s^{-}} \int_{0}^{\infty} e^{-iy \cdot \eta} \right. \times p_{1}^{(\gamma)}(x,\xi+\eta) \chi^{(\gamma')}(\eta/\langle \xi \rangle) \langle \xi \rangle^{-1} \times p_{2(\gamma+\gamma')}(x+\theta y,\xi) dy d\eta \right\} d\theta \right\} + N \sum_{|\gamma|=N} \partial_{\xi}^{\alpha} \left\{ \frac{1}{\gamma!} \int_{0}^{1} (1-\theta)^{N-1} \left\{ O_{s^{-}} \int_{0}^{\infty} \int_{0}^{e^{-iy \cdot \eta}} p_{1}^{(\gamma)}(x,\xi+\eta) \times \chi(\eta/\langle \xi \rangle) p_{2(\gamma)}(x+\theta y,\xi) dy d\eta \right\} d\theta \right\} \n(cf. (6.16) of [22]).
$$

Then, for a small constant $\epsilon > 0$ we can prove from (1.10) that, an inequality

$$
(1.13) \t|r_{1(\beta)}^{(\alpha)}(x,\xi)| \leq C_{\alpha}(\beta!^{\kappa} + \beta!^{\kappa(1-\delta)}\langle \xi \rangle^{\delta|\beta|}) \exp\left(-\varepsilon\langle \xi \rangle^{1/\kappa}\right)
$$

holds for ξ satisfying $C_1(N + |\alpha|)^k \leq \langle \xi \rangle \leq C_1(N + 1 + |\alpha|)^k$ $(N = 0, 1, \ldots)$ if we take a constant C_1 large enough. Since $r_1(\alpha)(x, \xi)$ satisfies (1.13) for $\langle \xi \rangle \leq C_1 |\alpha|^k$ from (1.11), we have proved that $r_1(x, \xi)$ belongs to $\mathcal{R}_{G(k)}$. Q.E.D.

Remark. In the second term in the right hand side of (1.12) only the terms with $|\gamma'| = 1$ appear, and this enables us to obtain (1.13) from (1.12).

Now, we turn to the multi-product of pseudo-differential operators.

Proposition 1.5. Let $p_j(x, \xi) \in S_{\rho, \delta, G(\kappa)}[w_j]$, $j = 1, 2, ...,$ and satisfy (1.1) *with constant C and M independent of j. Assume that for any v*

(1.14)
$$
\prod_{j=1}^{v} w_j(\theta) \leq W_{v,\varepsilon} \exp\left(\varepsilon \theta^{1/\kappa}\right) \quad \text{for any} \quad \varepsilon > 0.
$$

Then, the multi-product $Q_{v+1} = P_1 P_2$... P_{v+1} of pseudo-differential operators $P_i = p_i(X, D_x)$ has the form

$$
(1.15) \tQ_{v+1} = q_{v+1}(X, D_x) + r_{v+1}(X, D_x)
$$

and $q_{v+1}(x, \xi)$ *and* $r_{v+1}(x, \xi)$ *satisfy*

$$
(1.16) \qquad |q_{v+1(\beta)}(x,\xi)| \le A^v C^{v+1} M_1^{-|\alpha+\beta|}(\alpha!^k + \alpha!^k \zeta \xi)^{(1-\rho)|\alpha|})
$$

$$
\times (\beta!^k + \beta!^k (1-\delta) \zeta \xi)^{\delta|\beta|} \times (\xi)^{-|\alpha|} \tilde{w}_{v+1}(\zeta \xi))
$$

with an order function $\tilde{w}_{v+1}(\theta)$ *satisfying* $\tilde{w}_{v+1}(\theta) \ge \prod_{i=1}^{v+1} w_i(2\theta)$ *and*

$$
(1.17) \t|r_{v+1(\beta)}(x,\xi)| \leq A^v C^{v+1} C_\alpha \widetilde{W}_{v+1,\varepsilon} M_1^{-|\beta|} \times (\beta!^{\kappa} + \beta!^{\kappa(1-\delta)} \langle \xi \rangle^{\delta|\beta|}) \exp(-\varepsilon \langle \xi \rangle^{1/\kappa})
$$

/or a *positive constant 8. Here,*

$$
\widetilde{W}_{\nu+1,\varepsilon} = \sup_{\theta} \left\{ \left(\prod_{j=1}^{\nu+1} w_j(\theta) \right) \exp \left(-\varepsilon \theta^{1/\kappa} \right) \right\},\,
$$

and A and M_1 are constants determined only by the dimension n and M and the *constants* C_{α} *are determined only by n and* α *. All the constants A, M₁ and* C_{α} *are independent of v.*

Proof. For *j* with $1 \le j \le v$ we write

$$
p'_j(x, \xi, x') = (L^t)^{[n/2]+1} p_j(x, \xi) ,
$$

with $L = (1 + \langle \xi \rangle^{2\delta} |x - x'|^2)^{-2} (1 - \langle \xi \rangle^{2\delta} A_{\xi})$. Then, the symbol $\sigma(Q_{\nu+1})$ of the multi-product Q_{v+1} is written as

$$
\sigma(Q_{v+1}) = O_s - \iint e^{-i\psi} \prod_{j=1}^{v} p'_j(x + y^{j-1}, \xi + \eta^j, x + y^j)
$$

$$
\times p_{v+1}(x + y^v, \xi) d\tilde{y}^v d\tilde{\eta}^v \qquad (y^0 = 0),
$$

where

(1.18)
$$
\psi = \sum_{j=1}^{\nu} y^{j} \cdot (\eta^{j} - \eta^{j+1}) \qquad (\eta^{\nu+1} = 0)
$$

and $d\tilde{y}^{\nu} d\tilde{\eta}^{\nu} = dy^1 \dots dy^{\nu} d\eta^1 \dots d\eta^{\nu}$. Take an order function $w'_{\nu+1}(\theta)$ satisfying $w'_{v+1}(\theta) \ge \prod_{j=1}^{r-1} w_j(\theta)$. Then, the product $\prod_{j=1}^{r} p'_j(x^{j-1}, \xi^j, x^{j+1}) p_{v+1}(x^v, \xi^{v+1})$ $(x^0 = x)$ satisfies (1.20) below with $w_{v+1}(\theta)$ replaced by $w'_{v+1}(\theta)$. Hence, the proof of Proposition 1.5 is reduced to the following lemma.

Lemma 1.6. Let $w_{v+1}(\theta)$ be an order function satisfying

(1.19)
$$
w_{v+1}(\theta) \leq W_{v+1,\varepsilon} \exp(\varepsilon \theta^{1/\kappa}) \quad \text{for any} \quad \varepsilon > 0
$$

and let $\tilde{p}_{v+1}(x, \tilde{\xi}^v, \tilde{x}^v, \xi^{v+1}) = \tilde{p}_{v+1}(x, \xi^1, x^1, \xi^2, ..., x^v, \xi^{v+1})$ *be a multiple symbol satisfying*

$$
(1.20) \qquad |\partial_{\xi_1}^{a_1} \partial_{\xi_2}^{a_2} \dots \partial_{\xi_v}^{a_{v+1}} \partial_x^{\beta} \partial_{x_1}^{\beta_1} \dots \partial_{x_v}^{\beta_v} \tilde{p}_{v+1}(x, \tilde{\xi}^v, \tilde{x}^v, \tilde{\xi}^{v+1})|
$$

\n
$$
\leq CM^{-(|\tilde{\alpha}^{v+1}|+|\beta|+|\tilde{\beta}^{v}|)} \prod_{j=1}^{v+1} (\alpha^j!^{k} + \alpha^j!^{k\rho} \langle \xi^j \rangle^{(1-\rho)|\alpha^{j}|})
$$

\n
$$
\times (\beta!^{k} + \beta!^{k(1-\delta)} \langle \xi^1 \rangle^{\delta|\beta|})
$$

\n
$$
\times \prod_{j=1}^{v} (\beta^j!^{k} + \beta^j!^{k(1-\delta)} (\langle \xi^j \rangle + \langle \xi^{j+1} \rangle)^{\delta|\beta^{j}|})
$$

\n
$$
\times \prod_{j=1}^{v} (1 + \langle \xi^j \rangle^{\delta} |x^{j-1} - x^j|)^{-(n+1)}
$$

\n
$$
\times \left\{ \prod_{j=1}^{v+1} \langle \xi^j \rangle^{-|\alpha^{j}|} \right\} w_{v+1} \left(\max \langle \xi^j \rangle \right) \qquad (x^0 = x),
$$

where $|\tilde{\alpha}^{v+1}| = |\alpha^1| + \cdots + |\alpha^{v+1}|$ *for* $\tilde{\alpha}^{v+1} = (\alpha^1, \ldots, \alpha^{v+1})$ *and* $|\tilde{\beta}^v| = |\beta^1|$ $|\beta^{\nu}|$ for $\beta^{\nu} = (\beta^1, \ldots, \beta^{\nu}).$

Then, the simplified symbol $p_{v+1}(x, \xi)$ *defined by*

$$
p_{\nu+1}(x,\xi) = O_s \int \int e^{-i\psi} \tilde{p}_{\nu+1}(x,\xi+\eta^1,x+\gamma^1,\ldots,\xi+\eta^{\nu},x+\gamma^{\nu},\xi) d\tilde{y}^{\nu} d\tilde{\eta}^{\nu}
$$

with ψ in (1.18) can be written in the form

$$
p_{v+1}(x,\xi) = q_{v+1}(x,\xi) + r_{v+1}(x,\xi)
$$

and $q_{v+1}(x, \xi)$ *and* $r_{v+1}(x, \xi)$ *have the same estimates* (1.16)-(1.17) *in Proposition* 1.5 with $\tilde{w}_{v+1}(\theta) = w_{v+1}(2\theta)$ and

(1.21)
$$
\widetilde{W}_{v+1,\varepsilon} = \sup_{\theta} \{ w_{v+1}(\theta) \exp(-\varepsilon \theta^{1/\kappa}) \}.
$$

Proof. Following [10] we write

$$
p_{v+1}(x, \xi) = q_{v+1}(x, \xi) + r_{v+1}(x, \xi),
$$

\n
$$
q_{v+1}(x, \xi) = O_s \cdot \iint e^{-i\psi} \prod_{j=1}^{v} \chi(\eta^j/\langle \xi \rangle)
$$

\n
$$
\times \tilde{p}_{v+1}(x, \xi + \eta^1, x + y^1, \dots, \xi + \eta^v, x + y^v, \xi) d\tilde{y}^v d\tilde{\eta}^v,
$$

$$
r_{v+1}(x,\xi) = O_s - \iint e^{-i\psi} \left(1 - \prod_{j'=1}^{v} \chi(\eta^{j'}/\langle \xi \rangle) \right)
$$

$$
\times \tilde{p}_{v+1}(x,\xi + \eta^1, x + y^1, \dots, \xi + \eta^v, x + y^v, \xi) d\tilde{y}^v d\tilde{\eta}^v.
$$

Setting $\Omega_0(j) = \{(\eta^1, \dots, \eta^v); |\eta^j| = \max |\eta^j| > 2\langle \xi \rangle/5, |\eta^j'| < |\eta^j| (j' < j),$ $|\eta^j| \le c$ } and $\Omega_N(j) = \{(\eta^1, \dots, \eta^N); \quad |\eta^j| = \max |\eta^j| > 2\langle \xi \rangle / 5, \quad |\eta^j| < |\eta^j|$ $(j' < j)$, $cN^* \leq |\eta^j| \leq c(N + 1)^*$ $(N \geq 1)$, we rewrite $r_{v+1}(x, \xi)$ as

$$
r_{v+1}(\hat{\beta})(x,\xi) = \sum_{\alpha'+\alpha''=\alpha} \frac{\alpha!}{\alpha'! \alpha''!} O_s - \iint e^{-i\psi} \partial_{\xi}^{x'} \left(1 - \prod_{j'=1}^{v} \chi(\eta^{j'}/\langle \xi \rangle) \right)
$$

$$
\times \partial_{\xi}^{a''} D_x^{\beta} \tilde{p}_{v+1}(x,\xi+\eta^1,x+y^1,\ldots,\xi+\eta^v,x+y^v,\xi) d\tilde{y}^v d\tilde{\eta}^v
$$

$$
= \sum_{j=1}^{v} \sum_{N=0}^{\infty} \sum_{\alpha'+\alpha''=\alpha} \frac{\alpha!}{\alpha'! \alpha''!} \iint_{\mathcal{R}_{y}^{\mathcal{BV}} \times \Omega_N(j)} e^{-i\psi} \partial_{\xi}^{x'} \left(1 - \prod_{j'=1}^{v} \chi(\eta^{j'}/\langle \xi \rangle) \right)
$$

$$
\times \{-i|\eta^{j}|^{-2}\eta^{j} \cdot (\partial_{y^j} + \cdots + \partial_{y^v})\} N \partial_{\xi}^{x'} D_x^{\beta} \tilde{p}_{v+1}(x,
$$

$$
\xi + \eta^1, x + y^1, \ldots, \xi + \eta^v, x + y^v, \xi) d\tilde{y}^v d\tilde{\eta}^v.
$$

Then, we have (1.16) and (1.17) by taking a constant c large enough and using Proposition 1.7 of [21] and the fact that an inequality

$$
w_{\nu+1}\left(\max_{j'}\left\langle \xi+\eta^{j'}\right\rangle\right)\leqq w_{\nu+1}(3|\eta^{j}|)\leqq W_{\nu+1,\varepsilon}\exp\left(3^{1/\kappa}\varepsilon|\eta^{j}|\right)
$$

holds in $\bigcup_{N} \Omega_N(j)$ from (1.21). Q.E.D.

Proposition 1.7. Let $p_l \in SWF_{1,\delta,G(\kappa)}[w_l], l = 1, 2, ..., with \{w_l(\theta)\} satisfy$ ing (1.14) and let M be a constant independent of l. Assume that the formal norms $||p_i; M||$ of $p_i(x, \xi)$ are independent of *l.* Then, there exists an order function $\tilde{w}_{v+1}(\theta)$ such that

$$
\tilde{w}_{v+1}(\theta) \ge \prod_{j=1}^{v+1} w_j(\theta)
$$

and the symbols $\sigma(Q_{v+1})$ *of multi-products* Q_{v+1} *can be written in the form* (1.15) *with the symbols* $q_{v+1}(x, \xi)$ *belonging to* $SWF_{1, \delta, G(x)}[\tilde{w}_{v+1}]$ *and symbols* $r_{v+1}(x, \xi)$ *satisfying* (1.17). Moreover, there exist formal symbols $\Sigma q_{v+1,j}(x, \xi)$ associated *with* $q_{v+1}(x, \xi)$ *such that*

$$
(1.23) \t |q_{v+1,j(\beta)}(x,\xi)| \le A^v C^{v+1} M^{-(|\alpha+\beta|+j)} \alpha!
$$

$$
\times ((|\beta|+j))^{k} + (|\beta|+j)^{k(1-\delta)} \langle \xi \rangle^{\delta(|\beta|+j)})
$$

$$
\times \langle \xi \rangle^{-j-|\alpha|} \tilde{w}_{v+1}(\langle \xi \rangle) \t for |\xi| \ge c
$$

and

$$
(1.24) \qquad \left| \partial_{\xi}^{a} D_{x}^{\beta} \left(q_{v+1}(x,\xi) - \sum_{j=0}^{N-1} q_{v+1,j}(x,\xi) \right) \right|
$$

$$
\leq A^{v} C^{v+1} M^{-(|\alpha + \beta| + N)} \alpha!
$$

$$
\times ((|\beta| + N))^{w} + (|\beta| + N)!^{\kappa (1 - \delta)} \langle \xi \rangle^{\delta(|\beta| + N)})
$$

$$
\times \langle \xi \rangle^{-N - |\alpha|} \tilde{w}_{v+1}(\langle \xi \rangle) \qquad \text{for} \quad |\xi| \geq c(|\alpha| + N)^{\kappa}.
$$

Proof. Define sequences $\{q_{v,j}\}_{j=0,1,2,\ldots}$ inductively by

(1.25)
$$
\begin{cases} q_{1,j}(x,\xi) = p_{1,j}(x,\xi), \\ q_{\nu+1,j}(x,\xi) = \sum_{|\gamma|+j'+j''=j} \frac{1}{\gamma!} q_{\nu,j'}^{(\gamma)}(x,\xi) p_{\nu+1,j''(\gamma)}(x,\xi), \end{cases}
$$

where $\Sigma p_{t,j}(x, \xi)$ are formal symbols associated with $p_l(x, \xi)$. Then by the induction on *v* we can prove

$$
|q_{\nu+1,j(\beta)}(x,\xi)| \le A^{\nu} C^{\nu+1} M_1^{-(|\alpha|+|\beta|+2j)}(|\alpha|+j)!\beta!
$$

$$
\times ((|\beta|+j)^{\kappa-1} + (|\beta|+j)^{\kappa(1-\delta)-1} \langle \xi \rangle^{\delta})^{|\beta|+j}
$$

$$
\times \langle \xi \rangle^{-|\alpha|-j} \tilde{w}_{\nu+1}(\langle \xi \rangle) \quad \text{for} \quad |\xi| \ge c.
$$

Hence, applying Lemma 1.3 we can find symbols $q_{v+1}(x, \xi)$ satisfying (1.16) and (1.23)-(1.24). Now, write the multi-products Q_{v+1} as

(1.26)
\n
$$
Q_{v+1} \equiv P_1 P_2 ... P_{v+1}
$$
\n
$$
= q_{v+1}(X, D_x)
$$
\n
$$
+ \{q_v(X, D_x)P_{v+1} - q_{v+1}(X, D_x)\}
$$
\n
$$
+ \{q_{v-1}(X, D_x)P_v - q_v(X, D_x)\}P_{v+1}
$$
\n
$$
+ \cdots
$$
\n
$$
+ \{q_2(X, D_x)P_3 - q_3(X, D_x)\}P_4 ... P_{v+1}
$$
\n
$$
+ \{q_1(X, D_x)P_2 - q_2(X, D_x)\}P_3 ... P_{v+1}
$$

Then, it follows from (1.23) - (1.24) that the terms except the first term in the last member of (1.26) satisfy (1.17). This completes the proof. Q.E.D.

Combining Proposition 1.5 and Proposition 1.7 with discussion in Section 5 of [22] we obtain

Proposition 1.8. Let $p_l(x, \xi) \in S_{\rho, \delta, G(\kappa)}[W_l]$ (resp. $SWF_{1, \delta, G(\kappa)}[W_l]$) with a se*quence* $\{w_i\}$ *of order functions* $w_i(\theta)$ *satisfying* (1.14) *and let* $\{r_i^0\}$ *be a sequence* *of regularizers in* $\mathcal{R}_{G(k)}$. Assume that for an M the norms $\|p_i; M\|$ of $p_i(x, \xi)$ and *the formal semi-norms* $||r_l^0$; $M||_k$ *of* $r_l^0(x, \xi)$ *are independent of l. Then, the multi-product*

$$
Q_{v+1} = (P_1 + R_1^0)(P_2 + R_2^0) \dots (P_{v+1} + R_{v+1}^0)
$$

of $P_1 + R_1^0 \equiv p_1(X, D_x) + r_1^0(X, D_x)$ can be written in the form (1.15) and the *symbol* $q_{v+1}(x, \xi)$ *belongs to* $S_{\rho, \delta, G(x)}[\tilde{w}_{v+1}]$ (resp. $SWF_{1, \delta, G(x)}[\tilde{w}_{v+1}]$) and satisfies (1.16) (resp. (1.16) and has a formal symbol $\Sigma q_{v+1,j}(x, \xi)$ satisfying (1.23)-(1.24)), and $r_{v+1}(x, \xi)$ satisfies (1.17). Here, $\tilde{w}_{v+1}(\theta)$ is an order function satisfying (1.22).

Finnally we give a result on Neumann series.

Proposition 1.9. Let $p(x, \xi) \in SWF^0_{1, \delta, G(x)}$ and assume that its formal norm is sufficiently small. Then, the inverse operator of $I - P$ is represented as $\sum_{v=0}^{\infty} P^v$ and there exist symbols $q(x, \xi)$ in $SWF^0_{1, \delta, G(k)}$ and $r(x, \xi)$ in $\mathcal{R}_{G(k)}$ such that

$$
\sum_{v=0}^{\infty} P^{v} = q(X, D_{x}) + r(X, D_{x}) \quad (= (I - P)^{-1}).
$$

Proof. For a $(v + 1)$ -th power P^{v+1} of P we apply Proposition 1.7. Then, P^{v+1} is written as

$$
P^{\nu+1} = q_{\nu+1}(X, D_x) + r_{\nu+1}(X, D_x)
$$

and $q_{v+1}(x, \xi)$ and $r_{v+1}(x, \xi)$ satisfy (1.16)-(1.17) with $\tilde{w}_{v+1}(\theta) = 1$ and $\tilde{W}_{v+1} = 1$ and for the formal symbols $\sum q_{v+1,j}(x,\xi)$ we have (1.23)–(1.24). Now, assuming $||A||p; M|| < 1$ for the formal norm $||p; M||$ of $p(x, \xi)$ we define

$$
q(x, \xi) = 1 + p(x, \xi) + \sum_{v=2}^{\infty} q_v(x, \xi),
$$

$$
q_0^0(x, \xi) = 1 + p_0(x, \xi) + \sum_{v=2}^{\infty} q_{v,0}(x, \xi),
$$

$$
q_j^0(x, \xi) = p_j(x, \xi) + \sum_{v=2}^{\infty} q_{v,j}(x, \xi) \qquad (j \ge 1)
$$

and

$$
r(x,\xi)=\sum_{\nu=2}^{\infty}r_{\nu}(x,\xi),
$$

where $\sum p_i(x, \xi)$ is a formal symbol associated with $p(x, \xi)$. Then, $q(x, \xi)$ and $r(x, \xi)$ are desired symbols and $\sum q_i^0(x, \xi)$ is a formal symbol associated with $q(x, \xi)$. Q.E.D.

§2. Calculus of Fourier Integral Operators

Following [22] we introduce

Definition 2.1. Let $0 \leq \tau < 1$. We say that a phase function $\phi(x, \xi)$ belongs to a class $\mathscr{P}_{G(\kappa)}(\tau)$ if $\phi(x, \xi)$ belongs to a class $\mathscr{P}_1(\tau)$ defined in [13] and for $J(x, \xi) \equiv \phi(x, \xi) - x \cdot \xi$ the estimate

$$
|J_{(\beta)}^{(\alpha)}(x,\,\zeta)|\leq \tau M^{-(|\alpha|+|\beta|)}(\alpha! \beta!)^{\kappa}\langle \zeta\rangle^{1-|\alpha|}
$$

holds for a constant M independent of α and β . We also set

$$
\mathscr{P}_{G(\kappa)} = \bigcup_{0 \leq \tau < 1} \mathscr{P}_{G(\kappa)}(\tau) \, .
$$

For $\phi(x, \xi)$ in $\mathscr{P}_{G(x)}$ and a symbol $p(x, \xi)$ in $S_{\rho, \delta, G(x)}[w]$ we denote by $P_{\phi} = p_{\phi}(X, D_{x})$ a Fourier integral operator with the phase function $\phi(x, \xi)$ and the symbol $p(x, \xi)$ and especially we denote by I_{ϕ} the Fourier integral operator with the symbol 1. Moreover, we denote by I_{ϕ^*} the conjugate Fourier integral operator with the phase function $\phi(x, \xi)$ and the symbol 1.

In [22] we have proved

Lemma 2.2 (Proposition 2.5 in [22]). Let $\phi_j(x, \xi)$ belong to $\mathscr{P}_{G(\kappa)}(\tau_j)$, $j = 1$, 2. Assume $\tau_1 + \tau_2$ is small enough. Then, there exist symbols $p(x, \xi)$ in $S^0_{1,0,G(x)}$ $r(x, \xi)$ in $\mathcal{R}_{G(\kappa)}$ such that

$$
I_{\phi_1}I_{\phi_2}=P_{\phi}+R.
$$

Here, $\Phi(x, \xi)$ is the #-product $\phi_1 \# \phi_2$ of $\phi_1(x, \xi)$ and $\phi_2(x, \xi)$, which is defined by

$$
\Phi(x,\xi) = \phi_1(x,\varXi) - X \cdot \varXi + \phi_2(X,\xi)
$$

with the solution $\{X, \Xi\}(x, \xi)$ of

$$
\begin{cases}\nX = \mathcal{V}_{\xi} \phi_1(x, \varXi), \\
\varXi = \mathcal{V}_{x} \phi_2(X, \xi).\n\end{cases}
$$

Lemma 2.3 (Corolary 2.8 of [22] and Proposition 2.2 of [21]). Let $\phi \in$ $\mathscr{P}_{G(\kappa)}(\tau)$ and assume that τ is small enough. Then, there exist symbols $p(x, \xi)$ in $S^0_{1,0,G(\kappa)}$ and $r(x,\xi)$ in $\mathcal{R}_{G(\kappa)}$ such that

$$
I_{\phi}I_{\phi^*}(P+R)=I.
$$

For $\rho \ge 1/2$ we denote $S_{\rho, G(\kappa)}[w] = S_{\rho, 1-\rho, G(\kappa)}[w]$. The aim of this section is to prove the following proposition.

Proposition 2.4. Let ϕ_j , $j = 1$, 2, be phase functions in $\mathscr{P}_{G(\kappa)}(\tau_j)$ and let $p(x, \xi)$ be a symbol in $S_{\rho, G(\kappa)}[w]$ with $\rho \geq 1/2$ and an order function w(θ) satis*fying*

(2.1)
$$
w(\theta) \leq C_{\varepsilon} \exp{(\varepsilon \theta^{1/\kappa})} \quad \text{for any} \quad \varepsilon > 0.
$$

Then, there exists a constant τ^0 *such that if* $\tau_1 + \tau_2 \leq \tau^0$ *we can find symbols* $q(x, \xi)$ in $S_{\rho, G(\kappa)}[\tilde{w}]$ for $\tilde{w}(\theta) = w(c\theta)$ with a constant $c \ (\geq 1)$ and $r(x, \xi)$ in $\mathcal{R}_{G(\kappa)}$ *such that*

$$
I_{\phi_1} P I_{\phi_2} = I_{\phi} Q + R \ ,
$$

where $\Phi = \phi_1 \# \phi_2$ *.*

For the proof we prepare two lemmas. Then, combining Proposition 1.2, Lemma 2.2 and Lemma 2.3 we can obtain Proposition 2.4 by regarding discussion in §2 of [21] (cf. Lemma 2.10).

Lemma 2.5. Let $p(x, \xi) \in S_{\rho, G(x)}[w]$ with $\rho \ge 1/2$ and with an order function *w*(θ) satisfying (2.1), and let ϕ (x, ξ) $\in \mathscr{P}_{G(\kappa)}$. Then, there exist symbols $q(x, \xi)$ in $S_{\rho,G(\kappa)}\left[\tilde{w}\right]$ with $\tilde{w}(\theta) = w(2\theta)$ and $r(x, \xi)$ in $\mathscr{R}_{G(\kappa)}$ such that we have

$$
PI_{\phi} = Q_{\phi} + R
$$

Moreover, for any N there exists a symbol $q_N(x, \xi)$ *satisfying* $\langle \xi \rangle^{(2\rho - 1)N} q_N(x, \xi)$ \in $S_{\rho,G(\kappa)}\left[\tilde{w}\right]$ with $\tilde{w}(\theta) = w(2\theta)$ such that

$$
(2.2) \tq(x, \xi) = \sum_{|\gamma| < N} \frac{1}{\gamma!} D_{x'}^{\gamma} (p^{(\gamma)}(x, \widetilde{V}_x \phi(x, x'; \xi)))_{|x'=x} + q_N(x, \xi) \,,
$$

where $\overline{\tilde{V}}_x\phi(x, x'; \xi) = \begin{vmatrix} V_x\phi(x' + \theta(x - x'), \xi)d\theta. \end{vmatrix}$ Jo

Proof (cf. Proposition 2.2 of [22]). From the proof of Theorem 2.2-1) in Chap. 10 of [12], the symbol of PI_{ϕ} is written as

(2.3)
$$
\sigma(PI_{\phi}) = O_{s} \int \int e^{-iy \cdot \eta} p(x, \widetilde{V}_{x} \phi(x, x + y; \xi) + \eta) dy d\eta.
$$

Using χ in $\gamma^{(k)}$ satisfying (1.8) we divide (2.3) as

$$
q(x,\xi) = O_s - \iint e^{-iy \cdot \eta} p(x, \overline{V}_x \phi(x, x + y; \xi) + \eta) \chi(\eta/\langle \xi \rangle) dy d\eta,
$$

$$
r(x,\xi) = O_s - \iint e^{-iy \cdot \eta} p(x, \overline{V}_x \phi(x, x + y; \xi) + \eta) (1 - \chi(\eta/\langle \xi \rangle)) dy d\eta
$$

Then, the symbols $q(x, \xi)$ and $r(x, \xi)$ are desired symbols when we use (2.1) to prove $r(x, \xi) \in \mathcal{R}_{G(k)}$. For the proof of (2.2) we use the Taylor expansion for $q(x, \xi)$. Then, we have

$$
q(x,\xi) = \sum_{|\gamma| \le N} \frac{1}{\gamma!} D_y^{\gamma} (p^{(\gamma)}(x, \tilde{\mathcal{P}}_x \phi(x, x + y; \xi)))_{|\mathbf{y} = \mathbf{0}} + \sum_{|\gamma| = N} \frac{N}{\gamma!} \int_0^1 (1 - \theta)^{N-1} \times \left\{ O_s - \int_0^{\gamma} e^{-iy \cdot \eta} \partial_{\eta}^{\gamma} D_y^{\gamma} \{ p(x, \tilde{\mathcal{P}}_x \phi(x, x + y, \xi) + \theta \eta) \right\} \times \chi(\theta \eta / \langle \xi \rangle) \} dy d\eta \right\} d\theta
$$

and get (2.2). Q.E.D.

Remark. In the above lemma Q_{ϕ} is a Fourier integral operator with infinite order if $w(\theta)$ is an exponential function. We note that Fourier integral operators with infinite order are also considered in **[5].**

Lemma 2.6. Let $p(x, \xi) \in S_{\rho, G(\kappa)}[w]$ with $\rho \ge 1/2$ and w(0) satisfying (2.1), *and let* $\phi(x, \xi) \in \mathscr{P}_{G(\kappa)}$. Then, there exist symbols $q(x, \xi)$ in $S_{\rho, G(\kappa)}[\tilde{w}]$ with $\tilde{w}(\theta) =$ $w(2\theta)$ and $r(x, \xi)$ in $\mathscr{R}_{G(\kappa)}$ such that we i

 $I_{\phi*}P_{\phi} = Q + R$.

Proof. From the proof of Theorem 1.7 in Chap. 10 of [12] we have

$$
\sigma(I_{\phi^*}P_{\phi})=O_s\int\int e^{-iy\cdot\eta}q'(\xi+\eta,x+y,\zeta)dyd\eta,
$$

for

$$
q'(\xi, x', \xi') = \{p(z, \xi') | \det \frac{\partial}{\partial x} \widetilde{V}_{\xi} \phi(z; \xi, \xi')|^{-1} \}_{|z = \widetilde{V}_{\xi} \phi^{-1}(x'; \xi, \xi')},
$$

 \int_0^1 where $\overline{V}_{\xi}\phi(x'; \xi, \xi') = \int_0^L \overline{V}_{\xi}\phi(x', \xi' + \theta(\xi + \xi'))d\theta$, and $z = \overline{V}_{\xi}\phi^{-1}(x'; \xi, \xi')$ is the inverse function of $x' = \tilde{V}_{\xi} \phi(z; \xi, \xi')$. Now, we write

$$
q(x,\xi) = O_{s^-} \iint e^{-iy \cdot \eta} q'(\xi + \eta, x + y, \xi) \chi(\eta/\langle \xi \rangle) dy d\eta,
$$

$$
r(x,\xi) = O_{s^-} \iint e^{-iy \cdot \eta} q'(\xi + \eta, x + y, \xi) (1 - \chi(\eta/\langle \xi \rangle)) dy d\eta,
$$

with $\chi \in \gamma^{(k)}$ satisfying (1.8). Then, using Lemma 4.2-ii) in [22] we obtain the lemma. $Q.E.D.$

§3. Preliminary

First, we introduce symbol classes which we use in the following sections. Let $p(\tilde{t}, x, \xi)$ be a symbol with a parameter \tilde{t} . In order to simplify the notation below, we also denote by $S_{p,\delta,G(k)}[w]$ a class of symbols $p(\tilde{t}, x, \xi)$ satisfying the following: $p(\tilde{t}, x, \xi)$ is a continuous function in (\tilde{t}, x, ξ) with all continuous derivatives with respect to x and ξ ; belongs to $S_{\rho,\delta,G(\kappa)}[w]$ for any fixed \tilde{t} and for an *M* independent of \tilde{t} the formal norm $||p(\tilde{t}, \cdot, \cdot)|$; M is bounded in *t*. Similarly we use $SWF_{1,\delta,G(k)}[w]$ and $\mathcal{R}_{G(k)}$ for classes of symbols $p(\tilde{t}, x, \xi)$ depending on a parameter \tilde{t} and $p(\tilde{t}, x, \xi)$ belong to the corresponding symbol classes.

Let ζ be a parameter not less than 1 and denote

(3.1)
$$
\begin{cases} \mu(x, \xi; \zeta) = (g(x)^{2l'} \langle \xi \rangle^{2(1-\sigma)} + \zeta^{2})^{1/2}, \\ h(t, x, \xi; \zeta) = t + \zeta^{\omega} \mu(x, \xi; \zeta)^{-\omega}, \end{cases}
$$

where *I'* is an integer in $(A-1)$, $g(x)$ is in $(A-3)$, σ is defined by (4) and $\omega = 1/(l + 1)$. In what follows, δ is always equal to $(1 - \sigma)/l'$. Following [17] we introduce

Definition 3.1. i) Let $p(t, x, \xi; \zeta)$ be a symbol with a parameter t and ζ . For real numbers m, m', m'' and ρ with $\delta \le \rho \le 1$ we say that $p(t, x, \xi; \zeta)$ belongs to a class $\tilde{S}_{\rho,\delta,G(\kappa)}[m, m', m'']$ if $p(t, x, \xi; \zeta)/\{\mu(x, \xi; \zeta)^{m'}h(t, x, \xi; \zeta)^{m''}\}\$ belongs to $S^m_{\rho, \delta, G(\kappa)}$ and its formal norm

$$
||p; M; [m, m', m'']|| \equiv ||p(t, \cdot, \cdot; \zeta)/\{\mu(\cdot, \cdot; \zeta)^{m'}h(t, \cdot, \cdot; \zeta)^{m''}\}; M||
$$

is independent of t and ζ . Moreover, we say that a symbol $p(t, x, \zeta; \zeta)$ in $\tilde{S}_{\rho,\delta,G(\kappa)}[m,m',m'']$ belongs to a class $S_{\rho,\delta,G(\kappa)}[m,m',m'']$ if $p(t, x, \xi; \zeta)$ is also infinitely differentiable with respect to t; $\partial_t^{\gamma} p(t, x, \xi; \zeta)$ belongs to $\tilde{S}_{\rho, \delta, G(\kappa)}[m, m',$ $m'' - \gamma$ for any γ and there exist constants C and M independent of γ such that

$$
\|\partial_t^{\gamma} p(t,\cdot,\cdot;\zeta); M; [m,m',m''-\gamma] \| \leq CM^{-\gamma} \gamma!.
$$

ii) Let $p(t, x, \xi; \zeta)$ be a symbol in $S_{1, \delta, G(k)}[m, m', m'']$. We say that $p(t, x, \xi; \zeta)$ belongs to a class $\hat{S}_{1,\delta,G(\kappa)}[m, m', m'']$ if $p(t, x, \xi; \zeta)$ satisfies in addition

$$
|\partial_t^{\gamma} p_{(\beta)}^{(\alpha)}(t, x, \xi; \zeta)| \le CM^{-(|\alpha + \beta| + \gamma)} \alpha!
$$

$$
\times (\beta!^{\kappa} + \beta!^{\kappa(1 - \delta)} \langle \xi \rangle^{\delta|\beta|}) \gamma! \langle \xi \rangle^{m - |\alpha|} \mu(x, \xi; \zeta)^{m'}
$$

$$
\times h(t, x, \xi; \zeta)^{m' - \gamma} \qquad \text{for} \quad |\xi| \ge c
$$

for a constant $c > 0$.

iii) Let $p(t, x, \xi; \zeta)$ be a symbol in $S_{1,\delta,G(\kappa)}[m, m', m'']$. We say that a symbol $p(t, x, \xi; \zeta)$ belongs to a class $SWF_{1,\delta,G(\kappa)}[m, m', m'']$ if $(\partial_t^{\gamma} p(t, x, \xi; \zeta))$ ξ ; ζ ^{''}'h(t, x, ξ ; ζ ^{'''-'}} belongs to $SWF^m_{1,\delta,G(\kappa)}$ and for a formal symbol $\sum p_i(t, x, \xi; \zeta)$, $p(t, x, \xi; \zeta)$ has uniform estimates similar to(1.2)-(1.3) with respect to t and ζ .

Remark 1. For the symbols $\mu(x, \xi; \zeta)$ and $h(t, x, \xi; \zeta)$ in (3.1) we have $\mu(x, \xi; \zeta) \in \mathring{S}_{1, \delta, G(\kappa)}[0, 1, 0]$ and $h(t, x, \xi; \zeta) \in \mathring{S}_{1, \delta, G(\kappa)}[0, 0, 1].$

Remark 2. For every $p(t, x, \xi; \zeta) \in \mathring{S}_{1, \delta, G(\kappa)}[m, m', m'']$ we set $p_0(t, x, \xi; \zeta) =$ $p(t, x, \xi; \zeta)$ and $p_i(t, x, \xi; \zeta) = 0$ for $j \ge 1$. Then, $\sum p_i(t, x, \xi; \zeta)$ is a formal symbol associated with $p(t, x, \xi; \zeta)$. So, we can regard symbols in $\mathcal{S}_{1, \delta, G(k)}[m, m', m'']$ as symbols in $SWF_{1,\delta,G(\kappa)}[m,m',m'']$.

For a symbol class of Hermite operators we introduce

Definition 3.2 (cf. [3]). Let *m* and *m'* be real numbers. We say that a symbol $p(t, x, \xi)$ belongs to a class $\mathcal{H}_{1, \delta, G(\kappa)}[m, m']$ if $p(t, x, \xi)$ satisfies

$$
|p_{(\beta)}^{(\alpha)}(t, x, \xi)| \le CM^{-|\alpha + \beta|} \alpha!^{\kappa} (\beta!^{\kappa} + \beta!^{\kappa(1-\delta)} \langle \xi \rangle^{\delta|\beta|})
$$

$$
\times \langle \xi \rangle^{m-|\alpha|} \mu(x, \xi)^{m'} \exp(-\varepsilon t^{l+1} \mu(x, \xi))
$$

for a positive constant ε , where $\mu(x, \xi) = (g(x)^{2l'} \langle \xi \rangle^{2(1-\sigma)} + 1)^{1/2}$ ($\equiv \mu(x, \xi; 1)$).

Remark. In [17] we assumed an estimate for derivatives of symbols $p(t, x, \xi)$ of Hermite operators with respect to t. But, in the following we do not need estimates for derivatives of $p(t, x, \xi)$ with respect to t.

Lemma 3.3. Let $h(t, x, \xi; \zeta)$ be a symbol in (3.1). Then, there exists a ζ_1 such that for $\zeta \geq \zeta_1$ the operator $h(t, X, D_x; \zeta)$ has an inverse operator $h(t, X, D_x; \zeta)^{-1}$ and it has the form

(3.2)
$$
h(t, X, D_x; \zeta)^{-1} = p(t, X, D_x; \zeta) + r(t, X, D_x; \zeta)
$$

with symbol $p(t, x, \xi; \zeta)$ in $SWF_{1, \delta, G(\kappa)}[0, 0, -1]$ and $r(t, x, \xi; \zeta)$ in $\mathcal{R}_{G(\kappa)}$.

Proof. Set $p_1(t, x, \xi; \zeta) = h(t, x, \xi; \zeta)^{-1} \in \mathring{S}_{1, \delta, G(\kappa)}[0, 0, -1]$. Then, by Proposition 1.4 there exist symbols $p_2(t, x, \xi; \zeta)$ in $SWF_{1, \delta, G(\kappa)}[\delta - 1, -1/l', 0]$ and $r_1(t, x, \xi; \zeta)$ in $\mathcal{R}_{G(\kappa)}$ such that

$$
p_1(t, X, D_x; \zeta)h(t, X, D_x; \zeta) = I + p_2(t, X, D_x; \zeta) + r_1(t, X, D_x; \zeta)
$$

holds for $\zeta^{-1}r(t, x, \xi; \zeta)$ is bounded in $\mathcal{R}_{G(k)}$. Consider $p_2(t, x, \xi; \zeta)$ is the symbol in $SWF_{1,\delta,G(\kappa)}[0, 0, 0]$. Then its formal norm is estimated by

$$
||p_2(t,\cdot,\cdot;\zeta)|| \leq C\zeta^{-1/l'}.
$$

So, from Proposition 1.9 and discussion in Section 5 of [22], there exists an inverse operator of $I + p_2(t, X, D_x; \zeta) + r_1(t, X, D_x; \zeta)$ with the form

$$
(I + p_2(t, X, D_x; \zeta) + r_1(t, X, D_x; \zeta))^{-1} = p_3(t, X, D_x; \zeta) + r_2(t, X, D_x; \zeta)
$$

for $p_3(t, x, \xi; \zeta) \in SWF_{1, \delta, G(\kappa)}[0, 0, 0]$ and $r_2(t, x, \xi; \zeta) \in \mathcal{R}_{G(\kappa)}$ if $\zeta \geq \zeta_1$ for a large ζ_1 . Set

$$
H^{-1} = (I + p_2(t, X, D_x; \zeta) + r_1(t, X, D_x; \zeta))^{-1} p_1(t, X, D_x; \zeta).
$$

Then, H^{-1} is a left inverse operator of $h(t, X, D_x; \zeta)$ and it has the form (3.2) . It easily follows that H^{-1} is also a right inverse operator and this concludes the proof. Q.E.D.

For $\chi(\xi)$ in $\gamma^{(\kappa)}$ with (1.8) we define

(3.3)
$$
\lambda_0(t, x, \xi) = \left(\sum_{j,j'} a_{j,j'}(t, x) \xi_j \xi_{j'}(1 - \chi(\xi)) + \chi(\xi/3) \right)^{1/2}.
$$

Then, the (modified) characteristic roots of *L* in (6) are

(3.4)
$$
\lambda_{\pm}(t, x, \xi) = \pm t^{l} g(x)^{l'} \lambda_{0}(t, x, \xi).
$$

Lemma 3.4. Let $\phi_{\pm}(t, s; x, \zeta)$ be phase functions corresponding to $\lambda_{\pm}(t, x, \zeta)$. Then, $\phi_{\pm}(t, s; x, \xi)$ *belong to* $\mathcal{P}_{G(\kappa)}(c|t-s|)$ *for a constant c, and* $\phi_{\pm}(t, s; x, \xi) - x \cdot \xi$ *belong to* $S^1_{1,0,G(\kappa)}$ *and satisfy*

(3.5)
$$
\phi_{\pm}(t,s;x,\xi)-x\cdot\xi=\pm g(x)^{l'}\int_{s}^{t}\theta^{l}\lambda_{0}(\theta,x,\nabla_{x}\phi_{\pm}(\theta,s;x,\xi))d\theta.
$$

This lemma follows from Proposition 3.1 in [22] and Proposition 3.1 in [15].

Lemma 3.5. *Define*

(3.6)
$$
\tilde{\lambda}(t, x, \xi; \zeta) = \{t^l + \zeta^{\omega l} \mu(x, \xi; \zeta)^{-\omega l} \exp\left(-t^{l+1} \mu(x, \xi; \zeta)/\zeta\right)\} \times \{g(x)^{l'} \lambda_0(t, x, \xi) + i\zeta \langle \xi \rangle^{\sigma} \exp\left(-\mu(x, \xi; \zeta)/\zeta\right)\}
$$

with $\lambda_0(t, x, \xi)$ of (3.3). Then, $\tilde{\lambda}(t, x, \xi; \zeta)$ belongs to $\tilde{S}_{1, \delta, G(\kappa)}[\sigma, 1, l]$ and

$$
(3.7) \qquad |\tilde{\lambda}(t, x, \xi; \zeta)| \geq Ch(t, x, \xi; \zeta)^l \mu(x, \xi; \zeta) \langle \xi \rangle^{\sigma}
$$

holds with a positive constant C independent of ζ *. For any fixed* ζ we have

(3.8)
$$
\tilde{\lambda}(t, x, \xi; \zeta) - t^l g(x)^{l'} \lambda_0(t, x, \xi) \in \mathscr{H}_{1, \delta, G(\kappa)}[\sigma, \omega].
$$

Set $I_1 = t^l + \zeta^{\omega l} \mu(x, \xi; \zeta)^{-\omega l} \exp\left(-t^{l+1} \mu(x, \xi; \zeta)/\zeta\right)$ and $I_2 =$ $g(x)^{\mu} \lambda_0(t, x, \xi) + i\zeta \langle \xi \rangle^{\sigma} \exp(-\mu(x, \xi; \zeta)/\zeta)$. Then, writing $\mu(x, \xi; \zeta)$ simply by μ , we have

$$
I_1 \geqq t^l \geqq 2^{-l}(t + \zeta^\omega \mu^{-\omega})^l
$$

when $t \geq \zeta^{\omega} \mu^{-\omega}$ and

$$
I_1 \geq (\zeta^{\omega} \mu^{-\omega})^l e^{-1} \geq 2^{-l} e^{-1} (t + \zeta^{\omega} \mu^{-\omega})^l
$$

when $t \leq \zeta^{\omega} \mu^{-\omega}$, since we have $0 \leq t \leq T$. Similarly, we have

$$
|I_2| \geq (|g(x)^{l'}\lambda_0(t, x, \xi)| + \zeta \langle \xi \rangle^{\sigma} \exp(-\mu/\zeta))/\sqrt{2}
$$

\n
$$
\geq C\mu(x, \xi; \zeta) \langle \xi \rangle^{\sigma}.
$$

Combining these results we have (3.7) . For the proof of (3.8) we write

$$
\tilde{\lambda}(t, x, \xi; \zeta) - t^l g(x)^l \lambda_0(t, x, \xi)
$$
\n
$$
= \zeta^{\omega l} \mu^{-\omega l} \exp \left(-t^{l+1} \mu(x, \xi; \zeta) / \zeta \right)
$$
\n
$$
\times g(x)^l \lambda_0(t, x, \xi) + i\zeta \langle \xi \rangle^{\sigma} \exp \left(-\mu(x, \xi; \zeta) / \zeta \right)
$$
\n
$$
+ it^l \zeta \langle \xi \rangle^{\sigma} \exp \left(-\mu(x, \xi; \zeta) / \zeta \right).
$$

Then, we get (3.8) since we have $|t'(\zeta \zeta)^{\sigma} \exp(-\mu(x, \xi; \zeta)/\zeta)| \leq C \langle \xi \rangle^{\sigma} \mu(x, \xi)^{\omega} \times$ $\exp(-\varepsilon t^{l+1}\mu(x, \xi))$ with constants C and ε depending on ζ . Q.E.D.

Let $\{\lambda_i(t, x, \xi)\}_{i=1}^{\infty}$ be a sequence of $\lambda_i(t, x, \xi) = \lambda_+(t, x, \xi)$ or $\lambda_i(t, x, \xi) =$ $\lambda_-(t, x, \xi)$, and let $\phi_i(t, s) \equiv \phi_i(t, s; x, \xi)$ be the phase function corresponding to $\lambda_i(t, x, \zeta)$. Then, using Proposition 2.4 in [21], the equation

(3.9)
$$
\begin{cases} X_v^j = V_{\xi} \phi_j(t_{j-1}, t_j; X_v^{j-1}, \Xi_v^j), \\ \Xi_v^j = V_x \phi_{j+1}(t_j, t_{j+1}; X_v^j, \Xi_v^{j+1}), \qquad j = 1, ..., v \end{cases}
$$

$$
(X_v^0 = x, \, \varXi_v^{\nu+1} = \xi; \, t_0 = t, \, t_{\nu+1} = s)
$$

has a solution $\{X^{j}_{v}, \Xi^{j}_{v}\}^{v}_{j=1} = \{X^{j}_{v}, \Xi^{j}_{v}\}^{v}_{j=1}$ $(t, \tilde{t}^{v}, s; x, \xi)$ for $\tilde{t}^{v} = (t_{1}, ..., t_{v})$ satisfying

$$
(3.10) \t\t 0 \leq s \leq t_{\nu} \leq \cdots \leq t_1 \leq t \leq T_1
$$

if T_1 is sufficiently small. Hence, a multi-#-product $\Phi_{v+1} \equiv \Phi_{v+1}(t, \tilde{t}^v, s; x, \xi) =$ $(\phi_1(t, t_1) \# \phi_2(t_1, t_2) \# \cdots \# \phi_{v+1}(t_v, s))(x, \xi)$ of $\phi_j(t_{j-1}, t_j; x, \xi), j = 1, ..., v + 1$, is defined by

$$
(3.11) \t\t \Phi_{\nu+1} = \sum_{j=1}^{\nu} (\phi_j(t_{j-1}, t_j; X_{\nu}^{j-1}, \Xi_{\nu}^j) - X_{\nu}^j \cdot \Xi_{\nu}^j) + \phi_{\nu+1}(t_{\nu}, s; X_{\nu}^{\nu}, \xi) \t (X_{\nu}^0 = x).
$$

Lemma 3.6. Let $\{X_{\nu}^{j}, \Xi_{\nu}^{j}\}_{j=1}^{\nu} = \{X_{\nu}^{j}, \Xi_{\nu}^{j}\}_{j=1}^{\nu}$ (t, \tilde{t}^{ν} , s; x, ξ) be a solution of (3.9). Then, if T_1 is small enough, we can find a positive constant C such that

$$
(3.12) \t C^{-1}|g(x)| \le |g(X_v^j)| \le C|g(x)| \t (j = 1, ..., v)
$$

for \tilde{t}^v satisfying (3.10).

Proof. From (3.9) and (3.5) we have

$$
(3.13) \quad X_v^j - x = \sum_{m=1}^j (X_v^m - X_v^{m-1})
$$

= $\sum_{m=1}^j (V_{\xi} \phi_m(t_{m-1}, t_m; X_v^{m-1}, \Xi_v^m) - X_v^{m-1})$
= $\sum_{m=1}^j g(X_v^{m-1})^{l'} \int_{t_m}^{t_{m-1}} \theta^l V_{\xi}(\lambda_m^0(\theta, x, V_x \phi_m(\theta, t_m; X_v^{m-1}, \Xi_v^m))) d\theta$,

where $\lambda_m^0(t, x, \xi) = \pm \lambda_0(t, x, \xi)$ when $\lambda_m(t, x, \xi) = \pm t^l g(x)^{l'} \lambda_0(t, x, \xi)$. Hence, setting

$$
G = \max \{|g(x)|, |g(X_v^j)| \quad (j = 1, ..., v)\}
$$

we have

$$
||g(X_v^j)| - |g(x)|| \le |g(X_v^j) - g(x)| \le C|X_v^j - x|
$$

\n
$$
\le C' \sum_{m=1}^j |g(X_v^m)|(t_{m-1} - t_m)
$$

\n
$$
\le C'T_1G.
$$

Consequently, if T_1 satisfies $C'T_1 \leq 1/3$ we have

$$
\frac{1}{2}G \le |g(x)| \le 2G \qquad (j = 0, \ldots, v)
$$

and (3.12). Q.E.D.

Lemma 3.7. Assume σ' satisfies (5). Then, for any positive constant ε *there exists a constant* $M \equiv M_{\epsilon}$ *such that the multi-#-product* Φ_{v+1} *of* (3.11) *satisfies*

(3.14)
$$
|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} \exp [i(\Phi_{\nu+1} - x \cdot \xi)]|
$$

\n
$$
\leq CM^{-|\alpha + \beta|} \alpha!^{\kappa} \beta!^{\kappa} \langle \xi \rangle^{-|\alpha|} \exp [\varepsilon t^{l+1} \mu(x, \xi) + \langle \xi \rangle^{\sigma'}]
$$

for (t, \tilde{t}^{ν}, s) satisfying (3.10), where T_1 is the constant in Lemma 3.6.

Remark. We note that we can take the σ' satisfying (5) since we have $(1 + (l' - 1)\sigma)/(l'\kappa - l' + 1) < 1/\kappa$ by $l' \ge 2$ and $\kappa \ge 2$.

Proof. Set

$$
\widetilde{J}_{v+1} \equiv \widetilde{J}_{v+1}(t, \tilde{t}^v, s; x, \xi) = \Phi_{v+1}(t, \tilde{t}^v, s; x, \xi) - x \cdot \xi.
$$

Then, from (1.25) in [13], (3.13) and (3.5) it follows that

$$
\begin{split} \nabla_{\xi} \widetilde{J}_{v+1} &= \nabla_{\xi} \phi_{v+1}(t_v, \, s; \, X_v^v, \, \xi) - x \\ \n&= (\nabla_{\xi} \phi_{v+1}(t_v, \, s; \, X_v^v, \, \xi) - X_v^v) + (X_v^v - x) \\ \n&= \sum_{m=1}^{v+1} g(X_v^{m-1})^{l'} \int_{t_m}^{t_{m-1}} \theta^l \nabla_{\xi} (\lambda_m^0(\theta, \, x, \, \nabla_x \phi_m(\theta, \, t_m; \, X_v^{m-1}, \, \Xi_v^m))) \, d\theta \n\end{split}
$$

and similarly it follows that

$$
\bar{V}_x \tilde{J}_{v+1} = \sum_{m=1}^{v+1} \bar{V}_x (g(X_v^{m-1})^{l'} \int_{t_m}^{t_{m-1}} \theta^l \lambda_m^0(\theta, x, \bar{V}_x \phi_m(\theta, t_m; X_v^{m-1}, \bar{Z}_v^m)) d\theta).
$$

Hence, using (2.12) in [22] and Lemma 3.6 we have for $\alpha + \beta \neq 0$

$$
(3.15) \qquad |\partial_{\xi}^{\alpha}\partial_{x}^{\beta}\tilde{J}_{v+1}| \leq \sum_{m=1}^{v+1} \sum \frac{\alpha! \beta!}{\alpha'! \alpha_{1}! \dots \alpha_{j}! \beta'! \beta_{1}! \dots \beta_{j}!} g(X_{v}^{m-1})^{l'-j}
$$
\n
$$
\times \left| \left\{ \prod_{j'=1}^{j} \partial_{\xi}^{\alpha_{j'}} \partial_{x}^{\beta_{j'}} g(X_{v}^{m-1}) \right\} \right\} \int_{t_{m}}^{t_{m-1}} \theta^{l} \partial_{\xi}^{\alpha'} \partial_{x}^{\beta} \lambda_{m}^{0} d\theta
$$
\n
$$
\leq M^{-|\alpha+\beta|} \max_{1 \leq j \leq |\alpha+\beta|} \left\{ (|\alpha + \beta| - 1)! \right\}
$$
\n
$$
\times (|\alpha + \beta| - j)!^{\kappa - 1} (t^{l+1} \mu)^{1 - j/l'} \langle \xi \rangle^{\sigma + j\delta - |\alpha|} \right\},
$$

where the second summation in the second member of (3.15) is taken over all $(j; \alpha', \alpha_1, \ldots, \alpha_j, \beta', \beta_1, \ldots, \beta_j)$ such that $0 \leq j \leq l'$, $\alpha' + \alpha_1 + \cdots + \alpha_j = \alpha, \beta' + \beta$ $\beta_1 + \cdots + \beta_j = \beta$, and $\alpha_{i'} + \beta_{i'} \neq 0$ ($j' = 1, \ldots, j$). Now, we set

$$
\widetilde{J}_{\nu+1,\alpha,\beta} = \exp(-i\widetilde{J}_{\nu+1})\partial_{\xi}^{\alpha}\partial_{x}^{\beta}\exp(i\widetilde{J}_{\nu+1}).
$$

and use the induction on $|\alpha + \beta|$. Then, since we have for $(\alpha, \beta) \neq 0$

$$
\widetilde{J}_{\nu+1,\alpha,\beta}=\partial_{\xi}^{a'}\partial_{x}^{\beta''}\widetilde{J}_{\nu+1,\alpha-\alpha'',\beta-\beta''}+i\widetilde{J}_{\nu+1,\alpha-\alpha'',\beta-\beta''}\partial_{\xi}^{a''}\partial_{x}^{\beta''}\widetilde{J}_{\nu+1}
$$

with some (α'', β'') satisfying $\alpha'' \leq \alpha$, $\beta'' \leq \beta$ and $|\alpha'' + \beta''| = 1$, we can prove from (3.15)

$$
(3.16) \quad |\partial_{\xi}^{\alpha'} \partial_{x}^{\beta'} \tilde{J}_{\nu+1,\alpha,\beta}| \leq M_{1}^{-|\alpha+\beta|} M_{2}^{-|\alpha'+\beta'|}
$$

$$
\times \max_{1 \leq m \leq |\alpha+\beta|} \max \{ (|\alpha+\beta+\alpha'+\beta'|-m) !
$$

$$
\times (|\alpha+\beta+\alpha'+\beta'|-j)!^{\kappa-1} (t^{l+1}\mu)^{m-j/l'} \langle \xi \rangle^{m\sigma+j\delta-|\alpha+\alpha'|} \}
$$

for (t, \tilde{t}^{ν}, s) satisfying (3.10), where $\mu = \mu(x, \xi; \zeta)$ and the second maximum in (3.16) is taken over all *j* satisfying $m \le j \le \min(|\alpha + \beta + \alpha' + \beta'|, ml')$. Hence, we have

$$
(3.17) \qquad |\partial_{\xi}^{\alpha}\partial_{x}^{\beta} \exp\left(i\widetilde{J}_{\nu+1}\right)| \leq M_{1}^{-|\alpha+\beta|} \max_{1 \leq m \leq |\alpha+\beta|} \max_{j} \left\{(|\alpha+\beta|-m)!\right\}
$$

$$
\times \left(|\alpha+\beta|-j\right)!^{\kappa-1} (t^{l+1}\mu)^{m-j/l'} \left\langle \xi\right\rangle^{m\sigma+j\delta-|\alpha|}
$$

for (t, \tilde{t}^v, s) satisfying (3.10). Here and in the next, max means that we take j maximum over all *j* satisfying $m \leq j \leq \min(|\alpha + \beta|, ml')$. From (5) it follows that $(\sigma + \delta) / (\kappa - 1 + 1/l') \leq \sigma'$. Hence, using (3.17) we can prove

$$
|\partial_{\xi}^{\alpha}\partial_{x}^{\beta} \exp\left[i(\Phi_{\nu+1} - x \cdot \xi)\right]|\leq M_{1}^{-|\alpha+\beta|} \max_{1 \leq m \leq |\alpha+\beta|} \max_{j} \left\{(|\alpha + \beta| - m)!\right\}
$$

$$
\times (|\alpha + \beta| - j)!^{\kappa-1} (t^{l+1} \mu)^{m - j/l'} \langle \xi \rangle^{m\sigma + j\delta - |\alpha|}
$$

FUNDAMENTAL SOLUTION IN GEVREY CLASS 191

$$
\leq M_{3,\varepsilon}^{-|\alpha+\beta|} \max_{1 \leq m \leq |\alpha+\beta|} \max_{j} \left\{ (|\alpha+\beta|-m)! \right\}
$$

\n
$$
\times (|\alpha+\beta|-j)!^{\alpha-1} [m-j/l']! [(m\sigma+j\delta)/\sigma']! \times \langle \xi \rangle^{-|\alpha|} \exp \left[\varepsilon t^{l+1} \mu(x,\xi) + \langle \xi \rangle^{\sigma'} \right] \}
$$

\n
$$
\leq M_{4,\varepsilon}^{-|\alpha+\beta|} \alpha!^{\kappa} \beta!^{\kappa} \langle \xi \rangle^{-|\alpha|} \exp \left[\varepsilon t^{l+1} \mu(x,\xi) + \langle \xi \rangle^{\sigma'} \right].
$$

\nO.E.D.

Hence, we have (3.14) .

§4. Systemization and Perfectly Diagonalization

In this section we reduce the Cauchy problem (8) of (6) to a system equivalent to (8). In order to simplify the notation below, we write $p(t, x, \xi; \zeta)$ simply by $p(t, x, \zeta)$. We also omit to describe the terms of regularizers and the equality means that it holds modulo regularizers unless otherwise stated.

First, we factorize the operator *L* of (6). Let $\lambda_{\pm}(t, x, \xi)$ be characteristic roots of L, which is defined by (3.4). Then, from Proposition 1.4 there exists a symbol $b_1(t, x, \xi)$ in $SWF_{1, \delta, G(\kappa)}[0, 0, 0]$ such that

(4.1)
$$
L = (D_t - \lambda_-(t, X, D_x))(D_t - \lambda_+(t, X, D_x)) + t^k g(x)^{k'} b_0(t, X, D_x) + b_1(t, X, D_x),
$$

where

$$
b_0(t, x, \xi) = \sum_{j=1}^n a_j(x, \xi) \xi_j + t^{1-k} g(x)^{1-k} \sum_{|\alpha|=1} \lambda_0^{(\alpha)}(t, x, \xi) \lambda_{+(\alpha)}(t, x, \xi)
$$

- $i l t^{1-k-1} g(x)^{1-k} \lambda_0(t, x, \xi) + t^{1-k} g(x)^{1-k} D_t \lambda_0(t, x, \xi),$

which belongs to $\mathring{S}_{1, \delta, G(k)}[1, 0, 0]$. Now, we set

$$
b(t, x, \xi) = t^k g(x)^{k'} b_0(t, x, \xi) / (2\tilde{\lambda}(t, x, \xi))
$$

with $\tilde{\lambda}(t, x, \xi)$ in (3.6). Then, from (3.7) we have

(4.2)
\n(i)
$$
b(t, x, \xi) \in \mathring{S}_{1, \delta, G(\kappa)}[\sigma, 0, -1],
$$

\n(ii) $b_{(\beta)}(t, x, \xi) \in \mathring{S}_{1, \delta, G(\kappa)}[\sigma + \delta, -1/l', -1]$ ($|\beta| = 1$),

because from (4) and $\omega = 1/(l + 1)$ we have

$$
\begin{cases}\n(1-\sigma)(1-k'/l') \leq \sigma, \\
\omega(l-k-1) - \sigma/(1-\sigma) \leq 0, \\
\langle \xi \rangle^{-1} \leq C(\mu_{|\xi=1})^{-1/(1-\sigma)}\n\end{cases}
$$

and hence we have

192 KENZO SHINKAI AND KAZUO TANIGUCHI

$$
|b(t, x, \xi)| \leq Ct^{k}(g(x)^{l'}\langle \xi \rangle^{1-\sigma})^{k'/l'}\langle \xi \rangle^{1-(1-\sigma)k'/l'}h^{-l}\mu^{-1}\langle \xi \rangle^{-\sigma}
$$

\n
$$
\leq Ch^{k-l}\mu^{-1}(g(x)^{l'}\langle \xi \rangle^{1-\sigma})^{k'/l'}\langle \xi \rangle^{(1-\sigma)(1-k'/l')}
$$

\n
$$
\leq Ch^{-1}\mu^{\omega(l-k-1)-1}(\mu_{|\xi=1})^{m}\langle \xi \rangle^{\sigma}
$$

\n
$$
\leq Ch^{-1}\langle \xi \rangle^{\sigma}
$$

with a constant C independent of ζ , where $m = k/l' - {\sigma - (1 - \sigma)(1 - k/l')}$ $(1 - \sigma) \leq 1 - \omega(l - k - 1)$. Now, we write (4.1) in the form

$$
L = (D_t - \lambda_-(t, X, D_x) - b(t, X, D_x))
$$

× (D_t - \lambda_+(t, X, D_x) + b(t, X, D_x))
+ b_2(t, X, D_x) + $\tilde{r}(t, X, D_x)$

with

(4.3)
$$
b_2(t, x, \xi) = -D_t b(t, x, \xi) - t^l g(x)^l [\lambda_0 \circ b]_{Rem(1)}(t, x, \xi) - [b \circ \lambda_+]_{Rem(1)}(t, x, \xi) + \sigma_M(b(t, X, D_x)^2) + b_1(t, x, \xi)
$$

and

(4.4)
$$
\tilde{r}(t, x, \xi) = 2b(t, x, \xi) \{\tilde{\lambda}(t, x, \xi) - t^l g(x)^{l'} \lambda_0(t, x, \xi)\}.
$$

Here, for symbols $p_j(t, x, \xi)$, $j = 1, 2$, we denote $[p_1 \circ p_2]_{Rem(1)}(t, x, \xi)$ $\sigma_M(P_1(t)P_2(t))(x, \zeta) - p_1(t, x, \zeta)p_2(t, x, \zeta)$ (see Remark of Proposition 1.2 for the notation $\sigma_M(\cdot)$. Now, we use (3.8). Then, we have $\tilde{r} \in \mathcal{H}_{1,\delta,G(\kappa)}[2\sigma, 2\omega]$. Moreover, using (4.2) -ii) for the second term in (4.3) and using (4.2) -i) for other terms we find that $b_2(t, x, \xi)$ belongs to $SWF_{1, \delta, G(\kappa)}[2\sigma, 0, -2]$.

Let $h(t, x, \xi) \equiv h(t, x, \xi; \zeta)$ be a symbol in (3.1) and $h(t, X, D_x)^{-1}$ be the inverse operator constructed in Lemma 3.3. Here and in what follows we assume $\zeta \ge \zeta_1$. For a function $u(t, x)$ we set $U(t, x) = \zeta(u_1(t, x), u_2(t, x))$ with $u_1(t, x) = h(t, X, D_x)^{-1} \langle D_x \rangle^{\sigma} u$ and $u_2(t, x) = (D_t - \lambda_+(t, X, D_x) + b(t, X, D_x))u$. Then, by the same discussion in $[11]$, we can prove that solving the Cauchy problem (8) for (6) is equivalent to solving the Cauchy problem

$$
\begin{cases}\n\mathscr{L}U = 0, \\
U(s) = U_0\n\end{cases}
$$

for

(4.6)
$$
\mathscr{L} = D_t - \mathscr{D}(t) + \begin{pmatrix} b(t, X, D_x) - b_3(t, X, D_x) & -h^{-1} \langle D_x \rangle^{\sigma} \\ b_4(t, X, D_x) & -b(t, X, D_x) \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ \widetilde{R} \langle D_x \rangle^{-\sigma} h & 0 \end{pmatrix} + R_{\infty, 1}(t),
$$

where

(4.7)
\n
$$
\mathscr{D}(t) = \begin{pmatrix} \lambda_{+}(t, X, D_{x}) & 0 \\ 0 & \lambda_{-}(t, X, D_{x}) \end{pmatrix},
$$
\n
$$
b_{3}(t, x, \xi) = \sigma_{M}([D_{t} - \lambda_{+}(t, X, D_{x}) + b(t, X, D_{x}), h^{-1} \langle D_{x} \rangle^{\sigma}] \langle D_{x} \rangle^{-\sigma} h)
$$
\n
$$
(\in SWF_{1, \delta, G(x)}[\sigma, 0, -1]),
$$
\n
$$
b_{4}(t, x, \xi) = \sigma_{M}(b_{2}(t, X, D_{x}) \langle D_{x} \rangle^{-\sigma} h)
$$

with $h = h(t, X, D_x)$, $\tilde{R} = \tilde{r}(t, X, D_x)$, and $R_{\infty,1}(t)$ is a matrix of regularizers. Summing up we have proved

Proposition **4.1.** *Let & be a hyperbolic system defined by* (4.6). *Then, we can reduce the problem of solving the Cauchy problem* (8) is *reduced to the* problem of solving (4.5) for a system $\mathscr L$ of (4.6) .

Next, we diagonalize the operator

(4.8)
$$
\mathscr{L}_1 = D_t - \mathscr{D}(t) + \begin{pmatrix} \tilde{b}(t, X, D_x) & -h^{-1} \langle D_x \rangle^{\sigma} \\ b_4(t, X, D_x) & -b(t, X, D_x) \end{pmatrix}
$$

$$
(\tilde{b}(t, x, \xi) = b(t, x, \xi) - b_3(t, x, \xi))
$$

perfectly modulo Hermite operators.

Proposition 4.2 (cf. Theorem 2.2 of [17]). Let \mathcal{L}_1 be a hyperbolic system *of the form* (4.8). *Then, there exist a diagonal pseudo-differential operator F(t) with the symbol in SWF*_{1, δ} σ _{*(K)*} $[\sigma, 0, -1]$ *and a pseudo-differential operator P(t) with a symbol in* $SWF_{1,\delta,G(\kappa)}[0, -1, -(l + 1)]$ *such that*

(4.9)
$$
\mathscr{L}_1(I + P(t)) = (I + P(t))(D_t - \mathscr{D}(t) + F(t)) + \tilde{\tilde{R}}(t) + R_{\infty,2}(t),
$$

where $\tilde{\vec{R}}(t)$ and $R_{\infty,2}(t)$ are matrices of pseudo-differential operators with the *symbols in* $\mathcal{H}_{1,\delta,G(k)}[\sigma,\omega]$ *and* $\mathcal{R}_{G(k)}$ *, respectively.*

Proof. Set

$$
B \equiv B(t) = \begin{pmatrix} \tilde{b}(t, X, D_x) & 0 \\ 0 & -b(t, X, D_x) \end{pmatrix},
$$

$$
B' \equiv B'(t) = \begin{pmatrix} 0 & -h^{-1} \langle D_x \rangle^{\sigma} \\ b_4(t, X, D_x) & 0 \end{pmatrix}
$$

and we will find an operator $P = P(t)$ with the symbol in $SWF_{1,\delta,G(\kappa)}[0, -1,$ $-(l + 1)$] and with zero diagonal elements such that it satisfies

(4.10)
$$
\mathscr{D}P - P\mathscr{D} \equiv P_t + B' + BP - PB - PB'P
$$

$$
\mod \mathscr{H}_{1,\delta,G(\kappa)}[\sigma,\omega] + \mathscr{R}_{G(\kappa)},
$$

where $\sigma(P_t) = D_t \sigma(P)$. Then, defining a pseudo-differential operator $F(t)$ by

$$
\sigma(F(t)) = B(t) + \sigma_M(B'(t)P(t)),
$$

we find that $P(t)$ and $F(t)$ satisfy (4.9) with an Hermite operator $\tilde{R}(t)$ and an regularizer $R_{\infty,2}(t)$.

In order to find *P(t)* we set

$$
\widetilde{\mathscr{D}} = \begin{pmatrix} \widetilde{\lambda}(t, X, D_x) & 0 \\ 0 & -\widetilde{\lambda}(t, X, D_x) \end{pmatrix}
$$

with $\tilde{\lambda}(t, x, \xi)$ in Lemma 3.5. Assume that $\sigma(P(t)) \in SWF_{1, \delta, G(k)}[0, -1, 0]$ $-(l+1)$]. Then, by (3.8) the relation (4.10) is equivalent to

(4.10)'
$$
\widetilde{\mathscr{D}}P - P\widetilde{\mathscr{D}} \equiv P_t + B' + BP - PB - PB'P
$$

$$
\mod{\mathscr{H}_{1,\delta,G(\kappa)}[\sigma,\omega] + \mathscr{R}_{G(\kappa)}}.
$$

Since $\sigma(B(t))$ and $\sigma_M(B'(t))$ belong to $SWF_{1,\delta,G(\kappa)}[\sigma,0,-1]$, they have formal symbols $\sum \sigma(B_j(t))$ and $\sum \sigma(B_j'(t))$. Now, we find $\sigma(P(t))$ as a formal sum $\sum_{v,m} \sigma(P_{v,m})$ with $\sigma(P_{v,m}) \in S_{1,\delta,G(\kappa)}[-v(1-\delta),-(m+1),-(m+1)(l + 1)]$ satisfying

$$
(4.11) \quad \sigma(P_{0,0}) = \sigma(\tilde{A})^{-1}\sigma(B'_0),
$$
\n
$$
(4.12) \quad \sigma(P_{0,m}) = \sigma(\tilde{A})^{-1}\left\{D_t\sigma(P_{0,m-1}) + \sigma(B_0)\sigma(P_{0,m-1}) - \sigma(P_{0,m-1})\sigma(B_0) - \sum_{m'+m''=m-2} \sigma(P_{0,m'})\sigma(B'_0)\sigma(P_{0,m'})\right\} \quad (m \ge 1),
$$
\n
$$
(4.13) \quad \sigma(P_{v,0}) = \sigma(\tilde{A})^{-1}\left\{\sigma(B'_v) + \sum_{\substack{v'+|\gamma|=v\\ \gamma\neq 0}} \frac{1}{\gamma!} \left\{\sigma(P_{v',0})^{(\gamma)}\sigma(\tilde{\mathcal{D}})_{(\gamma)} - \sigma(\tilde{\mathcal{D}})^{(\gamma)}\sigma(P_{v',0})_{(\gamma)}\right\} \quad (v \ge 1)
$$

and

$$
(4.14) \quad \sigma(P_{v,m}) = \sigma(\tilde{A})^{-1} \left[D_t \sigma(P_{v,m-1}) + \sum_{v'+v''+|y|=v} \frac{1}{\gamma!} \left\{ \sigma(B_{v'})^{(\gamma)} \sigma(P_{v'',m-1})_{(\gamma)} - \sigma(P_{v',m-1})^{(\gamma)} \sigma(B_{v''})_{(\gamma)} \right\} \right]
$$

$$
- \sum_{\substack{v'+v^2+v^3+|y^1| \\ +|y^2|+|y^3|=v}} \sum_{m'+m''=m-2} \frac{1}{\gamma! \gamma^2! \gamma^3!} \sigma(P_{v^1,m'})^{(\gamma^1+\gamma^2)} + \sum_{\substack{v''+v^2+v^3+|y^1|=v}} \frac{1}{\gamma! \gamma^2! \gamma^3!} \sigma(P_{v^3,m'})^{(\gamma^2+\gamma^3)}
$$

$$
+\sum_{\substack{v'+|y|=v\\y\neq 0}}\frac{1}{y!}\Bigg\{\sigma(P_{v',m})^{(\gamma)}\sigma(\widetilde{\mathscr{D}})_{(\gamma)}-\sigma(\widetilde{\mathscr{D}})^{(\gamma)}\sigma(P_{v',m})_{(\gamma)}\Bigg\}\Bigg]
$$

$$
(v\geqq 1, m\geqq 1).
$$

Here, when $m = 1$, we mean that the last term in (4.12) and the third term in (4.14) do not appear, and

$$
\widetilde{A} = \begin{pmatrix} 2\widetilde{\lambda}(t, X, D_x) & 0 \\ 0 & -2\widetilde{\lambda}(t, X, D_x) \end{pmatrix}.
$$

Then, as in Section 6 of [22] we find that $\sigma(P_{v,m})$ satisfy

$$
\begin{aligned} |\partial_t^{\gamma} \sigma(P_{\nu,m})_{(\beta)}^{(\alpha)}| &\leq CM_1^{|\alpha+\beta|+\gamma+\nu+m} \alpha! \gamma! m! \\ &\times \left((|\beta|+\nu)!^{\kappa} + (|\beta|+\nu)!^{\kappa(1-\delta)} \langle \xi \rangle^{\delta(|\beta|+\nu)} \right) \\ &\times h(t,x,\xi)^{-\gamma} \langle \xi \rangle^{-|\alpha|-\nu} (h^{l+1}\mu)^{-m-1} \end{aligned}
$$

by using a formal norm

$$
\|\{\sigma(P_{\nu,m}\}, M\| = \sum_{\alpha,\beta,\gamma,\nu,m} \frac{2(2n)^{-\nu} \nu!}{(\nu + |\alpha|)!(m + \nu + |\beta| + \gamma)!} \times M^{2m + 2\nu + |\alpha| + |\beta| + \gamma} \times \sup \{|\partial_t^{\gamma}\sigma(P_{\nu,m})_{(\beta)}^{(\alpha)}| \times ((|\beta| + \nu)^{\kappa - 1} + (|\beta| + \nu)^{\kappa(1 - \delta) - 1} \langle \xi \rangle^{\delta})^{-(|\beta| + \nu)} \times \langle \xi \rangle^{\nu + |\alpha|} (h^{l+1} \mu)^{m+1} h^{\gamma} \} \quad \text{(cf. [4], [7])}.
$$

First, we use discussion in pp. 314-317 of [4]. Then, for a sequence $\{s_m\}$ of (2×2) -matrices s_m of complex numbers satisfying

$$
\|\{s_m\}\| \equiv \left\{\sum_{m=0}^{\infty} |s_m|^2 M_2^{2m} m!^{-4}\right\}^{1/2} < \infty
$$

we find a matrix $\psi(\theta)$ satisfying

$$
\begin{cases}\n|\partial_{\theta}^{j}\psi(\theta)| \leq C \|\{s_{m}\}\|M_{3}^{-j}j!\|\theta|^{-j} & (\theta \neq 0), \\
\left|\partial_{\theta}^{j}\left(\psi(\theta) - \sum_{m=0}^{N-1} \frac{\theta^{m}}{m!} s_{m}\right)\right| \leq C \|\{s_{m}\}\|M_{3}^{-\left(j+N\right)}j!\|N!\|\theta|^{N-j} & (\theta \neq 0).\n\end{cases}
$$

For a fixed v we apply this result to $s_m = \sigma(P_{v,m})(t, x, \xi; \zeta)(h(t, x, \xi; \zeta)^{l+1} \times$ $\mu(x, \xi; \zeta)$ ^mm! with a parameter t, x, ξ and ζ . Then, we find a function $\psi_v(\theta; t, x, \xi) \equiv \psi_v(\theta; t, x, \xi; \zeta)$ satisfying

$$
\left| \partial_{\theta}^{j} \partial_{t}^{\alpha} \partial_{\xi}^{\alpha} \partial_{x}^{\beta} \psi_{\nu} \right| \leq CM^{-\left(|\alpha + \beta| + \gamma + \nu + j\right)} \alpha! \gamma! j!
$$
\n
$$
\times \left((|\beta| + \nu)!^{\kappa} + (|\beta| + \nu)!^{\kappa(1 - \delta)} \langle \xi \rangle^{\delta(|\beta| + \nu)} (h^{l+1} \mu)^{-1} \right)
$$
\n
$$
\times \langle \xi \rangle^{-|\alpha| - \nu} h^{-\gamma} |\theta|^{-j} \quad \text{for} \quad \theta \neq 0,
$$
\n
$$
\left| \partial_{\theta}^{j} \partial_{t}^{\alpha} \partial_{\xi}^{\alpha} \partial_{x}^{\beta} \left\{ \psi_{\nu}(\theta; t, x, \xi) - \sum_{m=0}^{N-1} \frac{\theta^{m}}{m!} s_{m}(t, x, \xi) \right\} \right|
$$
\n
$$
\leq CM^{-\left(|\alpha + \beta| + \nu + j + \nu + N\right)} \alpha! \gamma! j! N!
$$
\n
$$
\times \left((|\beta| + \nu)!^{\kappa} + (|\beta| + \nu)!^{\kappa(1 - \delta)} \langle \xi \rangle^{\delta(|\beta| + \nu)} \right) (h^{l+1} \mu)^{-1}
$$
\n
$$
\times \langle \xi \rangle^{-|\alpha| - \nu} h^{-\gamma} |\theta|^{N-j} \quad \text{for} \quad \theta \neq 0.
$$

Define pseudo-differential operators P_v as

$$
\sigma(P_v) = \psi_v(1/\{h(t, x, \xi)^{l+1}\mu(x, \xi)\}; t, x, \xi).
$$

Then, $\sigma(P_v)$ satisfy

$$
(4.15)
$$
\n
$$
\begin{cases}\n|\partial_t^{\gamma}\sigma(P_v)_{(\beta)}^{(\alpha)}| \le CM^{-(|\alpha+\beta|+\gamma+\nu)}\alpha!\gamma! \\
\times ((|\beta|+\nu)!^{\kappa} + (|\beta|+\nu)!^{\kappa(1-\delta)}\langle \xi \rangle^{\delta(|\beta|+\nu)})(h^{l+1}\mu)^{-1} \\
\times \langle \xi \rangle^{-|\alpha|-\nu}h^{-\gamma}, \\
\partial_t^{\gamma}\partial_{\xi}^{\alpha}\partial_x^{\beta}\left\{\sigma(P_v) - \sum_{m=0}^{N-1} \sigma(P_{v,m})\right\} \\
\le CM^{-(|\alpha+\beta+\gamma+\nu+N)}\alpha!\gamma!N! \\
\times ((|\beta|+\nu)!^{\kappa} + (|\beta|+\nu)!^{\kappa(1-\delta)}\langle \xi \rangle^{\delta(|\beta|+\nu)}) \\
\times \langle \xi \rangle^{-|\alpha|-\nu}h^{-\gamma}(h^{l+1}\mu)^{-1-N}.\n\end{cases}
$$

Now, we set

$$
\sigma(R_0) = \{\sigma(\tilde{\mathcal{D}})\sigma(P_0) - \sigma(P_0)\sigma(\tilde{\mathcal{D}})\} - \{D_t\sigma(P_0) + \sigma(B'_0)
$$

+ $\sigma(B_0)\sigma(P_0) - \sigma(P_0)\sigma(B_0) - \sigma(P_0)\sigma(B'_0)\sigma(P_0)\},$

$$
\sigma(R_v) = \{\sigma(\tilde{\mathcal{D}})\sigma(P_v) - \sigma(P_v)\sigma(\tilde{\mathcal{D}})\} - \{D_t\sigma(P_v) + \sigma(B'_v)
$$

+
$$
\sum_{v' + v'' + |y| = v} \frac{1}{\gamma!} \{\sigma(B_{v'})^{(\gamma)}\sigma(P_{v''})_{(\gamma)} - \sigma(P_{v'})^{(\gamma)}\sigma(B_{v''})_{(\gamma)}\}
$$

-
$$
\sum_{v' + v^2 + v^3 + |y^2| + |y^2| + |y^3| = v} \frac{1}{\gamma! \gamma^2! \gamma^3!} \sigma(P_{v^1})^{(\gamma^1 + \gamma^2)} \sigma(B'_{v^2})^{(\gamma^2)}_{(\gamma^2)} \sigma(P_{v^3})_{(\gamma^2 + \gamma^3)}
$$

+
$$
\sum_{v' + |y| = v} \frac{1}{\gamma!} \{\sigma(P_{v'})^{(\gamma)}\sigma(\tilde{\mathcal{D}})_{(\gamma)} - \sigma(\tilde{\mathcal{D}})^{(\gamma)}\sigma(P_{v'})^{(\gamma)}\}\ \quad (v \ge 1).
$$

Then, from (4.15) we have

(4.16)
$$
|\sigma(R_{\nu})_{(\beta)}^{(\alpha)}| \leq CM^{-(|\alpha+\beta|+\nu)}\alpha!
$$

$$
\times ((|\beta|+\nu)!^{\kappa}+(\beta|+\nu!)^{\kappa(1-\delta)}\langle \xi \rangle^{\delta(|\beta|+\nu)})
$$

$$
\times \langle \xi \rangle^{\sigma-|\alpha|-\nu}\mu^{\omega} \exp(-\varepsilon t^{l+1}\mu)
$$

for an $\epsilon > 0$ independent of v. Next, we apply Lemma 1.3 to formal symbols $\Sigma \sigma(P_v)$ and $\Sigma \sigma(R_v)$. Then, we find symbols $\sigma(P)$ in $SWF_{1,\delta,G(\kappa)}[0, -1, -(l + 1)]$ and $\sigma(R)$ in $\mathcal{H}_{1,\delta,G(\kappa)}[\sigma,\omega]$ satisfying

$$
(4.17) \quad \left| \partial_t^{\gamma} \partial_{\xi}^{\alpha} \partial_x^{\beta} \left(\sigma(P) - \sum_{\nu < N} \sigma(P_{\nu}) \right) \right| \leq CM^{-(\left| \alpha + \beta \right| + j + N)} \alpha! \gamma! ((\left| \beta \right| + N)!^{\kappa} + (\left| \beta \right| + N)!^{\kappa (1 - \delta)} \langle \xi \rangle^{\delta(|\beta| + N)}) \times (h^{l+1} \mu)^{-1} \langle \xi \rangle^{-|\alpha| - N} \quad \text{for} \quad \langle \xi \rangle \geq c(|\alpha| + N)^{\kappa}
$$

and

$$
(4.18) \qquad \left| \partial_{\xi}^{\alpha} \partial_{x}^{\beta} \left(\sigma(R) - \sum_{\nu < N} \sigma(R_{\nu}) \right) \right| \leq CM^{-(|\alpha + \beta| + N)} \alpha! ((|\beta| + N)!^{\kappa} + (|\beta| + N)!^{\kappa (1 - \delta)} \langle \xi \rangle^{\delta(|\beta| + N)}) \times \langle \xi \rangle^{\sigma - |\alpha| - N} \mu^{\omega} \exp\left(-\varepsilon t^{l+1} \mu \right) \text{for } \langle \xi \rangle \geq c(|\alpha| + N)^{\kappa}.
$$

Consequently, from (4.16) – (4.18) we obtain $(4.10)'$ and (4.9) for a Hermite operator $\tilde{R}(t)$ and a regularizer $R_{\alpha,2}(t)$. Q.E.D.

Since $h(t, x, \xi; \zeta)^{l+1} \mu(t, x; \zeta) \ge \zeta$, the formal norm $\|\sigma(P); M\|$ of $\sigma(P)(t, x, \xi; z)$ satisfies

$$
\|\sigma(P); M\| \leqq C\zeta^{-1}
$$

if we consider $\sigma(P)$ as a symbol in $S^0_{1,\delta,G(\kappa)}$. Hence, using Proposition 1.9 we find an inverse operator $(I + P)^{-1}$ of $I + P$ if ζ is sufficiently large. We fix such a ζ till the end of this paper. Then, from (4.8) – (4.9) we have for the system $\mathscr L$ of (4.6)

$$
\mathscr{L}(I+P) = (I+P)\mathscr{L}_2
$$

with

$$
\mathcal{L}_2 = D_t - \mathcal{D}(t) + F(t) + (I + P)^{-1} \left\{ \widetilde{R}(t) + \begin{pmatrix} 0 & 0 \\ \widetilde{R} \langle D_x \rangle^{-\sigma} h & 0 \end{pmatrix} (I + P) \right\} + (I + P)^{-1} \left\{ R_{\infty, 2}(t) + R_{\infty, 1}(t) (I + P) \right\},
$$

where $\tilde{R}(t)$ and $R_{\infty,1}(t)$ are operators in (4.6). We note that we used the similar discussion in the proof of Proposition 1.4 in order to obtain the fact that the main symbol of $(I - P)^{-1}$ times an Hermite operator also belongs to $\mathscr{H}_{1,\delta,G(\kappa)}[\sigma,\omega].$

Considering Proposition 4.1 and (4.19), Theorem 1 is reduced to the following theorem.

Theorem 3. Let $\mathscr{D}(t)$ be (4.7) with $\lambda_+(t, x, \xi)$ in (3.4), $F(t)$ be a diagonal *matrix of pseudo-differential operators with symbols in* $S_{1,\delta,G(\kappa)}[\sigma,0,-1]$ and $R(t)$ and $R_\infty(t)$ be matrices of pseudo-differential operators whose symbols belong to $\mathscr{H}_{1,\delta,G(\kappa)}[\sigma,\omega]$ and $\mathscr{R}_{G(\kappa)}$, respectively. Then, for the Cauchy problem (4.5) *of a system*

$$
(4.20) \hspace{1cm} \mathscr{L} = D_t - \mathscr{D}(t) + F(t) + R(t) + R_{\infty}(t)
$$

we can construct the fundamental solution $E(t, s)$ *in the form*

$$
E(t, s) = \sum_{\pm} I_{\phi_{\pm}}(t, s) E_{\pm}(t, s) + E_0(t, s) + E_{\infty}(t, s)
$$

for $0 \le s \le t \le T_0$ with a small constant T_0 and the symbols $e_i(t, s; x, \xi)$, $j = 0$, \pm , ∞ , *of* $E_i(t, s)$ satisfy (10)–(12).

§5. Construction of the Fundamental Solution for a Hyperbolic Operator

We consider a hyperbolic operator

(5.1)
$$
L = D_t - \lambda(t, X, D_x) + f(t, X, D_x),
$$

where $\lambda(t, x, \xi)$ is a real-valued symbol in $S_{1,0, G(\kappa)}^1$ and $f(t, x, \xi)$ is a symbol in $\tilde{S}_{1,\delta,G(k)}[\sigma, 0, -1]$ with $\sigma \kappa < 1$. Let $\phi(t, s; x, \xi)$ be a phase function corresponding to $\lambda(t, x, \xi)$ and denote by $I_{\phi}(t, s)$ the Fourier integral operator with the phase function $\phi(t, s; x, \xi)$ and the symbol 1. Set $\rho = 1 - \delta$. Then, we have

Proposition **5.1.** *The Cauchy problem for L of* (5.1) *has a fundamental solution* $E(t, s)$ *in the form*

(5.2)
$$
E(t, s) = I_{\phi}(t, s)(\widetilde{E}(t, s) + \widetilde{E}_{\infty}(t, s))
$$

In (5.2) $\tilde{E}(t, s)$ is a pseudo-differential operator with the symbol $\tilde{e}(t, s; x, \xi)$ in $S_{\rho,G(\kappa)}[w_0]$ for

(5.3)
$$
w_0(\theta) = \exp [C\theta^{\sigma} \log \{((t\theta^{\omega(1-\sigma)} + 1)/(s\theta^{\omega(1-\sigma)} + 1)\}] \qquad (C > 0)
$$

and $\widetilde{E}_{\infty}(t, s)$ is a regularizer in $\mathscr{R}_{G(\kappa)}$.

Proof. We seek *E(t, s)* in the form

$$
E(t, s) = I_{\phi}(t, s) V(t, s) .
$$

Operate *L* to *E(t, s).* Then, we have

(5.4)
$$
LE(t, s) = (I_{\phi}(t, s))_{t} V(t, s) + I_{\phi}(t, s) V_{t}(t, s)
$$

$$
- \{\lambda(t, X, D_{x})I_{\phi}(t, s)\} V(t, s) + \{f(t, X, D_{x})I_{\phi}(t, s)\} V(t, s),
$$

where $(I_{\phi}(t, s))_t$ is the Fourier integral operator with the symbol $D_t \phi(t, s; x, \xi)$ and $V_t(t, s)$ is the pseudo-differential operator with the symbol $D_t \sigma(V(t, s))$. Use (2.2) with $N = 1$, $\rho = 1$ and $w(\theta) = \theta$ in order to estimate the third term in (5.4). Then, there exist symbols $b_1(t, s; x, \xi)$ in $S^0_{\rho, \delta, G(k)}$ and $r_1(t, s; x, \xi)$ in $\mathcal{R}_{G(k)}$ such that

$$
(I_{\phi}(t, s))_{t} - \lambda(t, X, D_{x}) I_{\phi}(t, s) = b_{1, \phi}(t, s; X, D_{x}) + r_{1}(t, s; X, D_{x}).
$$

Hence, using Lemma 2.5, Lemma 2.3 and Lemma 2.6 we find symbols $b_2(t, s; x, \xi)$ and $r_2(t, s; x, \xi)$ such that $(t + \langle \xi \rangle^{-\omega(1-\sigma)}) b_2 \in S^{\sigma}_{\rho, \delta, G(k)}, r_2 \in \mathcal{R}_{G(k)}$ and

$$
LE(t, s) = I_{\phi}(t, s) V_t(t, s) + I_{\phi}(t, s) I_{\phi^*}(t, s) (P(t, s) + R(t, s)) \{b_{1, \phi}(t, s; X, D_x) + r_1(t, s; X, D_x) + f(t, X, D_x) I_{\phi}(t, s) \} V(t, s)
$$

= $I_{\phi}(t, s) \{ V_t(t, s) + (b_2(t, s; X, D_x) + r_2(t, s; X, D_x)) V(t, s) \}.$

Let

$$
B(t, s) = b_2(t, s; X, D_x) + r_2(t, s; X, D_x).
$$

Then, $V(t, s)$ must satisfy

(5.5)
$$
V_t(t, s) + B(t, s) V(t, s) = 0.
$$

Set

(5.6)
$$
\begin{cases} V_1(t,s) = -i \int_s^t B(t',s) dt', \\ V_{v+1}(t,s) = -i \int_s^t B(t',s) V_v(t',s) dt'. \end{cases}
$$

Then, $V(t, s) = I + \sum_{v=1}^{s} V_v(t, s)$ is a "formal" solution of (5.5). Now, we estimate symbols of $V_{v+1}(t, s)$. From (5.6) we have

$$
V_{\nu+1}(t,s)=(-i)^{\nu+1}\int_s^t\int_s^{t_1}\ldots\int_s^{t_v}B(t_1,s)B(t_2,s)\ldots B(t_{\nu+1},s)dt_{\nu+1}\ldots dt_1.
$$

Hence, modulo regularizers $V_{v+1}(t, s)$ is equal to the pseudo-differential operator $V^0_{v+1}(t, s)$ defined by

$$
V_{v+1}^{0}(t,s)=(-i)^{v+1}\int_{s}^{t}\int_{s}^{t_{1}}\ldots\int_{s}^{t_{v}}b_{2}(t_{1}, s; X, D_{x})\ldots b_{2}(t_{v+1}, s; X, D_{x})dt_{v+1}\ldots dt_{1}.
$$

As in the proof of Proposition 1.5 we replace $b_2(t_j, s; X, D_x)$, $j = 1$, ..., v, by $b'_2(t_j, s; X, D_x, X')$, where $b'_2(t_j, s; x, \xi, x') = \{(1 - A_{\xi}(\langle \xi \rangle^{2\delta}) \times (1$ $|x - x'|^2$ ⁻¹}^{[n/2]+1}b₂(t_j, s; x, ξ). Then, since we have

$$
\int_{s}^{t} \int_{s}^{t_1} \dots \int_{s}^{t_v} \prod_{j=1}^{v+1} (t_j + \theta^{-\omega(1-\sigma)})^{-1} dt_{v+1} \dots dt_1
$$

=
$$
[\log \{ (t \theta^{\omega(1-\sigma)} + 1) / (s \theta^{\omega(1-\sigma)} + 1) \}]^{v+1} / (v+1)!,
$$

 $V_{v+1}^{0}(t, s)$ is expressed by a multiple symbol

$$
p(t, s; x, \tilde{\xi}^{\nu}, \tilde{x}^{\nu}, \xi) = \int_{s}^{t} \int_{s}^{t_1} \cdots \int_{s}^{t_v} \prod_{j=1}^{\nu} b_2(t_j, s; x^{j-1}, \xi^j, x^j)
$$

$$
\times b_2(t_{\nu+1}, s; x^{\nu}, \xi) dt_{\nu+1} \dots dt_1 \qquad (x^0 = x, \xi^{\nu+1} = \xi)
$$

and it satisfies (1.20) with

$$
w_{\nu+1}(\theta) = \left[\theta^{\sigma} \log \left\{ (t \theta^{\omega(1-\sigma)} + 1)/(s \theta^{\omega(1-\sigma)} + 1) \right\} \right]^{\nu+1} / (\nu+1)!
$$

and with C replaced by C_1^{v+1} for a constant C_1 . Note that $w_{v+1}(\theta)$ (1.19) with $W_{\nu+1,\varepsilon} = (C_{\varepsilon})^{\nu+1}(\nu+1)!^{-1+\sigma'\kappa}$ for a σ' satisfying $\sigma < \sigma' < 1/\kappa$. Hence, applying Lemma 1.6, $V_{v+1}^0(t, s)$ has the form

$$
V_{v+1}^{0}(t, s) = v_{v+1}(t, s; X, D_x) + v_{v+1, \infty}(t, s; X, D_x)
$$

with

(5.7)
$$
|v_{\nu+1}(\hat{a})| \leq C^{\nu+1} M^{-|\alpha+\beta|}
$$

$$
\times (|\alpha+\beta|^{i\kappa} + |\alpha+\beta|^{i\kappa\rho} \langle \xi \rangle^{(1-\rho)|\alpha+\beta|}) \langle \xi \rangle^{-|\alpha|} w_{\nu+1}(2\langle \xi \rangle),
$$

(5.8)
$$
|v_{\nu+1,\alpha(\beta)}| \leq C_{\alpha} C_{2}^{\nu+1} M^{-|\beta|} \beta^{i\kappa} (\nu+1)!^{-1+\sigma'\kappa} \exp(-\varepsilon \langle \xi \rangle^{1/\kappa})
$$

$$
(\sigma < \sigma' < 1/\kappa, \varepsilon > 0).
$$

Repeating the above discussion again we can prove that $\sigma(V_{\nu+1}(t, s) - V^0_{\nu+1}(t, s))$ has also an estimate (5.8). Hence, the sum $\sum_{v=0}^{\infty} V_v(t, s)$ has a meaning and $E(t, s)$ can be written in the form (5.2) with the desired symbol $\tilde{e}(t, s; x, \zeta) =$ $\sigma(\tilde{E}(t, s))$ in $S_{\rho, G(\kappa)}[w_0]$ for $w_0(\theta)$ in (5.3) and a regularizer $\tilde{E}_{\infty}(t, s)$. Q.E.D.

§6. Construction of the Fundamental Solution for a Hyperbolic System (Proof of Theorem 3)

In this section, we construct the fundamental solution of the system (4.20). First, we apply Proposition 5.1 to each element of $D_t - \mathcal{D}(t) + F(t)$. Then, the fundamental solution $E^0(t, s)$ of $D_t - \mathcal{D}(t) + F(t)$ is constructed in the form

$$
E^0(t,s)=\begin{pmatrix}I_{\phi_+}(t,s)&0\\0&I_{\phi_-}(t,s)\end{pmatrix}\begin{pmatrix}\widetilde{E}_+(t,s)&0\\0&\widetilde{E}_-(t,s)\end{pmatrix}+\widetilde{E}_{\infty}(t,s),
$$

where $\tilde{E}_{\pm}(t, s)$ are pseudo-differential operators with the symbols in $S_{\rho, G(\kappa)}[w_0]$ with $w_0(\theta)$ in (5.3) and $\tilde{E}_{\infty}(t, s)$ is a regularizer in $\mathcal{R}_{G(k)}$. We seek the fundamental solution $E(t, s)$ of (4.20) in the form

(6.1)
$$
E(t, s) = E^{0}(t, s) + \int_{s}^{t} E^{0}(t, t') V(t', s) dt'.
$$

Then, $V(t, s)$ must satisfy

(6.2)
$$
P_{\phi}(t,s) - iV(t,s) + \int_{s}^{t} P_{\phi}(t,t')V(t',s)dt' = 0,
$$

where

$$
P_{\phi}(t, s) = (R(t) + R_{\infty}(t))E^{0}(t, s).
$$

Set

(6.3)
$$
\begin{cases} V_1(t,s) = -i P_{\phi}(t,s), \\ V_{v+1}(t,s) = -i \int_s^t P_{\phi}(t,t') V_v(t',s) dt' & (v \ge 1). \end{cases}
$$

Then, we can get formally the solution $V(t, s)$ of (6.2) in the form $V(t, s) =$ $\sum_{v=1}$ $V_v(t, s)$.

Now, we estimate $V_{v+1}(t, s)$ in (6.3). From (6.3) $V_{v+1}(t, s)$ for $v \ge 1$ has the form

$$
V_{v+1}(t,s)=(-i)^{v+1}\int_s^t\int_s^{t_1}\ldots\int_s^{t_{v-1}}P_{\phi}(t,t_1)P_{\phi}(t_1,t_2)\ldots P_{\phi}(t_v,s)dt_v\ldots dt_1.
$$

As in Section 5 we will consider a main part of $V_{v+1}(t, s)$. Then, modulo regularizers, $V_{v+1}(t, s)$ is equal to the sum of operators of the form

$$
V_{v+1}^1(t,s) = (-i)^{v+1} \int_s^t \int_s^{t_1} \dots \int_s^{t_{v-1}} r_1(t, X, D_x) I_{\phi_1}(t, t_1)
$$

$$
\times \tilde{e}_1(t, t_1; X, D_x) r_2(t_1, X, D_x) I_{\phi_2}(t_1, t_2)
$$

$$
\times \tilde{e}_2(t_1, t_2; X, D_x) \dots r_{v+1}(t_v, X, D_x)
$$

$$
\times I_{\phi_{v+1}}(t_v, s) \tilde{e}_{v+1}(t_v, s; X, D_x) dt_v \dots dt_1.
$$

Here $\phi_j(t, s; x, \xi)$ are $\phi_+(t, s; x, \xi)$ or $\phi_-(t, s; x, \xi)$ in Lemma 3.4, $r_j(t, x, \xi)$ are symbols in $\mathscr{H}_{1,\delta,G(\kappa)}[\sigma,\omega]$ and $\tilde{e}_j(t_{j-1}, t_j; x, \xi)$ are symbols in $S_{\rho,G(\kappa)}[w_j]$ with

202 KENZO SHINKAI AND KAZUO TANIGUCHI

(6.4)
$$
w_j(\theta) = \exp [C\theta^{\sigma} \log \{(t_{j-1}\theta^{\omega(1-\sigma)} + 1)/(t_j\theta^{\omega(1-\sigma)} + 1)\}]
$$

$$
(t_0 = t, t_{\nu+1} = s).
$$

Since $r_{j+1}(t_j, x, \xi) \in \mathcal{H}_{1,\delta,G(\kappa)}[\sigma, \omega] \subset S_{1,\delta,G(\kappa)}[\sigma, 0, -1]$ it follows that $\tilde{e}_j(t_{j-1}, t_j; X, D_x)r_{j+1}(t_j, X, D_x)$ is a pseudo-differential operator with a main symbol in $S_{1,\delta,G(\kappa)}[w_i^1]$, where

(6.5)
$$
w_j^1(\theta) = \theta^{\sigma}(t_j + \theta^{-\omega(1-\sigma)})^{-1}w_j(\theta).
$$

Set $\Phi_{j,v+1} = \phi_j(t_{j-1}, t_j) \neq \cdots \neq \phi_{v+1}(t_v, s)$ and $\Phi_{v+1,v+1} = \Phi_{v+1}(t_v, s)$. Then, if we assume $0 \le s \le t \le T_0$, we have $\phi_j \in \mathscr{P}_{G(\kappa)}(\tilde{c}T_0)$ and $\Phi_{j,\nu+1} \in \mathscr{P}_{G(\kappa)}(\tilde{c}T_0)$ for a con stant \tilde{c} . Take T_0 such that $T_0 \leq \tau^0/(2\tilde{c})$ for a constant τ^0 in Proposition 2.4. Then, we can apply Proposition 2.4 to find symbols $p_i^1(x, \xi) \equiv p_i^1(t_{i-1}, \ldots, t_{\nu}, s;$ x, ξ and $\tilde{r}_j^1(x, \xi) \equiv \tilde{r}_j^1(t_{j-1}, \ldots, t_v, s; x, \xi)$ such that

(6.6)
$$
p_j^1(x, \xi) \in S_{\rho, G(\kappa)}[w_{j,c}^1]
$$
 with $w_{j,c}^1(\theta) = w_j^1(c\theta)$

for a constant $c \ (\geq 1), r^1_{j,\infty}(x, \xi) \in \mathcal{R}_{G(\kappa)}$ and

$$
I_{\phi_j}(t_{j-1}, t_j)\tilde{e}_j(t_{j-1}, t_j; X, D_x)r_{j+1}(t_j, X, D_x)I_{\phi_{j+1, v+1}} = I_{\phi_{j, v+1}}P_j^1 + R_{j, \infty}^1
$$

(j = 1, ..., v).

Hence, $V^1_{v+1}(t, s)$ is equal to

$$
V_{v+1}^{2}(t, s) = (-i)^{v+1} \int_{s}^{t} \int_{s}^{t_{1}} \dots \int_{s}^{t_{v-1}} r_{1}(t, X, D_{x}) I_{\phi_{v+1}}
$$

$$
\times P_{1}^{1} P_{2}^{1} \dots P_{v}^{1} \tilde{e}_{v+1}(t_{v}, s; X, D_{x}) dt_{v} \dots dt_{1}
$$

modulo regularizers, where $\Phi_{v+1} = \Phi_{1,v+1}$.

Next, we use discussion in the proof of Lemma 2.5. Then, there exist symbols $p_0(t, \tilde{t}^v, s; x, \xi) \equiv p_0(t, t_1, \dots, t_v, s; x, \xi)$ in $\mathcal{H}_{1, \delta, G(\kappa)}[\sigma, \omega]$ and $r^1_{0,\infty}(t, \tilde{t}^{\nu}, s; x, \xi)$ in $\mathscr{R}_{G(\kappa)}$ such that

$$
r_1(t, X, D_x)I_{\phi_{v+1}} = P_{0, \phi_{v+1}} + R_{0, \infty}^1.
$$

Now, we consider the Fourier integral operator $P_{0, \phi_{v+1}}$ as a pseudo-differential operator with a symbol

$$
p_0^1(t, \tilde{t}^{\nu}, s; x, \xi) = p_0(t, \tilde{t}^{\nu}, s; x, \xi) \exp [i(\Phi_{\nu+1} - x \cdot \xi)].
$$

Let σ' be a real number satisfying (5), and assume that T_0 satisfies $T_0 \leq T_1$ for a constant T_1 in Lemma 3.6. Then, from Lemma 3.7 and $p_0(t, \tilde{t}^v, s; x, \zeta) \in$ $\mathscr{H}_{1,\delta,G(\kappa)}[\sigma,\omega]$, it follows that $p_0^1(t,\tilde{t}^{\nu},s;x,\xi)$ satisfies

$$
|p_{0(\beta)}^{1(\alpha)}| \leq CM^{-|\alpha+\beta|} \alpha!^{\kappa} (\beta!^{\kappa} + \beta!^{\kappa(1-\delta)} \langle \xi \rangle^{\delta|\beta|}) \langle \xi \rangle^{-|\alpha|} \exp(-\varepsilon t^{l+1} \mu(x,\xi) + C \langle \xi \rangle^{\sigma'})
$$

for an $\varepsilon > 0$. Here, the term $\langle \xi \rangle^{\sigma} \mu(x, \xi)^{\omega}$ is absorbed into $\exp(C \langle \xi \rangle^{\sigma})$. Now, to each pseudo-differential operator P^1_j , $j = 0, ..., v$, we assign a

pseudo-differential operator P_j^2 with the symbol $\{(1 - \lambda)^2 + (1 - \lambda)^2 + (1 - \lambda)^2\}$ $+\langle \xi \rangle^{2\delta} |x - x'|^2 \rangle^{-1} \}^{[n/2]+1} \sigma(P_j^1)$. Then, $V^2(t, s)$ is equal to

$$
V_{v+1}^3(t,s)=(-i)^{v+1}\int_s^t\int_s^{t_1}\ldots\int_s^{t_{v-1}}P_0^2P_1^2\ldots P_v^2\tilde{e}_{v+1}(t_v,s;X,D_x)dt_v\ldots dt_1
$$

modulo regularizers. Let $\tilde{p}_{v+2}(t, \tilde{t}^v, s; x, \tilde{\xi}^{v+1}, \tilde{x}^{v+1}, \xi)$ be a multiple symbol corresponding to $P_0^2 P_1^2 P_2^2 \dots P_v^2 \tilde{e}_{v+1}(t_v, s; X, D_x)$ and set

$$
\tilde{p}'_{\nu+2}(t,s;x,\tilde{\xi}^{\nu+1},\tilde{x}^{\nu+1},\xi)=\int_{s}^{t}\int_{s}^{t_{1}}\ldots\int_{s}^{t_{\nu}}\tilde{p}_{\nu+2}(t,\tilde{t}^{\nu},s;x,\tilde{\xi}^{\nu+1},\tilde{x}^{\nu+1},\xi)dt_{\nu}\ldots dt_{1}.
$$

Then, $\tilde{p}_{\nu+2}(t, \tilde{t}^{\nu}, s; x, \tilde{\xi}^{\nu+1}, \tilde{x}^{\nu+1}, \xi)$ satisfies (1.20) with v replaced by $\nu + 1$ and $w_{v+1} \left(\max_j \langle \xi^j \rangle \right)$ replaced by $\tilde{w}_{v+2} \left(x, \max_j \langle \xi^j \rangle \right)$. Here, $\tilde{w}_{v+2}(x, \theta)$ $(=\tilde{w}_{v+2}(t, \tilde{t}^v, s; x, \theta))$ is defined by

$$
\tilde{w}_{v+2}(x,\theta) = \exp\big[-\varepsilon t^{l+1}\tilde{\mu}(x,\theta) + C\theta^{\sigma'}\big]\bigg(\prod_{j=1}^{v} w_{j,c}^{1}(\theta)\bigg)w_{v+1}(\theta)
$$

for $\tilde{\mu}(x, \theta) = |g(x)|^{l'} \theta^{1-\sigma} + 1$, $w_{j,c}^1(\theta)$ in (6.6), $w_{v+1}(\theta)$ in (6.4) and positive constants ε and C. From (6.4)–(6.5) we have

$$
\prod_{j=1}^{v} w_{j,c}^{1}(\theta) w_{v+1}(\theta) \leq (c\theta)^{v\sigma} \prod_{j=1}^{v} (t_j + (c\theta)^{-\omega(1-\sigma)})^{-1} \prod_{j=1}^{v+1} w_j(c\theta)
$$
\n
$$
\leq (c\theta)^{v\sigma} \prod_{j=1}^{v} (t_j + (c\theta)^{-\omega(1-\sigma)})^{-1}
$$
\n
$$
\times \exp \left[C(c\theta)^{\sigma} \log \left\{ (t(c\theta)^{\omega(1-\sigma)} + 1)/(s(c\theta)^{\omega(1-\sigma)} + 1) \right\} \right]
$$

and

$$
\int_{s}^{t} \int_{s}^{t_{1}} \cdots \int_{s}^{t_{\nu-1}} \prod_{j=1}^{\nu} (t_{j} + (c\theta)^{\omega(1-\sigma)})^{-1} dt_{\nu} \cdots dt_{1}
$$

= {log { $(t(c\theta)^{\omega(1-\sigma)} + 1)/(s(c\theta)^{\omega(1-\sigma)} + 1$ } $)^{\nu}/\nu!$.

Hence, setting

$$
\begin{cases}\n\tilde{w}_{v+2}^1(x,\theta) = \exp\left[-\varepsilon t^{l+1}\tilde{\mu}(x,\theta) + C\theta^{\sigma'}\right]\tilde{\tilde{w}}_v(c\theta)/v!, \\
\tilde{\tilde{w}}_v(\theta) = \exp\left[C\theta^{\sigma}\log\left\{(t\theta^{\omega(1-\sigma)} + 1)/(s\theta^{\omega(1-\sigma)} + 1)\right\}\right] \\
\times \left\{\theta^{\sigma}\log\left\{(t\theta^{\omega(1-\sigma)} + 1)/(s\theta^{\omega(1-\sigma)} + 1)\right\}\right\}^v,\n\end{cases}
$$

 $\tilde{p}'_{v+2}(t, s; x, \tilde{\xi}^{v+1}, \tilde{x}^{v+1}, \xi)$ satisfies (1.20) with v replaced by $v + 1$ and $w_{v+1} \left(\max_j \langle \xi^j \rangle \right)$ replaced by $\tilde{w}_{v+2}^1 \left(x, \max_j \langle \xi^j \rangle \right)$. Although $\tilde{w}_{v+2}^1(x, \theta)$ is not an ordered function, it satisfies (1.19) and, setting

$$
\tilde{w}_{v+2}^2(x,\theta) = \exp\left[-\varepsilon t^{l+1} \tilde{\mu}(x,\theta/2) + C(2\theta)^{\sigma'}\right] \tilde{\tilde{w}}_v(2c\theta)/v!,
$$

 $\tilde{w}_{v+2}^1(x, \xi)$ satisfies $\tilde{w}_{v+2}^1(x, \theta') \leq \tilde{w}_{v+2}^2(x, \theta)$ when $\theta'/2 \leq \theta \leq 2\theta'$. Hence, we can use the discussion of proving Lemma 1.6 and we find that $V_{v+1}^3(t, s)$ is a sum of pseudo-differential operators $v^3_{v+1}(t, s; X, D_x)$ and $v^3_{v+1,\infty}(t, s; X, D_x)$ with symbols $v_{v+1}^3(t, s; x, \xi)$ and $v_{v+1,\infty}^3(t, s; x, \xi)$ satisfying

$$
(6.7) \qquad |v_{v+1}^{3}(\hat{g})(t,s;x,\xi) \leq C^{v}M^{-|\alpha+\beta|}v!^{-1}
$$
\n
$$
\times (|\alpha+\beta|^{w}+|\alpha+\beta|^{w}\langle\xi\rangle^{(1-\rho)|\alpha+\beta|})\langle\xi\rangle^{-|\alpha|}
$$
\n
$$
\times \exp[-\varepsilon t^{l+1}|g(x)|^{l'}(\langle\xi\rangle/2)^{(1-\sigma)}+C(2\langle\xi\rangle)^{\sigma'}]
$$
\n
$$
\times \tilde{w}_{v}(2c\langle\xi\rangle)
$$
\n
$$
\leq C^{v}M^{-|\alpha+\beta|}v!^{-1}
$$
\n
$$
\times (|\alpha+\beta|^{w}+|\alpha+\beta|^{w}\langle\xi\rangle^{(1-\rho)|\alpha+\beta|})\langle\xi\rangle^{v\sigma'-|\alpha|}
$$
\n
$$
\times \exp[-\varepsilon t^{l+1}|g(x)|^{l'}\langle\xi\rangle^{(1-\sigma)}/2+C'\langle\xi\rangle^{\sigma'}],
$$
\n(6.8)\n
$$
|v_{v+1,\infty(\beta)}^{3}(t,s;x,\xi)| \leq C^{v}C_{\alpha}M^{-|\beta|}v!^{-1+\sigma'\kappa}\beta^{w}\exp(-\varepsilon\langle\xi\rangle^{1/\kappa}).
$$

Here, we used $\sigma < \sigma'$ in (6.7). Summing up, we can prove that modulo regularizers $V_{v+1}(t, s)$ is equal to a pseudo-differential operator $V_{v+1}^{0}(t, s)$ whose symbol satisfies the similar estimate to (6.7). We can also prove that $V_{v+1}(t, s)$ – $V_{v+1}^{0}(t, s)$ is a pseudo-differential operator with a symbol satisfying (6.8).

From the above discussion we can prove that the operator

$$
\int_s^t E^0(t,t')V(t',s)dt'
$$

in (6.1) can be written in the form

$$
E_0(t,s)+E_\infty(t,s)
$$

with symbols $e_0(t, s; x, \xi)$ and $e_\infty(t, s; x, \xi)$ satisfying (11) and (12), respectively. We note that by $\sigma < \sigma'$ the operator $E^0(t, s)$ can be written (modulo regularizers) in the form

$$
I_{\phi_+}E_+(t,s) + I_{\phi_-}E_-(t,s)
$$

with pseudo-differential operators $E_{\pm}(t, s)$ whose symbols satisfy (10). Consequently, we have proved Theorem 3.

References

- [1] Alinhac, S., Paramétrix et propagation des singularités pour un problème de Cauchy à multiplicite variable, *Soc. Math. France Asterisque, 34-35* (1976), 3-36.
- [2] Aoki, T., Symbols and formal symbols of pseudodifferential operators, *Advanced Studies Pure Math., 4* (1984), 181-208.
- [3] Boutet de Monvel, L., Hypoelliptic operators with double characteristics and related pseudodifferential operators, *Comm. Pure Appl. Math.*, 27 (1974), 585-639.
- [4] Boutet de Monvel, L. and Krée, P., Pseudo-differential operators and Gevrey class, Ann. *Inst. Fourier, Grenoble,* 17 (1967), 295-323.
- [5] Cattabriga, L. and Zanghirati, L., Fourier integral operators of infinite order on Gevrey spaces. Applications to the Cauchy problem for hyperbolic operators, *Proc. NATO A.S.I. on "Advances in Microlocal Analysis" II Ciocco, Italy,* September 2-12, 1985, to appear.
- [6] Hashimoto, S., Matsuzawa, T. and Morimoto, Y., Opérateurs pseudodifférentiels et classes de Gevrey, *Comm. Partial Differential Equations,* 8 (1983), 1277-1289.
- [7] Hormander, L., Uniqueness theorems and wave front sets for solutions of linear partial differential equations with analytic coefficients, *Comm. Pure Appl. Math., 24* (1971), 671-704.
- [8] Itho, S. and Uryu, H., Conditions for well-posedness in Gevrey classes of the Cauchy problems for Fuchsian hyperbolic operators II, preprint.
- [9] Ivrii, V. Ja., Cauchy problem conditions for hyperbolic operators with characteristics of variable multiplicity for Gevrey classes, *Siberian Math. J.,* 17 (1976), 921-931.
- [10] Iwasaki, C., Gevrey-hypoellipticity and pseudo-differential operators on Gevrey class, *Pseudo-Differential Operators, Lecture note in Math.,* 1256 (1987), 281-293.
- [11] Kumano-go, H., Fundamental solution for a hyperbolic system with diagonal principal part, *Comm. Partial Differential Equations, 4* (1979), 959-1015.
- [12] *Figure 2014 Pseudo-differential operators,* (The MIT Press, Cambridge and London, 1982).
- [13] Kumano-go, H., Taniguchi, K. and Tozaki, Y., Multi-products of phase functions for Fourier integral operators with an application, *Comm. Partial Differential Equations, 3* (1978) 349-380.
- [14] Metivier, G., Analytic hypoellipticity for operators with multiple characteristics, *Comm. Partial Differential Equations, 6* (1982), 1-90.
- [15] Morimoto, Y. and Taniguchi, K., Propagation of wave front sets of solutions of the Cauchy problem for hyperbolic equations in Gevrey classes, *Osaka J. Math., 23* (1986), 765-814.
- [16] Rodino, L. and Zanghirati, L., Pseudo differential operators with multiple characteristics and Gevrey singularities, *Comm. Partial Differential Equations,* 11 (1986), 673-711.
- [17] Shinkai, K., On the fundamental solution for a degenerate hyperbolic system, *Osaka J. Math.,* **18** (1981), 257-288.
- [18] , Branching of singularities for a degenerate hyperbolic system, *Comm. Partial Differential Equations, 1* (1982), 581-607.
- [19] **, Gevrey wave front sets of solutions for a weakly hyperbolic operator,** Math. *Japon.,* 30 (1985), 701-717.
- [20] ———, Stokes multipliers and a weakly hyperbolic operator, University of Minnesota, *Mathematics Report,* #86-134, (1987).
- [21] Taniguchi, K., Multi-products of Fourier integral operators and the fundamental solution for a hyperbolic system with involutive characteristics, *Osaka J. Math., 21* (1984) 169-224.
- [22] , Fourier integral operators in Gevrey class on *R"* and the fundamental solution for a hyperbolic operator, *Publ. RIMS, Kyoto Univ.,* 20 (1984), 491-542.
- [23] , Pseudo-differential operators acting on ultradistributions, *Math. Japon.,* 30 (1985), 719-741.
- [24] Taniguchi, K. and Tozaki, Y., A hyperbolic equation with double characteristics which has a solution with branching singularities, *Math. Japon., 25* (1980), 279-300.
- [25] Zanghirati, L., Pseudodifferential operators of infinite order and Gevrey classes, *Ann. Univ. Ferrara-Sez. VH-Sc. Mat.,* 31 (1985), 197-219.