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A Generalization of ¢-conditional Expectation
and Operator Valued Weight

By

Masataka HIRAKAWA*

Abstract

Let M be a von Neumann algebra and N a von Neumann subalgebra of M. For any nfs.
weights @ and ¥ on M and N, respectively, we construct a normal map E: M, — N,, which is
the p-conditional expectation if ¢ = ¢|y, and is the operator valued weight if 6 = 6|y (V¢ € R).

Introduction

Let M be a von Neumann algebra with a normal faithful semifinite (n.fs.)
weight ¢, and N be a von Neumann subalgebra of M with an nfs. weight
Y. The conditional expectations or the operator valued weights from M to
N have been studied by several authors.

In [7], Takesaki showed that there exists a faitheful normal norm 1 projec-
tion (which is also called a conditional expectation) E which satisfies ¢ = poE
if and only if ¢|y is semifinite and ¢?(N) = N (Vt € R).

In [3], Haagerup showed that there exists an n.fs. operator valued weight
E which satisfies ¢ =y o E if and only if ¢?|y = ¢/ (VteR).

In another direction, when Y = ¢|y, Accardi and Cecchini constructed in
[1] the normal completely positive map E which satisfies

(ECetx2)Inny (v ) Inny(¥2)) = 0Ty 2 I (1)1 I t(X2))
Vx;, X, €M, Vyi, y2€my.

This map E is called the ¢-conditional expectation and is a norm 1 projection
if @ satisfies ?(N) =N VieR.

In this paper, we generalize this Accardi and Cecchini’s construction to
the case that y is not necessarily equal to ¢|y. And we show that if ¢ and
Y satisfy of|y = o/, Vt e R, then the constructed map is the operator valued
weight.
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Notations

Throughout this paper, M will denote a von Neumann algebra and N
a von Neumann subalgebra of M. We also assume that (M, $, Jy, %) and
(N, &, Jy, #y) are standard forms and ¢ and ¢ are nfs. weights on M and
N, respectively.

Then we can define the linear map x € n,—1,(x) € $ canonically, and the
linear map x e m,—0,(x)e M, as 0,(y*z) = w050, 0y, 0T V» z€m,. The
map 6,(x) has the following properties.

(i) 0<x=0<6,(x).
(ii)) feM, f<o=f=0,) (@xem,nM,).
(i) @(x) =sup{<x, 0,(y)> yem,nM,, |lyll <1}  (VxeM,).

The analogous objects #,(y), 0,(y) for N are defined with respect to .
Let N, be the extended positive part of N [3]. An N-weight on M is
a map T: M, » N, which satisfies the following conditions:

(i) T(Ax)=AT(x) A=0,xeM,).
i Tex+y=Tx+Ty (x,yeM,).
Moreover, we say that T is an operator valued weight if
@) T(a*xa)=a*T(x)a, (xeM,,aeN).
We put
ny={xeM; T(x*x)e N, },
My = np*ng = span{x*y; x, yeny} .

We say that T is normal if
x; 7 x=T(x;) » T(x) (x;, xe M,).

T is faithful if T(x*x) =0 implies x =0, and T is semifinite if m; is o-weakly
dense in M.
§1. A Generalization of ¢-conditional Expectation

For ¢ and ¢, we put
‘ﬁ = ‘ﬁq,, "
= {a € M; there exists A > 0 such that ¢(y*a*ay) < AWy (y*y) for any y e N} .
M =M, , =span{b*ac M;a,beN, ,}.
Since 9 is a left ideal, there exists a projection e =e, , € M such that

— 0~ W

m = Metp,w.
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Lemma 1.1. (i) NN <N, NN < M.

(ii)) Nny < n,, nfPin, cm,.

(i) e, €N NM.

Proof. (i) and (ii) are immediate.

(iti) For each unitary ue N and each xe M M"*, u*xue M A M* from
(i), hence we have u*e, ,u <e, , and ue, ,u* <e,,. Therefore for each uni-
tary ue N, we have u*e, yu = e, ,, this implies e, ,e NnM []

Example 1.2. (1) If oy <Ay for some 2 >0, then e, , = 1.

(i) If of(y) =06/(y)(Vye N,VteR), then e, , = 1.

Proof. (ii) By [3], there exists a unique nfs. operator valued weight
F: M, - N, such that ¢ = yoF. For any aeng, we have

p(y*a*ay) = Y(F(y*a*ay)) = Y (y*F(a*a)y) < | F(a*a) | ¥ (y*y)  (YyeN).
Hence ny c 9, this implies e, , = 1. [J
The weight ¢ is said to be y-absolutely continuous in [4] if M =N, ¢ + ¢
is semifinite, and Ker(Dy; D(¢ + ¥))_;, = 0. The next Proposition shows that

if M =N and M is a factor, then e, , =1 is equivalent to ¢ < Ay for some
A>0.

Proposition 1.3. If M = N and e, , = 1, then the following statements are
satisfied.

(i) o+ Y is an nf.s. weight.
(ii) ¢ is Y-absolutely continuous.
(i) If M is a factor, then there exists A >0 such that ¢ < .

Proof. (i) From Lemma 1.1, Mn, cn,nn, =mn,,y.

(i) Let d =(Dy;D(¢ + ¥))-;, and assume dé =0, £€$H. We choose a
SEqUENCE {X,}ncn © NM,4y sSuch that lim,, 7,4 4(x,) = JE (J = Jy =Jy). Then
lim 7y(x,) = lim JdJn,, 4(x,) = JdE = 0.

n—w

Since, if a e M, there exists 1 > 0 such that |n,(ax,)l|*> < 4]n,(x,)[% we have
that lim,_, ,#,(ax,) = 0.
Consequently, for any ae R,

laJ€1? = lim |74 ,(ax,)]|?

n—o

= lim [7,(ax,)|* + im [n,(ax,)|*=0.

n—o n—o

Since e, , = 1, this implies ¢ = 0.
(i) By (ii), d has the inverse. Hence we have

No+u(¥) = JdtIn,(y) (Vyen,.y).
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Let fe 9t be a nonzero projection. Then there exists a 4 > 0 such that

17 InyWI? = g+ (NI < (A + DllmyWI> (Fyengey).

It follows from above that fJd~'J is bounded. Let (Jd 'J)* = vh be the polar
decomposition, then h is affiliated to M’, for Jd~'J is affiliated to M'. Thus
we have hf o fh. Moreover, from

fh = fhw*v = fJd Jv

we have that fh is bounded, so that fhf(>fh) is bounded. Hence if h = [ udE,
is the spectral decomposition, then fhf = [ud(fE,f) and there exists po >0
such that f(1 — E,)f=0. On the other hand, since M is a factor, the induc-
tion x € M'+— fxf € fM'f is isomorphic. Hence, 1 — E, = 0. This means that
h is bounded, so that Jd~'J is bounded.

Consequently, there exists 4 > 0, such that

e(y*y) < 14 yWI1? = [17d Iy (D12
< AmgWI* = W(*y)  (Vyengy).
Since Mny, = n,,, it follows that @(y*y) < Ay(y*y) for any yen,. O
For each a € 9, we have a unique bounded linear map V,: & — § which satisfies
Vany(y) = n4(ay)  (Vyeny).
It is easy to see that
xVy="V, (VxeM,Vye N,VaeR).

y
Lemma 14. If a, be %N, then

a*a <b*h=>w; v <w;y:.0om M  (VEeK).

Proof. If yen,, then
Oy, v = Op(y*a*ay) < 0,(y*b*by) = @;,p, 1,0 -
Since n,(n,) is dense in K,
Oy, < Oppyy,e
hold for any (e K [

From the above Lemma, it is easy to see that if a*a = b*b (a,beR), then
Wy, v,e = Or,v,e on M for any {e€ K Moreover we see that

{cu,MVamgeM;r caeMnM,, |la| <1}

is upward directed for any & € K.
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For each (e &, let ¢, be a normal weight on M such that
Pe(x) = sup{w,MVumJNg(x) caeMnM,, |a| <1} (Vxe M,).
Lemma 1.5. If & ne K, then
wy=w, on N = @ = @,.

Proof. Note that there exists a partial isometry 4’ € N' such that u’é = #.

Indeed, we can define u' by u'yé=yn for Vye N and u'{=0 for
V(e [NET.

Let u=Jyu'Jye N. Then for any ae M M,, |a| <1, we have

D1,y o = Cry, yuine = Coyv y Ine = Qayy e S Py

(u

Hence, ¢, < ¢, so that ¢, = @,. [J

For any we N, , there exists a {€ & such that w = w,. We shall put
qow = (P.f .

By the above Lemma, this definition does not depend on the choice of ¢&.

Lemma 1.6. For any x € M,, there exists an element E(x) € N, such that
KE(x), @) = {x, ¢, > (Vo e N).
Proof. Since for any xe M, and ae M M, the map
e Ri—’(’JJ,‘,V“,,ZJN.{(X) = | xP2 Iy Vo dyéll?
is continuous, it follows that

te R'—’(Pg(x) = sup{wJMVa JNg(x)Q acMnM,,|a| < 1}

1/2
is a lower semicontinuous positive quadratic form. Hence there exists a positive

operator h on & such that ||h'2¢]? = @,(x) V¢ € K.
Since for any unitary u’' € N’, we have

wJMVax/zJNM'ﬁ = wJMVam“JN{ = wJMV(u.w)uzJNé

where u = Jyu'Jy, it follows that ¢, = ¢, (V¢ € ). Therefore h = E(x) is affili-
ated to N. [J

Theorem 1.7. For given ¢ and Y, there exists a normal N-weight E: M, —
N, such that

(i) <E(x)’ 9w(}’)> = <0¢(X)’ ye<p,|b> (Vxem¢ﬁM+aVyemwﬁN+)a
(i) YoE=sup{gy;yemyni,, |yl <1} <o

Proof. (i) Let E(x) be as in Lemma 1.6. Then it is easy to see that E
is a normal N-weight on M. For any xem,n M, and yem,nN,, we have
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Py (%) = sup{w,Myam,N(ym,(x); aeMnM,, |a| <1}

= sup{<x, 0,(y"?ay'?));a e M M,, |la| < 1} €]
= sup{<0,(x), y2ay"?);ae M M., |a|| < 1}
= <9(p(x), yI/Ze% l/lyl/2> = <6¢(x)9 ye(p, w> . (2)

(i) Since
Y =sup{f,(y; yem,nN,, [yl <1},

it follows that
YoE =sup{0,(y)oE;yemy, nN,, |y| <1}

= sup{@p,); yE My N Ny, [yl <1}
From (1), we have ¢@p,,) <@ (Vyem,nN,, |yll <1). Hence yoE<o. [J
In the rest of this paper, E will denote the map defined by Lemma 1.6.

Propesition 1.8, (i) If ¢ = ¢|y, then E has a unique linear extension,
which is a @-conditional expectation.
(i) If e,y =1, then Y(E(x)) = @(x) (Vxem,n M,).

Proof. (i) Since 1 €%, it follows that ¢, e M, (Ywe N;). Hence E(x) e
N,, Vxe M,. Therefore, E has a unique linear extension from M to N. If
we also denote this map by E, then E satisfies the following equation.

CE(X), 0y(3)) =<0,(x), y>  (Vxem,Vyem,)
(ii) For any xem,nM,,
Y(E(x)) = sup{<E(x), 0,(y)>; y e my " Ny, [ly]l < 1}
= sup{<0,(x), y>; yemy n Ny, [yl < 1}
=<0,(x), 1) = o(x). O

§2. The Case Where of|y=a}, VZeR
In this section, we assume that ¢ and y satisfy
a?(y)=a/(y) (YyeN,VteR).

Then by [3], there exists a unique n.fs. operator valued weight F: M, — N,
such that ¢ = o F. Hence, from Example 1.2, we have e, , = 1, in particular,
m = nF'

Lemma 2.1. The following equalities hold.

(1) yIVadyl=JIyVodyy{  (Vye N,V ek VaeRNnn,).
(i) @yoys = 0,(y*'y)  (YweN;,VyeN).
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Proof. (i) Let M? and N} be the sets of all entire analytic elements for
¢ and , respectively. Then from the assumption, we have that NY c M.
By [2, Lemma 7], we have that

No(ax) = Jy 02 (x*)Jpen,(a) (Vaen,, Vxe M?).
Hence, we get for ae%tnn,, ye N} and ze N/ nn,
yu V;”lw(z) = yJMrI(p(aZ) = yagi/z(Z*)JMyl(p(a)
= O'Ti/z(o';f'/’z(J’)Z*)JM%(a)
= Jut (azofz(y)*)
= JuVatly (200, (y)*)
= Iy VaInyIyny(2) .

Since Jyn, (N} nn,) is dense in & and N} is o-weakly dense in N, we obtain (i).
(i) Let {v;};c; =ny be a net such that

v, 51,
Since for any ae 9, we have av;e nn,, using (i) we get

Wy, v, = 1M Oy 1V IxC
1—*o0

= lim @,y 5

=Wy (VLERK VyeN).
Thus, it follows that
o (y*xy) = 9, (x)  VxeM,. 0
Theorem 2.2. E is equal to F.
Proof. By the above Lemma, we have
CE(y*xy), @) = {y*xy, 900 = KX, Qyary+)
= {y*E(x)y, @) (Vo e NJ,Vye N,Vxe M).

This means that E is an operator valued weight. Hence to prove the theorem,
it is sufficient to show that Y oE = ¢. [3]
We can obtain b;e MY jeJ such that

beMnM,, |bl<1l, o2b)51 (VaeC).
In fact, using some g;e M M, jeJ which satisfies

lgl <1 (Yjed) and a51,
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b; = \/%J: e“‘zo',"’(aj)dt.

Similarly, we can obtain y, € NY (k € K) such that

we may define b; by

yeen,ant,  unl<l (keK), ()51 (YaeQ).
Since b; and y, are analytic, we have that
I Vo My (VE) = Tuto(xb;y%) = 02:2(yibj) Iyt o(X)
= 0%,(3) 022 (0) Ty () = Tyt (x)  (js k= 0)

for any xen,.

Therefore, we have that for xen,, ||x| <1

o |

0,(x*x) = lim w;,

Frae Vb 6(¥ic)

< 5‘;1’ Crumy) = Sllltp Poy (icyic)
= S‘-;P Oy yi) e E
<YoE (Vxen,, x| <1).
This implies ¢ < o E. Therefore, using Theorem 1.7, we have ¢ = yoE. [
Proposition 2.3. We have that

MnAm, "M, = {xem,nM,;there exists 1 >0 such that 6,(x)|y < Ay} .

Proof. According to [6, proposition 2.17], it is true that for any y e N n

n, Nnn*
v ()0 () = Y (™).

Thus, if aem,n M, and there exists 4> 0 such that 6,(a)ly < Ay, then for
any ye N} nn,nn¥, we have

o(y*ay) = lIny(@?yI? = 16Yin(y*) Iun,(@*?)] ?
= <°'!i/z(y*)*°'fi/2(y*), 0¢(0)>

< W(y*y).

Using the density of 1,(NY nn,nn%) in n,(n,), we have that ae M M,.
Conversely, we assume a € M nm, N M,, then for some 1> 0

¥, 0,(0)> = 1 uyIun (@?)1? = lIn,(a* e (y)*)1

< l‘ﬁ(ai'/pz(J’)Ui'/ﬁz(J’)*) = AW(y*y) (VyeNY N 1, N ).
By the same argument as above, we have 6,(a)ly < Ay. O
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