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Unltarily Invariant Norms under Which
the Map A-> |^4 | Is LIpschitz Continuous

By

Hideki KOSAKI*

Abstract

We will characterize the unitarily invariant norms (for compact operators) under which the
map A -»\A\ = (A*A)112 is Lipschitz-continuous. Although the map is not Lipschitz-continuous
for the trace class norm, we will obtain a certain Lipschitz-type estimate by making use of the
Macaev ideal.

§ 0. Introduction

In [9] E. B. Davies showed the following Lipschitz-type estimates in the
Schatten p-norm (1 < p < +00):

| \A\X - X\A\\\p ^ Const. \\AX - XA\\p ; A = A* E Cp ,
|| \A\ - \B\ ||p £ Const. \\A - B\\p ; A, B e Cp .

Related results can be found in [1], [2], [3], [14] and [15]. For p = 1 and
+ 00 (where 1 1 - 1 1 0 0 = ||-||, the usual operator norm) the above Lipschitz-type
estimates are known to fail. Instead some weaker estimates have been investi-
gated by several authors ([7], [13], [16], [18]). See also [6] for some recent
results.

An obvious next problem is to characterize unitarily invariant norms
(of compact operators) under which the map A->|4| = (A*A)1/2 is Lipschitz-
continuous. In the present article we will obtain quite a complete solution
to this problem based on very powerful analysis in [9] and Arazy's result, [4].

One of the difficulties of dealing with the map A -> \A\ is its non-linearity.
A very clever trick in [9] is to reduce the desired Lipschitz-continuity to the
boundedness of a certain linear operator (Schur-Hadamard multiplier, etc.).
Therefore, interpolation (for linear operators) is at our disposal, and in §2 all
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the Lipschltz-type estimates In [9] are shown to remain valid for a symmetrical-
ly noraied Ideal (see § 1 for Its belief explanation) which Is an interpolation
space between some CPl and CP2, 1 < pl < p2 < +00.

What is probably more interesting is that the converse Is also true. For
example, we can show that the Lipschitz-continuity of the map A -»\A\ Implies
the boundedness (relative to the relevant norm) of the triangle projection ([17]).
Therefore, we can use Arazy's theorem, [4], stating that a symmetrically normed
ideal possesses the above-mentioned Interpolation property if and only if the
triangle projection Is bounded. This converse result will be proved in §3.

Although
\\\A\-\B\\\p^Const\\A-B\\p

is not valid for p = 1, + oo, we will obtain Lipschitlz-type estimates Involving
these norms in §4. For example, if the above left side Is replaced by the
norm of the Macaev ideal (see [11]), the result remains valid for p = 1. The
dual version can be also obtained by using the "predual" of the Macaev
ideal. The Macaev ideal plays Important roles in analysis on compact opera-
tors ([11], [12]). Its importance Is also emphasized In the recent book [8],
where relationship between this ideal and the Dixmier (non-normal) trace Is
discussed.

In this section we collect basic facts on symmetrically normed Ideals (of
compact operators on a Hilbert space), and details on this subject matter can
be found in [11], [19].

Let / be the space of the sequences with finitely many non-zero terms. A
norm 0(-) on / (with normalization 0(1,0,0,...)= 1) is called a symmetric
norm if ^(£15 £2, ...) is invariant under the permutations (of terms) and

Let S<p be the Banach space of sequences a = {an}n=i,2,... satisfying

sup 0(al9 a2, ..., am, 0, 0, ...) ( = 0(a), the extension of 0) < +00,
m

and let S(£} be the closure of / relative to the norm 0.
Throughout let H be a separable Hilbert space. For a compact operator

A on H let sn(A) (n = 1, 2, ...) be the w-th singular number of A, that is, the
n-th largest (with multiplicities counted) eigenvalue of \A\. We now introduce
two Banach spaces I(S0), I(S(^) consisting of compact operators. A compact
operator A belongs to I(S0) if the associated sequence s(A) = {sn(A)}n=lt2,... ^QS

in S#. The space I(S$) is a Banach space under the norm
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The second Banach space I(S(^) is defined as the closure (in I(S$)) of the
space of the finite rank operators. The space I(S0) may or may not be a
separable Banach space while I(S(^) is always separable. The both spaces are
two sided ideals in B(H), the bounded operators, and |HI/(s*) is symmetric in
the sense that

where || • || denotes the usual operator norm (throughout the article). In partic-
ular (and actually equivalently) we get the unitary invariance

\\VAV\\I(M = \\A\\I(Sf) for unitaries U, V.

Basic properties of these Banach spaces are:
1. I(S0) is separable if and only if I(S$) = /(S^). (This can be checked

by just looking at 09 i.e., mononormalizing in [11] or regular in [19].)
2. Any separable symmetrically normed ideal is of the form (I(S(^)9

IHI/(s0)) for some symmetric norm 0.
3. For a given 0 (not equivalent to 0^ defined later) we define the dual

norm 0' by

0'(£) = sup

Then the dual space /(S^)* can be identified with I(S$>). Here the duality
is given by the bilinear form

(A, B) E /(Sg») x (I(S*.)\-+Ti(AB) E C .

/ 00 \1/P

If we set 0P(£) = ( X \£t\P I 5 1 = P = +°° (with the usual convention for
V=i /

p = +00), we get I(S0p) = I(S(S}
p) = Cp9 the Schatten Cp-ideal, and I(Sf$D = C^,

the compact operators. In the rest of the article, we will deal with either
I(S0) or I(S(^) which is strictly smaller than C^. Whenever there is no possibil-
ity of confusion, the norm IM!/^ will be denoted by |||'|||.

For later use we list some properties of symmetrically normed ideals.

Lemma L We have

VA ol To A~\ To ol
LO oj [o oj [_A oj

o o
° ^

Proof. The result follows from the obvious facts:

o o
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= 3n(\A\) = s,(A),

A ^ = sH(\A*\) = sn(A). Q.E.D.

Lemma 2. We have

A
r
 B

n] ^ i n f i l l + i i iBii i + i i i c i n + I N D I U M 4 \A B
Lx -^_| |_

Proo/. The first inequality follows from the triangle inequality and
Lemma 1. To show the second, notice

'A
0 0 0 OJ|_C Dj|_0 0

G "I e a K a
[c

Therefore, Lemma 1 shows BIoj
We similarly show that |||jB|||, |||C|||, and \\\D\\\ are majorized by the same
quantity. Q.E.D.

The next two results are Theorems 5.1 and 6.3 in Chap. Ill, [11],
respectively.

Lemma 3, Let X be a bounded operator. If there is a sequence {Xn} in
I{S0) converging to X in the weak operator topology and supn\\\Xn\\\ < +00,
then X belongs to I(S0) and \\\X\\\ ^ sup |||Xn|||.

n

Lemma 4e Assume A e I(S(£}). If a sequence {Xn} of self-adjoint operators
converges to X in the strong operator topology, then XnA-* XA, AXn -»AX,
and XnAXn-»XAX in the norm |||-|||.

§20 Lipschitz-Type Estimates for Commutators

In this section we show that certain Lipschitz-type estimates are valid in
a symmetrically normed ideal (I(S<p), |||-|||) which is an interpolation space be-
tween CPl and CP2, 1 <pl < p2 < +00. The reader can find details on the
general interpolation theory in [5]. (Information on interpolation spaces be-
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tween symmetrically normed ideals can be found in [4], [10].) In our set-up
(since CPl = CP2) the assumption means the following: We must have Cpi =
I(S0) = CP2 with continuous inclusion operators. Let T be a linear mapping
from CP2 into itself. Whenever T(Cpi) = Cpi and T is bounded relative to
||-||P2 and ||-||Pi, we must have T(I(S0)) = I(S0) and T has to be bounded
relative to |||-|||.

The central core for analysis in [9] was the next result based on the
theory of Volterra operators ([12]).

Lemma 5. (Corollary 5 and Corollary 6 in [9]) There is a constant yp,
1 < p < oo, satisfying the following:

(i) For any Ai9 fa > 0, i = 1, 2, ..., n and any n x n-matrix A = [A^],
the n x n-matrix B = l_Bij']9 Btj = (A£ — ̂ ) x (Af + fij)'1 x Aij9 satisfies \\B\\ p ^

(ii) For any A£, /^ ^ 0, i = 1, 2, . . . , n, and any n x n-matrix C = [Cfj],
we

Obviously (i) and (ii) are equivalent. Let us emphasize that yp is an
absolute constant which does not depend on n, A, and the choice of A£'s and
///s. As was shown in [9], this lemma is based on the facts

(1)

1

Pe(A)=UePK/4(U$A)

B=-A- I P9(A)g'(0)dO
Jo

(see p. 150, 151 for the definitions of Pe, U0, g(6), etc.). Our interpolation as-
sumption (applied to the linear operator Pn/4) immediately implies |]|PW/4(^4)||| ^
Const. || | A |||. Therefore, by repeating the arguments in [9], we conclude that
Lemma 5 remains valid for |||-|||.

Theorem 6. Assume that a symmetrically normed ideal (/(S0), |||-|||) is an
interpolation space between Cpi and CP2, 1 < p1 < p2 < +00. For a bounded
operator X we have

(i) || \A\X-X\B\\\\ ^Const.\\\AX-XB\\\', A = A*, B = B* e
(ii) | | | M I ^ - ^ M I I I I £Const.\\\AX-XA\\\', AeI(S*), X =
(iii) \\lAtX-XA2\\\ £

Proof, (i) Since Lemma 5 is valid for |||-|||, the identical arguments as
in the proof of Theorem 7, [9], together with Lemma 2 show

|| | \a\x — x\a\ 1 1| ̂  Const. || \ax — xa\ \\ , a = a* ,
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for n x ^-matrices a, x. The operator A E 1(8$) being compact, we can find an
increasing sequence {pn} of projections with dim pnH = n, pn-»l strongly and
[Pn, A] = 0. Setting an = pnApn and xn = pnXpn, we see [aw,xj = pn[A9 X]pn

and [|aj,xn] = pn[\A\, x]pn. The above inequality for matrices then implies

II |pj;|X|,r]pJ || ^ Const || \pnlA9 X-]pn\ ||

^ Const ||P|| || || | [X,X] 1 1| Up, ||

^ Const. || | [A X] |||.

Since pB[|X|, X]pn-» [|A|, A"] strongly (hence weakly), Lemma 3 says

which is exactly (i) with A = B. The general case can be obtained by applying
this special case to

In fact, we get

0 \A\X--X\B\~]

o J
0 AX- XB

\B\X*-X*\A\ 0 I =Const \BX*-X*A 0

Since (\B\X* - X*\A\)* = -(\A\X-X\B\\ we have

\\\A\X - xm =^{\\\A\X - X\B\\

^ the above left side (by Lemma 2).

We similarly get

the above right side g ||\AX - XB\\\ + ||\BX* - X*A\\\ (by Lemma 2)

(ii) For A, BeI(S0l we set

Notice that

a\ =

Hence (I) applied to a, fo, x implies
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r °\_\A\X-
^-*!**'. ^ Const.

X\B\ 0
'AX -XB 0

0 A*X -

This estimate and Lemma 2 show

(2) \\\\A\X -

When A = B and X = X*, (since (A*X - XA*)* = -(AX - XA)) (2) reduces
to (ii).
(iii) This can be obtained by applying (i) (with A = B) to

0}
The theorem remains valid for a (separable) symmetrically normed ideal

(P), the norm of I(S($) being just the restriction of |||-||| = \\'\\I(Sj.

Corollary 7. Let (I(S0),\\\-\\\) be as in Theorem 6 and A, B e B(H). If
A — B belongs to 1(8$), then so does \A\-\B\ and

II \A\- \B\\\\ £Const.\\\A-B\\\.

Proof. When A, B e I(S0)9 by setting X = 1 in (2) we get

= 2 Const. \\\A- B\\\ .

To deal with the general case, we choose an increasing sequence {pn}n=i,2,...
of finite rank projections tending to 1 strongly. Since pnApn, pnBpn are finite
rank operators ( = I(S$))9 the above estimate implies

I IPn^Pn ~ \PnBPn\\\\ ^ ConSt.\\\Pn(A - B)Pn \\

^ Const. \\\A — B\ || (< + oo by the assumption) .

Since \pnApn\ — \pnBpn\ -» \A\ — \B\ strongly, Lemma 3 guarantees \A\ — \B\ e
1(80) as well as the desired inequality. Q.E.D.

This perturbation result fails for the trace class ideal C1 and for C^.
However, different perturbation results will be obtained in §4.

§3e The Converse of Theorem 6

Let 1 be either I(S0) or /(S<?>).

Proposition 8* For a symmetrically normed ideal (I, |||-|||) the following
seven conditions are equivalent:
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( i ) There exists a constant K such that for each HE N+, n x n-matrix
C = [C0-], and ^, ut g: 0 (i = 1, 2, . . . , n) we have

( i i ) I H I ^ I J r - X\A\\\\ ^ Const. \\AX-XA\\\ for A = A* e 1, X e B(H).
(in) \\\\A\X - X\B\\\\ £ Const.\\\AX - XB\\\ for A = A*9 B = B* e J,

(iv) \\\\A\X - X\B\\\\ ^ Const.{\\\AX - XB\\\ + \\\A*X - XB*\\\} for
A, Bel Xe B(H).

(v) |||M|J%r-X|yl||| | ^Const.\\\AX-XA\\\ for A el, X = X*eB(H).
(vi) || |A j_ X — XA2\\\ ^ Const. \\ \A^X + XA2\ \\ for AteI+9 X e B(H).
(vii) ||m| - |5|||| <£ Const.\\\A - B || for A, Bel.

six constants in (ii) ~ (vii) do not depend on involved operators.

Proof. In § 2 we actually showed the implications (i) => (ii) => (iii) => (iv) => (v),
(ii) => (vi), and (iv) => (vii). Since (vi) => (i) is obvious, it suffices to prove (v) => (ii)
and (vii)=>(ii).
(v) => (ii). For A = A* e / and X e B(H) we set

X~
(=x*

Applying (v) to a, x, we get

0 \A\X-X\A\~
AX* - X*A 0

Since (\A\X* - X*\A\)* = -(\A\X - X\A\) and (AX* - X*A)* =
— (A*X — XA*) = —(AX — XA\ as before we obtain (ii) by using Lemma 2.

(vii)=>(ii). The "semi-group theory trick" in the proof of Theorem 1, [1],
shows (ii) with the additional assumption X = X*. Then by using the same
trick as in (v) => (ii) we can drop the self-adjointness of X. Q.E.D.

Theorem 9, Assume that for a separable symmetrically normed ideal
(I = I(Sffl), | |HID one (hence all) of the seven equivalent estimates in Proposition
8 is satisfied. Then I is an interpolation space between CPl and CP2, 1 < p{ <
p2< +00.

To prove the theorem, we prepare the following lemma:

Lemma 10. Under the same assumption as in the above theorem, there is
a constant K such that for each ne N+ and n x n~matrix C = [Cy] we have

^22
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Proof. For each ke N+, we set

Proposition 8, (i), implies |||Dfc||| ^X|||C|||, where K does not depend upon k
(and n). Letting k -> oo, we have

0 -Q,

Notice that

'11 Cy'

Since

~Cn 0
(for any

0 Cni

is known, X = 2~l(l + X + 1) does the job. Q.E.D.

Proo/ of Theorem 9. Let us identify H with /2(N+). By using the canoni-
cal basis {eji=i,2,...> °ne can represent an operator as an (infinite) matrix. For
an infinite matrix C = [Q,], we set

T(C) =

We also set

C22

Pn = (n-dimensional projection).

For each Cel = /(S^), Lemma 4 guarantees that {pnCpn} is Cauchy in |||-|||.
Since the constant K in Lemma 10 does not depend on n, {T(pnCpn)} is also
Cauchy in I and there is an element Y in I such that lim || | T(pnCpn) — Y\ \\ = 0.

n-xxt

Take a vector ^ in pmH (meN+). Since || • || ^ |||-|||, we have
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as n-» oo. For n ^ m, T(pnCpn)£ obviously does not depend upon n so that
we conclude

T(pHCpH)t=Yt for n^m ({ e PmH) .

For each i, j? by choosing n ^ i, 7 we get

ytj = (Yei9 ej) = (T(pnCpn)eh ej

[Cy ifi ^7,
} 0 otherwise .

Therefore, we conclude Y=T(C) (and hence T(C)eJ) and |||T(C)||| = Mm

\\\T(pmCpn)\\\. Since

\\\T(pnCpn)\\\ £ K\\\pHCpm\\\

we conclude that |||T(C)||| <*K|||C|||, that is, T:1-»J is bounded. Thanks to
Arazy's characterization (Corollaries 3.4, 4.12, [4]) the Ideal 1 Is an Interpolation
space between CPl and CP2, 1 < pl < p2 < + 00. Q.E.D.

Many other characterizations for I(S(^) to be such an Interpolation space
are given in [4]. Also as remarked In p. 458, [4], these characterizations are
valid for a (not necessarily separable) ideal I(S$) by the simple duality argument.
We remark that Theorem 9 also remains valid for 1 = I(S<p) by the duality.
In fact, let us assume that || • ||/(S0) satisfies the inequality

KS0)

Then the dual norm O' (see §1) satisfies

Tr([lT7Co]CAj'])

where the sup is taken over all n x n-matrices D with ||D||/(Se) ^ 1. It is
elementary to see

~hijj;•
Hence we get

^ \\C\\Hs*.) x K\\D\\I(Sf) (by the assumption),
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and

(3)

Proposition 8, (i), thus remains valid for the dual norm IHI/(s*.)' anc^ Theorem
9 shows that the separable I(S$) is an interpolation space between Cqi and
Cq2, 1 < q2<q1 < +00. But this means that /(S^)* = I(S0) is an interpola-
tion space between CP1 and CP2 with 1 < pt < p2 < +00, p^1 + q^1 = 1. Com-
bining the above with other characterizations given in [4], we have proved
the following main result in the article:

Theorem 11. Let I be either I(S(^) or I(S#). The following conditions
are equivalent:

(a) One of the seven estimates in Proposition 8 is valid (for example,
|| \A\ - \B\\\\ ^ Const.\\\A - B\\\ for A, BE!).

(b) I is an interpolation space between Cpl and CP2, I < p1 < p2 < + 00.
(c) The triangle projection T is bounded relative to | | |p | | | .
(d) The Macaev theorem remains valid for 1, that is, whenever a Volterra

operator A satisfies ImAel, we must have ReAel and

\\\ReA\\\ £ Const.\\\Im A\\\.

(e) The Boyd indices (see [4] for details) of 0 are non-trivial.

The last condition is very useful because one can check Lipschitz-continuity
of the map A^\A by just looking at the norm 0 on the sequence space
/. Define the discrete dilation operators Dm, Dl/m (m = 1, 2,. . .) on / by

m times m times

m £ 2m £ \
V ' V £ 1L ~» ._/-, ~' ••• / •

Then compute the norms ||Dm|| and ||D1/m|| (relative to &(•)). The Boyd indices
(p0, ^f0) are defined by

logm / logm
= lim

log||Dm|| V —log II A. ||/'

log IIA1/m

It is easy to see 1 ^ p&^ q<p^ +00. (For <Pp corresponding to the Schatten
ideal Cp9 we easily see p0 = q0 = p.) Non-triviality in the last condition (e)
means 1 $ p0 ^ q0 ^ + oo.
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Let Cpq (1 ̂  p ^ + oo, 1 g g ^i +00) be the non-commutative analogue of
the Lorentz space (see [4] or [19]) consisting of all compact operators such that

^t=l

(= sup(ii/p
Si(A)) if q= + 00)

i

is finite. Note that || • \\pq is a norm only if q ^ p, but when p > 1 there
is a norm on Cpq equivalent to || • \\pq. It is well-known that Cpq (1 < p < oo,
1 g q ^ +00) is an interpolation space (the K-method can be used, [5]) be-
tween CPl and CP2 (1 < p^ < p < p2 < +00). Therefore, the map A-»|,4| is
Lipschitz-continuous relative to || • ||M (1 < p < + oo, 1 ̂  q ^ 4- oo).

The above characterization roughly says that the map A -»\A\ is Lipschitz-
continuous when the "geometry" of a symmetrically normed ideal in question
is "good". However, the example presented after Corollary 4.6, [4], shows:
there exists a non-uniformly convex symmetrically normed ideal in which the
map A-» |A| is Lipschitz-continuous.

§4 Estimates In the Operator and Trace Class Norms

As was mentioned in §0, the map v4-»|/i| is not Lipschitz-continuous for
||- | | and | | - H i . Instead the following estimates are known ([13], [16]):

|| \A\ - \B\ || ̂ -\\A- B\\ J2 + log ; A,BeB(H)9
n ( \\A - B\\

^\\\ A\ - \B\\\ ̂  ^2\\ A + B\\\'2 \\A-B\\\12; A9BeC,.

In this section we obtain different (and probably more natural) estimates for
\A\ — \B\ by making use of the ideals introduced by V. I. Macaev.

For a sequence ^ = (£ji=i,2,...5 let {^*},-=i,2,... be the non-increasing re-
arrangement of {1^1, \£2\> • • • } • We introduce the (dual) symmetric norms 0G9

&„ (on /) defined by

sup
i=l i=l

The corresponding symmetrically normed ideals I(S# )( = I(S(£))) and
/ n I n \

I(S(£l)( = {A £ C^ : lim ( £ st(A) ^ (2i ~ i)"1) = °}) satisfy
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These ideals were introduced by V. I. Macaev and play important roles in
analysis of compact operators (see [11], [12] for details and typical applica-
tions). Notice that I(S0a) (resp. I(S#m)) is "slightly" larger (resp. smaller) than
Q (resp. CJ:

S*fl) i CP9 p > 1 ,
i/(S,J, p< +0).

In what follows, the norms of /(S^J and I(S#a) will be denoted by || • || 0 and
H ' l l o , respectively. Recall that the proof of (1) (in §2) was based on Theorem
6.3 in Chap. Ill, [12]. If one starts from Theorem 2.2 in Chap. Ill, [12],
instead, one obtains

Therefore, by repeating the arguments in p. 150, [9], we get

(4) 'H* ^ Const. ||C || IB

(Here the obvious fact || • || Q ^ || • || l is used.) Hence, the same arguments as
in §2 show (among other commutator estimates) the next perturbation result.

Theorem 12. // A, B e B(H) satisfy A - B e Cl5 then \A\-\B\ belongs to
the ideal I(S0a) and

\\\A\ - \B\\\Q ^ ConsLHA-B^ .

By the obvious modification of the proof of (3), from (4) we get

^ Const. || C|L-

We then would like to show a dual version of the previous theorem. However,
notice that Lemma 3 is not valid for C^ = the compact operators. Starting
from the assumption A = A* e I(S#a), X e B(H), we get

\\Pnl\A\, Xlpn\\£ Const. ||[>1,JGIL

as in the proof of Theorem 6. Since Ye B(H)^> \\Y\\ = sup{\\Y£\\H:£e H,
l l ^ l l n ^ 1} is lower semi-continuous relative to the strong operator topology,
(without using Lemma 3) we conclude

rg Const. ||

Hence, (2) in the proof of Theorem 6 is still valid and we get

|]|,4| - |B||| ^ Const. M - BL ; A, B e/(S* ) .
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Theorem 13. // A,BeB(H) satisfy A-BeI(S*a), then \A\-\B\ is a
compact operator and

\\\A\- \B\\\ £Const.\\A-B\\m.

Proof. The arguments In the second half of the proof of Corollary 7 (but
Lemma 3 is replaced by the above-mentioned lower semi-continuity of Y -> \\Y\\)
show the desired Inequality. The compactness of \A\ — \B\ follows from the
following standard argument: Let B(H)/Cao be the Calkin algebra and n: B(H) -»
B(H)/Cn be the natural projection. We have n(A) = n(B) because A — B is
compact. Since n is a C*-algebra homomorphism, we conclude n(\A\) =
\n(A)\ = \n(B)\ = n(\B\), I.e., \A\ - \B\ e €„. (Q.E.B.)

When A is an n x H -matrix, st(A) = 0 for i ^ n 4- 1. Consequently we get

£ Sl(A)lt (2i-irl(=\\A\\J^ (2i- I)'1) £ \\A\\a,1=1 / 1=1 \ I t=i /

MIL =
*=! i=l

For the second estimate the obvious fact s^A) = \\A\\ ̂  s2(A) ^ s3(A) ^ ••• was
used. We thus get the next result for (finite) matrices.

Corollary 14. (Theorem 14, [9]) There exists a constant K such that for
any n x n-matrices A, B (n^. 2) we have

-\B\\\^(logn)K\\A-B\\,
- \B\\\, ̂
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