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Unitarily Invariant Norms under Which
the Map 4 — |4| Is Lipschitz Continuous

By

Hideki Kosakr*

Abstract

We will characterize the unitarily invariant norms (for compact operators) under which the
map A — |A| = (A*A4)"? is Lipschitz-continuous. Although the map is not Lipschitz-continuous
for the trace class norm, we will obtain a certain Lipschitz-type estimate by making use of the
Macaev ideal.

§0. Introduction

In [9] E. B. Davies showed the following Lipschitz-type estimates in the
Schatten p-norm (1 < p < + o).

{|||AIX — X|Al|l, £ Const. |[AX — XA|,; A=A*eC,,
I14] —|B|l, = Const. |4 — B|l,; A, BeC,.

Related results can be found in [1], [2], [3], [14] and [15]. For p=1 and
+o00 (where |||, = |I*|l, the usual operator norm) the above Lipschitz-type
estimates are known to fail. Instead some weaker estimates have been investi-
gated by several authors ([7],[13],[16],[18]). See also [6] for some recent
results.

An obvious next problem is to characterize unitarily invariant norms
(of compact operators) under which the map 4 —|A4| = (4*A4)'? is Lipschitz-
continuous. In the present article we will obtain quite a complete solution
to this problem based on very powerful analysis in [9] and Arazy’s result, [4].

One of the difficulties of dealing with the map A —|A| is its non-linearity.
A very clever trick in [9] is to reduce the desired Lipschitz-continuity to the
boundedness of a certain linear operator (Schur-Hadamard multiplier, etc.).
Therefore, interpolation (for linear operators) is at our disposal, and in §2 all
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the Lipschitz-type estimates in [9] are shown to remain valid for a symmetrical-
ly normed ideal (see §1 for its belief explanation) which is an interpolation
space between some C, and C,, 1 <p; <p, < +o0.

What is probably more interesting is that the converse is also true. For
example, we can show that the Lipschitz-continuity of the map 4 — |A| implies
the boundedness (relative to the relevant norm) of the triangle projection ([17]).
Therefore, we can use Arazy’s theorem, [4], stating that a symmetrically normed
ideal possesses the above-mentioned interpolation property if and only if the
triangle projection is bounded. This converse result will be proved in §3.

Although

I 4] - |B||, < Const.| 4 — Bl

is not valid for p =1, + oo, we will obtain Lipschitiz-type estimates involving
these norms in §4. For example, if the above left side is replaced by the
norm of the Macaev ideal (see [11]), the result remains valid for p=1. The
dual version can be also obtained by using the “predual” of the Macaev
ideal. The Macaev ideal plays important roles in analysis on compact opera-
tors ([11],[12]). Its importance is also emphasized in the recent book [8],
where relationship between this ideal and the Dixmier (non-normal) trace is
discussed.

§1. Symmetrically Normed Ideal ([11], [19])

In this section we collect basic facts on symmetrically normed ideals (of
compact operators on a Hilbert space), and details on this subject matter can
be found in [11], [19].

Let f be the space of the sequences with finitely many non-zero terms. A
norm &(:) on f (with normalization &(1,0,0,...) = 1) is called a symmetric
norm if &(&,, &,,...) is invariant under the permutations (of terms) and

(D(éu 52,---) = ¢(lé1la llea )

Let S, be the Banach space of sequences a = {a,},; ,, . satisfying

sup @(a;, a,, ..., 0y, 0,0,...) (=P(a), the extension of &) < + oo,

and let S be the closure of f relative to the norm @.

Throughout let H be a separable Hilbert space. For a compact operator
A on H let s,(A) (n=1,2,...) be the n-th singular number of A, that is, the
n-th largest (with multiplicities counted) eigenvalue of |4|. We now introduce
two Banach spaces I(S,), I(SY) consisting of compact operators. A compact
operator A belongs to I(S,) if the associated sequence s(A) = {s,(4)},=; ., .. lies
in S4. The space I(Sy) is a Banach space under the norm

||A”1(sw) = @(s(4)) .
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The second Banach space I(SY) is defined as the closure (in I(S,)) of the
space of the finite rank operators. The space I(S,) may or may not be a
separable Banach space while I(S{’) is always separable. The both spaces are
two sided ideals in B(H), the bounded operators, and || s, is symmetric in
the sense that

IXAY s < X1 All s I Y11

where ||| denotes the usual operator norm (throughout the article). In partic-
ular (and actually equivalently) we get the unitary invariance
NUAV |15y = 1Al 1(s0) for unitaries U, V.

Basic properties of these Banach spaces are:

1. I(Sy) is separable if and only if I(S,) = I(SY"). (This can be checked
by just looking at @, i.e., mononormalizing in [11] or regular in [19].)

2. Any separable symmetrically normed ideal is of the form (I(S9),
Il 1ss) for some symmetric norm @.

3. For a given @ (not equivalent to @ defined later) we define the dual
norm @’ by

P'(¢) = Sup{'; &Ll C={l}ef and () < 1}-
Then the dual space I(SY)* can be identified with I(S,). Here the duality
is given by the bilinear form

(4, B) € I(SY) x (I(Sp)— Tr(AB) e C .

© 1/p
If we set @,(¢) = (Z léil"> , 1 £ p £ + oo (with the usual convention for
i=1

p= +o), we get I(Sy) = I(S3)) = C,, the Schatten C,-ideal, and I(S3)) = C,,
the compact operators. In the rest of the article, we will deal with either
I(Sp) or I(SY) which is strictly smaller than C,. Whenever there is no possibil-
ity of confusion, the norm |-||;s, Will be denoted by ||-||.
For later use we list some properties of symmetrically normed ideals.
Lemma 1. We have

105 S1=100 ST-=105% sl =Ils a0f=vwan

Proof. The result follows from the obvious facts:

o D-o( Do
s([g gD:S([g g]D:s([g |?1|]>
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= 8,(14]) = 5,(4),

S (B 8]) = 5,(|A*]) = 5,(A). Q.E.D.

Lemma 2. We have
A B
C DI’

e 2]

Proof. The first inequality follows from the triangle inequality and
Lemma 1. To show the second, notice

15 a1l oIie 2lle ol
o alllle 21l <
i

4l = ’H[c DJ“I

We similarly show that |||B||, ||| C||l, and |||D||| are majorized by the same
quantity. Q.E.D.

}é AN+ 1B+ 1ICH + 11DI] §4”

IIA

Therefore, Lemma 1 shows

The next two results are Theorems 5.1 and 6.3 in Chap. III, [11],
respectively.

Lemma 3. Let X be a bounded operator. If there is a sequence {X,} in
I1{Sy) converging to X in the weak operator topology and sup,||X,|l| < + oo,
then X belongs to 1(Sy) and ||| X||| < sup ||| X,

Lemma 4. Assume A€ I(S9). If a sequence {X,} of self-adjoint operators
converges to X in the strong operator topology, then X,A— XA, AX,— AX,
and X, AX,— XAX in the norm ||-|||.

§2. Lipschitz-Type Estimates for Commutators

In this section we show that certain Lipschitz-type estimates are valid in
a symmetrically normed ideal (I(S,), |||']|]) which is an interpolation space be-
tween C, and C,, 1 <p, <p, < +o. The reader can find details on the
general interpolation theory in [S]. (Information on interpolation spaces be-
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tween symmetrically normed ideals can be found in [4],[10].) In our set-up
(since C, & C,,) the assumption means the following: We must have C, S
I(S4) = C,, with continuous inclusion operators. Let T be a linear mapping
from C,, into itself. Whenever T(C, )< C, and T is bounded relative to
[-ll,, and |-|l,,, we must have T(I(Sy)) = I(Sy) and T has to be bounded
relative to |||

The central core for analysis in [9] was the next result based on the

theory of Volterra operators ([12]).

Lemma 5. (Corollary 5 and Corollary 6 in [9]) There is a constant y,,
1 < p < oo, satisfying the following:

(i) For any A, p; >0, i=1, 2, ..., n and any n x n-matrix A = [4;],
the n x n-matrix B =[B;], B;= (A — ) x (& + u)™* x Ay, satisfies ||B||, <
Yol Al

(i) For any A, u; 20, i=1, 2, ..., n, and any n X n-matrix C = [C;],
we have

I0(4; — .Uj)Cij]inp = Vp IC(A; + .Uj)Cij]ij“p .

Obviously (i) and (ii) are equivalent. Let us emphasize that y, is an
absolute constant which does not depend on n, 4, and the choice of ;s and
u;’s. As was shown in [9], this lemma is based on the facts

( 1
1Pea( A, < 77141,

0]

A

Po(A) = UaPn/4(U3‘A)

/2
B=—-A- J Py(A)g’'(6)dO
L 0

(see p. 150, 151 for the definitions of P,, Uy, g(f), etc.). Our interpolation as-
sumption (applied to the linear operator P,,) immediately implies ||| Py(4)|] =
Const.|||4|]l. Therefore, by repeating the arguments in [9], we conclude that
Lemma 5 remains valid for ||-|].

Theorem 6. Assume that a symmetrically normed ideal (I(Sg), |||°]]) is an
interpolation space between C, and C,, 1 <p, <p, < +o. For a bounded
operator X we have

(i) IMAIX — X|B||ll < Const.|||[AX — XB||; A= A*, B= B*€(S,),

(ii) [[[l4]X — X]A||ll = Const.||AX — XA||; A€I(Ss), X = X*,

(i) [1|4;X — XA,|ll < Const.|||A; X + XA,|l; Ay, Az €1(Se)+-

Proof. (i) Since Lemma 5 is valid for ||-|||, the identical arguments as
in the proof of Theorem 7, [9], together with Lemma 2 show

Ilalx — x|al||| < Const.|[|ax — xa[|,  a=a*,
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for n x n-matrices a, x. The operator 4 € I(S,) being compact, we can find an
increasing sequence {p,} of projections with dim p,H =n, p, — 1 strongly and
[pn, Al =0. Setting a, = p,Ap, and x, = p,Xp,, we see [a,,X,] = p,[4, X]p,
and [|a,l, x,]1 = p,[l4], x]p,- The above inequality for matrices then implies

[1paLlA4l, X]palll < Const. |||p,[4, X]palll
< Const. ||p, Il 1[4, X1 1pall
< Const.|||[4, XTIl -

Since p,[|4], X1p, — [1A4]|, X] strongly (hence weakly), Lemma 3 says
ICI41, X1l = Const. [||[4, XTI ,

which is exactly (i) with 4 = B. The general case can be obtained by applying
this special case to

~ |4 0 ~ ~ 0 X
— — A% —
A—[O B](_A ) X [X* 0].
In fact, we get

0 |A|X — X|B] 0 AX — XB
|BIX* — X*|A| 0 BX* — X*A 0 '

Since (|B|X* — X*|A4])* = —(|A|X — X|B|), we have

< Const.

141X — X|BI|| =%{IIIIA|X — X|BIll + INBIX* — X*| 4[]}

< the above left side (by Lemma 2).
We similarly get
the above right side < |||AX — XB||| + |||BX* — X*A]|| (by Lemma 2)
=2|||AX — XB|| .
(i) For A, BeI(S,), we set

o 4] . _[o B¥] ., o x
a—[A* O:I(—a), b—[B 0](—b), x—_X O:I.

Notice that
Maf o Bl 0
"’"[ 0 |A|] and ”’"[0 8%

Hence (i) applied to a, b, x implies
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0 |A*| X — X|B*| < Const AX — XB 0
|A|X — X|B| 0 = ‘ 0 A*X — XB* |||
This estimate and Lemma 2 show
)] 141X — X|B|||| < Const.{||4X — XB|| + [[|4*X — XB*|||} .

When A =B and X = X*, (since (A*X — XA*)* = —(AX — X A4)) (2) reduces
to (ii).
(iii) This can be obtained by applying (i) (with 4 = B) to

A, O « 0 X
a—I:O _Az](—a ), x—|:0 O:I. Q.E.D.
The theorem remains valid for a (separable) symmetrically normed ideal
I(S9), the norm of I(SY’) being just the restriction of ||| = II* Il ys,)-

Corollary 7. Let (I(Ss), |l-]ll) be as in Theorem 6 and A, Be B(H). If
A — B belongs to 1(Sy), then so does |A| — |B| and

[114] — |BI|ll = Const.|||A — BJ]| .
Proof. When A, BeI(S;), by setting X =1 in (2) we get
1141 = |BI|Il < Const.{|||4 — BI|l + |[|4* — B*||}}
=2 Const.|||4 — B|]| .

To deal with the general case, we choose an increasing sequence {p,},-.,. ..
of finite rank projections tending to 1 strongly. Since p,Ap,, p,Bp, are finite
rank operators ( S I(Sy)), the above estimate implies

I111PnApal — |PuBpallll = Const.|[|p,(4 — B)p,|ll
< Const.|||A — Bl|| (< + o0 by the assumption).

Since |p,Ap,| — |p.Bp,] = 14| — |B| strongly, Lemma 3 guarantees |A| — |B| e
I(Sy) as well as the desired inequality. Q.E.D.

This perturbation result fails for the trace class ideal C; and for C,.
However, different perturbation results will be obtained in §4.

§3. The Converse of Theorem 6
Let I be either I(S,) or I(S).

Propesition 8. For a symmetrically normed ideal (I, ||-]|]) the following
seven conditions are equivalent:
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(i) There exists a constant K such that for each ne N,, n X n-matrix
C=[C;l, and A, p; 20 (i=1,2,...,n) we have

LA — :uj)cij:” I < K|II[(4 + Nj)Cij]| [l -

(ii) |I|A|X — X|A4]|||| £ Const.|||AX — XA||| for A= A*el, X € B(H).
(iii) ||||A|X — X|B|||| £ Const.|||AX — XB||| for A= A* B=B*el,
X € B(H).
(iv) 141X — X|B||| £ Const.{|||AX — XB|| + [|4*X — XB*||} for
A, Bel, X € B(H).
(v) [lAIX — X[A]||| £ Const.|||AX — XA|| for Ael, X = X*eB(H).
(vi) [14;X — XA, |l £ Const.|||4, X + XA,||| for A;el,, X € B(H).
(vii) |I||A] — |BI||l £ Const.|||A — B]| for A, Bel
Here the six constants in (ii) ~ (vii) do not depend on involved operators.
Proof. In §2 we actually showed the implications (i) = (ii) = (iii) = (iv) = (v),
(ii) = (vi), and (iv) = (vii). Since (vi)=> (i) is obvious, it suffices to prove (v) = (ii)
and (vii) = (ii).
(v)=(i). For A=A4*e] and X € B(H) we set

T4 0 o x71, .,
“=lo 4] *T|x* o] )

Applying (v) to a, x, we get
0 AX — XA
AX* — X*A 0 '

[Liawe 2 7] 5 come

[A|X* — X*|A] 0 = '

Since (JA|X* — X*|A|)* = —(|4A|1X — X|A|) and (AX*¥ — X*4)* =

—(A*X — XA*) = —(AX — X A), as before we obtain (ii) by using Lemma 2.
(vii)=> (ii). The “semi-group theory trick” in the proof of Theorem 1, [1],

shows (ii) with the additional assumption X = X* Then by using the same

trick as in (v)=>(ii) we can drop the self-adjointness of X. Q.E.D.

Theorem 9. Assume that for a separable symmetrically normed ideal
(I =ISQ), |lI:1) one (hence all) of the seven equivalent estimates in Proposition
8 is satisfied. Then I is an interpolation space between C, and C,, 1 <p; <
P2 < + 0.

To prove the theorem, we prepare the following lemma:

29

Lemma 10. Under the same assumption as in the above theorem, there is
a constant K such that for each ne N, and n x n-matrix C =[C;] we have

Cii Cin
: < KJlc|| .
0 Cun
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Proof. For each ke N,, we set

kK — K
D(=D(C))=[——,. .C,.-:l :
e K+ kY

Proposition 8, (i), implies |||Dy||| < K|||C||, where K does not depend upon k
(and n). Letting k — oo, we have

0 ~Cy
E < K|l|C|]l .
Notice that
C11 CU 1 i 0 —Cu Cll 0
‘. . — _i C — . ) + . ]
0 Cnn LCij 0 0 C'"'
Since
C, 0 ]
< Iyl (for any |[|-]])
0 Con |
is known, K =27'(1 + K + 1) does the job. Q.ED.

Proof of Theorem 9. Let us identify H with [2(N,). By using the canoni-
cal basis {e;};-; ,,., one can represent an operator as an (infinite) matrix. For
an infinite matrix C = [C;], we set

Ci Cij
T(C) = Cy
0
We also set
1 n
D= \ (n-dimensional projection) .
0

For each C eI = I(SY’), Lemma 4 guarantees that {p,Cp,} is Cauchy in ||-||.
Since the constant K in Lemma 10 does not depend on n, {T(p,Cp,)} is also
Cauchy in I and there is an element Y in I such that lim ||| T(p,Cp,) — Y||| = 0.

n—o

Take a vector ¢ in p,H (me N,). Since ||-|| < |||']|l, we have

IT(p.Cpa)E — Yellu = I T(paCpy) — Y[ Ellx =0
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as n— o0. For n=m, T(p,Cp,)¢ obviously does not depend upon n so that
we conclude

T(p.Cp)¢ =Y, for nzm  (Eep,H).
For each i, j, by choosing n =i, j we get
Yij = (Ye;, e;) = (T(p.Cpye:, ej)
3 {c,.,. ifi<j,
0 otherwise.

Therefore, we conclude Y= T(C) (and hence T(C)el) and |||T(C)||| = lim
NT(p.Cp,)Il. Since e
IT(@.Ca)IIl < KlllpCral |

< Klicil,
we conclude that |||T(C)|| < K|||C||, that is, T: I —I is bounded. Thanks to

Arazy’s characterization (Corollaries 3.4, 4.12, [4]) the ideal I is an interpolation
space between C, and C,, 1 <p; <p, < +00. QED.

Many other characterizations for I(SY’) to be such an interpolation space
are given in [4]. Also as remarked in p. 458, [4], these characterizations are
valid for a (not necessarily separable) ideal I(S,) by the simple duality argument.
We remark that Theorem 9 also remains valid for I = I(S,) by the duality.
In fact, let us assume that |-|[|;s, satisfies the inequality

A — Wy
[[ e ci,-] < KILCylsa -
Then the dual norm @ (see §1) satisfies
i C. t Y rp..
‘[(Ai + #j) U] T ([’11' + i CU] [DIJ]>

where the sup is taken over all n x n-matrices D with ||D|;s, < 1. It is
elementary to see

A — i _ Ui — j~j
(i5eloa) - w(ealssin])

Hence we get
A — U W — A
Tr{ | ——2C; |[Di;] | £ IC1sey X ||| —2D;;
(rheswa) sien [0
= [Cllxssy X KDl gsq (by the assumption),

I(Sq)

9

= sup
I(Se) D

I(Se)
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A — I
C
\[i + 1 "]

Proposition 8, (i), thus remains valid for the dual norm |- ||;s,,, and Theorem
9 shows that the separable I(S9) is an interpolation space between C, and
C,» 1<4q,<gq, < +o. But this means that I(S3’)* = I(S,) is an interpola-
tion space between C, and C, with 1 <p, <p, < 4+, p;' +¢;* =1. Com-
bining the above with other characterizations given in [4], we have proved
the following main result in the article:

and

©) = K|[Cllxs,) -

I(Se)

Theorem 11. Let I be either I(SY) or I(Sy). The following conditions
are equivalent:

(a) One of the seven estimates in Proposition 8 is valid (for example,
[114] — |B|||l = Const.||A — Bl|| for A, Bel).

(b) I is an interpolation space between C, and C,, 1 <p; <p, < + 0.
(c) The triangle projection T is bounded relative to ||]|.
(d) The Macaev theorem remains valid for I, that is, whenever a Volterra

operator A satisfies ImA € I, we must have ReA €l and
IRe All| = Const.|||Im Al|.
(e) The Boyd indices (see [4] for details) of @ are non-trivial.

The last condition is very useful because one can check Lipschitz-continuity
of the map A —|A| by just looking at the norm @ on the sequence space
f. Define the discrete dilation operators D,,, Dy, (m=1,2,...) on f by

Dm(é)z(gls"'afla525"'5523'-')a
——

m times m times
m 6 2m é
Dyyn(@) = (2& P >

Then compute the norms ||D,,|| and ||Dy,,| (relative to @(-)). The Boyd indices

(Po> o) are defined by
log m < . logm >
= lim
" log D, no 10g [ Dy |

o log(1/m) <= lim log(1/m) )

q =
® " m 10g Dyl m-s0 108 Dyl

It is easy to see 1 S py =qo < +0. (For @, corresponding to the Schatten
ideal C,, we easily see Ps,=dqe,=p) Non-triviality in the last condition (e)
means 1 Zpy<qo 2 + 0.
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Let C,, 1 £p< 40,1 <q= +00) be the non-commutative analogue of
the Lorentz space (see [4] or [19]) consisting of all compact operators such that

© 1/q
”A“pq — (z i("/"’—lsi(A)q)
i=1
(= sup(i'’?s,(4)) if g = + o)

is finite. Note that |-|,, is a norm only if g <p, but when p>1 there
is a norm on C,, equivalent to |-|l,,. It is well-known that C,, (1 <p < oo,
1 £g £ +0) is an interpolation space (the K-method can be used, [5]) be-
tween C, and C,, (1 <p; <p<p,< +0o0). Therefore, the map 4 —|A4]| is
Lipschitz-continuous relative to ||:]|,, (1 <p< +00,1 £ g =< +0).

The above characterization roughly says that the map 4 — | 4] is Lipschitz-
continuous when the “geometry” of a symmetrically normed ideal in question
is “good”. However, the example presented after Corollary 4.6, [4], shows:
there exists a non-uniformly convex symmetrically normed ideal in which the
map A —|A| is Lipschitz-continuous.

§4. Estimates in the Operator and Trace Class Norms

As was mentioned in §0, the map 4 — |A4| is not Lipschitz-continuous for
|-l and ||-||;. Instead the following estimates are known ([13], [16]):

41 + HBI!}

;  A,BeB(H),
4 — B

2
I141 - 1811 < 214 - BI {2 + log
I14] —|B|ll, < /2|4 + B|}*|4 - B|}*;  4,BeC,.

In this section we obtain different (and probably more natural) estimates for
|A] — |B| by making use of the ideals introduced by V. I. Macaev.

For a sequence & = {&;};-; .., let {{F};—; ... be the non-increasing re-
arrangement of {|¢,],|&,|,...}. We introduce the (dual) symmetric norms @,
@, (on f) defined by

®4(E) = sup (2 & / ¥ (i— 1)-1>,

i=1
D,8) =) (2i—1)7EF.
i=1
The corresponding symmetrically normed ideals I(S,,)(=1(S%)) and I(Se,) 2
I(89)(={AeC,: lim (Z si(A) / 3 @i- 1)—1> —0)) satisfy
i=1

n—oo \i=1
{I (So* = I(S,,)
I(S:p,,,)* = I(S¢n) .
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These ideals were introduced by V. I. Macaev and play important roles in
analysis of compact operators (see [11],[12] for details and typical applica-
tions). Notice that I(Sg,) (resp. I(S,,)) is “slightly” larger (resp. smaller) than
C, (resp. Cy):

{I(S,pﬂ) S G, p>1,

C,E1(S,,) > p<+.

In what follows, the norms of I(S,,) and I(S, ) will be denoted by ||, and
I, respectively. Recall that the proof of (1) (in §2) was based on Theorem
6.3 in Chap. III, [12]. If one starts from Theorem 2.2 in Chap. III, [12],
instead, one obtains

[1Pra(A)lle = 141l -

Therefore, by repeating the arguments in p. 150, [9], we get

[ine)

(Here the obvious fact ||*||o < ||*||; is used.) Hence, the same arguments as
in §2 show (among other commutator estimates) the next perturbation result.

< Const.|C||, -
Q

Theorem 12. If A, B € B(H) satisfy A — Be C,, then |A| — |B| belongs to
the ideal 1(S4,) and

14 —|Blllg < Const.|A — B, .

By the obvious modification of the proof of (3), from (4) we get

“[A e ]

We then would like to show a dual version of the previous theorem. However,
notice that Lemma 3 is not valid for C, = the compact operators. Starting
from the assumption A4 = A* € I(S,,), X € B(H), we get

< Const.||C|,

Ip.L14], X1p, |l = Const.||[[4, X]ll,

as in the proof of Theorem 6. Since Y e B(H)— Y| =sup{|Y¢|y:¢€H,
[l < 1} is lower semi-continuous relative to the strong operator topology,
(without using Lemma 3) we conclude

ICIA4l, X7l < lim inf ||p,[| 4], Xp,|l

< Const.|[[4, X]],, -
Hence, (2) in the proof of Theorem 6 is still valid and we get

I14] —|Bl|| = Const.|4 — Bll,;  A,Bel(S,,).
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Theorem 13. If A, Be B(H) satisfy A— Bel(S,,), then |A|—|B| is a

compact operator and

14| = |Bl|| = Const.|A — B, .

Proof. The arguments in the second half of the proof of Corollary 7 (but

Lemma 3 is replaced by the above-mentioned lower semi-continuity of ¥ — || Y|
show the desired inequality. The compactness of |A| — |B| follows from the
following standard argument: Let B(H)/C,, be the Calkin algebra and n: B(H) —
B(H)/C,, be the natural projection. We have n(4)= n(B) because 4 — B is
compact. Since m is a C*-algebra homomorphism, we conclude =n(|A|) =
|n(A4)| = [n(B)| = n(|Bl), ie., |A| —|B| € C,. (QED)

When A is an n x n-matrix, s;(4) =0 for i = n + 1. Consequently we get

). si(A)/; (2i - 1>-1(= nAul/;jl (2i - 1)-1> < |dlq,

i=1

1Al = 21 (2i — 1) 5(4) < 4] Zl @i—.

For the second estimate the obvious fact s,(4) = |4 = s,(4) = s3(4) = -~ was
used. We thus get the next result for (finite) matrices.

Corollary 14. (Theorem 14,[9]) There exists a constant K such that for

any n x n-matrices A, B (n = 2) we have

[1]
[2]
[3]
[4]
5]
Le]
[7]

(8]

{IIIAI — |Bl]| = (log WK ||4 — B,
Al — (B[], = (log n)K|4 — B, .
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