Implementation of Comparative Probability by States

By

Simba A. MUTANGADURA*

Abstract

Let \mathscr{H} be an infinite dimensional Hilbert space and $\mathscr{P}(\mathscr{H})$ the set of all (orthogonal) projections on \mathscr{H} . A comparative probability on $\mathscr{P}(\mathscr{H})$ is a linear preorder \leq on $\mathscr{P}(\mathscr{H})$ such that $\mathbf{O} \leq P \leq \mathbf{I}$, $\mathbf{I} \leq \mathbf{O}$ and such that if $P \perp R$, $Q \perp R$, then $P \leq Q \Leftrightarrow P + R \leq Q + R$ for all P, Q, R in $\mathscr{P}(\mathscr{H})$. In an earlier paper [1], it was shown that weak continuity of \leq was a sufficient and necessary condition for \leq to be implemented by a normal state on $\mathscr{P}(\mathscr{H})$, the bounded linear operators on \mathscr{H} . In this sequel to [1] we prove that uniform continuity is sufficient and necessary for implementation of \leq by a state.

§1. Introduction

We will generally use the same notation as that of [1], to which this paper is a sequel. Let \mathscr{H} be a Hilbert space and E a (closed) subspace of \mathscr{H} . $\mathscr{P}(E)$ denotes the set of all (orthogonal) projections on E and P_E denotes the corresponding projection, with P_{ϕ} denoting the projection onto the one dimensional subspace spanned by ϕ . We drop the E and ϕ if no reference to the subspaces is required. $\mathscr{P}_1(E)$ is the subset of all one dimensional projections on E. Lower case Roman subscripts as in P_j or P_{ϕ_k} will generally be used for indexing sequences and nets. N, **R** and **C** denote the natural numbers, the reals and the complex numbers respectively. $P_{\mathscr{H}}$ is denoted by $\mathbf{I}_{\mathscr{H}}$ or just 1 if no confusion arises and the zero vector is denoted by **O**. The orthogonal complement of P (i.e. $\mathbf{I} - P$) is denoted by P^{\perp} . If $P, Q \in \mathscr{P}(\mathscr{H})$ and $P \leq Q^{\perp}$ then we write $P \perp Q$. Finally, we use $P_j \stackrel{u}{\rightarrow} P$ and $P_j \stackrel{w}{\rightarrow} P$ to mean that the net (or sequence) P_j converges to P in the uniform and weak operator topologies respectively.

Definition 1.1. Let \mathcal{H} be any Hilbert space. A preorder relation \leq on $\mathcal{P}(\mathcal{H})$ is called a comparative probability (CP) iff the following axioms are

Communicated by H. Araki, June 21, 1991

¹⁹⁹¹ Mathematics Subject Classification: 81P99.

^{*} Dept. of Physics, University of Zimbabwe, Box M.P. 167, Mt Pleasant, Harare, Zimbabwe.

satisfied by all P, Q, $R \in \mathcal{P}(\mathcal{H})$: A1 $P \leq Q$ or $Q \leq P$, A2 $P \leq Q$ and $Q \leq R \Rightarrow P \leq R$, A3 $\mathbb{O} \leq P \leq \mathbb{I}, \mathbb{I} \leq \mathbb{O}$. A4 If $P \perp R, Q \perp R$, then $P \leq Q \Leftrightarrow P + R \leq Q + R$. \Box

We note that axiom A4 is equivalent to the following: If $P \perp R$, $Q \perp R$, en $P \neq Q \Leftrightarrow P \perp R \neq Q \perp R$. Recall that a Gleason measure is a gradditive

then $P \prec Q \Leftrightarrow P + R \prec Q + R$. Recall that a Gleason measure is a σ -additive measure on $\mathscr{P}(\mathscr{H})$, that is a σ -orthoadditive mapping $\mu: \mathscr{P}(\mathscr{H}) \to [0, 1]$ satisfying $\mu(\mathfrak{l}) = 1$. If dim $\mathscr{H} \neq 2$ and \mathscr{H} remains separable, then Gleason's theorem [3] says that μ may be extended to a normal state on $\mathscr{B}(\mathscr{H})$. For \mathscr{H} not separable, one trivially verifies that if the σ -additivity is replaced by complete additivity, then μ can still be extended to a normal state on $\mathscr{B}(\mathscr{H})$.

More recent work (see [2] for a comprehensive review, including references of the original papers) has generalized Gleason's theorem to include cases where μ is just an additive measure (i.e. finitely orthoadditive map) acting on the projections of arbitrary Von Neumann algebras. Essentially no new "exceptions" appear beyond the case dim $\mathcal{H} = 2$ which appears in Gleason's theorem. The generalization may be stated as follows: ([2] Theorem 12.1)

Theorem 1.2. Let \mathscr{A} be a Von Neumann algebra without a direct summand of type I_2 and let μ be an additive measure on the projections of \mathscr{A} . Then μ can be extended to a state $\tilde{\mu}$ on \mathscr{A} . Further, if μ is σ -additive, then $\tilde{\mu}$ is normal if and only if μ has a support. \Box

As in [1] we wish to establish sufficient and necessary conditions for a $CP \leq on \mathscr{P}(\mathscr{H})$, where \mathscr{H} is any infinite dimensional Hilbert space, to be implemented by a state ω on $\mathscr{P}(\mathscr{H})$ according to the prescription: $P \leq Q \Leftrightarrow \omega(P) \leq \omega(Q)$. Where it exists, the implementing state is unique if \mathscr{H} is infinite dimensional but this is generally not true for \mathscr{H} finite dimensional [6], [5]. The proof offered here is also valid for the problem of [1]. Not every CP can be implemented in this way as the following counter example¹ shows: Let \mathscr{H} be any Hilbert space of dimensional projections of $\mathscr{P}(\mathscr{H})$. Define states ω_{ϕ} and ω_{ψ} on $\mathscr{P}(\mathscr{H})$ by $\omega_{\phi}(P_{\phi}) = 1$ and $\omega_{\psi}(P_{\psi}) = 1$. Let \leq be defined by $P \leq Q$ if $\omega_{\phi}(P) < \omega_{\phi}(Q)$ or if $\omega_{\phi}(P) = \omega_{\phi}(Q)$ and $\omega_{\psi}(P) \leq \omega_{\psi}(Q)$. One verifies that \leq is indeed a CP and also that no state can implement it. A missing crucial ingredient in this CP is (uniform) continuity. This continuity, unlike the case of additive measures (= states), is not automatic for CP's, and may be defined as follows:

¹ Communicated to the author by A. Paszkiewicz

Definition 1.3. Let \mathcal{F} be a locally convex topology on $\mathcal{B}(\mathcal{H})$ and $\leq a$ CP on $\mathcal{P}(\mathcal{H})$. We say \leq is \mathcal{F} continuous if whenever a net P_j converges to P in the \mathcal{F} topology and $Q \leq P_j \leq R \ \forall j$, then $Q \leq P \leq R$. \Box

Recall that the \leq (interval) topology on $\mathscr{P}(\mathscr{H})$ is generated by a neighbourhood base of \leq intervals of $\mathscr{P}(\mathscr{H})$. For any uniformly continuous CP \leq on $\mathscr{P}(\mathscr{H})$, addition is separately \leq continuous (Proposition 2.10) in the sense that if P_j is a net in $\mathscr{P}(\mathscr{H})$ which \leq converges to $P \in \mathscr{P}(\mathscr{H})$ (we denote this convergence by $P_j \stackrel{\leq}{\Rightarrow} P$) and there exists $Q \in \mathscr{P}(\mathscr{H})$ such that $P \perp Q$ and $P_j \perp Q \ \forall j$, then $Q + P_j \stackrel{\leq}{\Rightarrow} Q + P$. Joint \leq continuity of addition is harder to establish. We give a formal definition of joint continuity of addition on $\mathscr{P}(\mathscr{H})$:

Definition 1.4. Addition on $\mathscr{P}(\mathscr{H})$ is said to be jointly \leq continuous if whenever $P, Q \in \mathscr{P}(\mathscr{H})$ and the nets P_j and Q_j in $\mathscr{P}(\mathscr{H})$ satisfy $P_j \stackrel{\leq}{\to} P, Q_j \stackrel{\leq}{\to} Q$, $P \perp Q$ and $P_j \perp Q_j \quad \forall j$, then $P_j + Q_j \stackrel{\leq}{\to} P + Q$. \Box

§2. Uniformly Continuous CP's

From now on, \mathscr{H} denotes a complex infinite dimensional Hilbert space which is not necessarily separable, and \leq denotes a uniformly continuous CP on $\mathscr{P}(\mathscr{H})$.

Definition 2.1. Let *E* be a subspace of \mathcal{H} . We define $\mathcal{D}(E)$ to be the set of all projections $P_F \in \mathcal{P}(E)$ such that the rank of P_F and the rank of $(P_E - P_F)$ have the same cardinality. \Box

Lemma 2.2. Let G be any infinite dimensional subspace of \mathcal{H} . Then $\mathcal{D}(G)$ is uniformly connected.

Proof. Let $P_E = \sum_{j \in A} P_{\phi_j}$ and $P_F = \sum_{j \in A} P_{\psi_j}$ be both in $\mathscr{D}(G)$ (where the summands in each case are mutually orthogonal) and suppose that $P_E \perp P_F$. Define the function $f: t \in [0, 1] \mapsto \sum_{j \in A} P_{t\phi_j + s\psi_j} \in \mathscr{D}(G)$, where $s = \sqrt{1 - t^2}$. One easily shows that f is *uniformly* continuous. Now suppose $P_E \perp P_F$. There exist projections $P_{E'}$ and $P_{F'}$, both in $\mathscr{D}(G)$, such that $P_{E'} \leq P_E$ and $P_{F'} \leq P_F$ and such that $P_{E'} \perp P_{F'}$; this can be established, for example, by a simple application of Zorn's lemma. Using the result of the case $P_E \perp P_F$, we can construct a uniformly continuous path along the route $P_E \rightarrow P_E^{\perp} \rightarrow P_{E'} \rightarrow P_{F'} \rightarrow P_F$. \Box

We remark that the uniform connectedness of $\mathscr{D}(\mathscr{H})$ implies that nets may be replaced by sequences in handling convergence to any projection $Q \in \mathscr{P}(\mathscr{H})$ such that $Q \cong P$ for some $P \in \mathscr{D}(\mathscr{H})$.

Lemma 2.3. Let P_E , P_F and P_K , all in $\mathcal{D}(\mathcal{H})$, be mutually orthogonal with $\mathbb{O} \cong P_E \prec P_F$. Put $P_G = P_K + P_F + P_E$. Suppose that \preceq is implemented by a state when restricted to $\mathcal{P}(E + F)$, then there exists a sequence P_{G_1} in $\mathcal{P}(G)$

satisfying the following:

iii. If P_L , $P_M \in \mathcal{P}(F + K)$ are mutually orthogonal, then there exist sequences S_j and T_j in $\mathscr{P}(G)$ such that $S_j \perp T_j$ and $S_j + T_j \leq P_{G_j} \forall j$, and such that $S_i \xrightarrow{u} P_L, T_i \xrightarrow{u} P_M.$

Proof. Let $P_E = \sum_{i \in A} P_{\phi_i}$ and $P_F = \sum_{i \in A} P_{\psi_i}$. For each $t \in [0, 1]$, define the function $f_i: K + E \to G$ by $f_i(\phi_i) = s\phi_i + t\psi_i \ \forall j \in \Lambda$ and $f_i(\xi) = \xi \ \forall \xi \in K$, where $s = \sqrt{1 - t^2}$. Then the restriction of f_t to any subspace J of K + E is a unitary operator onto $f_t(J)$ and the map $t \mapsto P_{f_t(J)}$ is uniformly and hence \leq continuous. Thus there exists a sequence of the form $P_{f_{t,}(E)}$ such that $P_{f_{t,}(E)} \xrightarrow{u}$ P_F and $P_{f_t(E)} \leq P_F \forall j$. But for any r such that 0 < r < 1, P_E is in the linear span of the set $\{P_{f_t(E)}: r \le t \le 1\} \subset \mathscr{P}(E+F)$. Since \le is implemented by a state on $\mathscr{P}(E+F)$, we cannot have $P_{f_t(E)} \cong P_F \ \forall t \ge r$. Thus the t_j may be chosen so as to give the strict inequality $P_{f_t(E)} \prec P_F \forall j$ so that the sequence $P_{f_t,(K+E)}$ satisfies items (i) and (ii).

To show that this sequence also satisfies item (iii) we put $\tilde{L} = f_1^{-1}(L)$ and $\tilde{M} = f_1^{-1}(M)$. Then the sequences $P_{f_t,(\tilde{L})}$ and $P_{f_t,(\tilde{M})}$ will satisfy the requirements of item (iii).

Proposition 2.4. The following are both true:

i. Let $P_G \in \mathcal{D}(\mathcal{H})$ and let $P \in \mathcal{P}(\mathcal{H})$ be such that $\mathbb{O} \prec P$. Then there exists $Q \in \mathcal{D}(G)$ such that $Q \leq P$.

ii. Let $\mathscr{A} \subset \mathscr{D}(\mathscr{H})$ be a set of mutually orthogonal projections. Suppose that there exists $R \in \mathcal{P}(\mathcal{H})$ such that $\mathbb{O} \prec R$ and such that $R' \in \mathcal{A} \Rightarrow R \leq R'$, then \mathscr{A} is a finite set.

Proof. i. First we claim that there exists $Q \in \mathcal{D}(\mathcal{H})$ such that $Q \leq P$. Suppose that this is false. Then there exists $P_E \in \mathscr{P}(\mathscr{H})$ such that $P_E \leq P_{E'}$ for some $P_{E'} \in \mathscr{D}(\mathscr{H})$ and such that $\mathbb{O} \prec P_E \leq R \ \forall R \in \mathscr{D}(\mathscr{H})$. Now we can clearly construct two sequences P_j and Q_j , both in $\mathscr{D}(E^{\perp})$, such that $P_j \perp P_k$, $Q_j \perp Q_k$ $\forall j, k \in \mathbb{N} \text{ with } j \neq k, \text{ and such that } P_j \perp Q_k, P_j \cong Q_j \forall j, k \in \mathbb{N}. \text{ Let } P_F = \sum_{j=1}^{\infty} P_j$ and define S_n to be $P_E + \sum_{i=2}^{n} P_i$. Clearly, $S_n \in \mathscr{D}(\mathscr{H}) \forall n$ and since $\mathbb{O} \prec P_E$, S_n is a strictly \leq increasing sequence. As $\mathscr{D}(F)$, and hence also $P_E + \mathscr{D}(F)$, are uniformly connected, there exists $S \in \mathcal{D}(F)$ such that $S_n \stackrel{\leq}{\to} P_E + S$. Thus for some $n_0 \in \mathbb{N}, S \prec S_{n_0}$, so that by A4, $S + P_E \leq S + Q_{n_0+1} \prec S_{n_0} + Q_{n_0+1} \cong S_{n_0+1}$. The contradiction verifies the claim.

Now suppose that the assertion in (i) is false. Then there exists $R \in \mathcal{P}(\mathcal{H})$ such that $\mathbb{O} \prec R \preceq Q \ \forall Q \in \mathcal{D}(G)$. The claim above implies that there exists $P_L \in \mathscr{D}(\mathscr{H})$ such that $P_L \prec R$. As pointed out in Lemma 2.2, there exist $P_E \in \mathscr{D}(L)$ and $P_F \in \mathscr{D}(G)$ such that $P_E \perp P_F$. Let $P_K \in \mathscr{D}(F)$ be such that $P_K \prec P_F - P_K$ and let $P_{E_1}, P_{E_2} \in \mathscr{D}(E)$ be such that $P_{E_1} \preceq P_{E_2}$. Then A4 gives $P_K + P_{E_1} \prec P_F + P_{E_2} - P_K$. Since $\mathscr{D}(K + E_1)$ is \preceq connected and $P_{E_1} \in \mathscr{D}(K + E_1)$, there exists $S \in \mathscr{D}(K + E_1)$ such that $S \in \preceq \inf \mathscr{D}(K)$. As $P_{E_2} \perp (P_K + P_{E_1}), \exists T \in \mathscr{D}(\{K + E_1\}^{\perp})$ such that $\mathbb{O} \prec T \prec R$. Let the sequence S_j in $\mathscr{D}(K)$ be \preceq convergent to S. For each $j \in \mathbb{N}$, let $S'_j \leq S_j$ be such that $S'_j \cong S_j - S'_j$. Then $T + S \preceq T + (S_j - S'_j) \prec S'_j + (S_j - S'_j) \rightarrow S$, a contradiction.

ii. Suppose that the statement is not true, so that \mathscr{A} is an infinite set. By taking a subset if necessary, we may assume that $\mathscr{A} = \{Q_j : j \in \mathbb{N}\}$, that is \mathscr{A} is countable. We may also assume that $\sum_{j \in \mathbb{N}} Q_j \leq Q - \sum_{j \in \mathbb{N}} Q_j$, for some $Q \in \mathscr{D}(\mathscr{H})$ such that $\sum_{j \in \mathbb{N}} Q_j < Q$. Define P_n to be $\sum_{j=n}^{\infty} Q_j$. Then P_n is a strictly \leq decreasing sequence. Now $\forall n \in \mathbb{N}$, $R < P_n$ and $P_n \in \mathscr{D}(\mathscr{H})$; thus, by (i) and by the uniform connectedness of $\mathscr{D}(\mathscr{H})$, there exists $P_0 \in \mathscr{D}(\mathscr{H})$ such that $P_0 \in \leq \inf_{n \in \mathbb{N}} P_n$. Put $Q - \sum_{j \in \mathbb{N}} Q_j = P_F$ and $1 - \sum_{j \in \mathbb{N}} Q_j = P_K$. Then $P_0 \leq P_F$ and $P_F \in \mathscr{D}(K)$. Hence, by (i) and by the connectedness of $\mathscr{D}(K)$, we may assume that $P_0 \in \mathscr{D}(K)$. Let $R' \in \mathscr{D}(K)$ be such that $R' \perp P_0$ and $\mathbb{O} < R' \leq R$. Then, for some large enough $n, P_n < P_0 + R'$ and for such $n, P_n = P_{n+1} + Q_n < P_0 + R' \leq P_0 + Q_n \Rightarrow P_{n+1} < P_0$, by A4. The contradiction gives the required result. \Box

Corollary 2.5. The following are both true:

i. If P_j is a sequence of mutually orthogonal projections of $\mathcal{P}(\mathcal{H})$, then $P_j \stackrel{\leq}{\Rightarrow} \mathbf{O}$.

ii. $\mathcal{P}(E)$ is \leq connected if $P_E \in \mathcal{D}(\mathcal{H})$.

Proof. i. Clear.

ii. In view of Proposition 2.4 (i), it is sufficient to show that P_E is a \leq limit point of $\mathscr{D}(E)$. If $P_E \cong \mathbf{O}$ or $P_E \cong \mathbf{I}$ then this is trivial, so assume that $\mathbf{O} \prec P_E \prec \mathbf{I}$ and suppose that the result is false. Then there exists $Q \in \mathscr{P}(E)$ such that $\mathbf{O} \prec Q$ and such that $P \leq P_E - Q \forall P \in \mathscr{D}(E)$. Now there exist $S \in \mathscr{D}(E)$ and $T \in \mathscr{D}(E^{\perp})$ such that $S \cong T \prec Q$. A4 gives $P_E - Q + T \prec P_E = P_E - S + S \cong P_E - S + T \Rightarrow P \leq P_E - Q \prec P_E - S \forall P \in \mathscr{D}(E)$, a contradiction, since $P_E - S \in \mathscr{D}(E)$. \Box

Lemma 2.6. Let $P_E \in \mathcal{D}(\mathcal{H})$ be such that $P_E \leq P_E^{\perp}$ and let P_1 , P_2 , Q_1 and Q_2 , all in $\mathcal{P}(E)$, be such that $P_1 \perp Q_1$, $P_2 \perp Q_2$, $P_1 \leq P_2$ and $Q_1 \leq Q_2$. Then $P_1 + Q_1 \leq P_2 + Q_2$. Hence for any R_1 , $R_2 \in \mathcal{P}(E)$ and $Q \in \mathcal{P}(\mathcal{H})$ such that $R_1 \leq Q$ and $R_2 \leq Q$ we have $R_1 \leq R_2 \Leftrightarrow Q - R_2 \leq Q - R_1$.

Proof. Since $P_E^{\perp} \in \mathscr{D}(\mathscr{H})$ and $P_E \leq P_E^{\perp}$, we can find, using the \leq connectedness of $\mathscr{P}(E^{\perp})$ and the continuity of \leq on $\mathscr{P}(\mathscr{H})$ (and hence on $\mathscr{P}(E^{\perp})$),

 $R \leq P_E^{\perp}$ such that $P_1 \leq R \leq P_2$. This gives, by axiom A4, $P_1 + Q_1 \leq R + Q_1 \leq R + Q_2 \leq P_2 + Q_2$, as required. We note that this result implies the following: if $P \leq P_E$ and $Q \leq P_E$, then $P \leq Q \Leftrightarrow P_E - Q \leq P_E - P$. To prove the second part we let $R = R_1 \vee R_2$ (the minimal projection in $\mathscr{P}(\mathscr{H})$ containing R_1 and R_2 as sub-projections). As $R \leq R^{\perp}$, the first result gives $R_1 \leq R_2 \Leftrightarrow R - R_2 \leq R - R_1$. Axiom A4 gives $R - R_2 \leq R - R_1 \Leftrightarrow Q - R_2 \leq Q - R_1$, giving the required result. \Box

Proposition 2.7. $\mathcal{P}(\mathcal{H})$ is \leq connected.

Proof. It will suffice to show that $\| \in \leq \sup \mathcal{D}(\mathcal{H})$. Now suppose that $\| \notin \leq \sup \mathcal{D}(\mathcal{H})$. Then $\exists P_G \in \mathcal{P}(\mathcal{H})$ such that $\mathbb{O} \prec P_G \prec \|$ and such that $Q \leq P_G^{\perp} \forall Q \in \mathcal{D}(\mathcal{H})$. We examine two cases:

Case 1 $\mathscr{D}(G^{\perp})$ is \leq dense in $\mathscr{P}(G^{\perp})$.

Clearly $P_G \notin \mathscr{D}(\mathscr{H})$, being of too small a rank. Take $Q \in \mathscr{D}(G^{\perp})$, then $P_G \leq Q^{\perp}$. As $\mathscr{D}(G^{\perp})$ is \leq dense in $\mathscr{P}(G^{\perp})$ and \leq connected, $\exists P \in \mathscr{D}(G^{\perp})$ such that $P \cong Q^{\perp}$. Let $R_1, R_2 \in \mathscr{D}(G^{\perp})$ be such that $R_1 \perp R_2, (R_1 + R_2) \perp P, R_1 \leq R_2$ and $R_1 \prec P_G$. Axiom A4 gives $R_1 + P_G \leq R_1 + P \leq P + R_2$. Since $R_1 + P_G \perp P + R_2$, we have $R_1 + P_G \leq (R_1 + P_G)^{\perp}$ so that, by Lemma 2.6, $1 - P_G \prec 1 - R_1$, a contradiction.

Case 2 $\mathscr{D}(G^{\perp})$ is not \leq dense in $\mathscr{P}(G^{\perp})$.

This implies that $\mathbb{O} \prec P_G$ by Corollary 2.5 (ii) and that there exists $P_K \in \mathscr{P}(G^{\perp})$ such that $\mathbb{O} \prec P_K \prec P_G^{\perp}$, $P_K \preceq P_G$ and such that $Q \preceq P_G^{\perp} - P_K \forall Q \in \mathscr{D}(G^{\perp})$. Put $P_J = P_K + P_G$. Then $\exists S, T \in \mathscr{D}(J^{\perp})$ such that $S \perp T, S \prec P_K$, and $S \preceq T$. Axiom A4 gives $S + P_K \preceq S + P_G \preceq T + P_G \Rightarrow S + P_K \preceq (S + P_K)^{\perp}$ so that, by Lemma 2.6, $P_G^{\perp} - P_K \prec P_G^{\perp} - S \in \mathscr{D}(G^{\perp})$, a contradiction. This completes the proof. \Box

We remark that, by Lemma 2.2 and Proposition 2.7, if G is any infinite dimensional subspace of \mathscr{H} , then $\mathscr{D}(G)$, and hence also $\mathscr{P}(G)$, are \leq connected in $\mathscr{P}(\mathscr{H})$. The following results, which we list without proof, are easy consequences of the foregoing results (cf. [1], Theorem 2.3).

Theorem 2.8. The following statements are all true:

i. $\mathcal{P}(\mathcal{H})$ is \leq compact and hence every nonempty subset of $\mathcal{P}(\mathcal{H})$ has an inf and a sup with respect to \leq .

ii. Let $\mathcal{A} \subset \mathcal{P}(\mathcal{H})$ be any set of mutually orthogonal projections such that $\forall P \in \mathcal{A}, \mathbb{O} \prec P$. Then \mathcal{A} is at most a countably infinite set. \Box

Joint \leq continuity on $\mathscr{P}(\mathscr{H})$ is essentially a strengthening of axiom A4.

Proposition 2.9. The following statements are equivalent. i. Addition is jointly \leq continuous on $\mathcal{P}(\mathcal{H})$. ii. Let P_1 , P_2 , Q_1 and Q_2 , all in $\mathcal{P}(\mathcal{H})$, be such that $P_1 \perp Q_1$, $P_2 \perp Q_2$, $P_1 \leq P_2$ and $Q_1 \leq Q_2$, then $P_1 + Q_1 \leq P_2 + Q_2$

Proof. i. \Rightarrow ii. First we remark that the joint \leq continuity of addition immediately gives $P_1 + Q_1 \cong P_2 + Q_2$ if $P_1 \cong P_2$ and $Q_1 \cong Q_2$. We shall assume that $P_2 + Q_2 < 1$ and that $\mathbb{O} < P_1$, $\mathbb{O} < Q_1$, $\mathbb{O} < P_2$, $\mathbb{O} < Q_2$, otherwise the result is trivially true. Assume, with no loss of generality, that $R \leq Q_2^{\perp}$ for some $R \in \mathscr{D}(\mathscr{H})$. Since $\mathbb{O} < P_2 < Q_2^{\perp}$, there exist by Proposition 2.7, P'_1 , $P'_2 \in \mathscr{D}(\mathscr{H})$ such that $P'_1 \leq P'_2 \leq Q_2^{\perp}$, $P'_1 \cong P_1$ and $P'_2 \cong P_2$. Hence there similarly exist Q'_1 , $Q'_2 \in \mathscr{D}(\mathscr{H})$ such that $Q'_1 \leq Q'_2 \leq P'_2^{\perp}$, $Q'_1 \cong Q_1$ and $Q'_2 \cong Q_2$. Thus $P_1 + Q_1 \cong P'_1 + Q'_1 \leq P'_2 + Q'_2 \cong P_2 + Q_2$, as required. ii. \Rightarrow i.

Let P, Q and the nets $P_j, Q_j: j \in \mathscr{J}$, all in $\mathscr{P}(\mathscr{H})$, be such that $P_j \stackrel{\leq}{\to} P$, $Q_j \stackrel{\leq}{\to} Q$, $P \perp Q$ and $P_j \perp Q_j \forall j$. First we consider the case where both P_j and Q_j are monotone \leq increasing and assume that $\mathbf{O} \prec P$ and $\mathbf{O} \prec Q$, lest the result be trivial. Hence we may also assume that $P, Q \in \mathscr{D}(\mathscr{H})$. Now item (ii) implies that $P_j + Q_j$ is monotone \leq increasing and hence \leq convergent to $R \in \leq \sup_j (P_j + Q_j)$. Clearly $R \leq P + Q$. Suppose that $R \prec P + Q$. Then, by hypothesis, there exist $\tilde{P} < P$ and $\tilde{Q} < Q$ such that $R \prec \tilde{P} + \tilde{Q} \prec P + Q$. This implies that for all j large enough, we have $P_j + Q_j \prec \tilde{P} + \tilde{Q}$, $\tilde{P} \prec P_j \prec P$ and $\tilde{Q} \prec Q_j \prec Q$. The contradiction gives $R \cong P + Q$. For the case where both P_j and Q_j are monotone \leq decreasing a similar strategy gives the same result.

Now we consider the case where P_j is monotone \leq increasing and Q_j is monotone \leq decreasing and consider only the case $\mathbf{O} < P$, otherwise the result is trivially true. Hence we may assume here that P is of infinite rank. Now there exists, by Theorem 2.8, a subnet $P_{j_k} + Q_{j_k}$ of $P_j + Q_j$ which is \leq convergent to R, say. We claim that $R \cong P + Q$. To show this we suppose first that R < P + Q. As P is of infinite rank, there exists $\tilde{P} < P$ such that \tilde{P}^{\perp} is of infinite rank and such that $R < \tilde{P} + Q < P + Q$. This in turn implies that there exists $\tilde{Q} < \tilde{P}^{\perp}$ such that $R < \tilde{P} + Q < \tilde{P} + \tilde{Q} < P + Q$. Hence there exists $j_0 \in \mathscr{I}$ such that $\forall j_k > j_0$, $P_{j_k} + Q_{j_k} < \tilde{P} + Q$ and $\tilde{P} < P_{j_k} < P$, $Q < Q_{j_k} < \tilde{Q}$. The last two inequalities give, by hypothesis, $\tilde{P} + Q < P_{j_k} + Q_{j_k} \forall j_k > j_0$, a contradiction. A similar argument establishes that we cannot have P + Q < R, and the claim is verified. Finally, we note that for the general case, an easy argument involving subnets of $P_i + Q_i$ completes the proof. \Box

Proposition 2.10. Addition is separately \leq continuous on $\mathcal{P}(\mathcal{H})$.

Proof. Let P, P_G and the net $P_j: j \in \mathcal{J}$, all in $\mathcal{P}(\mathcal{H})$, be such that $P_j \stackrel{\leq}{\to} P$, $P \perp P_G$ and $P_j \perp P_G \forall j$. If P_G^{\perp} is of finite rank, then every subnet of $P_G + P_j$ has itself a subnet which uniformly converges to a projection of the form

 $P_G + P'$ where $P' \perp P_G$ and, by the uniform continuity of \leq , $P' \cong P$, hence the result. For P_G^{\perp} of infinite rank, we assume for the moment that P_j is monotone \leq increasing, and hence \leq convergent to R, say. Clearly $R \leq P + P_G$. If $R < P + P_G$, then, since $\mathcal{D}(G^{\perp})$ and hence $P_G + \mathcal{D}(G^{\perp})$ are \leq connected, there exists $P' \in \mathcal{D}(G^{\perp})$ such that, for all j, $P_G + P_j \leq P_G + P' < P_G + P$, contradicting $P_j \stackrel{\leq}{\Rightarrow} P$. Hence $P_G + P_j \stackrel{\leq}{\Rightarrow} P_G + P$. A similar argument gives the same result if we assume P_j to be monotone \leq decreasing. For P_j arbitrary, we note that every subnet of P_j has a subnet that \leq converges to $P_G + P$, and the result follows. \Box

Corollary 2.11. $\mathcal{P}(\mathcal{H})$ is \leq first countable.

Proof. Let $P_E \in \mathscr{D}(\mathscr{H})$ be such that $\mathbb{O} \prec P_E \preceq P_E^{\perp}$ and let the sequence Q_j in $\mathscr{D}(E)$ be such that $\mathbb{O} \prec Q_j \forall j$ and $Q_j \stackrel{\leq}{\to} \mathbb{O}$. Then Lemma 2.6 and Corollary 2.5 (ii) imply that $P_E - Q_j \stackrel{\leq}{\to} P_E$ and Proposition 2.10 gives $P_E^{\perp} + P_E - Q_j \stackrel{\leq}{\to} \mathbb{I}$. Put $P_E^{\perp} + P_E - Q_j = P_j$ then the two sets of \preceq intervals $[\mathbb{O}, Q_j): j \in \mathbb{N}$ and $(P_j, \mathbb{I}]: j \in \mathbb{N}$ form countable \preceq neighbourhood bases for \mathbb{O} and \mathbb{I} respectively. The remark at the end of Lemma 2.2 completes the proof. \Box

§3. Implementability of Continuous CP's

In this section, we prove a number of results which will culminate in the construction of an additive measure on $\mathcal{P}(\mathcal{H})$. This measure will, by Theorem 1.2, lead to a unique state which implements \leq .

Lemma 3.1. For $n \in \mathbb{N}$, let the sets $\{P_j : 1 \le j \le n\}$ and $\{Q_j : 1 \le j \le n\}$, each of which consists of mutually orthogonal projections in $\mathcal{P}(\mathcal{H})$, be such that $P_j \perp Q_k \forall j, k$ and such that for each $j, P_j \le Q_j$. Then $\sum_{j=1}^n P_j \le \sum_{j=1}^n Q_j$.

Proof. Let $m \in \mathbb{N}$ be such that m < n and suppose that $\sum_{j=1}^{m} P_j \leq \sum_{j=1}^{m} Q_j$. Axiom A4 gives $\sum_{j=1}^{m+1} P_j = P_{m+1} + \sum_{j=1}^{m} P_j \leq P_{m+1} + \sum_{j=1}^{m} Q_j \leq Q_{m+1} + \sum_{j=1}^{m} Q_j = \sum_{j=1}^{m+1} Q_j$. Since $P_1 \leq Q_1$ the result follows by induction. \square

Lemma 3.2. Given any $n \in \mathbb{N}$, there exists a set $\{P_{E_j} : j \in K(n)\}$, where $K(n) = \{1, 2, 3, ..., 2^n\}$, of mutually orthogonal projections such that $P_{E_j} \in \mathcal{D}(\mathscr{H}) \ \forall j, P_{E_j} \cong P_{E_k} \ \forall j, k \text{ and such that } \sum_{i \in K(n)} P_{E_j} = \mathbb{I}.$

Proof. Suppose the result to be true for some $n_0 \in \mathbb{N}$. For each $j \in K(n_0)$, \leq is obviously a uniformly continuous CP when restricted to $\mathscr{P}(E_j)$ and because $\mathscr{D}(E_j)$ is \leq connected and \leq dense in $\mathscr{P}(E_j)$, there exists $P_{\tilde{E}_j} \in \mathscr{D}(E_j)$ ($\subset \mathscr{D}(\mathscr{H})$) such that $P_{E_j} - P_{\tilde{E}_j} \cong P_{\tilde{E}_j}$. This, together with Lemma 3.1, is enough to show that the result is also true for both n = 1 and $n = n_0 + 1$ and hence, by induction, for all $n \in \mathbb{N}$.

Definition 3.3. A set $\{P_{E_j}: j \in K(n)\}$ satisfying the assertion of Proposition 3.2 is said to be an equipartition of the identity of order 2^n . Let $\mathscr{L} = \{P_{E_j}: j \in K(n)\}$ be an equipartition of the identity of order 2^n , we define $\mathscr{S}(\mathscr{L}) \subset \mathscr{D}(\mathscr{H})$ to be the set $\{\sum_{j \in K} P_{E_j}: K \subset K(n), K \neq \emptyset, K \neq K(n)\}$. It is clear that there exists a sequence of equipartitions \mathscr{L}_n of the identity such that \mathscr{L}_n is of order 2^n and such that the \mathscr{L}_n are "nested" in the sense that $\mathscr{S}(\mathscr{L}_n) \subset \mathscr{S}(\mathscr{L}_{n+1}) \forall n \in \mathbb{N}$. When there is such nesting, we define \mathscr{I}_{∞} to be $\bigcup_{i=1}^{n} \mathscr{S}(\mathscr{L}_n)$. \Box

From now on we work with a fixed set of nested equipartitions \mathscr{L}_n as set out in Definition 3.3.

Proposition 3.4. \mathscr{S}_{∞} is \leq dense in $\mathscr{P}(\mathscr{H})$.

Proof. Assuming the axiom of choice, let $P_j \in \mathscr{L}_j \forall j \in \mathbb{N}$. Clearly $P_j \stackrel{\leq}{\to} \mathbb{O}$ and $P_j^{\perp} (\in \mathscr{L}_j) \stackrel{\leq}{\to} \mathbb{I}$. Now let $P \in \mathscr{P}(\mathscr{H})$ be such that $\mathbb{O} \prec P \prec \mathbb{I}$. Then, because $\mathbb{O} \prec P^{\perp}$, there exists, for some $n \in \mathbb{N}$, $R \in \mathscr{L}_n$ such that $R \prec P$. We may assume, without loss of generality, that $R \perp P$. We wish to show that P is a \preceq limit point of \mathscr{S}_{∞} . Consider the set $\Gamma = \{Q \in \mathscr{S}_{\infty} : Q \preceq P\}$. Let $Q_0 \in \preceq \sup \Gamma$. As $Q_0 \preceq P \leq R^{\perp}$, we may also assume that $Q_0 \perp R$. Because of the nesting of the \mathscr{L}_j and because $Q_0 \leq R^{\perp}$, we have $Q_0 \in \preceq \sup \tilde{\Gamma}$ where $\tilde{\Gamma} = \{Q \in \mathscr{S}_{\infty} : Q \preceq P,$ $Q \leq R^{\perp}\}$. We now show that $Q_0 \cong P$. Suppose this is false, so that $Q_0 \prec P$. Then there exists $R_0 \in \mathscr{L}_m$ for some m such that $R_0 \leq R$ and such that $Q_0 + R_0 \prec P$. Now let the sequence Q_j in $\tilde{\Gamma} \preceq$ converge to Q_0 . Then there clearly exists n such that $Q_0 \prec Q_n + R_0$. As $Q_j \preceq Q_0 \forall j$, A4 gives $Q_0 \prec Q_n + R_0 \preceq Q_0 + R_0 \prec P$. Since $Q_n + R_0 \in \mathscr{S}_{\infty}$, this contradicts $Q_0 \in \preceq \sup \Gamma$; hence the result. □

Definition 3.5. Define the function $\mu: \mathscr{S}_{\infty} \to [0, 1]$ as follows:

In the notation of Definition 3.3, if $\sum_{j \in K} P_{E_j} \in \mathscr{S}(\mathscr{L}_n)$, then $\mu\left(\sum_{j \in K} P_{E_j}\right) = 2^{-n} \#(K)$, where #(K) is the cardinality of the set K. It is trivially easy to verify that μ is a well defined function because of the nested structure of \mathscr{G}_{∞} . \Box

Proposition 3.6. The function μ in Definition 3.5 is (finitely) additive and \leq continuous.

Proof. The additivity is obvious from the definition. To show the continuity, we first note that if $P_j \in \mathscr{S}_{\infty} \forall j$, then $P_j \stackrel{\leq}{\to} \mathbb{O} \Leftrightarrow \mu(P_j) \to 0$. Now let P_j be a \leq increasing sequence in \mathscr{S}_{∞} which \leq converges to $P \in \mathscr{S}_{\infty}$. Because of the nesting in \mathscr{S}_{∞} , we may assume without loss of generality that $P_j \leq P \forall j$. Thus $P - P_j \stackrel{\leq}{\to} \mathbb{O}$ and hence $\mu(P) = \lim \mu(P_j)$, by the above remark and by additivity. We similarly reach the same conclusion if P_j is a \leq decreasing sequence. Now let $\mu(P_j)$ be any sequence in \mathscr{S}_{∞} which \leq converges to $P \in \mathscr{S}_{\infty}$. If $\mu(P_j)$ does not converge to $\mu(P)$, then P_j has either a \leq decreasing or a \leq increasing subsequence P_{j_k} such that $\mu(P_{j_k}) \not\rightarrow \mu(P)$, in contradiction with the results established above. This leads to the required result. \Box

The continuity proved in Proposition 3.6 and the \leq density of \mathscr{G}_{∞} in $\mathscr{P}(\mathscr{H})$ allows us to extend μ to a \leq continuous function on all of $\mathscr{P}(\mathscr{H})$. Accordingly we regard the domain of μ to be all of $\mathscr{P}(\mathscr{H})$ from now on. Clearly μ satisfies $P \leq Q \Leftrightarrow \mu(P) \leq \mu(Q) \forall P, Q \in \mathscr{P}(\mathscr{H})$. It is clear that joint \leq continuity of addition would immediately imply additivity of μ on all of $\mathscr{P}(\mathscr{H})$ which, by Theorem 1.2, would lead to the implementation of \leq by a state. However, in view of Lemma 2.6 and Proposition 2.9, we have the following obvious result:

Lemma 3.7. Let $P_E \in \mathscr{D}(\mathscr{H})$. If $P_E \leq P_E^{\perp}$ then μ is additive on $\mathscr{P}(E)$. \Box

Lemma 3.8. Let S_1 , $S_2 \in \mathscr{S}_{\infty}$ be mutually orthogonal. If $P_1 \leq S_1$ and $P_2 \leq S_2$ then $\mu(P_1 + P_2) = \mu(P_1) + \mu(P_2)$.

Proof. We first look at the case $P_1 \in \mathscr{S}_{\infty}$. Now there clearly exists a sequence Q_j in \mathscr{S}_{∞} such that $Q_j \leq S_2$ and such that $Q_j \stackrel{\leq}{\to} P_2$. Separate \leq continuity of addition, \leq continuity of μ and additivity of μ on \mathscr{S}_{∞} lead to $\mu(P_1 + P_2) = \lim_{j \to \infty} \mu(P_1 + Q_j) = \lim_{j \to \infty} \{\mu(P_1) + \mu(Q_j)\} = \mu(P_1) + \mu(P_2)$ as required. If $P_1 \notin \mathscr{S}_{\infty}$, then we again have $\mu(P_1 + P_2) = \lim_{j \to \infty} \mu(P_1 + Q_j) = \lim_{j \to \infty} \{\mu(P_1) + \mu(Q_j)\} = \mu(P_1) + \mu(P_2)$, where we have used the additivity proved in the case $P_1 \in \mathscr{S}_{\infty}$. This completes the proof. \Box

Lemma 3.9. Suppose we have another sequence of nested equipartitions $\tilde{\mathcal{L}}_n$ of the identity such that $\tilde{\mathcal{L}}_n$ is of order 2^n . Let $\tilde{\mathcal{I}}_{\infty} = \bigcup_{n \in \mathbb{N}} \mathscr{L}(\tilde{\mathcal{L}}_n)$, in the notation of Definition 3.3. Suppose that for some $n \in \mathbb{N}$ there exist $P_E \in \mathcal{L}_n$ and $P_{\tilde{E}} \in \tilde{\mathcal{L}}_n$ such that $P_E \leq P_{\tilde{E}}$, then the following are true:

i. $P_E = P_{\tilde{E}}$.

ii. If $\tilde{\mu}$ is the function constructed from $\tilde{\mathscr{G}}_{\infty}$, as set out in Definition 3.5, then $\tilde{\mu} = \mu$.

Proof. i. Assume the hypothesis and suppose the result is not true so that $P_E < P_{\tilde{E}}$. Let $\mathscr{L}_n = \{P_j : j \in K(n)\}$, where $P_1 = P_E$ and $\widetilde{\mathscr{L}}_n = \{\tilde{P}_j : j \in K(n)\}$, where $\tilde{P}_1 = P_{\tilde{E}}$. Then for each $j \in K(n)$, there exists $Q_j \in \mathscr{D}(\mathscr{H})$ such that $Q_j \cong P_j$ and $Q_j < \tilde{P}_j$, with $Q_1 = P_1$. Define \mathscr{A} to be $\{Q_j : j \in K(n)\}$. We claim that $\mu\left(\sum_{k=1}^{2n} Q_k\right) = \sum_{k=1}^{2n} \mu(Q_k)$. Suppose inductively that $\mu\left(\sum_{Q \in \mathscr{A}} Q\right) = \sum_{Q \in \mathscr{A}} \mu(Q)$ for any

subset \mathscr{B} of \mathscr{A} of cardinality N, where $1 < N < 2^n$. Now let $\{Q_{j_k} : 1 \le k \le N+1\}$ be any subset of \mathscr{A} of cardinality N+1 such that $j_k \le j_{k+1}$ for all k. The inductive hypothesis implies that $\sum_{k=2}^{N+1} \widetilde{Q}_{j_k} \cong \sum_{k=2}^{N+1} P_k$ so that application of axiom A4 and additivity of μ on \mathscr{S}_{∞} yields $\mu\left(\sum_{k=1}^{N+1} Q_{j_k}\right) = \mu\left(Q_{j_1} + \sum_{k=2}^{N+1} Q_{j_k}\right) = \mu\left(P_1 + \sum_{k=2}^{N+1} P_k\right) = \sum_{k=1}^{N+1} \mu(P_k) = \sum_{k=1}^{N+1} \mu(Q_{j_k})$. We remark that this argument also demonstrates that μ is additive on any subset of \mathscr{A} of cardinality 2, and so verifying the claim by induction. Since $Q_k \cong P_k \ \forall k \in K(n)$, this additivity gives $\mu\left(\sum_{k=1}^{2^n} Q_k\right) = 1$, contradicting $Q_k < \widetilde{P}_k \ \forall k \in K(n)$. This completes proof.

ii. The proof of item (i) shows that μ is additive on $\tilde{\mathscr{L}}_n$. We now show that μ is also additive on $\tilde{\mathscr{L}}_m$ for any $m \in \mathbb{N}$. If m > n then $\tilde{\mathscr{L}}_m$ induces an equipartition $\tilde{\mathscr{B}}$ of P_E and \mathscr{L}_m induces equipartitions \mathscr{B} of P_E and \mathscr{C} of P_E^{\perp} . As $P_E \leq P_E^{\perp}$, Lemma 2.6 implies that $\tilde{\mathscr{B}} \cup \mathscr{C}$ is also an equipartition of the identity of order 2^m . Application of item (i.) shows that μ is additive on $\tilde{\mathscr{B}} \cup \mathscr{C}$ and another application shows additivity on $\tilde{\mathscr{L}}_m$ and hence on all of $\tilde{\mathscr{P}}_{\infty}$. This immediately gives $\mu = \tilde{\mu}$. \Box

Proposition 3.10. Let $P_E \in \mathscr{S}_{\infty}$, then μ is additive on $\mathscr{P}(E)$.

Proof. Let $P, Q \in \mathscr{P}(E)$ be mutually orthogonal. We can clearly construct a set of nested equipartitions $\widetilde{\mathscr{G}}_n$ of the identity such that there exist $\widetilde{S} \in \widetilde{\mathscr{G}}_{\infty} = \bigcup_{n \in \mathbb{N}} \mathscr{S}(\widetilde{\mathscr{L}}_n)$ and $Q' \in \mathscr{P}(\mathscr{H})$ satisfying $P \leq \widetilde{S}$ and $Q \cong Q' \leq \widetilde{S}^{\perp}$. By Lemma 3.9, we can also easily ensure that $\widetilde{\mathscr{G}}_{\infty}$ is such that $\tilde{\mu} = \mu$. Lemma 3.8 gives $\tilde{\mu}(P+Q) = \tilde{\mu}(P+Q') = \tilde{\mu}(P) + \tilde{\mu}(Q') = \tilde{\mu}(P) + \tilde{\mu}(Q)$ as required. \Box

Corollary 3.11. Let $P_E \in \mathcal{D}(\mathcal{H})$ be such that $P_F \leq P_E$ for some $P_F \in \mathcal{S}_{\infty}$, then μ is additive on $\mathcal{P}(E)$.

Proof. If $P_E < 1$ then by Lemma 3.9, the problem reduces to that of Proposition 3.10. So we assume that $P_E \cong 1$. By enlarging P_E where necessary, we may also assume that $P_E - P_F \in \mathcal{D}(\mathcal{H})$ and that $\mathbf{O} < P_E - P_F$. By Lemma 2.3, there exists a sequence P_{G_j} in $\mathcal{D}(\mathcal{H})$ (where, in the notation of Lemma 2.3, P_{G_j} is of the form $P_{f_{t_j}(E^{\perp}+F)}$, and where $P_{f_1(E^{\perp})} = P_E - P_F$, $P_{f_t(F)} = P_F \forall t$) such that, for all j, $P_{G_j} < P_E$, $P_F \leq P_{G_j}$ and such that $P_{G_j} \stackrel{u}{\to} P_E$. Now let $P, Q \in \mathcal{P}(E)$ be mutually orthogonal. We choose that the sequence P_{G_j} also satisfies item (iii) of Lemma 2.3 so that there exist sequences P_j and Q_j such that, for each j, $P_j \perp Q_j$, $P_j + Q_j \leq G_j$ and such that $P_j \stackrel{u}{\to} P, Q_j \stackrel{u}{\to} Q$. Since $P_j + Q_j \stackrel{u}{\to} P + Q$, and since, by Proposition 3.10, μ is additive on each $\mathcal{P}(G_j)$, the result follows at once. \Box **Corollary 3.12.** Let $\tilde{\mathcal{L}}_n$ be another sequence of nested equipartitions of the identity as set out in Lemma 3.9 and let $\tilde{\mu}$ be the function on $\mathcal{P}(\mathcal{H})$ constructed from the $\tilde{\mathcal{L}}_n$. Then $\tilde{\mu} = \mu$.

Proof. Let $P_{\tilde{E}} \in \tilde{\mathscr{S}}_{\infty}$ and let $P_E \in \mathscr{S}_{\infty}$. Let $P_G \leq P_E$ and $P_{\tilde{G}} \leq P_{\tilde{E}}$ be mutually orthogonal (see Lemma 2.2). The following two cases are sufficient for the proof.

Case 1 $\mathbb{O} \prec P_G$ and $\mathbb{O} \prec P_{\tilde{G}}$.

We assume without loss of generality that $P_G + P_{\tilde{G}} \prec \mathbb{I} - P_G - P_{\tilde{G}}$ and hence, by Lemma 3.7, we may also assume that $P_G \in \mathscr{L}_n$ and that $P_{\tilde{G}} \in \widetilde{\mathscr{L}}_n$ for some $n \in \mathbb{N}$. Another sequence \mathscr{L}'_k of nested equipartitions of the identity, with the associated function μ' , can be constructed such that by an appropriate choice of the equipartition \mathscr{L}'_n , Lemma 3.9 gives $\mu = \mu' = \tilde{\mu}$ as required.

Case 2 $\mathbb{O} \cong P_{\tilde{G}}$.

By Corollary 3.11, μ is additive on $\mathscr{P}(G^{\perp})$ and $\tilde{\mu}$ on $\mathscr{P}(\tilde{G}^{\perp})$. Let \mathscr{L}'_n be a sequence of nested equipartitions of P_F , where $P_F = \mathbb{I} - P_G - P_{\tilde{G}}$, such that $\mathscr{L}'_n = \{P_{n1}, P_{n2}, \ldots, P_{n2^n}\}$. Then $\{\mathscr{L}''_n : n \in \mathbb{N}\}$, where $\mathscr{L}''_n = \{P_{n1} + P_{\tilde{G}}, P_{n2}, P_{n3}, \ldots, P_{n2^n}\}$ is a sequence of nested equipartitions of P_G^{\perp} . Since $\tilde{\mu}$ is additive on $\mathscr{P}(F)$, $\tilde{\mu} = \mu$ on $\mathscr{P}(G^{\perp})$. As $P_E \in \mathscr{L}_{\infty}$ is arbitrary, we have $\tilde{\mu} = \mu$ on \mathscr{L}_{∞} , and hence on $\mathscr{P}(\mathscr{H})$. \Box

Proposition 3.13. μ is an additive measure on $\mathcal{P}(\mathcal{H})$. If \leq is weakly continuous, then μ is completely additive.

Proof. Let P_F , $P_G \in \mathscr{P}(\mathscr{H})$ be mutually orthogonal. Clearly, one can construct a sequence of nested equipartitions of the identity such that if μ' is the associated function, then $\mu'(P+Q) = \mu'(P) + \mu'(Q)$. Corollary 3.12 gives the required additivity.

Now let \leq be weakly continuous and let $\mathscr{A} = \{P_j: j \in A\}$ be a set of mutually orthogonal projections of $\mathscr{P}(\mathscr{H})$. By Theorem 2.8, the set \mathscr{B} of projections $P \in \mathscr{A}$ satisfying $\mu(P) \neq 0$ is, at most, countably infinite. Additivity and weak continuity of μ ensure that $\sum_{P \in \mathscr{B}} \mu(P) = \mu\left(\sum_{P \in \mathscr{B}} P\right)$. Weak continuity also implies that $\mu\left(\sum_{P \in \mathscr{A} \setminus \mathscr{B}} P\right) = 0$ (see [1], Proposition 2.4 (ii)); this leads to the required complete additivity. \Box

Theorem 1.2 and Proposition 3.13 lead to the final result:

Theorem 3.14. Let \mathscr{H} be an infinite dimensional (not necessarily separable) Hilbert space and let \leq be a CP on $\mathscr{P}(\mathscr{H})$. Then \leq can be implemented by a (unique) state μ_{\leq} on $\mathscr{B}(\mathscr{H})$ if and only if \leq is uniformly continuous. If \leq is weakly continuous, then μ_{\leq} is normal. \Box

Acknowledgements

The author would like to thank Professor Abdus Salam, the International Atomic Energy Agency, UNESCO and the Swedish Development Cooperation for their support and hospitality at the International Centre for Theoretical Physics, Trieste, Italy, where part of this work was done.

References

- [1] Mutangadura S. A., Implementation of Comparative Probability by Normal States, Commun. Math. Phys., 132 (1990), 581-592.
- Maeda S., Probability Measures on Projections in Von Neumann Algebras, Reviews in Mathematical Physics, 1 (1990), 235-290.
- [3] Gleason A. M., Measures on the Closed Subspaces of a Hilbert Space, J. Math. and Mech., 6 (1957), 885-893.
- [4] Kalmbach G., Measures and Hilbert Lattices, World Scientific, 1986.
- [5] Ochs W., Gleason Measures and Quantum Comparative Probability, Quantum Probability and Applications II (Heidelberg Proceedings), (1985), 388–396.
- [6] Goldstein S. and Paszkiewicz A., Comparison of States and Darboux-Type Properties in Von Neumann Algebras, Mathematica Scandinavica, 63 (1988), 220–232.
- [7] Bratteli O. and Robinson D. W., Operator Algebras and Quantum Statistical Mechanics I, Springer-Verlag, 1979.
- [8] Gaal S. A., Point Set Topology, Academic Press, 1964.
- [9] Reed M. and Simon B., Methods of Modern Mathematical Physics, 1, Academic Press, 1980.
- [10] Kelly J. L., General Topology, Van Nostrand, 1955.