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Abstract

Let J^ be an infinite dimensional Hilbert space and ^(J^f) the set of all (orthogonal) projections
on 2tf. A comparative probability on gPffl) is a linear preorder < on &(ffl} such that O < P •< I,
I ^ O and such that if P_L K, Q 1R, then P <QoP + R < Q + R for all P, Q, R in ^(^f). In an
earlier paper [1], it was shown that weak continuity of < was a sufficient and necessary condition
for < to be implemented by a normal state on ^(J^\ the bounded linear operators on ffl. In this
sequel to [1] we prove that uniform continuity is sufficient and necessary for implementation of •<
by a state.

§ 1. Introduction

We will generally use the same notation as that of [1], to which this paper
is a sequel. Let Jf be a Hilbert space and E a (closed) subspace of Jf. @*(E)
denotes the set of all (orthogonal) projections on E and PE denotes the corre-
sponding projection, with P^ denoting the projection onto the one dimensional
subspace spanned by (/>. We drop the E and $ if no reference to the subspaces
is required. @*i(E) is the subset of all one dimensional projections on E.
Lower case Roman subscripts as in Pj or P^ will generally be used for indexing
sequences and nets. N5 R and C denote the natural numbers, the reals and
the complex numbers respectively. P^ is denoted by \^> or just 1 if no
confusion arises and the zero vector is denoted by O. The orthogonal comple-
ment of P (i.e. I - P) is denoted by P1. If P, Q e 0>(3?) and P < QL then
we write Pig. Finally, we use P^P and Pj-^P to mean that the net (or
sequence) Pj converges to P in the uniform and weak operator topologies
respectively.

Definition LI. Let 3? be any Hilbert space. A preorder relation < on
is called a comparative probability (CP) iff the following axioms are
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satisfied by all P, Q, R e ,
Al P<Q or Q<P,
A2 P < Q and Q < R => P < R,
A3 O < P < I, I ̂  O.

K:<e + R. D

We note that axiom A4 is equivalent to the following: If P J_ fl, QLR,
then P <Q<s>P + R~<Q + R. Recall that a Gleason measure is a a-additive
measure on &(2tf\ that is a cr-orthoadditive mapping fi: 0*(3^) -» [0, 1] satisfying
/i(I) = 1. If dim ffl 7^ 2 and Jf remains separable, then Gleason's theorem [3]
says that \JL may be extended to a normal state on ^(Jf ). For Jf not separable,
one trivially verifies that if the a-additivity is replaced by complete additivity,
then \JL can still be extended to a normal state on <%(&).

More recent work (see [2] for a comprehensive review, including references
of the original papers) has generalized Gleason's theorem to include cases
where ^ is just an additive measure (i.e. finitely orthoadditive map) acting
on the projections of arbitrary Von Neumann algebras. Essentially no new
"exceptions" appear beyond the case dim Jf = 2 which appears in Gleason's
theorem. The generalization may be stated as follows: ([2] Theorem 12.1)

Theorem L20 Let jtf be a Von Neumann algebra without a direct summand
of type 1 2 and let }i be an additive measure on the projections of s$. Then \L
can be extended to a state ft on s/. Further, if jj, is a-additive, then p, is normal
if and only if \i has a support. D

As in [1] we wish to establish sufficient and necessary conditions for a
CP < on 3P(3tf\ where Jf is any infinite dimensional Hilbert space, to be
implemented by a state co on 38(3tf) according to the prescription: P < Q <=>
co(P) < co(Q). Where it exists, the implementing state is unique if JV is infinite
dimensional but this is generally not true for Jf finite dimensional [6], [5].
The proof offered here is also valid for the problem of [1]. Not every CP
can be implemented in this way as the following counter example1 shows: Let
3tf be any Hilbert space of dimension at least three and let P^ and P^ be
mutually orthogonal (one dimensional) projections of 3P(3tf\ Define states co^
and (D^ on #(jf ) by co^(P^) = 1 and co^(P^) = 1. Let ^ be defined by P^ Q
if co^(P) < co^Q) or if c»,(P) = co^(Q) and co^(P) < co^Q). One verifies that ±3
is indeed a CP also that no state can implement it. A missing crucial
ingredient in this CP is (uniform) continuity. This continuity, unlike the case
of additive measures ( = states), is not automatic for CP9s, and may be defined
as follows:

1 Communicated to the author by A. Paszkiewicz
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Definition 13. Let ^ be a locally convex topology on J*(Jf) and < a
CP on &($?). We say < is ZT continuous if whenever a net Pj converges to
P in the F topology and Q<Pj<R Vj, then Q<P<R. D

Recall that the < (interval) topology on ^(Jf ) is generated by a neigh-
bourhood base of < intervals of &($?}. For any uniformly continuous CP
< on ^(Jf), addition is separately < continuous (Proposition 2.10) in the
sense that if Pj is a net in ^(^f ) which < converges to P E g?(3tf) (we denote
this convergence by Pj -=» P) and there exists Q e SPffl) such that Pig and
Pj 1 g Vj, then g + PJ 4 g + P. Joint < continuity of addition is harder to
establish. We give a formal definition of joint continuity of addition on

Definition 1.4. Addition on ^(J^) is said to be jointly < continuous if
whenever P, g e 0>(jV) and the nets Pj and Qj in P(Jt?) satisfy Pj 4 P, Q. 4 g,
Pig and Pj-LQj V/, then Pj + Qj 4 P + g. D

§2, Uniformly Continuous CP9s

From now on, Jf denotes a complex infinite dimensional Hilbert space
which is not necessarily separable, and < denotes a uniformly continuous CP
on

Definition 2,1. Let E be a subspace of J>f. We define 2(E) to be the set
of all projections PF e <P(E) such that the rank of PF and the rank of (PE — PF)
have the same cardinality. D ,

Lemma 2.2, Let G be any infinite dimensional subspace of Jf. Then 3f(G)
is uniformly connected.

Proof. Let PE = £ P^ and PF = £ P^ be both in 2(G) (where the sum-
je A je A

mands in each case are mutually orthogonal) and suppose that PE 1 PF. Define
the function /: t E [0, l]h-» £ ^4,+*^ e ®(G), where s = ^/l - t2. One easily

J'e/l

shows that / is uniformly continuous. Now suppose P£^PF. There exist
projections P£> and PF-, both in ®(G), such that P£, < P£ and PF, < PF and
such that PE, 1PF'; this can be established, for example, by a simple application
of Zorn's lemma. Using the result of the case P£1PF, we can construct a
uniformly continuous path along the route PE -» PE -> P£- -* PF- -> P/ -* PF. D

We remark that the uniform connectedness of ^(Jf ) implies that nets may
be replaced by sequences in handling convergence to any projection g e
such that g ^ P for some P e

Lemma 23e Let P£, PF awrf PK, all in Q)(ffl\ be, mutually orthogonal with
O = PE •< PF. Put PG = PK + PF + PE. Suppose that < is implemented by a
state when restricted to £P(E + F), then there exists a sequence PGj in
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satisfying the following:
i pGj<pK + pF y/

iii. // PL, PM e £P(F + K) are mutually orthogonal, then there exist se-
quences Sj and TJ in 9>(G) such that Sj 1 7J and Sj + T; < PG Vj, and such that
Sj^PL, Tj±PM.

Proof. Let PE = £ P, and PF = £ *V- For each t e [0, 1], define the
jeA J jeA J

function ft: K + E -» G by /f(^-) = sfa + t^ Vj e A and /r(£) = f V£ e K, where
s = y/1 — r2. Then the restriction of ft to any subspace J of K + £ is a
unitary operator onto /f(J) and the map t\-*Pft(J} is uniformly and hence <
continuous. Thus there exists a sequence of the form Pft (£) such that P/t (£) -i-

PF and Pft (E) < PF Vj. But for any r such that 0 < r < 1, PE is in the linear
span of the set {Pft(E}: r < t < 1} c ^(E + F). Since < is implemented by a
state on ^(E + F), we cannot have Pft(E) = FF Vt > r. Thus the fy may be
chosen so as to give the strict inequality Pft (£) •< Pf Vj so that the sequence
Pft(K+E) satisfies items (i) and (ii).

To show that this sequence also satisfies item (iii) we put L = /1~
1(L) and

M = /1~
1(M). Then the sequences Pft(i) and Pft(M) will satisfy the requirements

of item (iii). Q

Proposition 2 A The following are both true:
L Let PG e 2(Jf) and let P e 0>(jP) be such that O -< P. Then there exists

Q E 2(G) such that Q<P.
ii. Let <$/ c: 3i(3!P ) fee a set o/ mutually orthogonal projections. Suppose

that there exists R E <P(jtf) such that Q-<R and such that R' E si => R < R',
then <$/ is a finite set.

Proof. L First we claim that there exists Q E 2(tf) such that Q < P.
Suppose that this is false. Then there exists PE e &(3tf) such that PE < PE, for
some PE,e2(jtf) and such that O -< PE < RVR E &(jtf). Now we can clearly
construct two sequences Pj and QJ9 both in ^(E1), such that P7-lPfc? Qj±.Qk

Vj, k E N with j ^ k, and such that Pj 1 Qk9 Pj ^ Qj Vj, k E N. Let PF =

and define Sa to be F£ + X ^j- Clearly, Sn E 2(tf) Vn and since O •< F£, Sn is a
7=2

strictly < increasing sequence. As 2(F), and hence also PE + 2(F)9 are uni-
formly connected, there exists S E 3t(F) such that Sn -4 P£ 4- S. Thus for some
n0 e N, S -< Sno, so that by A4, S + P£ < S + fino+1 X ^no + Qno+1 S SWo+1. The
contradiction verifies the claim.

Now suppose that the assertion in (i) is false. Then there exists R E
such that O<R<Q VQe^(G). The claim above implies that there exists
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PL E @(J4?) such that PL -< R. As pointed out in Lemma 2.2, there exist PE G
2(L) and PF e &(G) such that PE 1 PF. Let PK e 2(F) be such that PK<PF-
PK and let P£I? PE2 e 2(E) be such that PEi < PE2. Then A4 gives PK + P£I <
^F + p£2 - PK- since ®(^ + £i) is :< connected and P£I G ®(K + EJ, there
exists S G 0(K + £J such that S e <inf ®(K). As P£Z 1 (PK + P£l), 3T G
^({K + EJ 1) such that O -< 7X R. Let the sequence S,. in &(K) be < con-
vergent to S. For each j eN, let Sj < S,- be such that S-^Sj-S-. Then
T+S^T+(Sj- Sj) < Sj + (Sj ~ Sj) -> S, a contradiction.

IL Suppose that the statement is not true, so that s/ is an infinite set. By
taking a subset if necessary, we may assume that j/ = {Q/:j eN}, that is
stf is countable. We may also assume that ]T Q . < Q — ^ 2j5 for some

j e N j e N
00

Q G ®(jf ) such that £ Q. < g. Define PB to be J] Q}. Then PB is a strictly
jeN j=n

< decreasing sequence. Now \/n e N, # -< Pn and Pn e ^(Jf ); thus, by (i) and
by the uniform connectedness of <2)(ffl ), there exists P0 e £^(Jf ) such that P0 e
< inf Pn. Put Q - J] Qj = PF and I - £ Q/ = PK- Then P0 < PF and PF e

« e N j e N j e N

@(K). Hence, by (i) and by the connectedness of 2(K\ we may assume that
P0 G 3f(K). Let K e 2(K) be such that R' 1 P0 and O -< R' < R. Then, for
some large enough n, Pn -< P0 + JR' and for such n, Pn = Pn+1 + gn -< P0 + Rf <
PO + Qn => Pn+i •< ̂ 05 by A4. The contradiction gives the required result. Q

Corollary 2.5. T/ie following are both true:
i. // fj is a sequence of mutually orthogonal projections of 8P(3tf\ then

PJ 4 o.
II. »(E) is < connected if PE G 2(jf).

Proof. I Clear.
II. In view of Proposition 2.4 (i), it is sufficient to show that P£ is a •<

limit point of 2(E). If P£ = O or PE = l then this is trivial, so assume that
O -< P£ -< I and suppose that the result is false. Then there exists Q G @>(E)
such that O -< Q and such that P < PE - Q VP G ®(£). Now there exist S G
®(£) and T G ̂ (E1) such that S ̂  T< Q. A4 gives P£ - g + IX P£ = P£ -
S + S^PE-S+T=>P<PE-Q~<PE-SVPE &(E), a contradiction, since
P£ - S G ®(£). D

Lemma 2.6. Let P£ G 2( 3tf ) be such t/iat PE<PE and let pi> P2> 61
Q2, a// in ^(£), fee such that Pi-LQi, P2-L625 A ^^2 awd 61^62-
^1 + 61^^2 + 62- ^^ce for any Rl9 R2E0>(E) and Q G ^(jf ) swcft
Kx < g and K2 < g we /iaue J^x X R2oQ - R2 < Q - RI-

Proof. Since P/ G ®( Jf ) and PE<PE, we can find, using the < con-
nectedness of ^(E1) and the continuity of < on ^(^f) (and hence on
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R < PE such that P^R< P2. This gives, by axiom A4, P1 + Q1 < R + gx <
R + 62 ^ ^2 + 62? as required. We note that this result implies the following:
if P < PE and Q < PE, then P <Q^>PE -Q<PE- P. To prove the second
part we let R = Rl v R2 (the minimal projection in ^(Jf ) containing Rl and
R2 as sub-projections). As R<R^, the first result gives R^ < R2oR — R2 <
R - Rl. Axiom A4 gives R - R2 < R - R1 oQ - R2 < Q - Ri9 giving the
required result. Q

Proposition 2c7c 0>(Jt?) is < connected.

Proof. It will suffice to show that I e <sup ^(Jf ). Now suppose that
1 £ <sup ^(Jf ). Then 3FG e 0>(jff) such that O -< PG < I and such that
6 <PG

X Vg e &(jff). We examine two cases:

Case 1 ^(G-1) is < dense in
Clearly FG £ ®( Jf), being of too small a rank. Take Qe^G1), then

^G^Q1- As ^(G1) is < dense in ^(G1) and < connected, ^Fe^CG1) such
that P ̂  g1. Let Rl9 R2e ^(G1) be such that Rl 1 ,R25 (J?i + R2) 1 F3 Kt X
K2 and Ej -< FG. Axiom A4 gives R1 + PG<R1 + P <P + R2. Since R1 +
PG 1 P + J^2?

 we have R! + PG < (R1 + PG)^ so that, by Lemma 2.6, S - FG -<
I — J^ l9 a contradiction.

2 ^(G-1) is not < dense in
This implies that O -< PG by Corollary 2.5 (ii) and that there exists PK E

such that O -< PK -< P£, PK < PG and such that Q<PG - PK Vg e @(GL).
Put Pj = PK + PG. Then 3S, Te^J1) such that S±T,S~<PK, and S^T.
Axiom A4 gives S + P^<S + F G < T + P G = > S + FK<(S + F^)1 so that, by
Lemma 2.6, P^ - PK-<P^ - S E ̂ (G1), a contradiction. This completes the
proof. D

We remark that, by Lemma 2.2 and Proposition 2.7, if G is any infinite
dimensional subspace of Jf, then 2(G\ and hence also ^(G), are •< connected
in &(JP\ The following results, which we list without proof, are easy conse-
quences of the foregoing results (cf. [1], Theorem 2.3).

Theorem 20§0 The following statements are all true:

So ^(Jf7) is < compact and hence every nonempty subset of ^(Jf ) has an
inf and a sup with respect to <.

II Let j/ c <P(jj?) be any set of mutually orthogonal projections such that
VF E X O -<P. Then sf is at most a countably infinite set. Q

Joint < continuity on &(3tf ) is essentially a strengthening of axiom A4.

Proposition 2.9. The following statements are equivalent.
I Addition is jointly •< continuous on
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ii. Let P15 P2, Q{ and Q2, all in &(3e\ be such that P1l.Ql9 P2±Q2,
P, < P2 and Ql < Q2, then P, + Ql<P2 + Q2

Proof, i. =>ii. First we remark that the joint < continuity of addition
immediately gives Pt + Q± ̂  P2 + Q2 if PI = P2

 an(l 61 = 62- We shall as-
sume that P2 + Q2<1 and that O<P l 5 O<Q l 9 O<P2, ®<Q2, otherwise
the result is trivially true. Assume, with no loss of generality, that R < Q2

for some Re2(tf). Since O < P2 < Q2, there exist by Proposition 2.7, P(,
P'2 e &(Jlf) such that P[ < P2 < Q2, P( ^ P1 and P2 ^ P2. Hence there similarly
exist Q'l9 2'2 e ^(Jf) such that Q\ < Q2 < P2\ Q\ ^ Q1 and Q'2 ̂  Q2. Thus
P1 + Ql ^ P[ + Q\ <P2 + Q2 ^P2 + Q2, as required.

ii. => i.
Let F, Q and the nets PJ9 Q/.je/, all in ^(Jf), be such that Pj-^P,

Qj^Q, P -LQ and Pj _L Qj Vj. First we consider the case where both P7- and
QJ are monotone < increasing and assume that O -< P and O -< Q, lest the
result be trivial. Hence we may also assume that P, 2 e ^(Jf ). Now item
(ii) implies that Pj + Qj is monotone < increasing and hence •< convergent
to R E <sup(Pj + Qj). Clearly R < P + Q. Suppose that R < P + Q. Then,

by hypothesis, there exist P < P and Q < Q such that R<P + Q<P + Q.
This implies that for all j large enough, we have Pj + Qj •< P + g, P -< Pj < P
and g -< g7 •< Q. The contradiction gives K = P + Q. For the case where
both PJ and Qj are monotone < decreasing a similar strategy gives the same
result.

Now we consider the case where P7- is monotone < increasing and Qj is
monotone < decreasing and consider only the case O -< P, otherwise the result
is trivially true. Hence we may assume here that P is of infinite rank. Now
there exists, by Theorem 2.8, a subnet Pjk 4- Qjk of Pj + Qj which is < conver-
gent to R, say. We claim that R = P + Q. To show this we suppose first
that R •< P + Q. As P is of infinite rank, there exists P < P such that P1 is
of infinite rank and such that R-<P + Q<P + Q. This in turn implies that
there exists Q < P1 such that R<P + Q<P + Q<P + Q. Hence there
exists Jo e / such that V/fc > JQ9 Pjk + Qjk -< P + Q and P -< Pjk •< P, Q < Qjk -< Q.
The last two inequalities give, by hypothesis, P + Q •< Pjk + Qjk V/k > j0, a con-
tradiction. A similar argument establishes that we cannot have P + Q < R,
and the claim is verified. Finally, we note that for the general case, an easy
argument involving subnets of Pj + Qj completes the proof. Q

Proposition 2.10. Addition is separately < continuous on

Proof. Let P, PG and the net P/.je/, all in ^pf), be such that P^P,
P1PG and PJ 1PG Vj. If P£ is of finite rank, then every subnet of PG + Pj
has itself a subnet which uniformly converges to a projection of the form
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PG 4- F where F 1 PG and, by the uniform continuity of <, F = P, hence the
result. For PG of infinite rank, we assume for the moment that Pj is monotone
•< increasing, and hence < convergent to R, say. Clearly R < P + PG. If
R -< P + PG, then, since ^(G1) and hence PG 4- ̂ (G1) are < connected, there
exists P' E 9(GL) such that, for all j, PG + Pj<PG + P' <PG + P, contradicting
Pj -^ P. Hence PG + J^- -4 PG -f P. A similar argument gives the same result
if we assume P^ to be monotone < decreasing. For Pj arbitrary, we note that
every subnet of Pj has a subnet that < converges to PG + P, and the result
follows, n

Corollary 2.11. &(J?) is < first countable.

Proof. Let PE e 9>(Jtf) be such that O -< PE < P/ and let the sequence
in ®(£) be such that O -< Qj Vj and Qj 4 O. Then Lemma 2.6 and Corollary

2.5 (ii) imply that PE - Q^PE and Proposition 2.10 gives P/ + P£ - Q/^I.
Put P/ + PE - Qj = Pj then the two sets of < intervals [O, Qj) : j e N and
(PJ9 l ] : j6N form countable < neighbourhood bases for O and I respective-
ly. The remark at the end of Lemma 2.2 completes the proof. D

§3. Implementability of Continuous CP9s

In this section, we prove a number of results which will culminate in the con-
struction of an additive measure on 0^(^\ This measure will, by Theorem 1.2,
lead to a unique state which implements •<.

Lemma 3.1. For n e N, let the sets [Pj'.l <j< n} and {Qj :1 <j < n}, each
of which consists of mutually orthogonal projections in ^(J^\ be such that

Pj 1 Qk V/, k and such that for each j, Pj < Qj. Then £ Pj < £ Qjt

m m

Proof. Let m e N be such that m < n and suppose that £ Pj ̂  Z Qj-
j=i j=i

m + l m m m m + 1

Axiom A4 gives ^ Pj = Pm+1 + Z^.<Pm + 1+ %Qj^Qm+l+ T.Qj= Z Qj-
j=i j=i j=i j=i j=i

Since P1 < Q1 the result follows by induction. Q

Lemma 3020 Given any neN, there exists a set {PE :j e K(n)}9 where K(n) =
{1, 2, 3, . . . , 2"}, of mutually orthogonal projections such that PEj e &(Jt?) Vj, PE. ^
PE Vj, k and such that V PE = 1.

j'eKdi) J

Proof. Suppose the result to be true for some n0 e N. For each j e K(n0),
< is obviously a uniformly continuous CP when restricted to 0*(Ej) and because
&(Ej) is < connected and < dense in 0>(Ej), there exists P^ e &(Ej) (c ®(^))

such that PEj - PE. ̂  PEj. This, together with Lemma 3.1, is enough to show
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that the result is also true for both n = 1 and n = n0 4- 1 and hence, by
induction, for all n e N. Q

Definition 33, A set {PE. :j e K(n)} satisfying the assertion of Proposition 3.2
is said to be an equipartition of the identity of order 2n. Let & =
{PE :j E K(n)} be an equipartition of the identity of order 2", we define &(£?) c

2(JP) to be the set \ Y PE : K c K(n), K / 0, K* K(n)\. It is clear that
UeK 3 J

there exists a sequence of equipartitions &n of the identity such that <£n is
of order 2n and such that the 3?n are "nested" in the sense that ^(^n) c:

n+1) V?z e N. When there is such nesting, we define ^ to be \J &*(<&„}. D

From now on we work with a fixed set of nested equipartitions J2J, as
set out in Definition 3.3.

Proposition 3.4. 5^ is < dense in &(3tf).

Proof. Assuming the axiom of choice, let Pj e J£- V/ e N. Clearly Pj -4- O
and P/(e J^) 4 1. Now let P e 0>(tf) be such that O -< P -< I. Then, because
O -< P1, there exists, for some n e N, R E 5£n such that R •< P. We may assume,
without loss of generality, that R.LP. We wish to show that P is a < limit
point of 5^. Consider the set r={Qe&ao:Q^ P}. Let g0 e <sup T. As
Qo^P^R'1, we may also assume that Q 0 _LK. Because of the nesting of
the o2J and because Q0 < J^1, we have Q0 e <sup f where JT = {Q e ^ : g < P,
Q<R^}. We now show that g0 ^ P. Suppose this is false, so that g0 -< P.
Then there exists R0 e J^ for some m such that R0 < R and such that
g0 + R0 <P. Now let the sequence Qj in F < converge to Q0. Then there
clearly exists n such that g0 X Qn + ^0- As g7- < Q0 Vj, A4 gives Q0<Qn +
^o ^ Go + ^o "< ^- Since Qn + R0 e ^9^, this contradicts Q0 e <sup T; hence
the result. Q

Definition 3.5. Define the function JLL: ^ -> [0, 1] as follows:

In the notation of Definition 3.3, i/ Y P£ e ̂ (^), t/ien M i y ! ^ E i =

jtl J V/ti V
2~n$(K\ where jf(X) is t/i^ cardinality of the set K. It is trivially easy to verify
that /x is a well defined function because of the nested structure of 5^. D

Proposition 3.6. The function ju in Definition 3.5 is (finitely) additive and
< continuous.

Proof. The additivity is obvious from the definition. To show the con-
tinuity, we first note that if Pj e 5^ V/, then Pj 3>Qou(Pj) -» 0. Now let Pj be
a < increasing sequence in ^ which < converges to P E &^. Because of
the nesting in ,9 ,̂ we may assume without loss of generality that P7- < P V/.



324 SlMBA A. MUTANGADURA

Thus P — PJ 4- O and hence fj,(P) = lim p(Pj\ by the above remark and by
additivity. We similarly reach the same conclusion if PJ is a < decreasing
sequence. Now let /j(JF^) be any sequence in <9^ which < converges to P e £P^.
If fji(Pj) does not converge to fj,(P), then PJ has either a < decreasing or a <
increasing subsequence Pjk such that n(Pjk) -fr l*>(P\ in contradiction with the
results established above. This leads to the required result. D

The continuity proved in Proposition 3.6 and the < density of Sf^ in
&(3tf) allows us to extend /i to a < continuous function on all of &(tf\
Accordingly we regard the domain of ju to be all of &(3tf) from now on.
Clearly JLL satisfies P <Q<*}i(P) < fi(Q) VP, Q e 0>(Jtf). It is clear that joint <
continuity of addition would immediately imply additivity of /x on all of 0>(jf?)
which, by Theorem 1.2, would lead to the implementation of < by a state.
However, in view of Lemma 2.6 and Proposition 2.9, we have the following
obvious result:

Lemma 3070 Let PE e ®(tf). If PE < P/ then \L is additive on »(E). Q

Lemma 3.8. Let Sl9 S2 e 5^ be mutually orthogonal If Pi < S1 and
P2 < S2 then ti(Pl + P2) = MA) + n(P2).

Proof. We first look at the case Pl e 5 ,̂. Now there clearly exists a
sequence Qj in ^ such that Qj < S2 and such that Q^P2. Separate <
continuity of addition, < continuity of p and additivity of ^ on =9^ lead to
n(Pi + P2) = lim ii(Pl + Qj) = lim {^(A) + ^(Q/)} = M^i) + M^z) as required.

j-»oo J-*oo

If P! £ ̂ , then we again have /x(Px + P2) = lim /x(Pt -I- Q^) = lim {^(PJ +

= //(Pi) + /J(P2), wh^re w^ have used the additivity proved in the case P^ e ^.
This completes the proof. Q

Lemma 3.9. Suppose we have another sequence of nested equipartitions 3?n

of the identity such that S?n is of order 2n. Let &^ = (j &(&n\ in the notation
neN ^

of Definition 3.3. Suppose that for some n E N there exist PE e 5£n and P^ e 5£n

such that PE < P%, then the following are true:
L PE = P~E.
II. // /£ is the function constructed from SP^ as set out in Definition 3.5,

then fi = \JL.

Proof. L Assume the hypothesis and suppose the result is not true so
that PE < PE. Let &n = [Pj :j £ K(n)}, where P, = PE and &n = {Pj :j e K(n)}9

where Pl = PE. Then for each j E K(n), there exists Qj e 2(jf) such that Qj ̂  Pj
and Qj<Pj9 with 61=P1. Define j* to be { Q j i j e K(n)}. We claim that

2" \ 2" / \

Z 6* ) = Z Mfifc). Suppose inductively that /^( Z 6 ) = Z /^(6) for

l / fe=l \Se^ / Qe^
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subset ffl of st of cardinality N, where 1 < N < 2". Now let {Qjk :l <k<
N + 1} be any subset of #/ of cardinality N + 1 such that jk <jk+i for all

JV+l _ JV+l

fc. The inductive hypothesis implies that £ 6/k = Z ^fc so ^at application
fc=2 fc=2

/JV+l \ / JV+l \

of axiom A4 and additivity of \JL on ^ yields \JL ( ]T Q, = ju I Q/ 4- £ Q/ =
\fc=l / \ fc=2 /

( JV+l \ / JV+l \ JV+l JV+l
pi + Z Gj = A* A + Z n = Z MA) = Z MQJ- We remark that

fc=2 / \ k=2 J k=l fc=l
this argument also demonstrates that ^u is additive on any subset of jtf of
cardinality 2, and so verifying the claim by induction. Since Qk = Pk Vk e K(?i),

/2« \

this additivity gives /if V Qk I = 1, contradicting 2fc < Pfe Vfc e X(n). This com-
\k=i /

pletes proof.
IL The proof of item (i) shows that ^ is additive on J^,. We now show

that \JL is also additive on 2?m for any m e N. If m > n then J^ induces an
equipartition $! of P£ and 5£m induces equipartitions $ of PE and ^ of P/.
As PE<P^-, Lemma 2.6 implies that ^U^7 is also an equipartition of the
identity of order 2m. Application of item (i.) shows that \JL is additive on J? U #
and another application shows additivity on J^ and hence on all of 3^- This
immediately gives ju = /I. D

Proposition 3,10. Let P£ e ^ rfcen // is additive on 0>(E).

Proof. Let P, Q e gP(E) be mutually orthogonal. We can clearly construct
a set of nested equipartitions &n of the identity such that there exist S e ^ =
(J &(&n) and g' e ^(Jf ) satisfying P < § and Q ̂  Q < S1. By Lemma 3.9,

ne N ^

we can also easily ensure that ^ is such that ft = p. Lemma 3.8 gives
Q) = ft(P + Q') = fi(P) + fi(Q') = ft(P) + /2(Q) as required. D

Corollary 3.11. Let P£ e ®(^f ) 5e swc/z that PF < PE for some PF E ̂ , then
\JL is additive on

Proof. If PE -< I then by Lemma 3.9, the problem reduces to that of
Proposition 3.10. So we assume that PE = 1. By enlarging PE where necessary,
we may also assume that PE — PF e 2(2tf) and that O -< PE — PF. By Lemma 2.3,
there exists a sequence PG in @(3^) (where, in the notation of Lemma 2.3,
PGj is of the form Pft (JBi+F), and where P/l(£i) = PE - PF, P/t(F) = PFVt) such
that, for all j, PGj -< P£/PF < PGj and such that PGj A pE. Now let P, Q e 9(E)
be mutually orthogonal. We choose that the sequence PG also satisfies item
(iii) of Lemma 2.3 so that there exist sequences Pj and Qj such that, for each
;, Pj 1 Qp PJ + Qj < GJ and such that Pj A P, Q. A Q. Since P,- + Qj A P + Q,
and since, by Proposition 3.10, \JL is additive on each ^(Gj), the result follows
at once. Q
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Corollary 3.120 Let 2?n be another sequence of nested equipartitions of the
identity as set out in Lemma 3.9 and let ft be the function on &(3tf) constructed
from the S?n. Then ft = jii.

Proof. Let PE e ^ and let PE e 5 ,̂. Let PG < PE and PG < PE be mutual-
ly orthogonal (see Lemma 2.2). The following two cases are sufficient for the
proof.

Case 1 O-<PG and Q-<PG.
We assume without loss of generality that PG + PG -< I — PG — PG and

hence, by Lemma 3.7, we may also assume that PG e £?n and that PG e S?n for
some n e N. Another sequence Sf^ of nested equipartitions of the Identity,
with the associated function //, can be constructed such that by an appropriate
choice of the equipartition J!̂ ', Lemma 3.9 gives ^ = // = ft as required.

Case 2 O ^ PG.
By Corollary 3.11, p is additive on ^(G1) and ft on ^(G1). Let J2J be

a sequence of nested equipartitions of PF, where PF = I — PG — PG, such that
&n = {P*i>Pn2>.:,P*2»}- Then {jSP;:neN}, where <e» = {Fnl + Pg? ̂ 2,^3.
...,Pw2"} i§ a sequence of nested equipartitions of F^- Since ft is additive on
^(F), ft = [i on ^(G1). As P£ e ^ Is arbitrary, we have ft = \i on 5^,, and
hence on

3013o jU is an additive measure on &(ffl\ If •< is weakly
continuous, then p is completely additive.

Proof. Let FF, PG e ^(3^) be mutually orthogonal. Clearly, one can con-
struct a sequence of nested equipartitions of the identity such that If \£ is the
associated function, then fi'(P + 0 = p'(P) + X(0- Corollary 3.12 gives the
required additivity.

Now let < be weakly continuous and let <$/ = {Pf. j e A} be a set of
mutually orthogonal projections of ^(Jf). By Theorem 2.8, the set & of
projections P e j/ satisfying fji(P) ^ 0 is, at most, countably infinite. Additivity

and weak continuity of /i ensure that £ fj,(P) = /i I J] P . Weak continuity

(
\ Pe^ \Fe^ /

^ p ) = 0 (see [1], Proposition 2.4 (Ii)); this leads to
Pe^\^ /

the required complete additivity. Q

Theorem 1.2 and Proposition 3.13 lead to the final result:

Theorem 3.14 Let ffl be an infinite dimensional (not necessarily separable)
Hilbert space and let < be a CP on &(3tf\ Then < can be implemented by
a (unique) state \JL^ on $($?} if and only if < is uniformly continuous. If <
is weakly continuous, then /^ is normal. Q
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