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Existence and Smoothing Effect of Solutions
for the Zakharov Equations

By

Tohru Ozawa*' and Yoshio Tsutsumr**t

§1. Introduction and Theorems

In the present paper we consider the unique local solvability and the smo-
othing effect for the Zakharov equations:

.1 i%—}-AE:nE, >0, xRV,

0%n 2 -
(1.2) —dn=d|E|% 1>0, xERY,

(1.3) E(, x) = E(x), n(0, x) = ny(x), aitn(o, X) = (0, %),

where E is a function from R} X RY to CV, n is a function from R} X RY to R
and 1<N<3. (1.1)-(1.3) describe the long wave Langmuir turbulence in a
plasma (see [20]). E(z, x) denotes the slowly varying envelope of the highly
oscillatory electric field and x(z, x) denotes the deviation of the ion density from
its equilibrium. When (1.2) depends on the ion sound speed c, that is, (1.2)
is replaced by

1 &%

it is thought that (1.1) and (1.4) converge to
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(1.5) % L 4E —nE, n=—|E|?
at

as c—oo (see [2], [17] and [20]). (1.5) is just the nonlinear Schrodinger equation
and it is conjectured that the solutions of (1.1)-(1.2) and the solution of (1.5)
have some common properties (see, €.g., [12, §1. Introduction]). The Zakharov
equations (1.1)-(1.3) have not yet been studied well, while the nonlinear
Schrédinger equation (1.5) has extensively been studied (see, e.g., [3]-[9], [11],
[15] and [18]).

In [17] C. Sulem and P.L. Sulem proved by using the Galerkin method that
if (Ey, g, m)EH"@H™ ' D(H™ 2N ﬁ“), m=3 and 1< N <3, then (1.1)-(1.3)
have the unique local solutions (E, n)e L=(0, T; H")@®L>(0, T; H™"*) for some
T>0. Here H™ denotes the standard Sobolev space H"(RY). H™ denotes
the homogeneous Sobolev space consisting of all tempered distributions u
with |€|"aE[*=I%R"), where 2 is the Fourier transform of u. In [12]
Schochet and Weinstein showed a similar result for (1.1), (1.4) and (1.3) by
the different method, but the existence time T of the local solutions does not
depend on the parameter ¢ in [12] (see also [2]). In both [12] and [17], the as-
sumption n,E H™"is needed for the construction of the local solutions. This
assumption is rather strong, because S G H-' for N=1,2. For example, e+’
is not in H-* for N =1, 2. Furthermore, the uniqueness of the solutions (E(z),
n(t)) for (1.1)-(1.3) is proved only in the class H"@H™', m=3, in the previous
results. In this paper we first show the unique local existence, result in H2p H*
for (1.1)-(1.3). H2?P H! seems more natural than the class in the previous re-
sults, because the solutions in H2@ H* are the so-called strong solutions.

We next investigate the smoothing effect of the solutions for (1.1)-(1.3). It
is well known that the nonlinear Schrédinger equation (1.5) has the drastic
smoothing effect (see, e.g., [4], [7]-[10] and [15]). In [7] and [8] it is proved that
if EQ)=E,=H", |x|*E,&L? k=1 and 1 <N <3, then the solution E(¢) of (1.5)
is in H%,,=H%, (RY) for t>0 as long as E(¢) exists. In [4] and [15] the
smoothing effect of different type for (1.5) is proved, that is, if E(0)=E&
H* k=1 and 1= N <3, then the solution E(¢) of (1.5) satisfies.

g: [lp(1 —A)H2+VAE(t)||22dt < C

for pe C5(RY) and 0<T<T,,,, where T,,, is the maximal existence time of
E(t). On the other hand, there seems to be no result concerning the smoothing
property of (1.1)-(1.3). The Zakharov system consists of the Schrodinger equa-
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tion (1.1) and the wave equation (1.2), and we cannot expect the smoothing
effect of the wave equation part. Accordingly, we cannot expect the drastic
smoothing effect for (1.1)-(1.3) like the single nonlinear Schrodinger equation.
Nevertheless, we can prove that the solution E(¢) of the Schrédinger part for
(1.1)-(1.3) has some smoothing properties.

Before we state the main results in this paper, we define several function
spaces. Let W=? denote the Sobolev space

Wt = {f &8s |11l ms=1I(1—dym2f]||p<oo}

for mER and 1<p<oco. We put H"=Wm2  Let H™* denote the weighted
Sobolev space

H" ={fE8"; lfll pms =+ | x| AU~ )2 f || 2 <00}
for m, s&R. For a Banach space X and T>0, we define W=?(0, T; X) by
W0, T5 )= {0 L0, T:0; 133 . 115 ol e <eo},
if 1< p<<oo and

W=, 75 X)= OSL0, T3 X); 5 sup 14 f0)ll<eo)

if p=oco.
The main results in this paper are the following.

Theorem 1.1. Assume that 1< N Z3.
(1) Let (Ey, no, n)EH*PHDIL®  Then for some T>>0 there exist the unique
strong solutions (E(t), n(2)) of (1.1)-(1.3) such that

(1.6) E€ (\CI(0, T]; H*Y),
i=0

(1.7 Eec h Wj’S/N(O, T: W2-2i.4) ,
i=0

(1.8) ne N0, T]; H),
ji=0

where T depends only on || Ey|| g2, ||1ol|zt, ||| 12 and N.
(2) Let m be an even integer with m=4. If (Ey, np, n) EH" @ H" 'DH™ 2, then
the solutions (E(t), n(t)) of (1.1)-(1.3) given by Part (1) satisfy
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(1.9) Ee "'rﬁ (0, T1; H*),
(1.10) Ee '"rﬂo WIS, T Wn=23)
(1.11) ne ,éo ci([0, T; H*)
and if m=6,

(1.12) ne /n Ci([0, T]; H™+%) .

(3) Let m be an odd integer with m=3. If (Ey, ny, m)EH"@H” *PH™™2, then
the solutions (E(t), n(t)) of (1.1)-(1.3) given by Part (1) satisfy

(1.13) Ee ('“j_'rj:”cf([o, T]; H=%),
(1.14) Ee ("'n:’ WISINQ, T; W2y
(1.15) nejéo ci(o, T); H»-)

and if m=17,

(1.16) ne ('";rjz/ch([o, T]; Hm+2-%)

Remark 1.1 (1) The solutions (E(t), n(¢)) of (1.1)-(1.3) in Theorem 1.1
(1) satisfy (1.1) in the L? sense, while they satisfy (1.2) in the distribution sense.
Therefore, the solutions in the class of Theorem 1.1(1) are called the strong
solutions (for the weak solutions, see [12, Theorem 4] and [17, Theorem 1]).
(2) Theorem 1.1 (1) shows that the solutions of (1.1)-(1.3) are unique in the
class of the strong solutions.
(3) In Theorem 1.1 we do not need the condition nlefl -1, which was al-
ways assumed in the previous papers [12] and [17].
(4) In Theorems 1.1(2) and (3) the existence time 7 of the more regular
solutions than the strong solutions is the same as that of the strong solutions.
In the previous papers [12] and [17], T depends on the higher order Sobolev norms
of the initial data, when the solutions are regular. Theorems 1.1(2) and (3)
imply that if (Ey, ny, ;) € N 5-1H*, then the solutions (E, n)&C=([0, T]x R").
(5 (1.7) (1.10) and (1.14) show that E(z) has a smoothing property in a



ZAKHAROV EQUATIONS 333

certain sense like the solution of the single nonlinear Schrodinger equation (see

[6], [11], [16] and [19]).
(6) (1.12) and (1.16) imply that —g%—, j=3, lose the regularity of Sobolev

order 2 with respect to the spatial variables, each time we differentiate them in .
This may seem strange, since n(t) is a solution of the wave equation. But (1.2)
contains the solution E(z) of the Schrodinger equation as the external force,
which is why (1.12) and (1.16) occur.

Theorem 1.2. Let m be an integer with m=2. Assume that 1<N <3 and
(Ep 1oy n)EH"@DH™'DH™ 2 Let (E(2), n(t)) and T,,,,>0 be the solutions of
(1.1)-(1.3) given by Theorem 1.1 and their maximal existence time, respectively.
(1) Let o= CF(RN). Then E(t) satisfies

1.17) eEE X0, T; H™+/?)

for any T with 0<T<T,,,.
(2) In addition, let m=4. Put k=1 if m=4 and k=1 or 2 if m=6. If E,€
H™F then

(1.18) EM)EHL, 0<t<Tp, .

Remark 1.2. Theorem 1.2 shows the smoothing properties of the Zakharov
equations (1.1)-(1.3). Part (1) is completely the same as in the case of the
single nonlinear Schrodinger equation (see [4] and [15]). On the other hand,
Part (2) is not so good as in the case of the single nonlinear Schrodinger equation
(see [71-[9]). This is because the Zakharov system contains the wave equation
and it has the form such that the derivative loss occurs.

The difficulty of solving (1.1)-(1.3) is that when we use the standard iteration
scheme, we meet with the loss of derivative, which comes from the second deri-
vatives of | E(¢)|21in (1.2). In the case of the single nonlinear Schrédinger equa-
tion the L? —L‘ estimate and the Strichartz estimate play an important role (see
[5], [6], [11] and [19]). However, in the previous papers [12] and [17] they are
not used, because the loss of derivative prevents us from using them. In our
proof of Theorem 1.1 we first transform (1.1)-(1.2) into the system which does
not have the derivative loss. For that purpose, we apply the technique de-
veloped by Shibata and Y. Tsutsumi [13], which was used to solve the fully non-
linear wave equation. After that we apply the L?-L? estimate and the Strichartz
estimate to the resulting system, following Kato [11].
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When we investigate the smoothing effect of (1.1)-(1.3), the derivative
loss of (1.1)-(1.3) causes difficulty again. In addition, we can not expect the
solution n(z) of the wave equation part to have a smoothing property. However,
we can derive the smoothing effect for the solution E(¢) of the Schrédinger
equation part by using the smoothing effect peculiar to the Schrodinger equa-
tion (see [4], [7]-[10], [14] and [15]) and the difference between the Schrédinger
equation and the wave equation. Especially in our proof of Theorem 1.2(2)
the difference of the derivative in ¢ between the Schrédinger equation and the
wave equation plays an important role.

Our plan in this paper is as follows. In Section 2 we prepare several lem-
mas needed for the proofs of Theorems 1.1 and 1.2. In Section 3 we give the
proof of Theorem 1.1 and state some results concerning the existence of glo-
bal solutionds for (1.1)-(1.3). In Section 4 we give the proof of Theorem 1.2.

Finally we conclude this section by giving several notations. Let (-, -)

denote the scalar product in L2 We abbreviate 6% and d

, 1=k=<N,tod,
Xi

and 8,, 1=<k=<N, respectively. Let a(N)=o0 if N=1,2 and oz(N)=]5N2 if

N =3. By U(t) we denote the evolution operator of the free Schrodinger equa-
tion. We put @ =+/_—4, Jy=x,+2it8,, I<k=<N, and M(t)=e'"\%4t, et o

F(RM) such that p=0 and ||p||;1=1. We put p(x)=¢"Ypo(x/¢) for e>0. Let
x denote the convolution with respect to the spatial variables. For z&C we
denote by z the complex conjugate of z. In the course of calculations below
various positive constants are simply denoted by C.

§2. Lemmas

In this section we summarize several lemmas needed for the proofs of
Theorems 1.1 and 1.2.

We first state two lemmas concerning the space-time estimates of the
evolution operator of the free Schrédinger equation.

Lemma 2.1. (i) Let p and q be two positive constants such that 2< p< oo
and 1/p+1/g=1. Then,

@10 U@l o=@z | 1])=NEN2 o] |, 20

(ii) Let q and r be two positive constants such that 2<qg<<a(N) and (Nj2—
Niq)r=2. Then, there exists a positive constant K, depending only N and q
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such that
(2.2 Il U(‘)U”L’(R ; L")§K1“U”Lz , VEILA

(2.1) in Lemma 2.1(i) is the well known L? —L? estimate and (2.2) in Lemma
2.1(ii) is the Strichartz estimate. For the proof of Lemma 2.1, see [5, Lem-
ma 1.2], [6, Proposition 4.4] and [16, Corollary 1 in §3].

Lemma 2.2. Let q,r,q" and v’ be four positive constants such that 1<q',r’
=<2, 1/g+1/q'=1, 1/r+1/r'=1,2=<g<<a(N) and (N/2—N/q)r=2. Let I be any
interval in R. There exists a positive constant K, depending only on N and q’
such that

@3 [ Ve sllzea = Kall Sl aer s SELT L.

Remark 2.1. (1) The constant K, in Lemma 2.2 does not depend on the
interval 1. (2.3) still holds with /=R.
(2) In fact, a slightly stronger result holds than (2.3). That is,

2.4) S: U(t—s)f(s)dse C(; I?)

under the same assumptions as in Lemma 2.2, where I is the closure of 7. This
follows directly from the approximation of f(¢) by a sequence of smooth functions.

Lemma 2.2 is the version of Lemma 2.1 for the inhomogeneous linear
Schrodinger equation. For the proof of Lemma 2.2, see [19, Lemmas 2.1
and 2.2].

We next state the local smoothing effect of the evolution operator for
the free Schrodinger equation (see [4], [14] and [15]).

Lemma 2.3. Let T>0 and o = C7(RY).
(i) There exists a positive constant K, depending only on N, T and ¢ such that

(2.5) llo(L—4)U( ol 20, S Ksllvllz, vELA

(ii) There exists a positive constant K, depending only on N, T and ¢ such that
t

(2.6) |lp(1—a)" So U(t—95)1(8)dsl| 20,7 ; H =Kl fll0,7: 2%,  fELNO, T L.

Proof. For the proof of Part (i), see [4, Theorem 2.1] and [14, (2) at page
701]. We briefly describe the proof of Part (ii).
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We use a duality argument to prove (ii). Let £ be a bounded open set
which includes the support of ¢. Let @(s, x)EC7((0, T) x&2). We denote
(1—4)¥* by B. Then, by using Schwarz’s inequality and (2.5) we have

T ¢
| @ va—ssis)as, oy |

| S: S: (BU(t—s)(s), O(£))ds dt |

< ST S: 1BU(t—3)1(5) |l 20| | 9(0) || 2cords dt

0

= S: S: ]IBU(I—S)f(S)]le(mHQ(t)”Lz(mdt ds
< {T1BUC ~916 202 0101121 s

T
| 1o=A6):2ds110l1 26,7 20
”f”L‘(o,T ; Lz)llq)HLz(O,T;Lz(!?)) .

This completes the proof of (ii), since CF((0, T)x£2) is dense in L%0, T;
L% 2)).

We finally state the lemma concerning the properties of the commutator
Ji(t), 1=k=<N. This will be useful, when we consider the smoothing effect of
(1.1)-(1.3) in the weighted Sobolev space.

Lemma 2.4. J,(¢), 1<k=N, commute with i0,+4 and we have

Jlt) = M() (2it0,)M(—1),
JlD)U(t—s) = U(t—s)Ji(s)
fort,sER and 1<k=<N.

Lemma 2.4 follows from a direct calculation (see, e.g., [8] and [10]).

83. Proof of Theorem 1.1

In this section we describe the proof of Theorem 1.1.

When we use the standard iteration scheme to solve (1.1)-(1.3), the loss of
derivative occurs, as stated in §1. In fact, if ISN<3 and E€L=(0, T; H")
for some m=2 and 7>0, we solve (1.2) to have nL>(0, T; H*™'). How-
ever, we have only E€L=(0, T; H"™') by (1.1) when n& L=(0, T; H™™Y).
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Thus, we first consider the following system:

G.1) i6,F—{—AF—nF—6,n(E0+S: Fds) =0,

(3.2) Oin—dn—4|E|* =0,

3.3) (—4+1)E = iF—(n—l)(Eo—{—S: Fds),

(.4) FO) = idEy—nEy), n0) =n,, 0m0)=n,.

If we formally differentiate (1.1) in ¢ and put F=48,E, we obtain (3.1).
(1.1) is also rewritten as (3.3) in terms of F. The loss of derivative does not

occur for (3.1)-(3.4). This technique was used to solve the fully nonlinear wave
equation in [13].

Proposition 3.1. Assume that 1< N Z3. If (Ey, ny, n)E H:DH*PL?, then
for some T>O0 there exist the solutions (F(t), n(t)) of (3.1)-(3.4) such that

3.5) Fe[ CI(0, TT; H™)NLY¥Q, T; ¥,
(3.6 ne () C(O, T1; B,
3.7) Esc(o, T]; HY),

where T depends only on N, ||Ey||g2, ||nollgt and ||my|,2. Furthermore, E(t)&
cy({o, 11; L3, %E(t)-:F(t), E(Q)=E, and (E(t), n(t)) are the solutions of (1.1)-
(1.3) satisfying (1.6)-(1.8).

Proof. We put

a — max 1Bl 1Bl M4 Ey—moallzz, |l imlla-+lloo | By 2ll5

We note by the Sobolev imbedding theorem that a depends only on N, ||Ey||z2,
ol and |||z (2.2) gives us

(3.3 NU(-)i(4Ey—noE)|| 13/ 7 (g s 14 = 0a
for some 6>0. Since U(¢) is a unitary group in L?, we have
(3.9) HUC)i(AdE,—noEg)|| g 1=a .

Let T be a small positive constant to be determined later. We put I=(0, 7).
We define the Banach space X and its norm |[||-||| as follows:

X = [L=(I; L) N L¥™(I; LYDIL=(I; HY) N W=(I; LP)]
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and
d
HIE o)l = ”F”L"’(I;Lz)+”F”L8/N(I:L4)+”n”L°°(I:H1)+'|E—nIIL”(I:L2) .

We put

Y= {(F,nEX; ”F”L‘”(I;LZ)§2aa F|lpr 5 14 =20a,

d
”n”L"’(I sy =2a, ””;'it—n”L"’([ ;19 =2a}.

We note that Y is a closed subset in X. For (F, n)&Y we define the nonlinear
mapping N[F, n](t) as follows:

(3.10) NIF, n](t) = (N[F, n](2), N,[F, n](2)) ,
N[F, n](t) = U(t)i(dEy—nyEy)

+ | U= n(s)Fs)+0,105) (ot S Fdo)yds,

(3.11) N,[F, n}(t) = coswt ny+w™! sinwt n,
+ S‘ w1 sino(r—s)d| E(s)|2 ds,
0
where

(3.12) E(t) = (—A+1) {iF—(n—1) (Ey+ g: F(s)ds)} .

Since the fixed points (F, n) of N[F, n] are the solutions of (3.1)-(3.4), we show
that for sufficiently small 7>0 N[F, n] is a contraction mapping from Y into Y.

We first show that for sufficiently small 7>0 N[F, n] is a mapping from Y
into Y. Let (F,n)€Y. We take the L* norm of (3.10) and use Lemma 2.1(i)
with p=4 and Hélder’s inequality with 3/4=1/2-+1/4 to obtain

(3.13) NAF, n](O| ¢ S [|U(2) i (dEy—noEy)|| ;¢

14
AN (PR
d s
FI Al VBl 1IF s
t 0

We take the L¥¥(I) norm of (3.13) and use the Hardy-Littlewood-Sobolev in-
equality and (3.8) to obtain
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(3.14) [|NA[F, n]l| 8/, ; 14 <0a
+CT "N [n)| yoocr ; B F |l 575 s 5 14

a d
+CT! N/SH-EnHLw(I;Lz)“Eo“L‘

+ CT* - o o Flltrr
<d8a+C(T*“Nag+T~N3s~1q T2 Ng)dq .
If we choose T>0 so small that
C(T'~Niq+T-N3p~1g- T2 Ng) <1,
then (3.14) gives us
(3.15) [|NAF, || o/ 5 1 =28a .

We next take the L=(I; L?) norm of (3.10) and use Lemma 2.2(i) with g’ =4/3
and r'=8/(8—N) and (3.9) to obtain

(3.16) INALE, nlll s ;s =0
+ CT "N yoogs ; 3| Fll8/7r; 1%

. - d
+CT? NISHEHHL“"(I s 13| Eoll*

+ TSN Ll I Fllaie s

Sa+C(T-V¥19q+-T Vg T*¥5q)q .

If we choose T>0 so small that
C(T\-Nigq + T'=Nlg | T*Nigg)<1
then (3.16) gives us
(3.17) NI, n)l|peer s 1= 2a .
By (3.12) we evaluate E to obtain

(3.18) NEzeotr s ey = CIU|Flze=tr ; 22

lbllmers 5B+ | 11E1]0ds)

I+ {1112

<C(a+a+ T2+ T M%a), (F,m)EY.
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Here we have used the Sobolev imbedding theorem at the second inequality.
Accordingly, we have by (3.11) and (3.18)

(319) VIR A@lw<(1+0a
+ | Al141 B 32 s

=(1+T)a
+CT(1+T) (@+a*+ T+ T*~V*0ay
—a+[T+CTA+T)(+a+T¥53a+ TN Yqla, t 1.

If we choose 7>0 so small that
T+CTA+T)(A+a+TN3oq+TM3)a<1,
then (3.19) yields
(3.20) N, nl|poocr s iy =2a .
On the other hand, we have

3.21) % NF, n](t) = —o sinot n,

+coswt nm+o~! sinwt 4| E,|?

+ g: cosaw(t—s) 4| E(s)|%ds .

Therefore, we take the L? norm of (3.21) and use the Sobolev imbedding theo-
rem and (3.18) to obtain

d
(3.22) [l Vel P12

t
<a+C | 141 B@ P12 ds
0

Sa+CTE||Lwu; w2
<a+CT(1+a+TNeoa+T-VoYa?, tEl.

If we choose 7>0 so small that
CT(1+a+T*Neoq+ T -¥5Ya<1,
then (3.22) yields

(3.23) I%NZ[F, nl(@)l|2<2a.
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Therefore, (3.15), (3.17), (3.20) and (3.23) show that for sufficiently small
T>0 N[F,n] is a mapping from Y into Y. In the same way as above we
obtain

(3.24) |INIE, n]—N[F’, n'nng—;-m(F, w—E, m)l,

(F,n), (F',n)EY

for sufficiently small 7>>0, which implies that N[F, n] is a contraction map-
ping from Y into Y. Accordingly, there exist the unique fixed points (F, n) of
NIF, n] and E(t) is determined by (F, n) in terms of (3.12). These (F, n, E) sat-
isfy (3.1)-(3.4) in the integral form and

(3.25) FEL~I; [HNL¥N0, T; [Y),
(3.26) ne N Wi(I; H-),

ji=0
(3.27) ESL(; HY).

(3.25)-(3.27) and the standard argument show that (F, n, E) are the solutions of
(3.1)-(3.4) satisfying (3.5)-(3.7) (see, e.g., Remark 2.1(2)).

We next prove that E&€CY[0, T]; L?) and —‘j—tE(t)=F(t). We differen-
tiate (3.3) in ¢ to obtain

d .d
3.28 —4+1)—E =i—F—m—1)F
(3.28) (—4+1) 5 — (n—1)
d t .
——n(Ey+ S Fds)in H2.
dt 0
On the other hand, (3.1) gives us
(3.29) (—d+1)F = i-g?F~—(n~1)F
d i .
— = n(E,+ S Fds)in H™2,
dt 0

Therefore, fj?E(t)zF(t) in H™%, Furthermore, by (3.28) we have

4 Bty = (—d )il F(n—
(3.30) S = (A )7 F—(n—1)F

d t
+ L et 50 Fds).
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The right hand side of (3.30) is in C([0, T1; L?). Accordingly, E(t)e
CY([0, T1; L». By (3.3) and (3.4) we have

(3.31) (—4+1)EQ0) = iFy—(n,—1)E,
= [ ~i(dEy—nyEy) —(ny—1)E,
= (—4+1E,,

which shows E(0)=E,.

It remains only to show that E&L¥N(0, T; W**), which follows directly
from (1.1), (3.5) and the regularity theorem of the elliptic equation.

Therefore, (E(t), n(t)) are the unique solutions of (1.1)-(1.3) satisfying
(1.6)-(1.8). &

In the same way as in the proof of Proposition 3.1 we have the following
proposition.

Propesition 3.2. Assume that 1| <N <3.
(1) Let m be an even integer with m=4. If (Ey, ny, n)EH"SH" ' PH"2, then
for some T>0 there exist the unique solutions (E(t), n(t)) of (1.1)-(1.3) satisfying
(1.9)-(1.12) with T replaced by T, where T depends only on N, ||Ey||gm, ||7o|lzm-1
and ||ny|| gm-2.
(2) Let m be an odd integer with m=3. If (Ey, ny, n)EH"®H™ *OH™?, then
for some T>0 there exist the unique solutions (E(t), n(t)) of (1.1)~(1.3) satisfying
(1.13)-(1.16) with T replaced by T. where T depends only on N, ||Ey||gm, ||1||gm-1
and ||ny||gm~2.

Remark 3.1.  We note that in Proposition 3.2 T depends on the higher or-
der Sobolev norms of (E,, 7, n,) than the norms of H?@PH'*@PL? and that T
is less than T given by Proposition 3.1.

We omit the proof of Proposition 3.2, since it is similar to the proof of
Proposition 3.1.

We can complete the proof of Theorem 3.1(2)-(3), if we prove the following
proposition.

Proposition 3.3. Assume that 1<N<3. Let m be an integer with m=2
and let (E, ,ny, n))E H" ' @H"@H™ . If Theorem 1.1 holds for m, then Theo-
rem 1.1 also holds for m—1.

Proof. Let (E(t), n(¢)) be the solutions of (1.1)-(1.3) satisfying Theorem
1.1 for m. Since (Ey, ng, n)E H* 'O H"@DH™ ', by Proposition 3.2 and the
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uniqueness of solutions we conclude that (E(t), n(¢)) satisfy Theorem 1.1 for
m-+1 with T replaced by T

We prove Proposition 3.3 only in the case where m is even, since the proof
for odd m is the same. Let 7,,, be the maximal existence time of the solutions
(E(t),n(2)) in H™'@H". That is, for any T" with 0<T' <7, (E(t), n(t))
satisfy (1.13)-(1.16) with T and m replaced by T° and m-+1. If T,,,>T, the
proof is completed. We suppose that 7,,,<7 and derive a contradiction.
We divide the proof into three cases.

Case 1. Let m be an even integer with m=6. Since (E(?), n(t)) satisfy
(1.13)-(1.16) with T and m replaced by T’ and m--1 for any T’ with 0<<T’ <T s,
we differentiate (1.1) m/2—1 times in ¢ and once in x,, 1 =<k=<N to obtain

(3.32) i0,(8,07/*"1E)+4(3,07/*'E)

m/2— _ ; . . :
="S1 (") 1o m @1E)+ @1 m 0,0iE)]
in? 1<k<N

for 0=<t<T,... By the assumption that Theorem 1.1 holds for m, we have

(3.33) or-l-ine L0, T; HY), 0<j<m/2—2,
(3.34) neL=0, T; H°),

(3.35) BJESL~(0, T; H), O0<j=<mf2—2,
(3.36) omE S L0, T; L?).

Therefore, by (3.32)-(3.36) and the Sobolev imbedding theorem we obtain
(3.37) 18,0727 E(t)|| x2=|0,07/*"*E(0)| |22
+c [ "SI0 n GIE)
+11@7/71~/n) (0,01 E)|| 7] d=

t
+C | 110 @7 E)|y de
t
+C | 170,08 1E |2 ds
0
<112,07 E )|
T m/2-1 o . .
+c | S er il 03B

+1052 1 n|| | |04 ||x] dr
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T
+C | inllsliop=- ]l e
¢
+C [ inllelope=1Ell 2 e
=C+C j" 18,07/ E|| g2 dr
0

for t€[0, T7,,,) and 1<k=<N. (3.37) and Gronwall’s inequality yield
(3.38) 3,0T* E€ L0, Tyes; H), 1=k=N.
By differentiating (1.1) m/2—2 times in ¢, we have
(3.39) 10072 2E)+-4(87*2E)
="$ (") vy i)

i=0

Since Theorem 1.1 holds for m, we easily see by the Sobolev imbedding
theorem that the right hand side of (3.39) belongs to L=(0, T',.,; H°). There-
fore, by (3.39), (3.38) and the regularity theorem of the elliptic equation we
obtain

(3.40) M2 E S L=(0, Tpay; H) .
Repeating this procedure, we conclude that

3.41) Ec€L>0, Tpuyp; H™Y) .
(3.41) and (3.2) imply that

(3.42) nEL™(0, Tprs H")
(3.43) OnE L0, Tpeys H™™).

(3.41)-(3.43) assure that by Proposition 3.2 we can extend the solutions (E(t)
n(t)) as the solutions in H"*'@H" beyond t=1T,,,. This contradicts the de-
finition of T',,,-

Case 2. Let m=4. Since (E(z), n(t)) satisfy (1.13)-(1.16) with T and m
replaced by T” and m-+1 for any T’ with 0<7T"<T,,,, we have by (1.1)

(3.44) EcC(0, T\e); HY.

We differentiate (1.1) twice in # and once in x,, 1<k=<N to obtain
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(3.45) i0,(0,02E)+4(9,03E)
3 () 1@dt-n) GIE)+ @ m @01
in H2, 0=<t<T.. 1<k=N.
We rewrite (3.45) as the integral form:
(3.46) 8,02E(t) = U(t)8,02E(0)
~i| ve-913 () 1001 m G1B)+@ ) @I} ds
0<t<Tps» 1=ZEk=N.
We take the L* norm of (3.46) and use Lemma 2.1(i) to obtain
(347) 18:02E(0)|| 4 <11 U()9,05E(0)]| ¢
+C 3 [ 1i=s | 1@,03 M @Il

+10%7/n) (8,0 E)| /4] ds
=11U(1)2,05E(0) |4

+C 3 " 151 10,03 nllA1O2E .o
j=0Jg
+116377n]| 218,01 E|| 4] ds
t
+C [[ =51 10,1021 12 s
0

t .
+C " 11—s 1= 1nll 410,04E] + s
0
0<t<Tps, 1<k=N.

By the definition of 7,,, we note that 8,82E € L¥N(0, T'; L*) for any T’ with
0<T'<T,.,. By the assumption that Theorem 1.1 holds for m=4, we have

(3.48) i neL=0, T; H*), 0</<2,
(3.49) dJEEL=(0, T; H*%), 0<j=2.
Therefore, by (3.47)-(3.49) and the Sobolev imbedding theorem we obtain
(3.50) 1803 E@)|| 4= | U(1)0,02E(0)|
e | s 2 H10,01E) 10 ds
0=<t<Tpe:>» 1Zk=N.

By Lemma 2.1(ii) with g=4 and r=8/N we have
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(3.51) [1U(-)8,82E0)|| .+ ELY™(R) .

Accordingly, (3.50), (3.51) and the theory of the Volterra type integral equation
show that

(3.52) 0,02ESL¥N0, Tpor; L), 1<k<N.

We next take the L=(0, 7,,,; L?) norm of (3.46) and use Lemma 2.2 with
q'=4/3 and r'=8/(8 —N) to obtain by (3.48) and (3.49)

(3.53)  ||8WDFE|| 100, maz : 12y= C+C||04O%E||18/ 5 (0 Fmaz : 1y, 1=k=N
in the same way as (3.47). (3.53) and (3.52) show that
(3.59) 0,02E€ L0, T,,.; L, 1<k<N.
We differentiate (1.1) in # to obtain
(3.55) i02E+4(8,E) = (Om)E+nd,Ein L*, 0=Zt<Tpss -

(3.48), (3.49) and the Sobolev imbedding theorem imply that the right hand
side of (3.55) belongs to L=(0, T'; H'). Accordingly, (3.54), (3.55) and the reg-
ularity theorem of the elliptic equation give us

(3.56) 8,EESL™0, T,,,; H) .

Repeating this procedure, we have

(3.57) EEL=0, T\y,; H .
(3.57) and (1.2) imply that

(3.58) n€ L0, Tpaye; HY ,

(3.59) 0, L0, T,y HY) .

(3.57)-(3.59) assure that by Proposition 3.2 we can extend the solutions
(E(?), n(t)) as the solutions in H°@H* beyond t=7T,,,. This contradicts the
definition of T,,,,.

Case 3. Let m=2. Since (E(¢), n(t)) satisfy (1.13)-(1.15) with T and m
replaced by T’ and m+-1 for any 7" with 0<T"<T,,.,, We have by (1.1)

(3.60) EEC0, Ther); HY) .

We differentiate (1.1) in ¢ and x,, I<k=<N to obtain
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3.61) 10,(0,0,E)+ 4(8,0,E) = (8,0,n)E+(8,n)(8,E)
+(8,1) (8,E)+n(0,0,E) in H™?
for 0<t<T s and 1<k<N. We rewrite (3.61) as the integral form:
3.62) 9,0,E(t) = U(t)8,0,E(0)
i S: U(t—s5)[(848,1) E-+(841) (9,E)

+(041) (0E)+n(8,0,E)] ds ,
0=t<Tper>» 1=Zk=N.

We take the L* norm of (3.62) and use Lemma 2.1(i) to obtain
(3.63) 188, E@)]| 4= 1|U(2)3,:3,EQ)|| 4
t
+C | le=s1 010 mEl
0

+11(@5n) (8E)|| 4/5+1|(851) (B E)|| L4/3
+|n(0x0,E)||L4/5] ds
=<||U(2)9,0,E(0)|| .+

¢
+C | 1e—s 110,011l

F0nl] 2|0, E|| 4411847 [ 2| 0E]| 4
+lnl|.2|0,0,E [ 4] ds ,
0=<t<Tps., 1=ZKkZN.

By the definition of T,,, we note that 8,8,E € L¥¥(0, T'; L*) for any T’ with
0<T'<Tps By the assumption that Theorem 1.1 holds for m, we have

(3.64) dine L~0, T; H™Y), j=0,1,
(3.65) 8iEcL=(0, T; H*Y), j=0,1,
(3.66) BIESLHNO, T; W2+4), j=0, 1.

(3.63)-(3.66) and the Sobolev imbedding theorem give us
(3.67) 10,8 EM)|4=11U(2)2,0,E(0)]| .*
t
+C+CS |t—s|~¥4|8,E||+ ds
0

¢
+C{, 11=s17 (10,01l 2-+110,0,E|.9) ds
0=t<Tpss>» 1=k=N.
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On the other hand, by (1.2) we have
(3.68) 0%n—d4n = 4| E|?
_ jé 2(|VE,|*+RedE,E,).
Since we have by (1.1)
4E; = —i0,E;+nE;, 1<j=N,

we obtain by (3.68)

(3.69) Oin—dn =23 |PE,|*+2 3} Im 6,E,B,+n|E|?.
i=1 ji=1

(3.69) yields

(3.70) 107 n(t)]] 2411040 1(2)| 2

= C(||047 ng|| L2+ 104m] | 2)

t N
+c | SoulrE, il ds

+c| S 0uE.EIl ds

0j=1
11
+C { loyal E D)2 ds
< C( 1o nell -+ 1812

t W =
+C So S IPE; PO, .2 ds
t IV — —
+C | SI@E) @ EIl+ HIEBi.E 22 ds

t —
+C {110 | E l5-+1nE0, Bl ds

0<t<Tp.., 1<k=N.

By the definition of 7,,, we note that 8,7n, 8,0,n€L=(0, T'; L?) for any T"
with 0<7T'<T,,,. By (3.64)-(3.66) and the Sobolev imbedding theorem we
obtain

G718 n(0)]|224-118:0:m(0)l |2

t N
§c+c§0 L 10:E;| 41,7 E,l ds
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+ [ QBN Ell+IEI A9, Ell) ds
+C [ Qiounll AU =+ il A Ell 0,119 ds
=c+c 100, ds,
0=t<Tpes» 1<kZN.
Inserting (3.71) into (3.67), we have
(7)) 00,EO=/IUO00EO)

EWoRWe S | £—s|~N|0,E|| ¢ ds
0

t s
+CS |t—s|‘N/“(C+CS 110,8.E]|,4 dr) ds
0 0
+cgt |t—s| =N, E ||+ ds
0
=||U()8,0,E(0)||.*

t
+C+C [ J1—s| (0 El| ¢ ds
0

t

! lems g s V19,0 El s s
0
0=Zt<Tp>» 1=Kk=ZN.

Here at the second inequality of (3.72) we have used the following identity:
t s
[[ 11=s1 [ 19,0, 1|+ de ds
0 0
1
— A=NJ | |1=s4210,0,E]+ ds
0

Lemma 2.1(ii) with g=4 implies that the first term at the right hand side of
(3.72) belongs to L¥¥(R), and (3.66) and the Hardy-Littlewood-Sobolev inequal-
ity imply that the second term at the right hand side of (3.72) belongs to
L0, Tya,) for N=1,2 and to L¥0, T,,,) for N=3. Therefore, (3.72) and
the theory of the Volterra type integral equation yield

(3.73) OOEELMNO, Tars L), 1=<k=N.

We next take the L=(0, 7,,.; L?) norm of (3.62) and use Lemma 2.2 with
q'=4/3 and r’'=8/(8 —N) to obtain by (3.64)-(3.66) and (3.71)
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(3.74) 11040 E ] 2920, F s 5 2
<C+C||8,0,E|15/70 7y ity 1 SKSN

in the same way as (3.72) . (3.74) and (3.73) show that
(3.75) 80,0, E€L~(0, Tpue; I?), 1<k=N.

(3.64)-(3.66) and the Sobolev imbedding theorem imply that the right hand
side of (1.1) belongs to L=(0, T; H"). Accordingly, (3.75), (3.65), (1.1) and
the regularity theorem of the elliptic equation give us

(3.76) EcL*0, T,y HY) .
(3.76) and (1.2) imply that

3.77) nE€ L0, Tpsss HY,
(3.78) AneE L0, Tpey; HY .

(3.76)~(3.78) assure that by Proposition 3.2 we can extend the solutions (E(z),
n(t)) as the solutions in H*@H? beyond t=T,,,. This contradicts the defini-
tion of T,

Thus, the proof for even m is complete. In the same way as above we can
prove Proposition 3.3 for odd m. B

By combining Propositions 3.1, 3.3 and the induction argument we obtain
Theorem 1.1(2)-(3). Thus, the proof of Theorem 1.1 is completed.

We conclude this section by giving the following theorem concerning the
existence of global solutions for (1.1)-(1.3).

Theorem 3.4. (1) Assume N=1. Let m be an integer with m=2. If
(Ey, 1o, ) EH"DH"*PH™ % and m&H", then the existence time T of the
solutions in Theorem 1.1 can be chosen as T=+-occ. Furthermore, if Ey, ny, nyE
Ng_ H™ and ny < H, then the solutions E(t, x) and n(t, x) are in C=([0, o) X R).
(2) Assume N=2. Let m be an integer with m=2. There exists 6>0 such
that if (Ey, ng, m)EH"@H" ' PH?, nleﬁ ~! and || Ey||,2<<0, then the existence
time T of the solutions in Theorem 1.1 can be chosen as T=-+cc. In addition, if
E,ny, and n, are in Ny H", then the solutions E(t,x) and n(t, x) are in
C=([0, o) X R?).

The a priori estimates needed for the proof of existence of global solutions
are already established by C. Sulem and P.L. Sulem [17, Proof of Theorme 2]
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and by H. Added and S. Added [1, Proof of Theorem] (see also [12]). The proof
of the a priori estimates requires the assumption nIEH -1, because the energy
identity of (1.1)-(1.3) contains the H-! norm of m. Those a priori estimates
and Theorem 1.1 show Theorem 3.4.

§4. Proof of Theorem 1.2

In this section we give the proof of Theorem 1.2. We first describe the
proof of Part (1) of Theorem 1.2.

Proof of Theorem 1.2(1). Let (E(¢), n(t)) be the solutions of (1.1)-(1.3) in
the class of Theorem 1.1.

We first assume that m is even. Then we can easily see by (1.1) that E(1) &
C?**Y([0, T,,.); H?). We differentiate (1.1) m/2 times in ¢ to obtain

@.1) 18 ,(672E)+ 4(072E) — 2 <m/2) (872-in) (9IE)
inH?, 0=t<T,,.
We rewrite (4.1) as the integral form:
4.2) OTRE(r) = U(1)9™"2E(0)
—i [ va— 8 (") @2r-my i) as,
0<1<Tas -

Since (E(t), n(t)) are in the class of Theorem 1.1, we have

4.3) Ee ;Fj:cf([o, Tpss); H* %),

.4) E€ WO, T3 Wr9,  0<T<T,,,
(4.5) ne jéo C([0, Tpe,); H™'7),

and if m=6.

(4.6) ne n OO, Tay); H™ %)

On the other hand, by the Sobolev imbedding theorem we have
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m/2 (m/2

R

. . m/2= . .
) @2 i @EN|A= C"S: oz nl| A0 LE =
j=0

i=0
{[n]] 4|07 2E |
m/2- . .
<C"S7 (|07 n||,2]| O1E] 2
i=0
+Clinl|g1||072E]| 2
(4.3)-(4.7) give us

m/ . .
(4.8) 5 (”;/ 2) (072in) (BIE) S [0, T; [3), 0<T<T,,, .
ji=0
Noting 872E(0)< L?, we apply Lemma 2.3 to (4.2) and use (4.8) to obtain
4.9 M E X0, T; HY(| x| <R)),
0<T<Tp,, R>0.

We differentiate (1.1) m/2—1 times in ¢ to obtain

(4.10) i8,(0™2\E)4-4(87/2E)
="‘/§-1<m/‘2]—“1> (aj””'l‘jn)(af,'E) ,

j=o

0=t<T,,, -

(4.3), (4.5), (4.6) and the Sobolev imbedding theorem imply that the right hand
side of (4.10) is in L=(0, T; H") for 0<T<T,,,. Therefore, (4.9), (4.10) and
the local regularity theorem of the elliptic equation yield

4.11) rPIES X0, T; H(|x| <R)), 0<T<T,,,, R>0.
If m/2—1<0 ,we repeat the same argument as above until we have
4.12) Ec€I¥0, T; H"*(|x| <R)), 0<T<Tp.., R>0.

Thus, the proof for even m is completed. We similarly prove Theorem
1.2(1) for m odd. B

We next state the proof of Part (2) of Theorem 1.2.

Proof of Theorem 1.2(2). We prove Theorem 1.2(2) only in the case where
m is an even integer with m=6 and k=2, since the proof for the other cases is
the same.

Let (E(t), n(t)) be the solutions of (1.1)-(1.3) in the class of Theorem
1.2(2) for any T with 0<7<T,,,. Let T be an arbitrarily fixed constant with
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0<T<Tp,. We put n(t)=p.#n(t) and put

3 ) m/2+1 .
Al =X oimll oo, 7 s 1=yt 23 1|0mll Loogo, 7 5 223 -
i= i=

We note that n(t)eC™?*([0, T]; H’) for s>0 and A(n,)<A(n). Let E,ES
such that E,—E, in H™? as e—0 and || Ey||gm2=2||Ey||gm2. We consider the
following linear Schridinger equation:

4.13) i0,E,+4E, = nE,, O0<t<T, x<RV,
(4.14) Ey0, x) = Epg(%) .

By the theory of evolution equation we have the unique solution E,(z) of (4.13)
and (4.14) such that E,=C"**\([0, T]; H®) for s>0 and

4.15) ”a{E:”L"“(O,T g2 =Cp, 0=j=m/2,

where C, depends only on T, A(n), ||Eg||z= and N but not on e. We put g;(x)=
(14| x/11®72 for a positive integer /. A simple calculation gives us

(4.16) 17 {1+ | x|9gi(0} | = G+ | x|%)gh(x) ,
(4.17) |7 {1+ | x|*Ygi(} | < C(1+ | x| %) gi(x) ,

where C, and C; do not depend on /.
We consider the scalar product in L2 between (4.13) and (1+ | x|?)g7(x)E(¢)
and take the imaginary part of the resulting equation to obtain by (4.16)

(418) 0+ 2198 EOIES 10+ | %19 g Bl 22
+C | S e i1+ %177, Eu 12 ds
<y fms
+C | S B+ | 519 Bl ds
0=:<T.
(4.15), (4.18) and Gronwall’s inequality yield
(4.19) 10+ %1928 Elli=,: 5= G

where C, depends only on T, ||E,||gm2, A(n) and N but not on / and e. Let-
ting /— oo in (4.19), by Fatou’s lemma we obtain
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(4.20) [1(1+ lxlz)llee“L"’(O,T 1 19=C,.

We next differentiate (4.13) in x;, 1<k <N and take the imaginary part of the
scalar product in L? between the resulting equtaion and (14 |x|?)gi(x)8,E.(?)
to obtain by (4.18)

(@21) [0+ 1198 BB (1+ ] 51,0 B
t N
+C | [ g0 Eyllli(+ |19 2510, 2

Fl10wnellz=lI(A+ | x| 2 g Bl 2l| (14 | x|%) 8,84 Ee | 2] ds
= C||Ey||gme

t N
+c{ S lowEll

H1047g]| L=l (1+ | xlz)"znggHﬁ]H(H ‘x|2)1/2g16kEe”L2 ds,
01T, 1ZkXN.

(4.15), (4.21), the Sobolev imbedding theorem and Gronwall’s inequality yield
(4.22) 1A+ xlz)llzglakEe“L“(n,T ;9=G, 1=k=N,

where C; depends only on T, || Ey||gmz, A(n) and N but not on /and . Letting
|—co in (4.22), by Fatou’s lemma we obtain

(4.23) A+ x|320,E| 120, 7: 5= Cs, 1=Zk=N.

We take the imaginary part of the scalar product in L? between (4.13) and (1+
[ x|3)?giE,(2) to obtain by (4.17)

(@29 I+ H BN+ | x| g B
+C | SN+ %122 Byl 0+ 21 9g Bl s
< CIIEljms
+C | SUIA+ %I Bl 1+ | x1 DgiEul2 s
0=:t=T.
(4.23), (4.24) and Gronwall’s inequality yield
(4.25) 1A+ x198 Bl 755 Co

where C; depends only on T, || Ey||gm2, A(n) and N but not on / and e. Letting
l— oo in (4.25), by Fatou’s lemma we have
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(4.26) A+ x])E|[1=0,r; 15=Cs -
We next show that if
4.27)  ||A+|x[)P2E || >0,r; »=C(q), 0=p=gq,
(4.28)  ||(1+]x|D)V28,08Ee|| =0, ; 1HC=(q), 1=k=N, 0=p=gq

for some integer g with 0=g=m/2—2, then (4.27) and (4.28) also hold with ¢
and C(g) replaced by g-+1 and C(g+1), where C(g) depends only on T, || Ey||gm.,
A(n), N and ¢ but not on . We differentiate (4.13) g—+1 times in ¢ and take
the imaginary part of the scalar product in L2 between the resulting equation and
(14| x|?gi09E(¢) to obtain by (4.16)

(4.29)  |l(1+ x| 2g, 05 " EMII T2 =114 | x1%) 28,05 ELO)]] .2

: A
+C . S lerorE, LA+ | 19708 E | ds

t q . ‘
. B0 im0+ %1 2g 0B
X|I(1+ | x|?)7g, 04 E,|| .2 ds

t N
=c+c | Sirore, e
0 j=1

+ 331108 =lI(1-+ | x| g 02, |
X |1+ | x|?)"2g, 03 E|| 2 ds .
(4.15), (4.29), the Sobolev imbedding theorem and Gronwall’s inequality yield
(4.30) I+ | X128 Eyll 0.1 5= G »

where C, depends only on T, || Ey]|zm2, A(n) and N but not on / and e. Letting
[— oo in (4.30), by Fatou’s lemma we obtain

(4.31) A+ %3205 Eyll 0,75 1H = C; -

We next differentiate (4.13) g+1 times in ¢ and once in X;, 1<k=<N, and take
the imaginary part of the scalar product in L? between the resulting equation
and (14 |x|%)g?9,09+ E,(¢) to obtain by (4.16)

4.32) I+ x|%)2g,0,0 " E(Dl|Z2=|(14 | x|*)*2,0,0 7 E(0)] | 22

t N
+C{ S 1800t E A1+ |x1978,0,01 2 ds
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P +1-j 2\1, j
+ [ (S 00 ml=ll1+ |51, 01E, L2

7 . .
+ SIOEng=lI(1+ | %1% 2g,0,01 417
X1+ | |7g,0,05 El2 ds

t N
=C+C So [jgl ”akVag+1Egj”L2
+ 33110408 m |1+ | X 20LE |

+ 33108 myl L[l + | %128,9iE, 12

X|I(14 | x %) 2g,0,04 " B2 ds
0<t<T, 1<k=N.

(4.15), (4.27), (4.28), (4.31), (4.32), the Sobolev imbedding theorem and
Gronwall’s inequality yield

(4.33) [+ lez)mgtaka?HEe“L“(o,T; =Gy, 1=k=N,

where C; depends only on T, ||Ey||gm2, A(n) and N but not on / and . Letting
I—co in (4.33), by Fatou’s lemma we obtain

(4.34) A+ x|DV2IHE || 10,75 5= Cs, 1Sk=N.

We differentiate (4.13) g-+1 times in ¢ again and take the imaginary part of the
scalar product in L? between the resulting equation and (14 | x|%?%g,E,(¢) to ob-
tain by (4.17)

(4.35) I+ |x12g 0 EMllz2=1I(1+ | x|} £,01 " E,(0)] |72

t N
+C [ S+ 15127870t E 1AL+ | 519803 B2 ds

t g+l . .
+C | SHIot I loell+ | |Dg0iE
X1+ %1808 B2 ds

t N
<cicC So (3 10+ | X927 03+ E,

+ SHIE nglmll(1+ | [DOLEN 4]

XA+ x]?) g,04 E|| 2 ds ,
0<i<T.
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(4.15), (4.27), (4.28), (4.34), the Sobolev imbedding theorem and Gronwall’s
inequality yield

(4.36) NA+1x1%) 807" Eellz=e0,7; 15 = Cs »

where C, depends only on T, || Ey||gmz, A(n) and N but not on /and e. Letting
l— o0 in (4.36) by Fatou’s lemma we obtain

(4.37) {1+ ]xlz)agHEe”L“(o,T 15=GC,.

Hence, (4.23), (4.26) and the induction argument imply that

(4.38) [|(1+|x|HBIE ]| L=,r; 1H=Cro, 0=j=m/2—],

(439) [I(1+ |X|90,0iE |0 : 1< Cu» 0= jSmf2—1, 1=k=N,

where Cy, and Cy; depend only on T, ||Ey||gm2, A(n) and N but not on e.

Noting that E,&S and n,&C™?*([0, T1; H’) for s>0, we can simi-
larly show that (1+|x|?)8"2E<L=(0,T;L? and (1+]|x|?)"0,07ECc
L=, T; L%, 1=k=<N. We differentiate (4.13) m/2 times in ¢ to obtain

(4.40) i0,(07/*E,)-+4(072E,)

mg (m/Z) (0™M2-in)(8iE,), O<t<T.

We rewrite (4.40) as the integral form:
4.4 OFPE(t) = U(1)0}/*E,(0)
—i [ va— 3 (") @rnn) 01 ds.

0=:=<T.
By (4.41) and Lemma 2.4 we obtain
(4.42) Ji(1)07PE(t) = U(t)x:6%?E,(0)

=i [} ve—s) 5 (") 5 @1 n) @I} ds,
0=t=T, 1Zk=N.

We take the L? norm of (4.42) to obtain
(4.43)  |[VFOFPELD)| 2= |xF07E0)]l 2

¢ [{ 3 10(5) 21507 M(—9)@32-In) GIEN 2 ds
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m/ . .
<C+C S 52 3 (1(62072in,) (BIEy)|| 2
0o j=o

+1(0:057~"n )0y (M(—$)D4E,)| 2
+(8F 2 Ing )0 (M(—3)BiE,)|| 2] ds

t m/2-1 . R
<C+C f "3 1030 In, |10 o
0 =0

+118,05 2 ng|| 4| 0,(M(—5)BE))| | 1*
+1108/27n,|| | |OF(M(—5)DE,)|| 2] ds

t
1c So 5|83y =172, | 2 ds
i
¢ || om0~ EN 1

t
+C | llndl=l103M(—)92 E | ds

1<k=N.

On the other hand, by the Sobolev imbedding theorem and the interpolation
inequality we have

(4.44) [104(M(—3)BiEy)|1*

= CT3: 103M(—5)OLE s+ 10, M(—)LE) ],

(4.45) [10:(M(—5)01E,)| .2

= CI33 |0 (M(—)9 LB+ IOZE LA

(4.43)-(4.45), (4.15), (4.38), (4.39) and the Sobolev imbedding theorem give

us
@446) 33 |20ME(0)|2<C
k=1
i3 m/2-1 . .,
+C | "5 Mol A0 E
0 j=0
. N .
1022 Ing)| 2 33 103M(—)01Ep) 12
N .
+ 3118, (—5)OEIl2H ds

t
e So S?|[nell 41|05 2l 2 s
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t N m
+C | SAlnlae 33 110,0M(—5)022E,) |12 ds
t N 2 m
+C Sl S 10 M(—s)07E 2 ds
t N
< Gt i || @5 2 193M(—5)027E,2 ds

t N
—Co s |, 2 30712 s
0</<T,

where C;, and Cy; depend only on T, || Ey||;mz2, A(n) and N but not on e. (4.46)
and Gronwall’s inequality yield

(447) 452 32 (19K (— )T ED)

N
S ViOrEW| S C 0<IST,

where C,, depends only on T, ||Ey||zm2, A(n) and N but not on e.
We can easily see that

m/ . .
(4.48) E()—E@) in'N C0, T]; H™%)
=0
as e—>0. Therefore, (4.47) and (4.48) imply that
(4.49) 42 3) |0YM(—1)BTEE@)| < Cyy,  O<t<T.
=1

(4.49) and the definition of M(¢) show that
(4.50) MPE = L=(z, T; H¥(|x| <R)),
0<t<T, R>0.
We differentiate (1.1) m/2—1 times in ¢ to obtain

(4.51) [07PE4(07/21E)

ml2- _ . :

=" ("2 @reimeip), osisT.
j=o

Since (E(t), n(t)) is in the class of Theorem 1.1(2), the Sobolev imbedding theo-

rem implies that the right hand side of (4.51) belongs to L=(0, T; H?). There-

fore, (4.50), (4.51) and the local regularity theorem of the elliptic equation give
us
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(4.52) 8r21E € L=(r, T; H(|x| <R)),
0<r<T, R>0.

Repeating the above argument, we conclude that

(4.53) E&L>(z, T; H"*¥| x| <R)),
0<r<T, R>0.

Thus, since T is an arbitrary constant with 0<<7<T,,,,, the proof is com-
pleted in the case where m is an even integer with m=6 and k=2.

In the same way as above we can prove Theorem 1.2(2) for the other
cases.
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