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Existence and Smoothing Effect of Solutions
for the Zakharov Equations

By

Tohru OzAWA*1" and Yoshio TSUTSUMI***

§ 1. Introduction and Theorems

In the present paper we consider the unique local solvability and the smo-
othing effect for the Zakharov equations :

(1.1)

(1.2) ^-An=A\E\\ t>0,

(1.3) £(0, x) = EQ(x\ /7(0, x) = n0(x), -%-n(0, x) = ^(0, x\
at

where E is a function from R* xR% to CN
9 n is a function from R^ xR% to R

and 1<^JV<^3. (1. !)-(!. 3) describe the long wave Langmuir turbulence in a
plasma (see [20]). E(t, x) denotes the slowly varying envelope of the highly
oscillatory electric field and n(t, x) denotes the deviation of the ion density from
its equilibrium. When (1.2) depends on the ion sound speed c, that is, (1.2)
is replaced by

it is thought that (1.1) and (1.4) converge to
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(1.5) i-+AE = nE, n = -\E\2

as c-»oo (see [2], [17] and [20]). (1.5) is just the nonlinear Schrddinger equation
and it is conjectured that the solutions of (1. !)-(!. 2) and the solution of (1.5)
have some common properties (see, e.g., [12, § 1. Introduction]). The Zakharov
equations (1. !)-(!. 3) have not yet been studied well, while the nonlinear
Schrodinger equation (1.5) has extensively been studied (see, e.g., [3]-[9]? [11],
[15] and [18]).

In [17] C. Sulem and P.L. Sulem proved by using the Galerkin method that

if (Efrn^n^Hm®Hm-l@(Hm-2nH~-l\m^l and 1^7V^3, then (1.1)-(1.3)
have the unique local solutions (E, «)eL°°(0, T; Hm)®L°°(Q9 T; Hm~l) for some

T>0. Here Hm denotes the standard Sobolev space Hm(RN). Hm denotes
the homogeneous Sobolev space consisting of all tempered distributions u
with \£\mft^L2 = L2(RN\ where u is the Fourier transform of u. In [12]
Schochet and Weinstein showed a similar result for (1.1), (1.4) and (1.3) by
the different method, but the existence time T of the local solutions does not
depend on the parameter c in [12] (see also [2]). In both [12] and [17], the as-

sumption n^H"1 is needed for the construction of the local solutions. This

assumption is rather strong, because SttH"1 for JV = 1, 2. For example, e~~lx{2

is not in H"1 for N=l, 2. Furthermore, the uniqueness of the solutions (E(t),

7j(0) f°r (1.1)-(1.3) is proved only in the class Hm®Hm~"1, m^39 in the previous
results. In this paper we first show the unique local existence, result in H2®Hl

for (1. !)-(!. 3). H2@Hl seems more natural than the class in the previous re-
sults, because the solutions in H2@Hl are the so-called strong solutions.

We next investigate the smoothing effect of the solutions for (1. !)-(!. 3). It
is well known that the nonlinear Schrodinger equation (1.5) has the drastic
smoothing effect (see, e.g., [4], [7]-[10] and [15]). In [7] and [8] it is proved that
if E(0)=E0^H\ | x\ *£0<EL2, k^ 1 and l^N^3, then the solution E(i) of (1.5)
is in Hk

loc = Hk
loc(R

N) for t>0 as long as E(t) exists. In [4] and [15] the
smoothing effect of different type for (1.5) is proved, that is, if
Hk, k^l and 1^A^3, then the solution E(t) of (1.5) satisfies.

for peCiTGR*) and ^<T<Tmax9 where Tmax is the maximal existence time of
E(t). On the other hand, there seems to be no result concerning the smoothing
property of (1. !)-(!. 3). The Zakharov system consists of the Schrodinger equa-
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tion (1.1) and the wave equation (1.2), and we cannot expect the smoothing
effect of the wave equation part. Accordingly, we cannot expect the drastic
smoothing effect for (1. !)-(!. 3) like the single nonlinear Schrodinger equation.
Nevertheless, we can prove that the solution E(t) of the Schrodinger part for
(1. !)-(!. 3) has some smoothing properties.

Before we state the main results in this paper, we define several function
spaces. Let Wm*p denote the Sobolev space

for m<=R and 1 <p<oo. We put Hm= Wm-2. Let Hm's denote the weighted
Sobolev space

for m,s^R. For a Banach space X and T>0, we define Wm*p(Q9 T\ X) by

W"'(0, T; X) = {/(?) e L'(0, T;X);
y=o Jo dt

if l^p<oo and

"~(0, T; X)= {/(OeL-(0, T; X); S sup ||

if p = oo.

The main results in this paper are the following.

Theorem 1.1. Assume that

(1) Let (EQ, n0, n^H2@Hl®L2. Then for some T>0 there exist the unique

strong solutions (E(t), n(t)) of (I.!)-(!.3) such that

(1.6)

(1.7) £<EE n Wj'*'N(Q, T; W2'23'-*) ,
y=o

(i.s)
y=o

T depends only on \\E0\\H2, \\n0\\Hi, H^IL2

(2) Let m be an even integer with m^4. If(E0, n0, n^Hm@Hm~l@Hm-2
f then

the solutions (E(t), n(t)) of (1. !)-(!. 3) given by Part (!) satisfy
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(i.9) E e n2 c'([o, rj ; fr--«o ,
y=o

(1.10) £ e Tl2 WW»(0, J; FT"-8''4) ,
J = 0

(1.11) jie=nc'([o,r];ff-1-0,

(1.12) « e n C'([0, T\; Hm

(3) Let m be an odd integer with m^3. Tf(EQ, n0, n^Hm@Hm-l@Hm-2, then

the solutions (E(t), n(tj) of (I. !)-(!. 3) given by Part (!)

G«-L)/2
n

Cw-lD/2

(1.14)

(1.15)
y=o

Cm + lD /2
n

Remark 1.1 (1) The solutions (E(t\n(t)) of (1. !)-(!. 3) in Theorem 1.1

(1) satisfy (1.1) in the L2 sense, while they satisfy (1.2) in the distribution sense.

Therefore, the solutions in the class of Theorem 1.1(1) are called the strong

solutions (for the weak solutions, see [125 Theorem 4] and [17, Theorem 1]).

(2) Theorem 1.1 (1) shows that the solutions of (1. !)-(!. 3) are unique in the

class of the strong solutions.

(3) In Theorem 1.1 we do not need the condition n^H"1, which was al-

ways assumed in the previous papers [12] and [17].

(4) In Theorems 1.1(2) and (3) the existence time T of the more regular

solutions than the strong solutions is the same as that of the strong solutions.

In the previous papers [12] and [17], Tdepends on the higher order Sobolev norms

of the initial data, when the solutions are regular. Theorems 1.1(2) and (3)

imply that if (£0, nQ, n^ e n ZLiff*, then the solutions (E, /?)e C°°([0, T] XRN).

(5) (1.7) (1.10) and (1.14) show that E(t) has a smoothing property in a
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certain sense like the solution of the single nonlinear Schrodinger equation (see

[6], [11], [16] and [19]).

(6) (1.12) and (1.16) imply that — ?-, j^3, lose the regularity of Sobolev
dtj

order 2 with respect to the spatial variables, each time we differentiate them in t.
This may seem strange, since n(t) is a solution of the wave equation. But (1.2)
contains the solution E(t) of the Schrodinger equation as the external force,
which is why (1.12) and (1.16) occur.

Theorem 1.2. Let m be an integer with m^2. Assume that I fgTV fg3 and

(E0, n0, n^Hm@Hm-l®Hm~z. Let (E(t\ n(t)) and Tmax>0 be the solutions of
(!.!)-( 1.3) given by Theorem 1.1 and their maximal existence time, respectively.
(1) Let <p e Co(RN). Then E(t) satisfies

(1.17) <pE^L2(Q,T',Hm+V2)

for any T with 0<T<Tmax.
(2) In addition, let m^4. Put k=l if m^4 and k=l or 2 ifm^6. If E^

Hm'k, then

(1.18) E(t)<EHf+\ Q<t<Tmax.

Remark 1.2. Theorem 1.2 shows the smoothing properties of the Zakharov
equations (1. !)-(!. 3). Part (1) is completely the same as in the case of the
single nonlinear Schrodinger equation (see [4] and [15]). On the other hand,
Part (2) is not so good as in the case of the single nonlinear Schrodinger equation
(see [7]-[9]). This is because the Zakharov system contains the wave equation
and it has the form such that the derivative loss occurs.

The difficulty of solving (1. !)-(!. 3) is that when we use the standard iteration
scheme, we meet with the loss of derivative, which comes from the second deri-
vatives of | E(t) | 2 in (1.2). In the case of the single nonlinear Schrodinger equa-
tion the LP—L9 estimate and the Strichartz estimate play an important role (see
[5], [6], [11] and [19]). However, in the previous papers [12] and [17] they are
not used, because the loss of derivative prevents us from using them. In our
proof of Theorem 1.1 we first transform (1. !)-(!. 2) into the system which does
not have the derivative loss. For that purpose, we apply the technique de-
veloped by Shibata and Y. Tsutsumi [13], which was used to solve the fully non-
linear wave equation. After that we apply the Lp-Lq estimate and the Strichartz
estimate to the resulting system, following Kato [11].



334 TOHRU OZAWA AND YOSHIO TSUTSUMI

When we investigate the smoothing effect of (1. !)-(!. 3), the derivative

loss of (1. !)-(!. 3) causes difficulty again. In addition9 we can not expect the
solution n(t) of the wave equation part to have a smoothing property. However,
we can derive the smoothing effect for the solution E(t) of the Schrodinger
equation part by using the smoothing effect peculiar to the Schrodinger equa-
tion (see [4], [7]-[10], [14] and [15]) and the difference between the Schrodinger
equation and the wave equation. Especially in our proof of Theorem 1.2(2)
the difference of the derivative in t between the Schrodinger equation and the
wave equation plays an important role.

Our plan in this paper is as follows. In Section 2 we prepare several lem-
mas needed for the proofs of Theorems 1.1 and 1.2. In Section 3 we give the
proof of Theorem 1.1 and state some results concerning the existence of glo-
bal solutionds for (1. !)-(!. 3). In Section 4 we give the proof of Theorem 1.2.

Finally we conclude this section by giving several notations. Let (e, °)
O ft

denote the scalar product in L2. We abbreviate — and - , l^k^N,todt
dt dxk

and dk,l^k^N, respectively. Let a(N) = oo if #=1, 2 and a(N)=-^-~ if
/V — 2,

N^3. By U(t) we denote the evolution operator of the free Schrodinger equa-
tion. We put O)=^/^A, Jk=xk+2itdk9 l^k^N, and M(t)=e™*M. Let p<E

Co(RN) such that p^O and ||p||Li=l. We put Ps(x)=£~Np(x/e) for e>0. Let
* denote the convolution with respect to the spatial variables. For z^C we
denote by z the complex conjugate of z. In the course of calculations below
various positive constants are simply denoted by C.

§ 2. Lemmas

In this section we summarize several lemmas needed for the proofs of
Theorems 1.1 and 1.2.

We first state two lemmas concerning the space-time estimates of the
evolution operator of the free Schrodinger equation.

Lemma 2.1. (i) Let p and q be two positive constants such that 2^p<^oo
andl/p+l/q=l. Then,

(2.1) \\u(t)o\\Lp^(4^\t\rN/2+N/pMy, /*o.
(ii) Let q and r be two positive constants such that 2^q<a(N) and (N/2—
N/q)r=2. Then, there exists a positive constant K-^ depending only N and q
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such that

(2-2) \\U(-)i>\\Lr^L'^KM\L** »^L\

(2.1) in Lemma 2.1(i) is the well known Lp—Lq estimate and (2.2) in Lemma
2.1(ii) is the Strichartz estimate. For the proof of Lemma 2.1, see [5, Lem-
ma 1.2], [6, Proposition 4.4] and [16, Corollary 1 in §3].

Lemma 2.2. Let q, r, q' and r' be four positive constants such that l^q',rf

^2, l/q+l/q' = l, l/r+l/rf=l, 2^q<a(N) and (N/2-N/q)r=2. Let I be any
interval in R. There exists a positive constant K2 depending only on N and q1

such that

(2.3) || U(t-s)f(s)ds\\L-u -, L»>
Jo

Remark 2.1. (1) The constant K2 in Lemma 2.2 does not depend on the
interval /. (2.3) still holds with 1= R.
(2) In fact, a slightly stronger result holds than (2.3). That is,

(2.4) (' U(t-s)f(s)ds^C(I;L2)
Jo

under the same assumptions as in Lemma 2.2, where / is the closure of/. This
follows directly from the approximation off(t) by a sequence of smooth functions.

Lemma 2.2 is the version of Lemma 2.1 for the inhomogeneous linear
Schrddinger equation. For the proof of Lemma 2.2, see [19, Lemmas 2.1
and 2.2].

We next state the local smoothing effect of the evolution operator for
the free Schrodinger equation (see [4], [14] and [15]).

Lemma 2.3. Let T> 0 and <p e Co(RN).
(i) There exists a positive constant K3 depending only on N, T and <p such that

(2.5)

(ii) There exists a positive constant K4 depending only on N, T and <p such that

(2.6)

Proof. For the proof of Part (i), see [4, Theorem 2.1] and [14, (2) at page
701]. We briefly describe the proof of Part (ii).
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We use a duality argument to prove (ii). Let Q be a bounded open set
which includes the support of <p. Let ®(t, %)eCr((05 T)x^), We denote
(1 — ̂ )1/4 by ^. Then, by using Schwarz's inequality and (2.5) we have

o Jo

S
o Jo

\\BU(t-s)M\\i
o Jo

This completes the proof of (ii), since C?((0, T)x^) is dense in L2(0, J;

We finally state the lemma concerning the properties of the commutator
•/*(0j l^k^N. This will be useful, when we consider the smoothing effect of
(1. !)-(!. 3) in the weighted Sobolev space.

Lemma 2A /*(/), l^k^N, commute with idt+A and we have

(0(2ft9,)M(-0,
s) = U(t-s)Jk(s)

for t, s^R

Lemma 2.4 follows from a direct calculation (see, e.g., [8] and [10]).

§ 3, Proof of Theorem 1.1

In this section we describe the proof of Theorem 1.1.
When we use the standard iteration scheme to solve (1. !)-(!. 3), the loss of

derivative occurs, as stated in §1. In fact, if 1 <:,¥<; 3 and £"eL°°(0, T; Hm)
for some m^2 and T>0, we solve (1.2) to have /zeL°°(0, T; Hm~l). How-
ever, we have only £eL°°(0, T\ Hm~l) by (1.1) when n(=L°°(Q5 T; H™'1).
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Thus, we first consider the following system:

(3.1) idtF+4F-nF-dtn(E0+ (* F ds) = 0 ,
Jo

(3.2) d]n-An-A\E\2 = 0,

(3.3) (-A+l)E = iF-(n-l)(E«+^ Fds),
Jo

(3.4) F(0) - i(4EQ-nQEQ), n(0) - ^ , MO) = *i -

If we formally differentiate (1.1) in t and put F=dfE, we obtain (3.1).
(1.1) is also rewritten as (3.3) in terms of F. The loss of derivative does not
occur for (3.1)-(3.4). This technique was used to solve the fully nonlinear wave
equation in [13].

Proposition 3.1. Assume that l^N^3. If (EQ, nQ, n^<^H2@Hl@L2, then
for some T>0 there exist the solutions (F(t), n(t)) o/(3.1)-(3.4) such that

(3.5) FEE [ n Cy([0, T]; F"20] n Lw(0? T; L4) ,

(3.6) wen Cy([0,r]; Jff1"'),
y=o

(3.7)

where T depends only on N, H^ollff2* IWIf f 1 and H^Hr2. Furthermore,

CJ([0, T\\ L2), £(r)=F(0, £(0)=£0 awrf (£(0, w(0) «^ ^ solutions of (1.1)-

. We put

We note by the Sobolev imbedding theorem that a depends only on N, \\EQ\\Hz9

l l t f i and \\ni\\j*. (2.2) gives us

(3.8)

for some £>0. Since £7(0 is a unitary group in L2
3 we have

(3.9) \\U(^i(AE.-n^\\L^;L^a.

Let T be a small positive constant to be determined later. We put /=(0, T).

We define the Banach space X and its norm |(|-||| as follows:

X = [L"(7; L2) n L8/"(/; L4)]0[^(/; IP) n
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and

^

We put

'
at

We note that Y is a closed subset in X. For (F, n) e T we define the nonlinear
mapping JV[F, w](f ) as follows :

(3.10) N[F, »] (r) = (tfJF, ii] (0,

+ f t7(/-
Jo

(3.11) NJ[F,n](t) = cosc^tJiQ+co"1 sin cot

where

(3.12) E(i) - (-

Since the fixed points (F, n) of N[F, n] are the solutions of (3.1)-(3.4)? we show
that for sufficiently small T>0 N[F, n] is a contraction mapping from Finto F.

We first show that for sufficiently small T>0 N[F9n] is a mapping from Y
into F. Let (F, n)e F. We take the L4 norm of (3.10) and use Lemma 2.1(i)
with p=4 and Holder's inequality with 3/4=1/2+1/4 to obtain

(3.13) \\NJ[F,n

\\F\\LWds.
dt Jo

We take the L*/N(I) norm of (3.13) and use the Hardy-Littlewood-Sobolev in-
equality and (3.8) to obtain
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(3.14)

If we choose 7">0 so small that

then (3.14) gives us

(3.15)

We next take the L~(7; L2) norm of (3.10) and use Lemma 2.2(i) with q'=4/3
and r'=8/(8— JV) and (3.9) to obtain

(3.16)

If we choose T>0 so small that

C( Tl

then (3.16) gives us

(3.17) \\NAF, n]\\L~a;L^2a.

By (3.12) we evaluate E to obtain

(3.18)

o
^ C(a+a1+ r1-Ar/85oz+ r-^da) , (F,n)<=Y.
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Here we have used the Sobolev imbedding theorem at the second inequality.
Accordingly, we have by (3.11) and (3.18)

(3.19)

+ CT(1 + T) (a+az+ T1~

= a+ [T+ CT(l + T) (1 + a+ T1~N/8da+ Tl"NfBd)2a}a, t e /.

If we choose T>0 so small that

T+ CT(l + T) (1 +a+ Tl

then (3. 19) yields

(3.20) \mF9n]\\L-U

On the other hand, we have

(3.21) — N2[FS n}(t) = -G> sin&t
dt

+ ('cosco(t-s) A\E(s)\2ds.
Jo

Therefore, we take the L2 norm of (3,21) and use the Sobolev imbedding theo-
rem and (3.18) to obtain

(3.22) \\-NJiF9 n](i)\\L*

^ a+ CT(l+a+ T

If we choose T>0 so small that

CT(l +a

then (3.22) yields

(3.23) \\
dt
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Therefore, (3.15), (3.17), (3.20) and (3.23) show that for sufficiently small

r>0 N[F,n] is a mapping from Y into Y, In the same way as above we

obtain

(3.24) \\\N[F,n]-N[F'9 nf]\\\^±\\\(F, *)-(*", /i')||| ,

for sufficiently small T>0, which implies that N[F, n] is a contraction map-

ping from Y into Y. Accordingly, there exist the unique fixed points (F, n) of

N[F, n] and E(t) is determined by (F, ri) in terms of (3.12). These (F, n, E) sat-

isfy (3.1)-(3.4) in the integral form and

(3.25) Fe=L-(7; L2) n L8/"(0, T; L4),

(3.26) »e n W3'>°°(I; H1-*),
j = Q

n 77^ Fc^T^CT- TJ2\\3 • & I) JZi tn JL/ ^J[ , JTZ ̂  .

(3.25)-(3.27) and the standard argument show that (F, /z, F) are the solutions of

(3.1)-(3.4) satisfying (3.5)-(3.7) (see, e.g., Remark 2.1(2)).

We next prove that FeC!([0, T]; L2) and —E(t)=F(t). We differen-

tiate (3.3) in r to obtain

fifr A

--faffirr- .dt Jo

On the other hand, (3.1) gives us

(3.29) (-J+1)F - iA-F-(n-l

, ,-u , . Fds)m
dt Jo

Therefore, —E(t)=F(t) in H~2. Furthermore, by (3.28) we have
dt

(3.30)
at at

at
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The right hand side of (3.30) is in C([0, T]; L2), Accordingly,
C\[Q, T] ; L2). By (3.3) and (3.4) we have

(3.31) (

which shows E(0)=E0.
It remains only to show that £"eL8/jV(0, T\ W^\ which follows directly

from (1.1), (3.5) and the regularity theorem of the elliptic equation.
Therefore, (E(t), n(t)) are the unique solutions of (1. !)-(!. 3) satisfying

(1.6H1.8). m
In the same way as in the proof of Proposition 3.1 we have the following

proposition.

Proposition 3028 Assume that 1<^N<^3.

(1) Let m be an even integer with m^4. If(E0, nQ, n^Hm®Hm~l@Hm-2, then
for some T>0 there exist the unique solutions (E(t), n(tj) of (1. !)-(!. 3) satisfying
(L9)-(L12) with T replaced by T, where f depends only on N, \\EQ\\sm9 \\n0\\Hm-i

(2) Let m be an odd integer with m^3. If(E0, n0, n^Hm@Hm-l@Hm~\ then
for some f>0 there exist the unique solutions (E(t), n(t)) of (L1)-(L3) satisfying
(1.13X1.16) with T replaced by f, where f depends only on N, \\EJ(\Hm, \\n^\\Hm-i

Remark 3.1. We note that in Proposition 3.2 f depends on the higher or-
der Sobolev norms of (E0, n0, n^ than the norms of H2@Hl@L2 and that f
is less than T given by Proposition 3,1.

We omit the proof of Proposition 3.29 since it is similar to the proof of
Proposition 3.L

We can complete the proof of Theorem 3.1(2)-(3)9 if we prove the following
proposition.

Proposition 330 Assume that 1^JV^3. Let m be an integer with

and let (EQ ,n0, n^Hm^l@Hm@Hm-\ If Theorem 1.1 holds for m, then Theo-
rem 1.1 also holds for m+l.

Proof. Let (E(t)9n(tJ) be the solutions of (1. !)-(!. 3) satisfying Theorem
1.1 for m. Since (EQ,n^n^^Hm+l@Hm®Hm-\ by Proposition 3.2 and the
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uniqueness of solutions we conclude that (E(t), n(tj) satisfy Theorem 1.1 for
m+l with T replaced by f.

We prove Proposition 3.3 only in the case where m is even, since the proof
for odd m is the same. Let fmax be the maximal existence time of the solutions
(E(t),n(t)) in Hm+l®Hm. That is, for any T with Q<T'<fmax (E(t),n(tJ)

satisfy (1.13>(1.16) with T and m replaced by T and m+l. If fmax>T, the
proof is completed. We suppose that fmax^T and derive a contradiction.
We divide the proof into three cases.

Case 1. Let m be an even integer with m^6. Since (E(t),n(tJ) satisfy
(1.13)-(1.16) with Tand m replaced by T and m+l for any T with Q<T'<fmax,
we differentiate (1.1) m/2—l times in t and once in xk, l^k^N to obtain

(3.32) idt(dkdV

y=o

inL2, l^k^N

for 0^^<riMC^. By the assumption that Theorem 1.1 holds for m, we have

(3.33) d?*-l-'nGL-(Q, J; #4) , 0^ j^

(3.34)

(3.35)

(3.36)

Therefore, by (3.32)-(3.36) and the Sobolev imbedding theorem we obtain

(3.37) p^

+c
o y=o
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+c\T||«M|0r/2-
Jo

+c'
Jo

o

for t e[0, fmM) and 1 <ik<LN. (3.37) and Gronwall's inequality yield

(3.38) dkdfl

By differentiating (1.1) m/2—2 times in t, we have

(3.39) zS/d^

y=o

Since Theorem 1.1 holds for m, we easily see by the Sobolev imbedding
theorem that the right hand side of (3.39) belongs to L°°(0? fmax; H3). There-
fore, by (3.39), (3.38) and the regularity theorem of the elliptic equation we
obtain

(3.40) d^2-2EGL"(Q, fmax;

Repeating this procedure, we conclude that

(3.41)

(3.41) and (3.2) imply that

(3.42)

(3.43)

(3.41)-(3.43) assure that by Proposition 3.2 we can extend the solutions (E(t)
n(t)) as the solutions in Hm+1@Hm beyond t=fmax. This contradicts the de-
finition of fmax.

Case 2. Let m=4. Since (E(t),n(t)) satisfy (1.13)-(1.16) with T and m
replaced by T and m+l for any T' with 0<T'<fmax9 we have by (1.1)

(3.44)

We differentiate (1.1) twice in t and once in xk9 l^k^Nto obtain
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(3.45) tdtftfEl+WtfE)

= S (?) [(d^n)(d{
J=0 \J/

mH~2, Q^

We rewrite (3.45) as the integral form:

(3.46) 949f£(0 = tf(00*8?E(0)

' 2-'/i)(8.8#)}] ds ,
j=»

We take the Z,4 norm of (3.46) and use Lemma 2.1(i) to obtain

(3.47) \\dk

+ C± (' |/-*
y=o Jo

j=o Jo

By the definition of fmax we note that dkd
2
tE<=Ls/N(Q, T'; L4) for any T with

. By the assumption that Theorem 1.1 holds for m=4, we have

(3.48)

(3.49)

Therefore, by (3.47)-(3.49) and the Sobolev imbedding theorem we obtain

(3.50) \\dk

C+C | r-j
Jo

By Lemma 2.1(ii) with q—4 and r=&]N we have
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(3.51) \\U(-)dkd*E(0)\\L*€=L*»(R) .

Accordingly, (3.50), (3.51) and the theory of the Volterra type Integral equation
show that

(3.52) dkd
2E^L*'"(Q, fmax; L4) , l^k^N ,

We next take the L°°(0, fmax; L2) norm of (3.46) and use Lemma 2.2 with
q'=4/3 and r'=&/(S-N) to obtain by (3.48) and (3.49)

(3.53)

in the same way as (3.47). (3.53) and (3.52) show that

(3.54) dkd]E eL~(0, f max; L
2) ,

We differentiate (1.1) in t to obtain

(3.55) id2E+A(dtE) = (dtn)E+ndtE in L2 , Q^

(3.48), (3.49) and the Sobolev imbedding theorem imply that the right hand
side of (3.55) belongs to L°°(0, T; Hl). Accordingly, (3.54), (3.55) and the reg-
ularity theorem of the elliptic equation give us

(3.56)

Repeating this procedure, we have

(3.57)

(3.57) and (1.2) imply that

(3.58)

(3.59)

(3.57)-(3.59) assure that by Proposition 3.2 we can extend the solutions
(E(t)9n(t)) as the solutions in H5Q)H4 beyond t=fmax. This contradicts the
definition of fmax.

Case 3. Let m=2. Since (E(t),n(t)) satisfy (1.13)-(L15) with T and m
replaced by T and m+l for any T' with 0<T'<fmax, we have by (1.1)

(3.60)

We differentiate (1.1) in t and xh9 l^k^Nto obtain
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(3.61) idt(dkdtE)+j(dkdtE) = (dkdtn)E+(dtn)(dkE}

+(dtn)(dfE')+n(dtdiE) in H~2

for 0<,t<f max and l<*k^,N. We rewrite (3.61) as the integral form:

(3.62) dhdtE(t) =

-i U(t-S)[(dkdsn)E+(d,n)(d,E)
Jo

We take the L4 norm of (3.62) and use Lemma 2.1(i) to obtain

(3.63) ||

+ C\' \t-s\-
JO

By the definition of fmax we note that dkdtE^L%!N(§, T'; L4) for any T with
0<r'< fmax. By the assumption that Theorem 1.1 holds for m, we have

(3.64) 6>>«eL°°(0, T; H1"5), j=0, 1,

(3.65) 6>J^ eL°°(0, T\ H2~2i), j=Q, 1,

(3.66) d{'£ e L8/^(0, T; PF2-2j''4)s j =0, 1 .

(3.63)-(3.66) and the Sobolev imbedding theorem give us

(3.67) \\dk

+c | t-s
Jo
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On the other hand, by (1.2) we have

(3.68) d]n-An

Since we have by (1.1)

AE.

we obtain by (3.68)

(3.69) d]n-An = 2 £j | VE, \ 2+2 2 Im dtEjE,+n \ E \ 2

;=i /=i

(3.69) yields

(3.70) ||

o ; = i

o y=i

[ 2 (||

C (\\(9kn)\E \*\\L
o

By the definition of fmax we note that d/n, 9A9^eL~(0, T';L2) for any T

with 0<r'<ffflM. By (3.64)-(3.66) and the Sobolev imbedding theorem we
obtain

(3.71)

o y =
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+c '
o

+ C (' (\\dA\A\E\\l-+\\n\\L<\\E\\L~\\dkE\\,<) ds
Jo

Inserting (3.71) into (3.67), we have

(3.72) \\dkdtE(t)\\

+c I t-s | -»'\c+c
Jo o

Here at the second inequality of (3.72) we have used the following identity:

| t-s | (4-")/4|| W5||£4 & .

Lemma 2.1(ii) with q=4 implies that the first term at the right hand side of
(3.72) belongs to L8fN(R), and (3.66) and the Hardy-Littlewood-Sobolev inequal-
ity imply that the second term at the right hand side of (3.72) belongs to
L°°(0, fmax) for #=1,2 and to L8(0, f ma x) for #=3. Therefore, (3.72) and
the theory of the Volterra type integral equation yield

(3.73) dhdtEs=L*»(09 Tmax' L
4) , l^k^N .

We next take the L°°(0, fmax; L2) norm of (3.62) and use Lemma 2.2 with
#'=4/3 and r'=8/(8-#) to obtain by (3.64)-(3.66) and (3.71)
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(3.74) llWnU-co.r^z-)

in the same way as (3.72) . (3.74) and (3.73) show that

(3.75) 9A9,E€=L-(0, ?«,; L2) , l

(3.64)-(3.66) and the Sobolev imbedding theorem imply that the right hand
side of (1.1) belongs to L"(0, T; H1). Accordingly, (3.75), (3.65), (1.1) and
the regularity theorem of the elliptic equation give us

(3.76)

(3.76) and (1.2) imply that

(3.77)

(3.78)

(3.76)-(3.78) assure that by Proposition 3.2 we can extend the solutions (E(t)9

n(t)} as the solutions in H3®H2 beyond t=fmax. This contradicts the defini-
tion of fmax.

Thus, the proof for even m is complete. In the same way as above we can
prove Proposition 3.3 for odd m. M

By combining Propositions 3.1, 3.3 and the induction argument we obtain
Theorem l.l(2)-(3). Thus, the proof of Theorem LI is completed.

We conclude this section by giving the following theorem concerning the
existence of global solutions for (1. !)-(!. 3).

Theorem 3o4e (1) Assume N=l. Let m be an integer with m^2. If

(EQ,ns,nd<=Hm®Hm-l®Hm-2 and n^H"1, then the existence time T of the

solutions in Theorem 1.1 can be chosen as T^ + oo. Furthermore, if EQ, nQ, n^

0 m=iHm and n^H"1, then the solutions E(t, x) andn(t, x) are in Coa([0, oo) x R).
(2) Assume N=2. Let m be an integer with m^2. There exists 3>Q such

that if(E0, nQ, n^Hm®Hm-l@Hm-2, n^H"1 and ||£'0||L2<^, then the existence
time T of the solutions in Theorem 1.1 can be chosen as T= + oo. In addition, if

EQ,nQ, and n^ are in n«=i#w, then the solutions E(t,x) and n(t,x) are in

C-([0, oo)xJB2).

The a priori estimates needed for the proof of existence of global solutions
are already established by C. Sulem and P.L. Sulem [173 Proof of Theorme 2]
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and by H. Added and S. Added [1, Proof of Theorem] (see also [12]). The proof

of the a priori estimates requires the assumption n^H""1, because the energy

identity of (1. !)-(!. 3) contains the H'1 norm of nv Those a priori estimates

and Theorem 1.1 show Theorem 3.4.

§ 4. Proof of Theorem 1.2

In this section we give the proof of Theorem 1.2. We first describe the

proof of Part (1) of Theorem 1.2.

Proof of Theorem 1.2(1). Let (E(t\ n(tj) be the solutions of (1.1)-(1.3) in
the class of Theorem 1.1.

We first assume that m is even. Then we can easily see by (1.1) that E(t)^

O/2+i([0, Tmax); H~2), We differentiate (1.1) m/2 times in / to obtain

(4.1) idt(d^E)+A(8^E) = S (m/

y=o V J

We rewrite (4.1) as the integral form:

(4.2) d'^E(t) = U(tW>E(Q)

-i (' U(t-s) 2 (mj2) (d?*-in)(d{E) ds ,
Jo y=o \ J /

Since (E(t), «(?)) are in the class of Theorem 1.1, we have

(4.3) £enV([0,rMM);/f»-20,y=o

(4.4) £e nVy'^(o, T; W^21'^, Q<T<Tmax ,
J = 0

(4.5) i fen
y=o

and if

(4.6) n e n C'([0, r^,) ; H^~^} .
y=*

On the other hand, by the Sobolev imbedding theorem we have
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(4.7) ||S (m/2) W-'n
y = 0 \ J I 3 = 0

(4.3)-(4.7) give us

(4.8) S (m/2) W*-'ri)(diE)e=LV»(09 T; I2), 0<T<Tmax .
j=o \ J /

Noting 6^/2E(0)eL2, we apply Lemma 2.3 to (4.2) and use (4.8) to obtain

(4.9) d^2E GE L2(0, T; #1/2( ( x | < J?)) ,

0<T<TmMS9 R>Q.

We differentiate (1.1) m/2—l times in r to obtain

(4.10) idt(d?fl

J

(4.3), (4.5)? (4.6) and the Sobolev imbedding theorem imply that the right hand
side of (4.10) is in L°°(03 T; H1) for 0<T<Tmax. Therefore, (4.9), (4.10) and
the local regularity theorem of the elliptic equation yield

(4.11) 6>r/2-^eL2(0, T; H5'2(\x\ <R)) , 0<T<Tmax , R>0 .

If m/2— 1<0 ?we repeat the same argument as above until we have

(4.12) E 6EL2(03 T; Hm+1/2( | x | <H)) , Q<T<Tmax ,

Thus, the proof for even m is completed. We similarly prove Theorem
1.2(1) for m odd. 11

We next state the proof of Part (2) of Theorem 1.2.

Proof of Theorem 1.2(2). We prove Theorem 1.2(2) only in the case where
m is an even integer with m^6 and k=2, since the proof for the other cases is
the same.

Let (E(t), n(t)) be the solutions of (1. !)-(!. 3) in the class of Theorem
1.2(2) for any T with Q<T<Tmax. Let T be an arbitrarily fixed constant with
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Q<T<Tmax. We put ne(t)=pn*n(t) and put

We note that ws(r)eCw/2+1([0, T]; #s) for s>0 and 4(7if)^(n). Let
such that EQs-*E0 in JYm>2 as s->0 and ll^l^"'^^^!^*^. We consider the
following linear Schrodinger equation:

(4.13)

(4.14)

By the theory of evolution equation we have the unique solution E^(t) of (4.13)
and (4.14) such that EtGCm/2+\[Q, T]; H5) for ^>0 and

(4.15) P^8IU-(o,r;^-^)^Q5 Q^j^m/2,

where Q depends only on T5 A(ri), \\E0\\Hm and JV but not on e. We put gi(x)=
(1 + j *// 1 2)~2 for a positive integer /. A simple calculation gives us

(4.16)

(4.17)

where C2 and C3 do not depend on /.
We consider the scalar product in L2 between (4. 1 3) and (1 + 1 x \ 2)g](x)Ez(t)

and take the imaginary part of the resulting equation to obtain by (4.16)

(4.18)

+ C T S 11^̂ 11^11(1+ 1 x\t^glEt\\1? ds
J Q J = 1

+ C
o y = i

(4.15), (4.18) and Gronwall's inequality yield

(4.19)

where C4 depends only on T5 H^olljy^'2' ^(X) an(i ^ t)ut not on / and e. Let-
ting /->oo in (4.19), by Fatou's lemma we obtain
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(4.20) IKl+WWIU-co.r^Q-

We next differentiate (4.13) in xk, l^k^N and take the imaginary part of the
scalar product in Lz between the resulting equtaion and (l+\x\2)g2i(x)dkEe(t)
to obtain by (4.18)

(4.21) ||(14H*l2)**iWOII^

+c f [2 ||ft9/^IL-
Jo y=i

O i=o

(4.15), (4.21), the Sobolev imbedding theorem and Gronwall's inequality yield

(4.22) IKl+

where Cs depends only on T, \\E0\\Hm,z, A(ri) and N but not on / and e. Letting
/->oo in (4.22), by Fatou's lemma we obtain

(4.23) ||(l+WW£eIU"(o,r;i*):SQ, l^A:^^.

We take the imaginary part of the scalar product in L? between (4.13) and (1 +
\x\z)2glE,(t) to obtain by (4.17)

(4.24)

+ C T 2
JO 3 = 1

(4.23)? (4.24) and Gronwall's inequality yield

(4.25)

where C6 depends only on T, H^olljEr*1^ ^(n) an(i ^ but not on / and e. Letting
/->oo in (4.25)9 by Fatou's lemma we have
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(4-26)

We next show that if

(4.27) IKl+WW

(4.28) \\(l+\xWdkd>tEt\\L~^T.,L*)C^(q), l^k^N, Q^p^

for some integer q with Q^q^m/2—2, then (4.27) and (4.28) also hold with q
and C(q) replaced by q-\-l and C(q+l\ where C(q) depends only on T, \\E0\\H>»,29

A(ri), N and q but not on e. We differentiate (4.13) q+l times in t and take
the imaginary part of the scalar product in L2 between the resulting equation and
(l+\x\*)gidplEJ(t) to obtain by (4.16)

(4.29)

+c
Joy=o

O j=l

+ 23
y=o

(4.15), (4.29), the Sobolev imbedding theorem and GronwalTs inequality yield

(4.30)

where C7 depends only on T, ll^ollj^'2* A(ri) and JV but not on / and e. Letting
l->oo in (4.30), by Fatou's lemma we obtain

(4.31) H(l+l*l1)vlSJ«£i||L-(o.r;z«)^Q.

We next differentiate (4.13) q+l times in t and once in xk, l^k^N, and take
the imaginary part of the scalar product in L2 between the resulting equation
and (1+ |*|2)g?0A0f+1£e(0 to obtain by (4.16)

(4.32)
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[2 || W'-'aJ

+ 2

o j=i

+ 2 ll

+ 2 I
y=o

(4.15), (4.27), (4.28), (4.31), (4.32), the Sobolev imbedding theorem and
Gronwall's inequality yield

(4.33) ll(l+UI2)1/2^^?+1^lli-(o,r;^)^Q9 l^k^N,

where C8 depends only on T, \\EQ\\Hm,2, A(n) and N but not on / and e. Letting
/->oo in (4.33), by Fatou's lemma we obtain

(4.34) H(l+l^l2)Vi9f+1^IL-(o.r;L«)^C8f l^k^N .

We differentiate (4.13) q+l times in t again and take the imaginary part of the
scalar product in L2 between the resulting equation and (l+\x\*ygiE9(t) to ob-
tain by (4.17)

(4.35) ||(i+|*|̂ ier̂ »^

S t q + l
2 I|8!+1-'«.IU-II(H- 10 J = 0

(' E 11(1+
Jo y=i

2
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(4.15), (4.27), (4.28), (4.34), the Sobolev imbedding theorem and Gronwall's
inequality yield

(4-36) -(0.r , i
2)

where C9 depends only on T, \\EQ\\sm,2, A(n) and N but not on / and e. Letting
/->oo in (4.36) by Fatou's lemma we obtain

(4.37)

Hence, (4.23), (4.26) and the induction argument imply that

(4.38)

(4.39)

where C10 and Cu depend only on T, \\E0\\Hm.z, A(ri) and N but not on e.
Noting that E0e^S and n,<=Cm/2+1([0, T]; Hs) for j>0, we can simi-

larly show that (l+|x|2K/2£sL~(0, T;L2) and (1 + | x \ 2)lI2dhd^'2E e
L~(0, T; L2), 1 ̂ k^N. We differentiate (4.13) m/2 times in t to obtain

(4.40) idt(

= 2
j-o \ J

We rewrite (4.40) as the integral form:

(4.41)

-i U(t-s) j (d^n^d'E,) ds ,
j=o \ J

By (4.41) and Lemma 2.4 we obtain

(4.42)

s) 2
y=o \ J

We take the L2 norm of (4.42) to obtain

(4.43) \\Jld^2

S
o j=o
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^ C+C [' s* 2
Jo y=o

f ^"s'lllW^-'wJMI
Jo J=o

+ C [' s*\\dhnt\\L-\\dk(M{-S)d^Et)\\L* ds
Jo

+ C

1=1

On the other hand3 by the Sobolev imbedding theorem and the interpolation

inequality we have

(4.44) P*(M(-*)

(4.45)

(4.43)-(4.45), (4.15), (4.38), (4.39) and the Sobolev imbedding theorem give

us

(4.46) 2 \\rt<



ZAKHAROV EQUATIONS 359

S \\dk(M(-s)d^Es)\y ds
*=i

+c (' s'lklU* s
Jo k=i

13 (2s)2 S |
o *=i

o *=i

where C& and C13 depend only on T, \\E0\\Hm,2, A(ri) and N but not on e. (4.46)
and Gronwall's inequality yield

(4.47)

N

= 2
k=l

where C14 depends only on T, \\E0\\ffmi2, A(ri) and N but not on e.

We can easily see that

(4.48) E9(t)-+E(t) in "n C>([0, T]; #--20
y=o

as e->0. Therefore, (4.47) and (4.48) imply that

(4.49) and the definition of M(i) show that

(4.50) d™'2E eL°°(r, T; H\ | x

0<r<r,

We differentiate (1.1) m/2—l times in t to obtain

(4.51) /(

y=o \ J

Since (£(f), /i(0) is in the class of Theorem 1.1(2), the Sobolev imbedding theo-
rem implies that the right hand side of (4.51) belongs to L°°(0, T; H2). There-
fore, (4.50), (4.51) and the local regularity theorem of the elliptic equation give
us
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(4.52) d? /Z~1E e L"(r, T; H*(\x\ <JR)) ,

0<r<T5 R>0.

Repeating the above argument9 we conclude that

(4.53) E eEL"(r3 T; H™+2( \ x \ <cR)) ,

0<r<T, R>00

Thus, since T is an arbitrary constant with 0<T<Tmjlx9 the proof is com-
pleted in the case where m is an even integer with m^6 and k=2.

In the same way as above we can prove Theorem 1.2(2) for the other
cases, H
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