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§1. Introduction

In this paper we shall prove an uniqueness theorem for the Cauchy problem

for certain elliptic differential operator P(x, D) in a neighbourhood of the ori-

gin in R" of order m>1 with C=-coefficients and the principal symbol P,(x, &)
of the form

Pm(x’ £) = Ql(x’ 5)2 Qz(xa £) (11)

where Q; (i=1,2) is a homogeneous polynomial in ¢ of degree m; with C>-
coefficients such that
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if m;>1, for every &' R*'\(0) the zeros = of 0,0, (z, ")) are non-real and
simple.

Our theorem is an extension of the Watanabe’s theorem [6] in case of C=-
coefficients. Our main result is the following.

Theorem 1.1. Let P(x, D) be a differential operator in an open neighbor-
hood 2 of the origin in R" of order m>1 with C*-coefficients and the symbol
P(x, &). Let P(x,&)=P,(x, &)+---+Py(x, &) with homogeneous polynomials
P(x, &) in & of degree j. We assume the followings.

(1) The principal symbol P, of P takes the form (1.1) with Q; as above.

(i) If P,=0;, P,=0} P,=0 at (0, (v,, 7,)) with non-real ©, and 7,& R*~*\(0),
there exists an open conic set I' in 2 X (C"\(0)) containing (0, (z,, 7,)) satisfying
the following condition.

(ICI I(aﬁ Pm) (x9 C)I + I(az Pm) ()C, C)I)I‘Pm-l(xa C)I
S C| P, O 1P| Py, ORI 4 | (Pt Pr-p) (x5, O] 1|
+ (14| ¢ | )msn-Gr2))
for (x, O)ET with (0, P,,) (x,{) =0.
Under the assumptions (i), (ii) there exists an open neighbourhood 2'C 2 of the
origin in R" such that every ue C*(2) satisfying P(x, D) u=0 in 2 and u|, <,=0
vanishes in 2'.
Now, we give simple examples of differential operators P(x, D) satisfying
the assumptions of Theorem 1.1.

Example 1.1. Let p(x, &)=(£,—i&,)? (§,—i&,—a(x) &) and q(x, £)=b(x) &;*
where a, b are C>-functions in an open neighbourhood of the origin in R:. We
assume that a(0)=0 and |b(x)||da(x)|<C|a(x)| near the origin. Then
P(x, D)=p(x, D)+q(x, D) satisfies the assumptions in Theorem 1.1.

Indeed we have 0; p=3(£,—i&,) (El—zfz—— a(x) &,). When &,—i&,—

?a(x) £,=0, (x, £)E R?*XC? and when |x'| is small we have that

(18, p|+10epl€])q] <C(ldal |b]+|al)|al?|&|°,
[p||€]2=08]a|® |&,]° for some &>0.

Thus the inequality in the assumption (ii) in the theorem holds when &,=i&,+
% a(x) &, (x, )€ R*xC? and |x’'| is small. This means that the assumption
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in the theorem holds for P(x, D).

Example 1.2. Let p(x, &) =(Ei+ - +EL2 (E3+ -+ +E&2+a(x', &) where
a(x', &) =|x"|#(E5+ - +E+xFr2 &5+ oo +xZrn EZ with k, k;EN, k;>k>0.
Here we use a notation that x'=(x,, -+, x,). Let q(x, &)=c,(x, &") &1+cy(x, ')
where c,, ¢, are respectively homogeneous polynomials in &' of degree 4, 5 with
C=-coefficients in an open neighbourhood of the origin in R". We assume that
ey, OS]+ eolx, O K< C | x"| |£]|® for small | x| and L &C**. Then P(x, D)
=p(x, D)-+q(x, D) satisfies the assumptions in Theorem 1.1.

Indeed we have 9¢, p=6(&2++++&2) 51(5%+---+£?,+% a). Assume that

5§+-..+55+%a:o, (x,£)€ R*XC" with 11m5'|<~;_|1ee5'1 and |x'| is

small. Then |[x'||0,;a|<C|a| and |0 al||é|<C|a|, because |a|>
8|&"|?| x| * for some 6>0. Since |8, p|+|0sp||E|<C(|0, al+|0¢allé])

|a|2and |p]||€& ]5=%lal2|5 |, the inequality in the assumption (ii) in the theo-

rem holds. This means that the assumption in the theorem holds for P(x, D).

The main part of proof of Theorem 1.1 is to derive Carleman estimate for
some third order elliptic operators in the following proposition.

Proposition 1.1. Let P=p(x, D)+q(x, D) be a pseudo-differential operator
on R" with p(x, £), q(x, &) of the form

p(x, &) = (E,—A(x, ENY(E,—A(x, EN)+e(x, &), 2, cEST o(R* X R*Y);
q(x, &) = _éoaj(x, EVE], afx, E)ESIF(R"XR™)
with C | Ima| ><E, [ ImA(x, £")| >2|c(x, €")|. Assume that

(18, 21+ 18 pLIE'DIGISCIPI (1 pI™ &1+ | p+ql |€7]+6]%2+1)

for all (x, )ER"X(C X R"™) with ¢ p(x, E)=0. Then there exist constants
7,>0 and C,>0 such that if tT?>7, and T~>r,,

T2 3% |[Eqai-ignz P& Ul ull|Fs < G || Pul| P, ue Sr(R") .

1<|@] +iB|<2

Here, by definition
SHAR" = {usS(R"); suppuc [0, T]x R* %}

where S(R") denotes the space of all rapidly decreasing C*-functions on R";
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Il = 1D ull ey for we SCR;
Wi, = 53 -itei T=n3 |y DLl for ue SR,

4 1SS

ijez,

§s=0,1,:,6,T>0,
where Z,. denotes the set of all non-negative integers and

1

Dk :—_a Es_—"<Dl>s;
1

xp?

P{g =02 85(p+4)] (x, D) .

The assumption (ii) in Theorem 1.1 is a translation of that of the above
proposition. The assumption in the proposition ensures a factorization of
P in the proposition into first order operators being differential operators in x,
and pseudodifferential operators of Beals-Fefferman’s class in x’.

When c¢(x,£)=0 in the above proposition, our assumption on P makes
no condition on ¢(x, ). Carleman estimates for elliptic pseudo-differential
operators with smooth characteristics of arbitrary high multiplicity were studied
by Watanabe-Zuily [7]. But our result is stronger than theirs in our case.

This paper is organized as follows. We devote ourselves to prove Propo-
sition 1.1 from §2 to §7. Theorem 1.1 is proved as a corollary of the propo-
sition in the next two sections. In §2 we carry out local factorization of the
operator P in Proposition 1.1 modulo negligible terms. In §3 we derive local
Carleman estimates for factorized operators. In §4 we prove Proposition 1.1
by patching local Carleman estimates which follow from the results in §2 and
§3. Several facts on pseudo-differential operators used to prove Proposition
1.1 are collected in §5. In §6 we prove Carleman estimates for first order
factors which are essential in the argument in §4. In §7 we prove lemmas in
§3 on symbolic calculus. In §8 we prove the invariance of the assumptions in
Theorem 1.1 under changes of variables such as y,=x,—¢(x"), y;=x;(j >2)
where p & C= with ¢(0)=0, dp(0)=0. In §9 we prove Theorem 1.1 using the
result in §8, Proposition 1.1, and theorems of Calderdn [2], Mizohata [5], and
Hérmander [4].
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§2. Factorization
Let 2, cE81 o(R" X R*") satisfying
ClIma(x, )| =<,
2lelx, EN| < [Ima(x, &")].

Let
p(x, &) = (6,—2(x, £ (6,—2(x, £)+c(x,€7),
g(x, &) = S a(x, &) (E,—2(x, £))  with a;ESTH(R" X R*™),
j=0
and set
P=ptq.
We have
651 p(x, &) = 3(&1—24(x, €)) (61— A(x, €)
with
2
h=2k=2—Cc.
Then,

p@£%=m—MmFW@rwwﬁww&£»+%dmeﬁ

Since 2,—4, =% ¢, g can be expressed as

2 .
40, €) = 33 by, €) (=4 €, 1=1,2

with by;=a;, b,; € STJ/(R" X R*™) satisfying
by;—by; = cd; for some d;ESi/(R"XR"™).
Setting
4
&=by, &= 57 SEtby, o =(—1fc

for /=1, 2, and
pi(x, &) = (E1—=2,(x, ENP (6, —2(x, &) —c/(x, E))+g/x, &)

we have

H%ﬁ=m®ﬂ+ghp£0@—MLﬁ%

367

@.1)
2.2)

(2.3)

(2.4)

2.5)

(2.6)

@7

2.8)

2.9)

(2.10)

(2.11)

(2.12)
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Now we deduce the estimates of derivatives of g, from the assumption of
Proposition 1.1.
Lemma 2.1. Assume that
(18, p+10epl 16" DIgI <CIpI*P(IpI"BIE" 1>+ |P| €]+ |€'[7+]) (2.13)
when 8 p(x,£) =0, (x,&)ER"X(Cy, xRy ).

Choose x = C=(R) satisfying x(t)=0 when tg% and x(t)=1 when t>1.
Define ©,=C=(R"xR"™) by

AT N —3/2
O 8N = E s (<8 €0 <57
— -1 ~3/2
where {z>=(1+|z|)"* for z&C. We also define o, C~(R" X R*™") by
@)%, &) =<EDID(x, &) (2.15)

Then, we have
|05 08 g1(x, €")| < Cop BF1PU(x, ') @7'*\(x, &) forany e, B. (2.16)

Proof. From (2.6), 9¢, p=0 means that &,=2,(x, ") or &;=2(x,&"). If
&1=2(x, &),

8., p(x, &) = —;‘— ©0,,6) (%, ") e(x, &',
0e,p(x, &) = g (05, ¢) (%, &) c(x, &),

P, &) = 54; (%, 6, q(x, &) = bu(x, &) ,

P(xa E) = gz(x, 5') .
So from (2.13),

(3} 10,1+ 33 1, ¢l 1€/ 1wl SCllel 1€'[1+ gl 1€+ 1671 511).

(2.17)
Now we shall show (2.16) for /=1, 2. First we have
4 al gl AP OIN-16)
0% 8%, g)(x, £') = — LY S , &'
g%, &) 27 5v. 10[2@ o T2 (@1 5 ]:[1 c(x, &)
R 1BD=4

+8% 08, by(x, £) . (2.18)
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We note that
CXEDLD,KCLED, CKEDM<Lp,<C forsome C. 2.19)

To estimate the second term on the right hand side of (2.18) we show that for
each /

|0 8% alx, £)| < Cpp O77'FI(x, &) 7'*I(x, &)

if a8} (R"XR"") and |a|+]|B]|>0. (2.20)
Indeed, from (2.19)
e = (P7%(x, &) <€) Di(x, €)
<C(PTH(x, £)<ED) Pilx, £7) 5 (2.:21)

and from (2.15)
(D7(x, &) EDYIHBLLE DI = 07 PI(x, £) @71*1(x, £) . (2.22)
Thus, if |a|+|B8] =1, using (2.19), (2.21) we get
|8% 08 alx, £")| < Cpp <€D 1P
S Cog(@7(x, £7) ED) Di(x, £7) <&M
SCLHDT(x, £ KEDYN P D(x, £7) LE DI

This inequality and (2.22) mean (2.20). From (2.18) and (2.20), in order
to show that (2.15) holds when |@ |+ | 8| >0, it suffices to show that

|11 929 8% c(x, £')| < C,p O3 1PI(x, £') 97'#1(x, €")
i=1
when |a|+|4]>0,31a® —a, 319 = 4. (2.23)
i=1 i=1
Set

4; = {(x,§VER"XR*™; Oy(x, £)< | e(x, 1)},
4 = {(x, EVER"XR*™; @y(x, )= |e(x, £} .

Case 1. Assume (x, £'Y=A4,. We devide our argument into two subcases:
|a® |+ 9| L1 for any i, (2.24)
la®|4+]pP|>2  for some i. (2.25)

First we assume (2.24). Put J={i; |a®| 4| % | &0} and choose i;&J. Then,

. . (i) g B ’
T 030 089 o(x, &) = 2 gy(x, ) 1 % 0 0 &)
i=1 4 ier c(x, ')
(i) 5B) 4
27 b, ey [ 90508 _p gy 2.26)
4 ier c(x, £ )
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Since §(J)=|a|-+| 4|, and since (x, £)E 4,,

[T < C(@yfx, £7)7KED)IFIPLCEHIPL @(x, £7) . (2.27)
On the other hand, from (2.17) and the same reason as above,

[T | < CLED DI e(x, £ 1€ |24 €| | galx, )|+ | € [F2+1) | c(x, €7) |~
|a$(i) ag(i) C(x, El)l

iET\{ig} ( c(x, EI) I
D O s
SCZ{([c(x, 5')|) Gal
+<[T(<f—’}>'7[>#(])<f’>—m(lg2(x’ £7) | +-<& ")

< C{D7Y(x, &) LED)IIHIBI=L (g 2-1BI
H(@F(x, £7) KE"S)1 B (E5=18l @3 (x, EN} .

Applying (2.21) to the first term in the last expression we get
[T < C(@7(x, &) EDYIHIPLLED7IR Di(x, £7) . (2.28)
(2.27), (2.28), and (2.22) mean (2.23). Next we assume (2.25). We have

with the set J as above,

,_I:Il |82 981 ¢(x, £) | L C, ( ]_cg_;)l )sm KEST | e(x, £7) |3

<G (82D (L €1+ Lo £1)

< G (D7(x, £7) LEDYITBITLLE DB (D(x, 1) +<EP)
because #(/)< |@|+]8| —1. From (2.19), (2.21), and (2.22) we obtain (2.23).
Case 2. Assume that (x, &) € 4,, and define the set J as in Case 1. Noting that
#(/)<min{3, [«|+|B|} we have
TT 1829 889 c(x, £')| < CLE"DHD=1A1 | c(x, €7) [-KD
; S CLENHN=IBL @ (x, &'~

, <E’> lel+iBl ,
<0 (G2 )" e o e,

Thus (2.22) means (2.23). Q.E.D.

Corollary 2.1. O, and ¢, satisfy the estimates
|85 88 O y(x, &) | < Cpp @17'P 07!%I(x, €7), (2.29)
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185 92 @i(x, £)| < Cpp O7'PI(x, €1) 1 ™1*1(x, €7) . (2.30)

One can deduce these from (2.16) by using the following lemma which is
frequently used in the proof of Lemma 2.3.

Lemma 2.2. Let UCR" and VCR" be open sets, let FEC=(U), and
let f+ V—U be C-mapping with f=(f,, ---, f,). Suppose that there exist positive
Sunctions Z(y), N(y) (j=1, ---,n) on U, and M,(x) (e EZY) on V with M, .,
=M My satisfying

|Flg: =sup |8 F()| Z() T N(r)*<+eo,
| filat = sup |8% £ | Ma(x)™ Ny(f(x)) 7 <-o0 .
Set
|F|, =max |F|,, |fl|,=maxmax |f]s.
l¢|<L =1 B<w

i=1,0,

Then

[0%(Fof) ()| < | F (] f [oH D)1=t plt 201021=002 Z(f(x)) Mo (x) for any o

Proof of this lemma is straightforward.

Now we define a symbol class for a pair of positive C= functions @ and
¢ on R" x R*! satisfying that
(1) there exist C>0 and ¢>0 such that

c(1+]&')2<o(x, £)<C(1+1¢')),
c(1+18' N2 <p(x, )< C (2.31)
(i) for any e Z” and S Z" " there exists C,z>0 such that
| 0% 8%, @(x, &")| <Cop O(x, Y18 o(x, )71,
187 88 o(x, ") | < Cyp @(x, £)# @(x, /)11 ; (2:32)

(iii) there exists C'>0 such that

-+ 1e < 2&E) <ot e, 2.33)
o(x, &)

For M, meR we say that a function ac C~(R" x R"*") belongs to the set
Sy if a satisfies the estimates that for any a, # there exists C,>0 such that

0% 0 a(x, £)] < Cop O*~1PI(x, £7) "~1*I(x, &) . (2.34)

@, and ¢; in Lemma 2.1 satisfy (2.31)~(2.33) for each /. Now we shall prove
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the main lemma in this section. This gives a local factorization of P in Proposi-
tion 1.1 into first order factors for which Carleman estimates are deduced in
Proposition 3.2.

Lemma 2.3. One can find two families of a finite number of C* functions on
R"XR", Vit 1er(j=0, 1) with ;50 for any j, k having the following prop-
erties.

() {Yu}ier is a finite partitions of unity of R" X R*™..
) Yo=1 on a neighbourhood of supp ry.
(3) For each kE1 there exists 1€ {1, 2} such that +;, E85,%, and one of the

Sfollowing (T), (I), (III) holds.

D O SUP e rcmpstos] 06 ) OTH(x, E)<+oo.
(%, E)=II3-1(6,—2/(x, £V —A,(x, §")) on a neighbourhood of supp ry,
as polynomials in &, where A J.ES;,-I‘?,,I depending on k with
() infigse [ Im(2(x, £7)+4;(x, £7)[<E">7>0 for some R>0,
(i) infer gremppton | 4,05 E)—A,x, €O (x, £)>0 if j % .
D  pix, )=(E—A(x, £)—ci(x, €)—Ay(x, £) TT7-2(61—A(x, ) —4;(x, &)
on a neighbourhood of supp vry, as polynomials in &, where A J.ESJD-!‘,’(,,, depend-
ing on k with
@) infigri>p [Im(2; (x, €")+A4;(x, &) [KE"D™">0 for some R>0 if j=2, 3,
(i) inf)grsp | Im(A(x, E)+c)(x, E)+Ay(x, £))|<KE"D~>0 for some R>0,
(i) infie trcamppton |05 €| DT, €90,
@) i0fe trcmpppoy €100 €N Ai(x, €)—A,(x, &) | e(x, £)] >0 if j=2, 3,
(V) Ay(x, EN)FA(x, &) for (x, &) Esupp Yo,
there exists an open set U containing supp vy, such that
(vi)  Supq, ener |07 88, A,(x, )| | Ay, €)—Ag(x, €)| 7 OTP(x, £") @71% (x, )
<-too for j=23and acZ", fEZ L.
AID) @,(x, ") CLEDV2 on supp g, for some C>0.
Proof. Step 1. In this step we shall deduce the algebraic equations with

parameters to decompose p;. Set

D, = {(x, ENER" X B*; (g, (x, 5')>>1~33 le (x ED}Y (U=D),

D) = {(x, E)ER" X R™; e {e(x, E))*><gy(x, €N} ,
Dife) = {(x, ENER" X R*; {g/(x, E'>>>§) Lelx €%,

I'(N) = {(x, §)ER" X R*; {g\(x, EN>NLEDY},
Dlj(es N) =T(N) anj(e) NnbD,,



ON THE UNIQUENESS FOR THE CAUCHY PROBLEM 373

Toy(N) = {(x, §VER" X R*™; {gi(x, END<2NLE Y,

where 0<<e<<1, N>1 which are determined in Step 3.
We assume N >500. Then

le(x,€)|>1 on Dy(e, N),
min{|g;(x,£")|;j=1,2}>1 on I'(N)ND,.
We have
Pi(x, &) = ¢ (%, EVU(Z(x, &), wi(x,€E")) for (x,E)EDy(e, N), (2.35)
i, &) = | gi(x, €| S Zi(x, €), Wi(x, E")) for (x,E")EDy(e, N), (2.36)
where
fiz, w) = 22(@z—1)+w, wi, (2.37)
Sz, w) = 22(z—wp)+wy, (2.38)
for z&€C, w=(w,, w,) EC?, and by definition,
Zy(x, &) = ¢)(x, &) N —2(x, E))

5 €)= O, £, e, ) = (1245 DI, 81080, )
I\AVvy l ’

for (x, f’)EDu(E, N),

Zi(x, &) = |gi(x, £')| 7 (&,—2(x, £")

wl(x, ‘E’) = (Wn(X, E’): le(xa E')) = ( IZIE;’ g:;l 4 lgcéix’ffl)l)l 1/3)
[AN44] I\As

for (x,&")ED,(e, N). We have
(Wi, €] =1, |wu(x, )] <263, (2.39)
[Wu(x, €| =1, |Wplx, )] L20e713, (2.40)
If we denote by D(w) the descriminant of polynomial fy(z, w) of Z, we have
D(w) = 2Tw,—4w,®) wy

and
D(w,(x, £1) = 27| gi(x, )| Hgi(x, £+ (=1 ;7 c(x, &) &i(x,¢") .
Using the equality

4 4 . ,
gl+(_1)l+lﬁcs :g1'+(~1)16<—% al_l_? ca2> lf l:!:l
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we see that there exists a constant C, such that
| DG Cx, €7) 22i0 if N?e>C, and N>500.  (2.41)

Step 2. In this step we factorize f,(z, w) as a polynomial in z locally. We
first consider f;(z, w). From the implicit function theorem there exists §,>0 such
that for any pair of positive numbers §, R with 6 R®*<8, there exist holomorphic
functions 4, 4, B in w& B;(0) X Bx(0) satisfying

fi(z, w) = (z—m(W)) (224+24(w) z-+B(w)) for we B;(0) X Bx(0)

with #,(0, w,)=1, #,(w)==0 everywhere, A(0, w,)=B(0, w,)=0. Here, B;(0) de-
notes the open ball with the center at the origin in €” and the radius r. A
simple calculation shows that there exists a holomorphic function D(w) on
B;(0) x Bx(0) satisfying
A(W)Z_B(W) = wl3 D(W)a D(O’ Wz) = —W,.
We take 8, R as 6 =(5,/4)%, R=3.
Then one can choose a positive number 8, with 8,<(8,/4)* and an open

covering {U,;} L1 of (Bs,/2(0)\ {0}) X Bi,2(0)" N B3(0) in C\ {0} X C such that

U; = By O)NU)XBy;, j=1,,k/2 (ki iseven)

Uy = B5,(0NU)XBy;, j=k/2+], - k
where U, U, are two connected open sets in C with angles <2z such that U;U

U,=C\ {0} and B, are open sets in B3(0)\ {0} with U %L, B;; 2 Bi,(0)° N Bz(0),
and such that there exist holomorphic functions #,;,(w) in Uj;, k=1,2 satisfying

£z w) = G—m() IL G—m W), wE Uy, 242)
Cil ) o0 = w122, @43)
Claw)—mpw)| =1, (2.44)

8% ) < [y |97 249)

We also note that
|8%(1—mW)) | [wi|*1< Cf|w|* for we& Bj(0) X B32(0) . (2.46)

Next we take up fo(z, w). We set for R">0, 6'>0 which are to be determined
in the next step

K(R',8") = {weC? | D(w)| 20', |[w| <R’} .
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One can find open balls U,;, j=1, ---, k; in C? and holomorphic functions
4j on a neighbourhood of Uy;, k=1, 2, 3, j=I, -+, k, such that

’ k.
|D(w)[2% on U, and K(R,8)C U Uy, (2.46)
i=1
3
£z w) = U G—mp(w) for wel,. (2.47)

Step 3. 1In this step we shall define a family of non-negative functions in
U .1 85, where sum is greater than or equal to 1 such that on the support of
each one, one of (I), (I), (III), in Lemma 2.3 will holds. We take ¢, N as e=

3
min {—;, <%> }> N=max {500, (C, e}, and we take R’, 8’ in the Step 2 as

213
R'=(1+(@) Yz, a'=21_0. We denote 9, I'(N), Dy, (¢, N) by Dy, T, Dy
&

Choose 2, C*(R), i=0, 1,2 so that 0<¥ <1, supp ¥; (1, o0), ;=1 on [2, o0),
Z;=1 on a neighbourhood of supp%;,; for i=0,1. Define C= functions
v (x, &) on R" X R* ! for i=0, 1, 2 and /=1, 2 by

P = 2,(e<c>*<g D) 7,100 gp>/<g D) X (N~ Kgp <€D,

10 - ~N=
v =x ,(? g [<e>®) 2,100 {gy->[<g ) X (N~ g L&D,

where /==1'.
Then we have that supp /) C D,, and that

éwﬂzl on I'2N)ND, (2.48)

where D,={(x,&)ER" X R*"; {g;(x, & ’)>>51—0 {g/(x,E")D}. Now we define
YD), TO YD e C(R* x R (i=0, 1,2; I, s=1, 2; k=1, 2, 3; j=1, -,
k,) with notations ki, k, in Step 2 where ¥+, (9 are functions stated in
the beggining of this step such that (II) (resp. (I)) in Lemma 2.3 holds on supp
Y19 (resp. supp T>9) and (I11) holds on supp ¥¢+®, and where A4?
(resp. 4429 corresponds to 4, in the case (II) (resp. (I)).

To do so we choose ¢;,;€ C*(C\ {0} XC), i=0, 1,2, j=1, -+, k; and ¢,; €
Ce(Uy)), i=0, 1, 2, j=1, --+, k, so that

supp ¢;5; S Uy;; @5s; = 1 on a neighbourhood of  supp ¢;4y,; for i=0,1;

k - -
Slen; =1 ona neighbourhood of (BL,2(0)\{0}) x BL(0)"\BX0)
ji=1
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in C\{0} xC;
k.
22} ¢»; =1 on a neighbourhood of K(R',9d") ;
i=1
10% @uj(W)| < Cqlwi| ™15 0< ;<1 (2.49)

s 4150 are defined as follows.

v@sN=0, AYP=0 when Di,=¢.

When Du=’= ¢’
T (i, &) = { P i(wi(x, €0) T 0(x, &) (%, E)E Dy,
0 otherwise

/1(11‘1-1') (x, EI) = { cl(xs EI) ('ul(wl(xs E,))_l) @‘(Ol'llj)(xs fl) (xs E,)EDII ’

0 otherwise
AL (x, £7) = { ci(x, €) mp(wilx, £7) wL(x, € (x, eNewri(ly)
0 otherwise
for k=2, 3.
When D,,=0,
gi-(il.2.i)(x’ &) = { Piz;(Wi(x, £7) vYA(x, &) (x,E)VEDy,,
0 otherwise

| 81, €)' poui(x, ) T2 0(x, &) (x, €N EWT(Tyy) -

A(I,Z,j) x,EI ={
* ( ) 0 otherwise

70 is defined by
T = (1—2,-) (57 <gp KEDTANTY.

Since SV, T¢+5 ) >w () from the definition of ®;sj» and since N7.: I'(2N)CS
U.1(I"(2N) N D;), we have that

ks . 2
SIS FEeI>1 on ATE2N)
1=15=1j=1 =1

in view of (2.48). Thus, since U?., 1"(,,(~§~ N) U Ni.iIQ2N)=R"XR*, we
have that

T L g0)>1 (2.50)

Since #¢:3”=1 on a neighbourhood of supp #{-*? for i=1, 2, from
(2.35) and (2.36) we have that the factorization in (i) (resp. (ii)) in Lemma 2.3
holds for (x, &")E supp T2 (resp. supp T{+") with 4, replaced by Ag??
(resp. A§H1D),
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Step 4. 1In this step we deduce the estimates of derivatives of functions de-
fined in Step 3. To do so, we have to deduce the estimates of derivatives of func-

tions {g;» <¢">~%| Iy L Kep | Dy <gimHKer| rinDp KgIKe* | DN Dyy> Wis Wy

Definition 2.1. For an open set U in R"XR*! and a positive function
Z(x,&") on U we set

Si(U, Z) = {asC=(U); |alf)(x, ") | < Cug MU 4(x, E") Z(x, &) for any e, B}
where alf}=0% 8%, a and M{'y=p7'* O7'P!,

Let us consider g, on I';. Since O7'>{g,>"*>+/2"#|g|~# on I'},
Lemma 2.1 implies that

g&ilr, €8Iy, |&l|r,) when I',=%0. (2.51)

When I';+ (), taking in Lemma 2.2 U=TI";, V=R {0}, f=(Re[g;|r,}, Imlg;|r )
F(»)=Z»)=|y|°"6ER), N»)=1y|, Mun=M{%|r, one obtain that

FANMASNCRFANPAE (252)

When I';3=(), one also obtain taking in Lemma 2.2 U=TI";, V=(0, + o), f=
[&1] |7y F)=Ly>"% N(»)=y>, My 5y=M} |, that

gD’ r, €8T, <g>°Ir,) - (2.53)
Next we consider ¢ on D;;. Noting the inequalities

&><ZClcler* on Dy,
1<Clec|®7* on D, (2.54)

we see that (EDIBI<C el c| M) on Dy, when ||| 8] =0. Thus we obtain
¢lp,ES(Dy, ¢l |p,) when Dj=+g. (2.55)
From this and Lemma 2.2, we see that
<>’ p,, €E8(Dyy, {c>°|p,,) when D,=+0, (2.56)
lp,)*ESIDu, (Icl|p, ) for kEZ when D,=*(. (2.57)
We need a lemma which follows from Leibniz rule.

Lemma 2.4. Let Z(x, £') (i=1, 2) be a positive function on an open set U
in R" X R*, and let a,= S(U, Z,) (i=1,2). Then a,a,=S(U, Z, Z,).

From (2.51), (2.52), (2.57) the above lemma implies that when D,; 5@,
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wnES(Dy, [wy|) and wpES(Dy, 1) . (2.58)

Since on I'; the estimates (2.54) with |c¢| replaced by |g;|® and D,, by I"; hold,
we see that

¢l 0, ESi( D2, 1811 p,;) when Dj#Q. (2.59)

From this, (2.51), and (2.52) Lemma 2.4 implies that
W, €E81(Dpp, 1) . (2.60)

Now from (2.53) and (2.56) Lemma 2.4 implies that

g KEDTR r, ST, {g <5'>-3/2]F,) when I')%0, (2.61)
e |p,,ES1(Dpps 1) when Dp0. (2.62)

From (2.59), ¢|p,,nD,ES(DN Dy, <c>|D,;nD,) When DpN D=+ from
which one obtain <c)°|p,,np,ES/(D,N Dy, <>°|D,nD,) by Lemma 2.2
when D;, N D;;==@. Thus from this and (2.53) Lemma 2.4 implies that

¥ Lg» | DN D SI(D N Dy, 1) . (2.63)

Since (2.53) with I', replaced by I',(N/100) also holds because of the fact that
(N/100)>1, since I';N\D,SI'}(N/100) if /%I, and since MY 3<1000I+1PDA3
M)y on I'ND,;, we see that <gy>|r,np, €SI N Dy, L&) |r,np,) if 11
From this and (2.53) Lemma 2.4 implies that

<g,/>/<g,>lplnDI€S,(I",ﬂD,, <g1’>/<g1>|F,nD,) when I'ND;%0. (2.64)

Now we can show that ¢-”&S8y2,,. When I';=@, noting (2.61) and
taking in Lemma 2.2 U=TI,, V=(0, +o0), f={g,> &>, F(y)=x{N1y),
N(»)=y, Z(y)=1, M(, gy=M_} one obtain that

2{(N~Kgp DA r,eSUT,, 1). (2.65)

Similar argument as above shows that
1 (e’ KgD) | p,, E81(Dyy, 1) when Dp=+0, (2.66)
2(100<g,»/{g>)  r,np, EST ;N Dy, 1) when I'ND=£0Q, (2.67)

x,.(l?O i‘i';a)[DlanuES,(D,ZﬂD“, 1) when DpNDy+0. (2.68)

Since the support of any first order derivatives of X,(10/e {g,>/{c>*) con-
tained in D;; N Dy, boundedness of ¥; and (2.68) imply that
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Z; (_ 8DKe)) 0, €E81(Dps 1) when Dp==0) . (2.69)

From (2.66), (2.67), and (2.69) Lemma 2.4 implies that
v, €S(Dy,, 1) when Dy=0 . (2.70)
Since supp ¥4-9C D, ;, one obtains that
v Nesy, for j+0. 2.7D)

We also get that 7Y &S5}, because (2.65) holds with N replaced by
N'>1 and supp T¢#-9Cr,.

Now we can derive the estimates of derivatives of @49 and A®s9,
Noting the estimates (2.49), (2.58) and using Lemma 2.2 we see that ¢,;;(w,(-)) €
Si(Dyy, 1) when D;;=#=@. Using this, (2.71), and Lemma 2.4 we obtain that

LSy, (2.72)
Using similar argument for Z¢-%7) we get that llf(q,’ % E85 %,

Using (2.46) and Lemma 2.2 we see that z,(w,(+))—1€S,(D)y, (Ilg’|l||1’11 )
Du
when Dj#@. This implies that A4Y-"7[, &S,(D,, (’Ig’llllnlsz) when D;; = @.
Dpy

Noting supp AY-*C D,; one obtains that AY-'?&S5:}. Similarly, noting
supp AP Cwi'(Uy,) when D;, == and using (2.55), we see that

A1), €8Y(Dyy, el |D“|w,1]3/2) for k=2,3 when D,=%0. (2.73)

From |c||w, el on Dy, this implies that AY-'Y€S8%, for
et T ’

k=2,3. Similar argument also shows that 4%-*7&Sy’, . Finally we shall
derive other facts on #¢*? and AY-1), F¢-2) and AY-2D), T respectively
corresponding to (II), (I), and (III) in Lemma 2.3. First we consider (II).

Since @;={g>"® on I',, the definition of D,, implies (iii) with v, re-
placed by #{:1:/) when ¥{-“9=£0. (iv) and (v) with g, 4 ; replaced by
Y1, AY1) follows from (2.43) and (2.44) when #§177220. (iv) with the
same convention as before follows from (2.73) and (2.43). (i) follows from the
fact that p=p,+b,,, (2.1), (2.2), and that for k=2, 3

W A1) (x, €7) = [N+ AL (x, €)+IA—8P) 2] (x, &)
on supp ¥{-7

where A4-1(x, & V= (wi(x, £") ¢(x, £7).  (ii) follows from similar reason.
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Nest, with the convention that vy, and 4, replaced by w23 and 4¢3, (ID)
follows similarly. Finally (III) with v, replaced by #¢-® follows from the def-
inition of @,.

Step 5. Now we shall define y;,. Set

73S

Ty 22 wio
I=1s=1j=1 =1
Then #>1. We set
gg'(l,s,i) - y}(zl,s,j)/gp”-’ O — W'(z"")/q; .
Since @'IES‘I,U,Z(R”X R, and since @, < CLEDY?, 1I7(’-°)ES2,-I‘,’¢,. Using
the fact that 1/100< <82 <100 on D, D, and that ®,<C{E">"? on I'y(N)N
g z
Dy/; when I=1', one can easily see ¥+ & 857, Now we set
Yu =Tk =1,2)
5 { FELE-CH-DE) (34 (J—1) ky+-(I—1) ky <k <2+l +(—1) k)
Y = FULE=EHEFO-DR) (34 [k, 4 (—1) ky <k <2+ 1(k;+Ky))

and we define v, by the same definition as above with Z*® and ¥ re-

placed by ¢ and ¥ respectively. Then v, is defined as follows:
Vo =Viyw, k=1k

where {j(1), -+, j(ko)} ={j; ¥,;=0}. This {yr,} has required properties from
Step 4. The proof of Lemma 2.3 is complete.

§3. Local Carleman Estimates

Let @, p= C~(R" X R*") be a pair of weight functions stated after Lemma
2.2. Let ¢, (i=0, 1)E S5y satisfying that

Y1¥0,
Y, =1 on a neighbourhood of supp yr,.
Let P be a pseudodifferential operator on R" with the symbol p(x, &) given by
(X, &) = (£1—2(x, £ (6,—2(x, &) —c(x, E))+g(x, &)
with
2, cESI(R"XR*), gESi(R"XR"NSES.

We assume that
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Clima(x,&)| =<K€, ClIm[(+c)(x, E0]| =<ED

for some positive constant C, and that one of the following (I), (II), (III) holds.
(I) There exist 4,(i=1, 2, 3)E S5 such that

p(x, &) = 15[1 (61—2(x, &) —ALx, ") when (x,E")Esupp ¥,
sup  |e(x,EN|07(x, &)<+t oo,
s EDEsuppis

inf | A,(x, &) —A4,(x,€)| @7 (x,&)>0 for any distinct i,j,

(x, 5’)6::41:9410

min inf [Im[2(x, ")+ A (x, E)]|<E>"1>0 for some R>O0.

1<i<3 |£'I=R

(II) There exist 4,(i=1, 2, 3)E Sy} such that
px, &) = (6;—A(x, &) —c(x, £)—4y(x, £")) -1=Iz (€1—2(x, &) —4(x, )

when (x, £") E supp vy,

inf  Je(x, £)|07(x, £)>0,

(x,ENEsuppg

inf  e(x, €N+ 4Ayx, £) =A%, £)| [e(x, €)[7>0 for i=2,3,

(x, EDEsuppy
Afx,&") (i =2,3) are distinct when (x, " )Esupp ¥y,

|85 88 A,(x, )| <C, gl Axfx, §)— Ay, £) | O1FI(x, £7) @71*I(x, £7)
on a neighbourhood of supp v, for i=2, 3,

inf |Im[(A+c+4y) (x, E)]|<ED>0 and
1E/|=R
inf |Im[(244;) (x, EN]IKED1>0 for i=2,3
I1E/I12R
with some R>0.
(ID)  Supq, enesmppvy P, €7) (14 €7]) 72 <F-00.
The main result of this section is the following proposition. This gives the
estimates for P in Proposition 1.1 on supports of functions y-;, in Lemma 2.3.
We set ¥',=y,(x, D).

Proposition 3.1. (1) Assume that (I) or (II) in the above holds. Then
there exists positive constants t,, T,, C, such that
T2 AT u)+ AT w)+ AT 1)
< Gl PullF+ A(u)+ T A3(w)+T " R(w)) (3.1
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Sor us S (R") when tT*>1, and T<T,.
Here

A4@) = 3 Equ-pne Pl .

1<) +|BI<2

Ay ) = |||+ T2 % | Eyo(LioLy) (x, D) u)|$”
+T7 3 (1B Lx, D) ull,
Ay(u) = T~ z: 1E; Log(x, D) ul|9+ T || Ey, c(x, D) ul|$

_ < 2-i 4 1(T)
R(“)“EIIE—IIZ-*-E—DI ull?,

N

51‘—11 (x5 E’)—c(x, EI) (l = 2)

Lyx,&) =& —A(x,&")—A4,(x,&") except for that

Li(x, &) =&,—2(x, &) —c(x, E)—Ay(x, E") in case (II).

(2) Assume that (III) in the above holds. Then there exist positive constants
7 T, Cy such that

T2 A% u)+ B u) < C(|| PullF+ Ay()+ T~ R(w)) (3.2)

for us S (R") when tT*>1, and T<T,.
Here

2
B(w) = ||lulllFs+ 2 77 (Lo Loy) (x, D) |24 23 =] Lo(x, D) ulll s
+777 lleCx, D) ull|Flet-77 (| LyCx, DY lllF2
and the other notations are the same as in (1).

We shall prove this proposition in this section admitting one proposition
and several lemmas which will be proved in later sections. We first prepare a
proposition of Carleman estimate for first order factors in the factorizations of
p and p—g having the basic role for proof of Proposition 3.1.

Proposition 3.2. (1) Letr L(x, &)=¢&,—a(x, £")—b(x, €') with

aES},o(R”XR”‘l) , beSyy,
inf |Im[(a+D) (x, E)]|<ED1>0 for some R>O0. (3.3
1E/I1=2R



ON THE UNIQUENESS FOR THE CAUCHY PROBLEM 383

Then there exist positive constants t,, Ty, C, such that
T |ull|F < G IL(x, D) ul|P, uESHR")

when tT?>7y and T<T,.
(2) Let L(x, &) (i=1,2,3) be given by L/x, &)=£&,—ayx, £")—b/(x, ") with
;€81 o(R" X R*™), b; €S, satisfying (3.3) with a, b replaced by a;, b; respec-

{2 |

tively. Then there exist positive constants z,, T, C, such that
2 [l < Gy I(LyoLy) Cx, D) ull?, uESHR") forany i,j,
]| < C%E 1(LewoLo@o°Lo) (%, D) ul|, uESHR")
3
when t72>7; and T<<T,. Here S, is the symmetric group of degree 3.

Next we prepare some lemmas which need for the proof of both of (1)
and (2) in Proposition 3.1.

Lemma 3.1. Let aES"; 1,2(R* X R"™"). Then there exist positive constant
C such that for any v and T,

llaCx, D) u| P < C|E, ull”, uESERT).
Next two lemmas give estimates for commutators.

Lemma 3.2. Let L(x,¢&)(i=1, 2, 3) be the same as in Proposition 3.2-(2).
Then there exist positive constants t,, T,, C, such that

Ci* |I(LyoLyo L) (%, D) ul| P <||(Ly LyLy) (x, D) ul| P < Cyl| (LyoLyo 5) (x, D) u||{
for ue S (R") when tT?>t, and T<T,.

Lemma 3.3. Let x&SyS. Then we have that

2 .
poX—Xop = > aa‘ﬂop((g))—i— Ebj &2-i
1<|e| +1B]<2 ji=0

with some a,s €S5!%~"?! and b, € ST (R" X R*™).

Lemma 3.4. Let xESy5,. Then we have that for b S5/ (R" X R*™)
with j=0,1,2

. 2 .
(&3 )ox =) a, E17F  with some @, & ST /Y IR x R*Y)
k=i
Next two lemmas are ones for handling neglizible terms.

Lemma 3.5. Let xS5%7°. Then there exist positive constants t,, T,, C,
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such that when tT*>t, and T<T,.
B(X (x, D') w)+||g(x, D") x(x, D") ul|5" < Co((|| Pul |+ A,(u)+ R(®))
for ue S (R").

Lemma 3.6. Let x=S;37°. Then there exist positive constants ty, Ty, C,
such that when tT?> vy and T<<T,,

T2 Ay(x (x, D) u)+T-% 1sm|z+}fﬂls [ E1a1- 18132 &83(x, D) Z(x, D') u]|P

S Gl PullP+ Ay(w)+ T Rw))
Jor ue S (R").
Now we start to prove Proposition 3.1.

Proof of (1). First we estimate A4,(¥,u). We break up into ¥, ¥, and
(1—¥%y) ¥,. Then

AT W< AT ¥ )+ A((1-F) 1 u) . (3.4
We take up the first term on the right hand side first. From Proposition 3.2

and Lemma 3.2 there exist positive constants 7, T3, C; such that when t72>1,
and T<T;,

AW < C|(Ly L, Ly) (x, D) u]|, uESHR"). (3.5)
We need a lemma to estimate (L, L, L;) (x, D) ¥',—%, P.
Lemma 3.7. Assume that (I) or (II) holds. Then if X =Sy with supp X C

supp ¥,
(L Ly Loz —7op = 3} aypoLio L+ 3} apol,
i =

+at+ X u5°P(p)+ Zb &

1< +|BI<2

with  a,; €855, ;€855 for iF0, a €857, a,E 8,87, be
i—/(21/12} (R"XR”").

We note that

STV (R XR*™)  (—m=M=0)

Sg;"; M. 2
STHED(R" x R*™) (m<0, M<0).

(3.6)
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Substituting ¥, u to u in (3.5), using Lemma 3.7 with ¥=+,, and noting (3.6)
we obtain the following inequality with the notations in Lemma 3.7: there
exists a positive constant C, such that when zT%>17; and T<<T;, for uS(R")

AL DS T, PullP+ 3 llay G, D) (LioL) (5, D) wll
+ 31 llax, D) Litx, D) ull-+llaa(x, D) ull?

+ 3 laus D) PGullP+ 33 115,x, D) DI ull?)
i=0

1<|o] +|B|<2
<GP+ g | EyALioL;) (x, D) ul| (3.7
3
+ 2 1B Li(x, D) ul |+ || Egyp ul |5

+ 3 Eqai-1enz PE Ul +Rw)
1@ +|B'<2

< G| Pu||P+(T2+T) Ay(u)+A,(u)+2R(w)) .
From Lemma 3.4 there exists a positive constant C; such that for any =, T
R@#,W<C,Ru), ucsS(R"). (3.8)
From Lemma 3.3 there exists a positive constant C, such that for any =, T
1PZ, u| P < C(||PullP+ 4,@)+RW), uESHR"). (3.9

Substituting ¥, u into u in (3.7) and using (3.8) and (3.9) we obtain that when
tT?>1, and T<T,, for ucS(R")

AT, T, u)<C, C(] lPu||¥)+A1(u))+ CACy+2C3) R(u)
+CAT2+T) A(¥,u)+Cy Ay(T 1 1) . (3.10)

Next we handle the second term on the right hand side of (3.4).

Lemma 3.8. Let x&S85%7°
(1) Assume that (I) holds.
@ Ifi=#],

G :>1/2oL'.oLjoJ{ ={EDV2 L0 01°Z+aij°L01+ax{i

with a;; € 855%, al; €855°.
(i) <&DeLjex=<E"DoLyoZ+a;
with a,E85g5°.
(2) Assume that (II) holds.
() Ifizfjandiz=1,j=+1, (@) in (1) holds. Ifi==j and one of i and j is equal
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tol,
(&M Lio L 0 =(£ D20 Lyyo Lyyo X+ kE; 8,50 Log+a,
with a;, €855, al; €855°.
(i) Ifi==1, (i) in (1) holds and we have
{EDoLox =<EDoLyoX+a,
with a,E S5 5°.
Lemma 3.8 easily implies the following.

Corollary 3.1.  Assume (I) or (II) holds. Let X S;%73. Then there exists
a positive constant C, such that for any =, T, and uc S(R").

21 1By L) (x, D) x(x, D") u||5?
i%j
2 2
<Cy 1§1 | Eypo(Loro Log) (x, D) x2(x, D") u| |+ E || Ey Lox(x, D) ul|F
1 Eypp ull7) 5
2
31 1B, Lx, D) 2(x, D)l
2
<G X 1B, Los(x, D) #(x, D) ul| P+ || Eyp ul] ) -
From the fact that ¢»y=1 on a neighbourhood of supp -, we have
(I—¥,) ¥,€0pS;5~" forany N>O0.

Noting this and using Corollary 3.1 we see that there exists a positive constant
C, such that for any 7, 7, and uS(R")

3
T SHIELioLy) (o DI~ ¥, w9+ T S3|E; Lilx, DYI—~0) ¥, ]
2
<SG S EplLwo L) (5, D) I=F0) T ull 9+ T 43)+ T Rea)
2
+T7 3| LuCx, D) [—%9) ¥y ull+T R@w)).

Using this we obtain that for any z, T, and u&S(R")

A(I—7y) ¥, wy<max(GC;, 1) B(I—Z) ¥, u)
+C5 TY? A (w)+Cy(TY?*+1) T R(u) .

From Lemma 3.5 there exist positive constants z,>7; and 7,<<7; and C; such
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that
B(I—-%y) ¥, W) < C(||Pul[+A4,(w)+R@)) , uESHR") (3.11)

when tT?>1, and 7<T7,.

Substituting this inequality to the above one we get that when 72>z, and
T<T,, for ue S(R")

A7) ¥, w)<max(Cs, 1) Ci(|| P u”(TT)J-‘Ax(u))‘i’ G T2 A;(w)
+{max(C;, 1) C; T+Cy(TY*+ 1)} T R(w) . (3.12)

From (3.4), (3.10), and (3.12) we obtain that when r7%>r, and T<T,, for
ueS(R")

AT u) SC||Pul|P+ 4,W)+ Cy r T R(u)+C; T Ay(u)
+CATY+T) A (T, u)+ C AT, u) . (3.13)
Here
C, = C, C,4max(G;, 1) Gy,
Csr = {C(C,+2C)+max(C;, 1) G} THCy(TH?+1). (3.14)

Next we estimate Ay(¥'; u).
Lemma 3.9. (1) Assume that (I) holds. Then for any distinct 1<i,j<3
Lyoyry = ayoLyoyry+ayo Loy +as+ Logo(1—yrg) oy, (3.15)
with a,, e, Sy and a,€S5,".  And for any distinct 1<i, j <3
coyry = ajo Loy t+ayo Ljoyry+az+co(l—yro)oyr

with ay, a,E 835 and a, =S,
(2) Assume that (II) holds. Then for any distinct 1<1i, j<3, (3.15) holds.
And for any i 1

cowl — a10L10w1+a2°Li°¢1+a3+co(l _1)["0)03#1
with ay, a,& 8% and a,E S5,

From Lemma 3.9 we see that there exist positive constants Cj,, Cj; such
that for any z, T, and u=S(R")

2
[|Ey Loy(x, D) ¥, u”‘;)gcg(g [|E; Li(x, D) ¥, u“(;)‘HlEalz u”(TT)

+E; Lo(x, D) I—% ) 7, ul|P) ,
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2
[1E; c(x, D) ¥, ul| P < Ciof kz=1 [|Ey Ly(x, D) ¥, u“(TT)‘I‘“Eslz Ul
HIE, c(x, D) I—Fo) 71 4||f7) .
We obtain from these two inequalities that for any =, T, and u< S(R")

A%, u) = T7Y||E; Ly(x, D) ¥, u”(TT)‘}‘”EKLm(xs D)—c(x, D) ¥, u”(TT)
+||E; e(x, D) ¥, ul|)
<2TY||E; Loy(x, D) ¥, u”(TT)‘*‘”El c(x, D) ¥, u”(TT))

<2{(C+Co) (X T ||, Lilx, D) T, ull P+ T | B ull) (3.16)

+Cy T ||E; Ly(x, D) %) ¥, o[

+Cy T ||Ey c(x, D) (I—% ) T, u]|}
<2{(Co+Cyp) (A(¥, )+ T R(w))

+max(Cy, Cy) B(I—¥,) ¥, u)} .

Substituting (3.13) and (3.11) into (3.16) we see that there exists a positive
constant C;; such that when z7%>rt,, T<T,, and uSHR"),

AT, w)< Cu(”Pu”(TT)‘*'Ax(u)‘}‘ TV As(u)‘i‘(TlIz"‘ T) A ¥ u)
+ A4 w)+Cyy r T R(u) . 3.17)

Here
Cor = 2{C3,1+ Cy+Cyp+max(Cy, Cy) G T} (3.18)
Finally we estimate 4,(¥', ). First we have
AT WS AT T, W+ AT ¥ u), ueSR"). (3.19)
To estimate the second term on the right we need
Lemma 3.10. Let xSy, with supp X Ssupp yro. Then if e, BEZ", with
le|+|8]=1o0r2,
1D pEoy = S o Lio L+ 3 dPeL it 3 b 3
ifi i=1 i=0
with a??es%ﬁ’uz(.k” XR"_I), a?ﬁe Si/g'yz(R” XR”_I), b?ﬁ ES7(21_,12/)2+J(R” XR"_I).

From Lemma 3.10 we see that there exists a positive constant C,; such
that for any 7, T, and u=S(R")

T2 4T u)< Cigl g T~ ”Ellz(Li°Lj) (x, D) u||{”
L=
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+T 31 ||E, L(x, D) [+ T~ R@) (3.20)
i=1
< Ciy(max (1, TV?) Ay(u)+T -2 Rw)) .

Since ¥, ¥, €0p Sy %, from Lemma 3.4 there exists a positive constant Cy,
such that for any =, T, and uS(R")

R¥, ¥, u)<Cy R(u) . (3.21)

Substituting Z, ¥, u into u in (3.20) and using (3.21) we get that for any r, T,
and ueS(R")

T2 A(¥5 ¥, u)< Ciy(max (1, TY) A(Z, ¥, u)+Cyy T2 R)) -

Substituting (3.10) into this inequality we see that there exists a positive con-
stant Cy such that when 72>+, and T<T},

T~ A(¥F ¥, u)<Cys max(1, TY2) (|| Pul| P+ A1) +(T2+T) A%, u)
+A,(F, u)+(TV2+T) T R(u)), usS(R"). (3.22)

Since (I—%%) ¥, =(I+¥,) (I—¥,) ¥,, and since (I—¥,) ¥, E0pSy%~" for any
N>0, we have

(-7 ¥ ,€0pS;~" forany N>O0.

Thus from Lemma 3.6 there exist positive constants t;>7, and T;<<T, and Cy
such that when t7%>r, and T<T;, for uSn(R")

T2 4((I—75) ¥ w) < Cye(|| Pul |+ Ay(u)+ T2 R@w)) .
From this inequality, (3.22), and (3.19) we see that when t7?>t; and T<<T,,
for ue S (R")

T~V2 A%, u)<max (1, T?) (Cys+Cy) (|| Pull+ 4, (w)+ A(¥ 1 v)
+(TY24+T) A(¥, w)+(T+T) T~ R(w)) - (3.23)
Combining (3.13), (3.17), (3.23) we see that there exists a positive constant C,,
such that when 72>z, and T<T,, for u€ S (R")
T2 AT u)+ AT )+ AT, )
S Cy(||Pull P+ Ayw) + ATy )+ T Ay u)+TV* Ay(u)
+ T R(u)) .

This completes the proof of (1).
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Proof of (2). Set

Po(xs é') = p(x’ E)'—g(xs E,) 5
Py = py(x, D), (P 0)228 = (po)E'E%(x, D).

Then we have that
A%, U)SKI IEPBK (Eqa1-18072 P8 1 ull | Eqai-112 863(%, D7) 1 ullP) .
<|@|+ <2
(3.24)

We use the next two lemmas to estimate the right hand side of the above in-
equality. The assumption (III) is used to estimate the second terms in the
parenthesis.

Lemma 3.11. Assume that (IIT) holds. Let yS%% with supp X S supp .
Then

<E ’>(IMI_lm)ﬂogE;;"xES%%,]/Z(R” an-l)
foraEeZ", BEZ" with |a| L2.
Lemma 3.12. For a, EZ" with |a|+| L] =1 or 2 we have that
2 2
<E,><|w|-m|>/z°(po)gg; = ;§1 @0 Ly oLy, + I;l byoLy,-+b,
with some a,ESY(R"XR"™), b,&S1 (R"XR*™) for k=+0, bycSVHR" x
Rn—l)_

From Lemma 3.12 there exists a positive constant C,; such that for any =, T

2 2
”E(lal—-lﬁl)lz(Po)ggg ”l'(;)scl(kgl ”Ellz(L01° ok) (x, D) u”¥)+ kg}l ”E1 Ly(x, D) u”gr'r)
HIEp v, uESER").
Summing this for @, # with |e|+]|B8]|=1, 2 we get that for any z, T, and
ueS(R")

2
T P “E(Iml—lﬂl)lz (Po)§§§ ul](}')SCZ( P T-V2 ”EIIZ(LOIOLOk) (x, D) u”(lp‘r)
1<|o|+|B|<2 k=1
+ T é T~Y|Ey Lo(x, D) u“<7"r)+ TT-% “Eslz ”“(TT)) (3.25)
k=1
<C,max(1, T) B(u) .

Here C2=C1(2n—|—<2n;— 1>). Thus from (3.24) and (3.25) we have that for any
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7, T, and u S(R")

T2 4T, w)<C,max (1, T) B(¥, u)

+T2 3V ||Eqai-1sn2 88, D) ¥y ul|. (3.26)
1<|@| +|B, <2

From Lemma 3.11 there exists a positive constant C, such that for any z, T, and
ueS(R")

|a|+xﬁ|sz“E(|”'—|m)/2 gé?s‘% (x, D) ¥, u”&;)gcs || Ey/2 ul|® . (3.27)

From (3.26) and (3.27) we get that for any 7, T, and u= S(R")
T2 4%, u)<C,max(1, T) B(Z, u)+C; T~Y2||Ey, u||” . (3.28)
Since c(x, £)=(Lgy,—Lyy) (x, &),

2
lleGe, DY ull|§ < 25 I Zox(x, D) ull[F2z .
Thus
Bu) <||[u][|5+ % e[| (Loso Loj) (%, D) ull|§+=7 || LoaCx, D) Iz
2
+2 337 || Loslx, D) ulllfs -

Using Proposition 3.2 and Lemma 3.2 we see that there exist positive con-
stants r,, T}, C, such that when t7%>7, and T<<T;,

Bu)<C||Poull, uESHR"). (3.29)

From Lemma 3.3 there exists a positive constant C; such that for any =, T, and
us S(R"

P2, ul|P < Ci(|| Pul |9+ A1)+ R(w)) - (3:30)
From (3.27), (3.29), and (3.30) we get that when 72>t, and T<T;, for
us SH(R"

B u)<C(||P¥, u||(f~')—|—l|g(x, D)7, u”(TT))

S CAGPul |+ 4,) -+ Rw))+Cs || By w7} (3.31)

< C(Cy+Cy) (I Pul P+ 4y (w) +R(w)) -
Combining (3.28) and (3.31) we get that when 72>, and T<Tj, for u& +S(R")

T2 AT, w)+B(¥, w)<(C,max(l, T)+1) B¥, u)+C; T~ [| s/ ul|§
< G| Pul|$+ Ay () +R(@)+C; T2 R(u)
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with C;=(C, max (1, T)+1) C(C;+C;). This completes the proof of (2).

§4. Proof of Proposition 1.1

In this section we deduce Proposition 1.1 from Lemma 2.3 and Propo-
sition 3.1. We define p,(x, &) from P(x, &) by (2.11) in the same manner as in
the beginning of section 2. We set

Lg)ll)(x’ E) = El—ll(x, EI) 3
LSIZ)(x: E) = fl-ll(x’ f’)—CI(X, ‘f’)

with the notations in (2.7) and (2.10). Then we define 4{(w) for i=1,2, I=
1,2, ucsS(R"), v>1, T>0by

ASD — Eno\ @) . D ('f),
()] ISMEMSZH al-18072 2153, D) ull¥f

APw) = TS |, LECx, D) ullf-+1I; ex, D) ),

and we use the notations 4,(x) and R(u) in Proposition 3.1.
We use a family of C~-functions {y;}:e,(j=0, 1) on R"xR"! in Lemma
2.3 and we set

7, =vulx, D).

Since for any k&1 one can choose /& {1, 2} so that one of the conditions
D, (D), (I1I) in §3 holds with O=®,, o=, Yr;=Yry, P=p;, k=4, c=C;, §=8);
it follows from Proposition 3.1 that for any k<1 there exist /(k)< {1, 2} and
positive constants ¢, T®_ C® gyuch that the following condition holds:
when /=I(k) and T?>7® and T<T®,

T2 AP )+ A8, )+ || ull| 7
< COY(|| py(x, D) ul|+ A4 (w)+ T2 A(u)+T ! R@w)), uES(R") . (4.1)

Since LE)II)(xs 6) _ngl)(xs ‘E)= ——2' c(x, 6’) and LSIZ)(x: E) _ngz)(x’ E) 2% c(x, E,)a
we have for any /, =, T that

33 31 1IE LG, D) ullf <3TAD@W), ueSER”) .
m=1 k=1
This inequality and (4.1) imply that when /=I(k) and z>7%® and T<<T®,

T-1 31 SV||E, L§(x, D) ¥ ull$P

m=1 s=1
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<2C9(|| pil(x, D) ul|F+A )+ TV A (w)+ T Rw)) (4.2)
for ueSHR".
To estimate 4,(x) we need
Lemma 4.1. There exists a positive constant C such that for any I, v, T

_ %ﬂls 1Eqai-1802(PE—(2)@) (x, D) u]|" < CRw), uES(R"). (4.3)
1<) + 2

Proof. Using the equality (2.12) it can be easily checked that when ||+
|8l=1or2,

2-a
CEDIBRPE—(p)E) (x, £) = 3 an(x, £) &1

with some g, SP*}P~*(R" x R*~Y). This implies the lemma.

From Lemma 4.1 there exists a positive constant M; such that (4.3) with
C=M, holds for any /,z, T. From Lemma 3.4 there exists a positive con-
stant M, such that we have for any k<1 that

R(¥, 0)<M,RW), ucS(R"). (4.4)
Then we have for any k &1 that when /=I(k) and «T%*>7® and T<<T®,

T2 A (W) STV AT, u)+T 2 M, R(¥, u)
S C®(|| py(x, D) ul|P+ A (W) + TV* 457(w)
+(C® 4 M, M, T'?) T~ R(u) 4.5)
for ueS(R").

To estimate ||(p,—P) (x, D) u||$" we need

Lemma 4.2. There exist positive constants t,, Ty, Cy such that when tT*>1,
and T<T,, for any I and us S{(R")

I(pi—P) (x, D) ul|? < Co(==2 || P (x, D) |+ R(w)+ TA ()
+ T2 |[|ulllFs) -
Proof. We recall (2.12). It is easy to see that
[ § byj(x, &) (E1—2(x, £")Y] (x, D)
= él bl.i(x’ D) L(ﬁll>(x7 D)J+r01(x, D’) D1+r’2(X, D’)

with some r; €S o(R" X R*™), r;, €81 ,0(R" X R*™).
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Thus there exists a positive constant C; such that for any z, T, and uS(R")
I(p:—P) (x, D) ul|F < C( 123 1 Ez-; LY Ce, DY ull P+ Dy ][5+ Ey )
(4.6)
Using Parseval’s formula we can easily see that
IE, ul|P<||Ey )l if s'>s. @.7)
So from (4.6) we have for any 7, T, and u<S(R") that

1(p:—P) (x, D) ull{? < C(||LEYCx, DY ull -+ Ey L§LCx, D) ul|P-+| Eyp Dy ullf?
+ 1By ull) (4.8)
< CILECx, DY ullf+ TAY W)+ RW)) -

We have that
LE(x, DY = LY(x, D)2+f-3‘- e(x, D) L{Y(x, D)J.—% (D,, ©) (x, D)
2 ’ ’ 4 n2
—3 [2(x, D), c(x, D )H—? c(x, D')?.

Thus there exists a positive constant C, such that for any z, T, and uS(R")

ILEP(x, DY ullF <|ILEYCx, DY ull P+ Cl| By L§Y(x, D) ullf”
+11Ey e(x, D) ull P+ Ey ul|F) -

Using (4.7) we see from this inequality that for any =, 7, and uE S(R")
ILEDCx, DY | <||L§P(x, DY ull§+ Co(T 45" (u)+R(w)) -
Combining this inequality and (4.8) we obtain that for any =, T, and uS(R")
I(pi—P) (x, D) ull’ < C, |ILGP(x, DY ull{V+Ci(Cot 1) (T4 (w)+R(w)) . (4.9)

Note that p(x, &)=L{P(x, &) L{¥(x, £). Thus using Proposition 3.1 and Lemma
3.2 we see that there exist positive constants z,, T3, C, such that when z7%>1,
and T<T,,

1LY (x, DY ul| P < Cy e 2| p(x, D) ul|, uESHR"). (4.10)
There exists a positive constant C, such that for any z, T, and u€S(R")

2
o, D) Ul < C, 3 |1 Es Di* )

Since P=p--g, combining this inequality and (4.10) we obtain that when
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tT%>7, and T<<T,
| LEPGx, DY ul| < Cy v~ || P(x, D) ul| P+ C; Cy T2 |[|ull|F4, uESH(R") . (4.11)
(4.9) and (4.11) imply the lemma.

From Lemma 4.2 there exist positive constants 7,>>maxX,e; t¥, T; <min,e,
T, and M, such that when tT%>r, and T<<T, for any / and uES(R")

[ pi(x, D) ull < M(||P(x, D) ull”+R(u)+TAY @)+ T2 [[[ull|) . (4.12)

Combining (4.1), (4.2), (4.5), and (4.12) we see that there exists a positive con-
stant M, such that when t7%>7, and T<Tj, for any / and u& S(R")

T Ay u)+ E A w)+ |7 ulllFs

<M(|P(x, D) ul|P+AY D)+ T AS ™)+ T~ R@)  (4.13)
+ T2 {[[ullI$4) -

Since e 'y u=u for u S(R"), we have that
T2 Ay(uw)+ E AL ()|l 526
< kzg (T2 A, u)+ ZI AP )7 ulllFs), wESRY) .
(4.13) and this inequality imply that when 72>z, and T<<T;, for ue Sp(R")
T2 A+ 33 A7)+ (|ullls

SMEWD) ||PCx, D) ul|F4 33 AYE(w)+T12 33 A (w)+4 (1) T R(u)

kET REI

+4) T2 {|lull]5s) -

Since A" (u) < A,(u)-+ M, R(u) for any ! and u= S(R"), the above inequality
implies that when z7%>; and T<<T}, for uS,(R")

T2 Ay)+ 35 A5G+ IlulIEs

<M FWDAIP (s, D) ullP+ )+ T 33 A+, T+1) T7 R@)
+ Tl (4.14)

To complete the proof of Proposition 1.1 we need
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Lemma 4.3. There exists a positive constant C such that we have for any
7, T that

RG) 2 |IPG. D) ull§'+CT*# [l
Jor usSz,(R").
Proof. An integration by parts gives that for any =, T
1Dl ==L Nl uESn(RY)
Substituting E_,,, D} u into u yields that
1D} Enapp wll> | By DY AP, 0 Sl @.15)

We have that P(x, D)=D3}-+3%2_, a,(x, D') Di with some g, Si7' (R" X R*™),
then
DYE_u=E_,Diu
— B P(%, D) u— 3 E_,payx, D) Diu for ucS@R". (4.16)
i=0
Using the fact that {£">~V?oq,& SC{E~ (R" x R*') and applying (4.7) to

the first term in (4.16) we see that there exists a positive constant C such that
for any 7, T, and u S(R")

103 E-opp ullP 1P G, DIF+C 31| - D ull @.17)
(4.15) and (4.16) imply that for any z, T, and uE Sz/(R")
1By DYl <22 1P e, D)l P+-2CT |15
Therefore, for any 7, T, and u&S,(R")

R(u) = ||E-; DY ul|¥+

2 T T T
< (1P G D) w4 2CT |5+ T a1

“E—1/2+i D~ u”(l"r)

2
=1

37;2? 1P (x, D) ull+Q2C+1) T3 ||ul||s -

This completes the proof.

We take a positive number M, such that the inequality in Lemma 4.3
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holds with C=M,. Then (4.14) implies that when t7%>t, and T<T;, for
uESyR")

T Ay(u)+ 33 AT+l
<MD T+ T1) —HIPG, D) ull-+ i)+ T 35 457)
(M, THD) T [ull| 5+ T [l 124
<M, (12075 112G, DY+ M S DA T 33 A6
+My Tyt 1) T [+ T2 a5} -

The second term on the right hand side can be absorbed into the left hand
side by decreasing 7. Therefore, we have proved Proposition 1.1.

§5. Pseudodifferential Operators

In this section we collect the facts on the pseudodifferential operators
which we use in this paper. In this paper we use the classes of symbols S&-o
with (@, ) stated after Lemma 2.2 which contain Si ;_,(R* X R"™), $<p<]1.

Definition 5.1. Let (9, ¢) be a pair of weight functions satisfying (2.31)~
(2.23). And let asSy:;. We define an operator a(x, D') on S(R") by the
standard formula

a(x, D')u — (2z)-#-Y S ¥ alx, £Y(x,, £)dE"
where %(x,, £') denotes the partial Fourier transform of u in x’'.

a(x, D'y transforms S(R") into S(R") and S(R") into SH(R*). If (D, ¢)
is a pair of weight functions, pairs of functions on R*“ !X R*, (O(x,, -),
o(x, ,+)) (x, € R) satisfy uniformly the conditions for weight functions of Beals-
Feefferman’s class. This follows from (2.31)~(2.33) and the following lemma.

Lemma S.1. There exist positive constants M, 0 satisfying the following
condition.

MO (x", ENP(y', 1) <M, M <o(x', &) ey, n)<M
for any (¥, nYEULx', &) and t =R where

Ufx, &) ={(y", 2 ) ER" I XR*; | x"—p'| <Op(x',€), &' —70"| <0O(x", ")},
Dyx', &) = O((t, x), &), @i(x, &) = (1, x"), €') .
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Proof. Using Taylor’s formula and (2.31), (2.32) we see that there exists a
positive constant C, such that when Cd <3} with the constant C in (2.31).

[0y, 7)) —P(x', E)| K COPUx', §"),
(¥, 1) —@ix", €')| < Codpy(x', &)

for any (¥, 7)€ U,(x', €'). This implies the lemma.
Remark 5.1. We define semi-norms | - | 5" in S¥: for NEZ, by

Mm __ B) ! @—-M+|ﬂ] —-m+|e@| r
ar—\|a = maxX a X E (24 X. £ .
I IN @1+ IBI<N s, 5') ” - l“ )( H] )l( )( 9 )]

Then Sy:; becomes a Frechet space by the topology defined by these semi-norms.

Lemma 5.2. Let ac Sy, and beSy;"”. Then if we define acbe C=(R" x
R*Y) by the formula

(@b, &) = @y @008~ | [ 0/t ), ), )y d

(CR))
we have that acb& Sy 3" "™ and (acb)(x, D') = a(x, D")b(x, D'). Moreover,
we have an asymptotic expansion that for any N EN

(@ob)(x, &) = —(a «aD3/b)(x, £')+ryla, b](x, &) (5.2)
with

rula, b)(x, &) = S: ryela, B] (x, € )(1—6)"""d0 , (5.3)

ruda, 815, €) = N 33 L @ay oo [ | o000 020) (v, €
lel= !
+6(n'—&") X Dyb((x1, ), €)dy' dn’,  (5.4)
{rnola. bl} ocro,11 is a bounded set in SyrgM—N-mrm =N (5.5)

Proof. When a, beC7(R"xR*™Y), it is not hard to check (5.2) with the
notations (5.1), (5.3), (5.4). Now let us consider an oscillatory integral

hoa, B1(x, &') = (27)-%D 05— S 5 eV g(x, £ 67" Yb((x ' +x7), €y’ dn’
where a€ Sy-y, beSY™, 6€[0, 1].

Claim. (1) hgla, b]E Syis"™+™ for all 8 and for any LE N there exist posi-
tive constant C and P €N depending only on L, M, m, M', m’, @, ¢ such that
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sup |8%08hea, bl(x, )| <|a|Bm|b| Y (@MM = Bigmn’=laly (x, £")
0<[0,1]

for any a, g with |a|+|8| <L.

(2) Let {a}i-: and {b;} -1 be bounded sets respectively in Sy-s and Sy’:™
such that there exist aSyy and be Sy’ such that g,—>a(k—>c0) and b,—
b(k—>o0) in C*(R"XR*). Then hgay byl(x, &) —>hela, b] (x, €) (k—o00) for
any 0 and (x, ¢'), and {hglas, bl} sen oeho,11 is bounded in Sg oM "+,

Proof of claim. Set fyla, b] (x,y’, &', n")=a(x, &'+07") b((xy, y'+x"), E').
Then

85,05 fila, b](x, ¥', ', 2| < |al G | b 15" (@M~ Plo™) (x, €'+ 67')
X(@Ml¢ml—|¢l)((x1’ y'+x1)’ EI)
< Cylal B | b1 e M+ am e 1+ Dz (/2

2]

X SIMIF(Im/2

(5.6)

with C; depending only on M, m, M',m’,a, 8, P, 9. From this inequality
Leibniz rule shows that if L, N €N, one can find C, depending only on L, N,
M,m, M',m', @, ¢ such that

[y D72 (L—4) < > (1—=4 )N fola, b](x, y', &', 2)]|
< Cyla| B, )| b3 1y KE DM UmDI+IM 1 Um /2 N+ (5.7
X <771>—2N+|M|+(|m|)/2<yl>—2L .

It also follows from the estimate (5.6) that if L,N €N satisfy that
N+ | M| +@<—(n—1) . —2L<—(n—1) (5.8)
we have that

hla, b(x, €) = @y [ [ ey
X (=) 0> (4, fila, B e, ', €', ')y’ .

We shall show (2). From the estimates (5.7) with a=a,, b=b,, and L, N
satisfying (5.8), and from the fact that fyla,, b (x. -, &', -)— fola, b](x, +, &', +)
in C=(R¥*"~V)(k—o0) for any fixed 6, (x, £') Lebesgue dominated convergence
theorem shows the first assertion of (2), and the second one follows from (1).

To show (1) we use the following lemma which is Lemma 4.7 in [3].

(5.9)

Lemma 5.3. Let @, ¢ be positive continuous functions on R" X R" satisfy-
ing the following condition ()~(iv) with some positive constants C, c, ¢, C':
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D) c<O(x,E)SCAH+|E]). C=o(x, &)=c(1+]&])
(i) D(x, &)e(x, E)=c;

(iii) for any R>1 there exists M>1 such that R—IS% <R implies that
7

MRy 1< 2E O (20 1) 7 g,

“ox, &) \e(y, 1)
(@iv) C"1SMSC', C"ISW—’E)S C’ whenever (y, )€U, &)={(», 7)
D(y, 1) o(y, 1)

ER"XR"; |y—x| <g(x,¢), |[n—¢|<P(x, &)}
Let b(x,y, &, 1) be a C=-function in (v, n) for any fixed (x, &) satisfying the
estimates

80865, 3, £, )| <Cup 3 1T sup (04(Q)g™(Q)

r.EZ+
r1+-~-+r =8|
Tpar T T
B+l
X sup (PYi(Q)p™i~"i(Q))
i=k+1 QEK

where K=the covex hull of {(x, &), (x, n), (», ), v, m}, M;, m;ER, k,IEN.
Set

®
ahe(x,y, €, 1) = 2 1T sup (P¥i~"i(Q)e™i(Q))
ijZ+ i=1 QEK
,1+...+'k=q
T RS T
k1
X sup (PYi(Q)e™i~"i(Q)) ,
i=k+1 QEK

ax, &) — 0S— S S e~ b(x, y+-x, £, 7+E)dydy .

Define for jeZ

|61%¢ = max sup []85075](ap'™)7(x, , €, 7).

lel+|BI<j (x,9,£M

Then one can find Cy>0 and LE N depending only on C, ¢, ¢, C', M(4), k, I, and
a permutation (My, -+, My, my, -+, muy;) of 2(k—+1) real numbers such that

la(x, )] <Co|b| APt Marigm™F ) (x, £) .

For a proof of this lemma, see the appendix in [2]. This lemma will also
be used in a later part of this paper.
Now we continue the proof of the claim. From (5.6)
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|83,05] fila, B1((t, x7), y'—x', &', 0, —ENN < |al 5" | b|1a;™ sup (DY) (Q)
x sup (93 o¥"~1*1)(Q) ,
QEK
(5.10)

where K=ch{(x’, &), (x', 7", (¥, €"), (¥, n")}, and @,, ¢, are as in Lemma 5.1.
A remark just above Lemma 5.1 implies that if we take n—1, @,(+), ¢/(+) for n,
@, ¢ in Lemma 5.3, the conditions (i)~(iv) in this lemma holds with uniform
constants C, ¢, e=%, C' in ¢t. Thus taking k=I=1, M\=M, m;=m, M,=M’,
m,=m’' in Lemma 5.3 we see from (5.10) that there exist constants C;>0, AEN
depending only on @, ¢, M, m, M', m’ satisfying

| hela, B1Cx, €| <Clal X" || L (@" M gmta’)(x, ") . .11

In view of the estimate (5.7) Lebesgue dominated covergence theorem
shows that

6xjh0[a’ b] = ho[ax,-a, b]+h0[a5 aij] s
8¢ hala, b = hele,a, bl-+hela, 9¢b]

Thus we see by induction that

0702 hala, b) ~ 3} (3) (ﬁ) he[0%-"08*a, 520Lb] . (5.12)
B

From (5.11) and (5.12) there exist constants C,>0 and BE N depending
only on @, ¢, M, m, M', m’, a, § satisfying

| 8302 hila, bl(x, €'Y < C,lal 7 || §rm(@MHH -1Pigmsn’-1e1) (3, &)
Thus the assertion (1) has been proved.

Let us return to the proof of Lemma 5.2. aob& Sy ™™ follows from
the fact that aob=hga, b] when =1 and the claim (1). We have that

vl b] = N 3 i'ho[ag,a, Db]. (5.13)
al

a|=N

Since 05a = Sy,"Y" and Db SY ™Y on the right hand side, the claim

(1) shows that the assertion (5.5) holds. Choose y=Cy(R"xXR*) with
x2(0,0)=1 and set a,=x;a, b,=X,b with X,(x, & ')=x<—;§, %) Then {a;}7-1
and {b,} 7., satisfy the conditions in the claim (2). This implies that for all
acZ, and 0<[0, 1]

hol0gay, Diby] (x, £')—ho[0ga, DLb)(x, ') (pointwise)
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as k— oo being bounded in @ for any fixed (x, £’).

Since hgla, bl=aob for =1, this implies that lim,,.(a,0b,)(x, &')=(a-b)
(x, €’) for any (x,&’). From (5.7) and (5.9) Agla, b](x, £') is continuous func-
tion in ¢ for any fixed (x,€&’). Thus from (5.13) and Lebesgue dominated
convergence theorem, the above convergence also shows that lim,,.ry[a, b,
(x, &)=ryla, bl(x, £') for any (x, £'). Letting k—co in (5.2) with a=a,, b=b,
we see that (5.2) also holds for general g, b.

Finally we show that (aob)(x, D")u=a(x, D")b(x, D")u for all uS(R").
This is easily checked if @, b C5(R" x B*™Y). Taking 0=1, a=a,, b=>b,, we
see that {a,0b,} 7_1 is bounded in S¥+¥:"+™  Thus Lebesgue dominated con-
vergence theorem shows that (a@,ob,)(x, D" )u(x)—>(acb)(x, D")u(x) pointwise as
k—oco. Thus (a,0b;) (x, D Yu—(acb) (x, D )u in S(R") since {(a;ob,)(x, D )u} i1
is bounded in S(&") and S(R") is a Montel space. On the other hand (a,°b;)
(x, D"Yu—a(x, D")b(x, D" Yu=(ay(x, D")—a(x, D"))b(x, D"Yu+a(x, D") (by(x, D")—
b(x, D"))u, and Lebesgue’s theorem shows that a,(x, D)u—>a(x, D")u and
by(x, D" Yu—>b(x, D")u for all ucS(R"). Thus on the right hand side of the
above equality the first term converges to 0 in S(&") and the second term does
also because {a,(x, D')}7-1 is equicontinuous in the set of all cotinuous linear
operators on S(R&") into itself. This completes the proof.

Lemma 54. Let ac Sy} and set
a¥(x, ') = Qn)"*"VOS— S S e~ =" =80 ((x, ¥'), 7)dy'dy’.  (5.14)
Then we have that

#x, &) = 31 LozDta(x, £')Frylal(x, €) (5.15)
el <N e !

where

rylal(x, &) = §: ryolal (x, €Y1 —0)V1do (5.16)

ryelal(x, ) = N 3] L(27r)“""‘1) 0S— S S emit' =)=
lei=x a!
(08.D%a) (x1, ¥), &' +0(n"—€")dy'dn’, (5.17)
{ryolal} oero 11 is bounded in Sg0-"" . (5.18)

Moreover we have that

(a((z, x"), D"Yu, v) = (u, a¥((¢, x'), D")v) for any u, ve S(R") and any fixed t ER
(5.19)
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where ( , ) is the inner product of L(R}™).

Proof. 1If acC5(R" x R*™Y), it is not difficult to check (5.15) using Taylor’s
formula and Fourier inversion formula. Now we set

e, €)= @205 [ el '), 00 )y
for ac Sy, 6€[0, 1].

Claim. (1) hga]leS¥2» and for any LEN there exist C>0 and PEN
depending only on @, ¢, M, m, L such that

Sup | 020%hdle] (x, )| SCla| ¥ O 1Ai(x, £)pm-1eI(x, ) (5.20)
€[0,1

for all &, g with |a|+|g| < L.

(@ If {a4}7-. be a bounded set in S¥7 with gy—a in C=(R"XR"*Y),
{hola,]} = is bounded set in Sy and hgla,] (x, & ')—>hgla] (x, &’) for any (x, &)
and 6.

Proof of claim. We show (1) first. We set
Slal(x, y', €', 1") = a((xy, y'+x"), '+ 67") .
Then we have that

|05,08 folal (x, ¥', €', 1) | < | al 5t @™ P (% ¥’ +x7), €'4-67")
X" 1 ((x,, y'+x"), E'-+67") (5.21)
< Cy [ @] Mot g &/ SMIHUBDIEH SN 1M AmD 82 |

where C, depends only on @, ¢, M, m, @, §. We also have that for any L, N
eEN

[y D (A =4)* [<n >N A=A ) filal (x, ¥', €', 2 )]

<Colal s, ey Gy sramongyys 022

where C, depends only on @, ¢, M, m, L, N. Thus, when L, N €N satisfy
|M| +|£2|—N<—(n—1) , —2L<—(n—1)
we have that

hlal(x, &) = @ry-on | [ ey
X (1= Ay 1< > (1 — 4" fla) (s, ', €, n 'y

(5.23)
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From (5.21) and Lemma 5.3 we obtain the estimates (5.20) for L=0. Using
the estimate (5.22) for first derivatives of @ and Lebesgue dominated conver-
gence theorem we see that 9, Ag[al=h,|0, ;al, Ot ;hlal=he[0¢,a]. Thus by induc-
tion we have that

8208 h,a] = h[0%0La] .

Thus from case that L=0 in (5.20) we also obtain the estimates (5.20) for
all L.

Next we show (2). From the estimate (5.22) with a, for a and (5.23)
Lebesgue’s theorem implies the second statement in (2) and the first one follows
from (1). This completes the proof of the claim.

Now we return to the proof of the lemma. afeSY-7 follows from the fact
that a*=hg[a] when 6=1 and the claim (1). The boundedness of {rye}ecio 11
in SYN"=N follows from (5.24), because

raddl = N 3 %ho[ag,w,a] . (5.24)

Note that Agla](x, €') is a continuous function in & for any fixed (x, &')
from (5.23). Take {a,}7-1C C7(R" x B*™") with the properties in the claim (2)
as in the proof of Lemma 5.2. (5.24) and the claim (2) imply lim,.,.. ry[a,](x, &)
=rylal(x, ") pointwise from Lebesgue’s theorem. Thus letting k— oo in (5.15)
with a, for a we obtain (5.15) for a general a=S% 7. Finally we show (5.19).
When a=C5(R" x R*™Y), this can be easily checked. Note that {af};.; is
bounded in S%7 and lim,,. a¥(x, §')=a¥(x, ') pointwise from the claim (2).
Thus noting Lebesgue’s theorem and letting k—oo in (5.19) with a, for a we
obtain (5.19) for general a=S%;'. This completes the proof.

Let q(x,&)EC~(R"XR") such that g(x, &)=37-0 a/(x, £)é] with g,
U (P,p)Estg;g and a,,==0. This expression is clearly unique. Then we define
an operator g(x, D) from S(R") to S(R") by

q(x, Dyu = gm(}) a,(x, D')Diu, ueS(R").

q(x, D) maps Sp(R") into SH(R").

Lemma 5.5. Let q(x, D)=317_0 a;;(x, D"\Di (i=1, 2) be operators defined
as above. Then

(41°92) (%, D) = q:(x, D) g,(x, D) (5.25)
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with

@ead (e D) = 33 CL 05 [ {7 3ha) 5, 240,

X (Di,qy) (61, y'+x"), £)dy'dn’
and for any (N, -+, N,, )€ N™*! with N;<1 we have that

m.

(5.26)

(o), &) = L 5 (049240 (e ) (DLDEa) (v 7, O,
r5,&) = [ rx, 1 —yrmas,
rioe € = N, 51 TR 05 [ o704, 020) (5, €400, 1)

X (D} D3gy) ((x1, y'-+x"), &)dy'dn’.

Proof. When g,(x, &) are monomials in &, the result follows from Lemma
5.2 and Leibniz rule. The general case follows from bilinearlity of (5.25),
(5.26). The results in the remaining part of this section are used to prove
Lemmas 3.7 and 3.10.

Lemma 5.6. Let q=C~(R"XR") be as before Lemma 5.5, and let ac

oo. Let NEN. Then there exist sets of constants {Cg} pezi-1 and
{C.i} (@l)eZr-1xZ., depending only on N such that |BI<N
|a|=N, l <N-1

(@°q)(x, &) = a(x, £")q(x, 5)+ E c,,,(a a0 D3q) (x, §)

+ 3 [ 00,50 3 cua—orria,

le|=
7.0, x, &) — (22)-*DOS— S S —i9 7 9% a(x, €'+ 07"\ D%q((xy, Y’
+x"), &)dy'dn’.

Proof. It suffices to prove by induction on K, 0 <K<N that
(aoq)(x: E) = a(x9 'E )q(x’ E)—{_ 2 CKm(a aOD Q)(x; E)

> CyaOzalx, £)D3g(x, §)

K<Ll

+ X S qa(a, X, E)ECKM(I—H)N—I—Id0.
& Jo I<K

la|=

This is trivial for K=0 and we assume that this is true for K—1. When
|| =K, we have
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1

02a(x, £)D2q(x, &) = (BRaoDi) (&) — 5 0FPa(x, €)DE*q(x,€)
o<IBi<N-& G
—(V—0) 3 | a0, 3, )10y 5 "1do0.
1BI=F-& B1 Jo

Substituting this into the equality for K—1 we get one for X. This com-
pletes the proof.

Lemma 5.7. Let q(x, £)=X3}-0a,(x, £)¢{, 4;€ U (», per? So.3, and let a<
Sha. Let NLEN with 1<L<N, s<N. Then we have that

(goa)(x, &) = q(x, &)a(x, &)+ 3] —1_—6?/0£1q(x, &)D.Dja(x, &)
0<i<s  alj!

o< [@l+7 <L
+ X > Caﬂ '(angf/Df; aoD,’f,ag",ag q) (x, &)
0<j<s  IBIKN o] —j J 1 1
L] +i <V
i f1 .
v .] g 9.0, x, )(1—-0)N-'-1d6
o<i<s  alj! Jo
l@|+j=N
1
+ Sqmﬂ'(o: x,€) X1 C,ey(1—0)1P1-1-14g
0<j<s |B|=N-|a|-j Jo J 1<B-1 j
L[] +i <N

where C,g;, C,pj; are constants depending only on its suffixes and N, L, and
9u; = (2m)~*"V g § e="" 820} q(x, £+6(0, 7)) D%Di a((xy, y'+x"), €)dy'dn’,

Gup; = (2z)~(»-D S S e""/""ag,DZ, J’;la(x, £ ’+077’)(Df,6"§‘,6§1q) (e, ¥y’
+x"), E)dy'dn’.

Proof. By Lemma 5.5

(gea)(x, &) = >3 !

<Gxs alj! £04q(x, £)DuDla(x, &)
v (5.27)

- o § .
N—j S 9uy(0, X, £)(1—0)V=i~1d0 .
ojss aljl Jo

(@] +i=

Applying Lemma 5.6 with D;;Dj a, 8gdfq with L<|e|+j<N, and N—
|a| —j for a, q, N we have
0504,9(x, €)D%.Di a(x, &) = (DD} ac080},.q)(x, &)

°<|31<§}—1w|-,’ Cmﬁj(ag/D:/Dila°Dglag/6'glq) (x, 6)
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1 I1BI-1
> S Gupj(0, X, &) 20 Cop(1—06)'P1711d0
1Bl=N-|&|-j Jo 1=0
Substituting these equalities into (5.27) we get the second equality. This

completes the proof.

Lemma 5.8. Let q(x,&)=>1%_0 a;(x, €)é{ with a;—constant and a;E
STH(R" x R*™Y) for j <2, and set my=0. Let acSY}, and set for a, fEZ",

(4 Gls(0, 5, €) = @) +=05— | | = at, €' om)
X (020%q) ((x1, y'+x"), E)dy'dn’, 0€]0, 1.

Then if @, <3 and |a|+|B|>0, we have that

mi n(2 3-wq)

[a, Q]ap(ﬁ, X, E) - J'=0 _,o(x E )51 (528)

where {b ;o} gero 11 is @ bounded set in S} ™i+a 1871 m=(mj g = 107D,

Proof. With a notation in the proof of Lemma 5.2 we have that when a;
<3,

[a, ql.8(0, x, &) = Zw‘. Gjho[a 0%0%a;] (x, £)E{™™.

Since 8% 0%a; € ST 19 I(R” x R*Y) < S7iz1e’l=(mj=1"D and since from the
assumption that aa——constant the term for j=3 is dropped if ;=0 and |a|+

| 8| >0, the assertion follows from the claim (1) in the proof of Lemma 5.2.
The proof is complete.

Corollary 5.1. Let g be as in the above lemma with m;=3—j, and let
acs ST PR X R*Y) with o, BEZ", satisfying the same assumption as
above. Then (5.28) holds with {b,e} sero 11 bounded in S17,° 1/ (1 *IPVA(R" x R*™Y).

Proof. Let O(x, ") =<EDY2, o(x, £") ={E">1V2, M= —m=I+ || ;lﬂl .

Then a€ SY:7, and M+mi+d1—|a’|=l+3—j—l—ci_*2'[—ﬁl. We apply Lemma
5.8. Since
Sg;(m,-,ml—Iw'l),m—(mj+w1—Iw'l) = SYimjra =1/l = (Mt mj gy =101
= Sijhjse (R X R
the conclusion follows. The proof is complete.

Lemma 5.9. Let q and a be as in Lemma 5.8, and set for a, BEZ",
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[9, @lug(6, X, £) = (27)~*"DOS— S S e="7'(8¢8%g) (x, £+6(0, 7"))
Xa((xy, y'+x"), ENdy'dn’, 6€I0, 1].
Then if @, <3 and ||+ || >0, we have that

min(2,3-a;

) .
[9, alap(0, %, &) = 23 bjolx, €61 (5.29)

where {b o} ecto 11 is bounded set in Yy v =10 D= 4= 1071),

Proof. With a notation in the proof of Lemma 5.2 we have that if a;<3.

. _
9, alus(0, %, &) = 31— ' phjo%0%a,, al(x, &) .
i=ay (j—a)!

Now the proof is similar to that of Lemma 5.8. The proof is complete.

Corollary 5.2, Under the same assumption as in Corollary 5.1, (5.29) holds
with {b;e} eeto,11 bounded in S1537/ (#1HIBD2(R” X R*™).

Proof. This is proved in the same way as in the proof of Corollary 5.1
from the above lemma. The proof is complete.

§6. Proof of Propesition 3.2
Proof of (1). Set y=e¥*"&1=D%; Then
eV = =T?[ (x, Dyu = (L(x, D)+iz(x,—T))v.
Set
A, = Re(a+b) (x,D"), A, =Im(a+b)(x,D"),
L, =D,—A4,, L,=A,+7(x,—T).
Then we have
(1LGx, DY) = || Lyv|P4-20m(Ly, Lyv)+||Lyl? (6.1)
and
2Ly, L) = elllP+-A0, D A)+ (AT = 4Dy, L)
—(, [4y, 45Iv)+((4F —Ap)v, Lyv)} (6.2)
= I+ soo + V .

From the proof of Lemma 5.4 with a notation in it we have

[Re(a-+B)A(x, £')—Re(a+b) (x, £) — 5: Bl 3 02.D% Re(a+8)]x, €')do .
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Since 8§D} Re(a+b)= Sy, when |a| =1, AF—A4,€0pSy," from the claim (1)
in Lemma 5.4. Similarly we have A¥—A4,=0pS%,'. Thus from (3.6) and
Lemma 3.1 we have

I+ | V] < Gl Egv [(ILovl LD - (63)
From the proof of Lemma 5.2 with a notation in it we have
(Re(a+b)oIm(a+b)—Im(a+b)o Re(a+b))(x, &)
= S: ImZﬂ(h‘,[a,g"’,Re(a—}— b), D% Im(a+b)] —hg0% Im(a+b), D% Re(a+b)]) (x, £')d6 .
Thus the claim (1) in Lemma 5.2 shows [4;, 4,]€0pSy5'. Thus noting
that [D,, A,)€O0pSy', we see that
I 41V | < Gylv|| | Epvl] - 6.4
Since || Ey,v|P<||Ew|| ||v]], applying (6.3) and (6.4) to (6.2) and using Schwartz
inequality we see that

1
2m(Ly, L) 27| |F— (Lol L) — Gl B - (6.5)

Now we shall use the assumption (3.3) of ellipticity to estimate the last term on
the right of (6.5). To do so we prove

Lemma 6.1. Let 2€S3;" with 8,28y, and 8;,A€85%,, and with
infigrisp | A(x, )| O~ Ux, ) p(x, £)>0 for some R>0. Then there exists n&

Sps! such that p(x, &)= when |£'|>2R and pod—1E S5

1
A(x, €Y

Proof. Let v&C=(R"™) with v»=1 when |&’|>2, ¥»=0 when |£'| <1.
We define

R S Y - R
u(x, &) = l(x,f’)¢(R &Y € >

0 &' <R
Then p=€C*(R" x R*"!) and

18208 (x, €)] <C,p (@-1Flp=1#)(x, &) when |&'|>R.

1
|2Gx, €11

This implies 1€ S5'. Moreover since
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—65 ./I(x, f') ipr 1
sy T 7, R 1E
Ax, &) ¥ a A(x, &)

R0 y)(R7IE")

when |[&'|>R,

aﬁjﬂ(x’ 3 ') =

from 8¢, A€ 855, and 8¢y EC7 (R"') we see that

| 8268, u(x, €)| <Cp O-1Plp-1#1) (x,€") when [€'| >R.

1
G, )]

Thus 8;,4€ S5%°. Thus from the proof of Lemma 5.2 with the notation in
it we have

(o) (3, &)~ @A(x, €) = | halu, 10x, €0 €555,

Thus uod—1 S5, for u2=1 when |£’|>2R. This completes the proof.
From Lemma 6.1 there exists b, &S5 %" with b,oIm(a-+b)—1&S5". Since
EHYESYSY, biolm(a+b)—<L&">E Sy with by={&">ob,. Thus

IEW[ < Cl 411 +1IvID

(6.6)
SCAIL ||+ ET+HD)vD -

Multiplying this inequality by ||v|| and using Schwartz inequality we get
that

P LB < Ce T+ DI+ L

Substituting this into (6.5) we see that when T+—1-<6 for some 0>0,
T
1 1
2Im(L,y, LZV)2771Iv'IZ_T(HLIVHZ—’_”LZVHZ) :

Substituting this into (6.1) we get that when T —}—l <0,
T

1
V6

From (6.6) and (6.7) we have that when T+L<3,
T

ILGe, DYl > — (I Lyyl| 4[| Loy [+ V] - (6.7)

| Ewl|? = ||Ep|| < Co(1+72T)||LCx, DyullP .
Finally from inequalities that ||Dyu||¥ <||L(x, D)u||F+ Cyl|Ew||¥ and
T_w”EuzuH(TT)S*\%(T'UZT'IIlEluH(TT)-l-Tllzllull(::)), this inequality and (6.7) im-
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ply that

e VT | Dyl T4 By 9 < C LG, DYl

when 2T >1and T —|——1— <8. This completes the proof of (1).
T

Proof of (2). Let 7y, T,, C, be constants as in Proposition 3.1(1), and as-
sume that ©T%>7,, T<<T,. Then from (1) we have that

3 P T B Dl e T Dl HLE2)

<G T Ly(x, D)D) (6.8)
+IIL;(x, D)Ewl|F) ,

AT By Diull? — < ull £ < CHlI(LoL;) G, DY
(6.9)

i/2+i<1

From the proof of Lemma 5.2 we have with a notation in it that
1
(LpE ) (0 8) = [EDoL) (v, )+ 52 hfOEKe">, e, +5)] (. £

Thus [L(x, D), E;|€ OpSy* from the assumption. We also have [L,(x, D), D]
€O0pSy ' from the assumption. Thus from (6.8) and (3.6) we have that

=TT = By Djul [ < Cor 2T =Y(|| oL (x, D)ul|
1<i/2+7<2
+EL;Cx, D))+ CoCre 2T | Eyu] )
S CYA+CoCrr )| I(Lio L) (x, DYullP) -
This inequality and (6.9) imply the first inequality in (2). Next, we show
the second one. From the first inequality we have
== =20 B, DI [0 <o Y| | Dyl || P+ N LEl[[5)
2<i/2+7<3
<G 2T 7Y(||(Lyo Ly) (x, D)Dyul |7 (6.10)
H(LyoLy) (x, DYEw||F),

> T3lz-i/2_jT_i/2—ji|Ei/2D{““(7T) = Hl”‘H|(TT.)4—<—CSH(L1°L2°L3)(xs D)u”(TT)

ij2+j<2

(6.11)

if 7% and T~! are large. We use identities that
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(oL (v, D), B = [Ly(x, D), [, D), Bll+ 32 [L(x, D), EJL(x, D),
[(LzoLy) (x, D), Di] = [Ly(x, D), [Ls(x, D), Di]1+ (',’jg)_(m) [Li(x, D), Di]L{(x, D).

If r;=L;o{¢">—<E" oL, r,ESy5" as showed above and [L,(x, D), r(x, D")]
€0pSy,,° similarly from the proof of Lemma 5.2, We also have [L(x, D),
[L;(x, D), D\Jl€ OpSy5°, since [L,(x, D), D,]E0pSy,'. Using these facts for
above identities and noting (3.6) and Lemma 3.1 we get from (6.10) that

o3I =) | Ep, D{u|P < Cye 2T ~Y(|| Dy(Lyo Lo) (x, Du |
2<Zi/2+7<3
+{| Ef(Lzo L) (x, D)ull)
+ Cir T (|| Bl P+ 35 1B L x, DY)
J=2,

<G > H(L1°Lg°L,')(xxD)””(1"r)
{i,7}= (2.3}

if #T% and T~! are large. This inequality and (6.11) proves the desired ine-
quality. This completes the proof.

§7. Proofs of Lemmas in §3

Proof of Lemma 3.1. For some C>0, ||a(x, D"Yu(x;, <)|| < C||Eu(xy, )|
for any x;ER, since {a(x;, *)},,er is a bounded set in STz, 172(B" X R*™Y).
Multiplying this inequality by e"*1~7)* and integrating on [0, T] in x, we get the
desired inequality. Q.E.D.

Proof of Lemma 3.2. The proof needs three lemmas.

Lemma 7.1. (1) Let L=&,—2—p with AES] (R" X R*™) and pESyY%
Let ac Sy (resp. STo(R" X R*™Y). Then we have that

aoL—aL, Loa—aL& S¥:7  (resp. S5:7™).

(2) Let L(i=1,2) be as L in (1) with 2;, u; respectively for 2, n. Let acS¥y
(resp. STo(R"xXR*™Y). Then there exist a, a,ESys =" (resp. Sp:z™), @€
SH:m=2 (resp. Sy ™) such that

ao(L,Ly)—aL,Ly= "3 a;0L,+ay . 7.1)
i=1

Proof. (1) We only prove that goL—alL&Sy:y~' if a=S¥y. The
others are proved similarly by using the fact that ST, S S7'; ™ in the case that

asSYy. From Lemma 5.2 we have with a notation in its proof that
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(ac(A+u)—a(A+u)(x, &) = S: ME=1 hol0%.a, DA+ )] (x, £)d6 .

Since D%(A+u)E Sy ;" for |a| =1, the right hand side of the above equali-

ty belongs to S4:#~' from the proof of Lemma 5.2.

(2) We only prove the case that a=Sy:#~'. The other case is proved simil-
arly. Using Lemma 5.2 for ao(L,L,) freezing the variable £,, we have

as(LL) (&) = @LL)(x, &)+ || rx, )0,

re(x, &) = Qz)~*V0S— S S e~y 2”‘_, d¢a(x, &'+07")

X P (ijLk ° LI) ((xh yl_ni—xl)a 5)dy,d77'

(k1) = (1,2}

Applying Taylor’s formula for L,((x;, y'+x'), £) in y" and integrating by
parts we see that

"o(x, E) = rw(x, 5)+r26(x9 51)

where
"1e(xa 5)
—— 5 (@05 | [ e Sogatn, er+on)
NERT) j=2
X D, (k) (Gory '+, €)dy )Ly, €)
rZO(x’ El)
=~ 5 @ 0s—{ [e70 31 0,9 a0x, €' +07')
(k:1}=(1,2) s,i=2

1
XD, ) G '+, (00 Curt) Co 319, €t Yy

Thus using a notatoin in the proof of Lemma 5.2 we have

n

[ roe oo = — 51 33 [ hios,a, D, Gt u i €OL G, €)

(ko1 = (1,2} j=2

On the right of this equality, the coefficient of L, belongs to S%-»~'. Thus

from (1), [§ re(x, £)d0 takes the form of the right of (7.1). Therefore, to com-
plete the proof of (2), it suffices to show that {ryg} ¢ero17 is a2 bounded subset of
Si:=2. This follows from the following Lemma 7.2 and Fact 7.1. Q.E.D.

Lemma 7.2. Let (M, -+, My, my, -+, my) be a permutation of 2N real
numbers, and let afx,y’, &', 7' )EC™(RI X R'%'2y) (j=1, -+, N) satisfying the
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estimates that
|0%05.0805a,(x, y', &', 1) | < Chpyu sup Y-V (Q)pRi-1#1-IFI(Q)  (7.2)

Sor all multi-indices where we use a notation K in (5.10). Then if we set a=
Iay, -+, ay] with
Ilay, -+, ay](x, &)

AT
— @ay =05 [ [ e [ axy'+x' €', ' +&)dy'dn,

we have a€ Sy and |a|,<C; I17-1|a;| 1y where M=3Y;_y M;, m=33}.. m,,
la; | ;=max(,, gy wi<; {infimum of C,gu in (1.2)}, and the constants Co, L, are
depending only on I, @, ¢, and a permutation given above.

Fact 7.1. Let acS¥¥. Then

sup |0%05804la(x-+1(0, y'—x"), € +s(0'—£ ]|
0. 1
0<s<1

< | @] (@Y1 ipE1e1=1P) (1 —1)x' 1y, (1—5)&"+57)
if le|+|B8|+|vI+|n] <L
Fact 7.1 is obvious. We shall prove Lemma 7.2.
Proof of Lemma 7.2. Set b=T])-1a;. Then we have the estimate
|8505b(x, y', €', 7')|

N N . .
SN'HPRTT (a;|igieip 25 IT (sup @357171(Q) sup 7i~1#°1(Q)) .
i=t Sai=w j=1 QEK QEX
= pi=p
Thus from Lemma 5.2 [a(x,&")| <G, II7-1]a;]L,(P¥9")(x, &'). Differ-

entiating under integral sign we see that
9%0La(x, &)

al 8!

svitcoviyma Ve yN I BN gl e yN 1 30 ou iV |

s pi+ii=p
xI[0% %00  a,, -, 8" 8% 0L 05  a, ] .
Thus from above estimate we have
N
Ia":a?/a(x, &N SCO(ZN)WH“S‘ H1 |a,- | Lo+la(+lﬁl(@M_|ﬁl¢m_M) (x, &").
=

Q.E.D.
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Lemma 3.2 is an immediate consequence of the second part of the next
lemma and Proposition 3.2.

Lemma 7.3. Let L;=¢& —2,—u; (i=1, 2, 3) with 2,E81 o(R"XR"™), y,€
S3%. Then we have the followings.
(1) LpoL,—L,L,ESs5"
(2) For some a;€855'(j=1, 2, 3) and a,E S5;° we have that

3

LioLyoL;—L,L,L; = 3} a;0L;+ay. (71.3)
i=1

Proof. (1) we have
LieL,—L\L,
= —Dxl(lz‘*'ﬂz)‘i‘(zﬁLz—1L2)+(ﬂ1°L2_ﬂ1Lz)-

Each of terms on the right hand side belongs to Sg5' from the assump-
tion and Lemma 7.1.
(2) Inview of (1) and Lemma 7.1-(1) LyoL,0L;—L,o(L,L,) takes the form of
the right of (7.3). Thus it suffices to show that L,o(L,L;)—L,L,L; does also.
We have
Lyo(L,Ly)—L,L,L, = 3] Dlek'Ll
{k:1} = (2,3)

—{A0(LyLg) — 2 Ly Lo} —{a0(L,Ly) —umL,L3}.

Each term on the right hand side takes the form of the right of (7.3) from
Lemma 7.1. Q.E.D.

This completes the proof of Lemma 3.2.

Proof of Lemma 3.3. Take a=X,gq=p in Lemma 5.6 with N=3 and in
Lemma 5.7. with L=1 and N=3. Then Lemma 3.3 follows from Corollary
5.1, 5.2 Q.E.D.

Proof of Lemma 3.4. This follows from Lebiniz rule. Q.E.D.

Proof of Lemma 3.5. From Proposition 3.2 and Lemma 3.2.
Bu)<Cyl|(p—q) (x, D)ul[

if T2, % are large. Since gox €S8y ,°C SV 172, we have

llgox(x, DYl < Gyl | Egppul |5 .
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From these two inequalities we see that for large 772, %

1B (x, DY)+ 1go 2Cx, DYl < Gl pox(x, DYul[+ Co(1+ C|| By .

Applying Lemma 3.3 to the first term on the right we get the desired inequality.
Q.E.D.

Proof of Lemma 3.6. Taking @(x, &') =<&">, ¢(x, ')=1 in Lemma 7.1,
7.3-(1), we have that if |a |4 |£]| =1 (resp. 2)

070%(p—g) = E a;50Lo;oLy;
2
+ § a;oLy+a

with a;; €819*, a,E 813! (resp. St5'*!) for i =0, g, = 553!
From this we have that when |a|-+|#8]|=1 or 2,

CEYNI-1BD205288(p—g) = 3} a;;0Ly;oLy;
i<i
2
+ g a;oLy+a
with a;; €813, @, €810 (1%0), a5

Thus Proposition 3.2 implies that if z7? and % are large

7 35 (|Eqai-1ene(p —8)a)(x: Dl < Cill(p—g)) (x, D)ul|7.

le|+1B1=1,2

Thus using <&"D1*-1ED2eglddy & S3:2% and Lemma 3.2 we get the desired
inequality. Q.E.D.

Proof of Lemma 3.7. As in the proof of Lemma 3.3 we take g=p, a=%,
N=3 in Lemma 5.6 and apply Corollary 5.1. Then we have with some b;&
Si7:'% and constants C,

Xop = xp+ 3 C,0%a00%p+ 31 bE.
lo|=1,2 i=0

Thus Lemma 3.7 follows from the following lemma and Lemma 7.1, 7.3-
(D). Q.E.D.

Lemma 7.4. Let L(i=1,2,3) be as in Lemma 7.3 and a=Sy;. Then

3
(L,L,L))oa = aL,L,L,+ % a;L;L;+ 21 a;L;+-a,
(== i=
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with some a;;, €S53, a, €857 (i+0), 6, €55 °.
Proof. We have
(LyL,Ly)oa(x, &)
= @0)0205— [ | e " (LLL) @, £+0, 70alx+0, '), €'y

+ 3 oy 00— [ [ e (WL (5, 60, 7DD, alx+0, ), €'’

i>j

+ 31 @) 0205 [ [e= " Li(x, 640, )DL+ 0, ), )y’

+@aye» [ e D3,aGet 0, ), €0y’
Iy SRS 7

Since (27)~*=D OS— [ [ e~V a(x+(0, '), £")dy'dn’ =a(x, &) by Fourier
inversion formula and a limiting argument, in the term I we see using Taylor’s
formula for L,(x, £-+(0, ")) in 7" and the integration by parts

I=11L

1=1

3 ., 1
— 1 @ay 05— [ 31 { op+u) (s, €+0)
X x’a(x+(0: y ): ¢ )dy'dﬂ ,]';—;;'I; Lj(x’ E)

1(x, E)a(x, &)

~ 3 @n)evos— S S o
11 Joadg* distinct
.71>12

x 3 4 S 0% (Ax-t-) (x, €)+07")d6} D3 ax-+(0, '), €)dy'dn’

@l 102|=1
X Lj(x, &)
—@n)y 0205 [ e LB, A [} o2t (s, €+ 07)ds)
X D%+ +%g(x4(0, y'), E)dy'dy’.
Similarly we have

I = 33 D, &) (LiL;) (v, €)

/7 7 1
— 5 @205 [ [ e 3 {02t m) (v, €010

I%i
XD, Dza(x+(0, y"), £)dy'dn' - Lj(x, £)
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+ 3 @renos—([ew 51 (11 { oG+, €+ 0n)do)

i>ig 1ot 2] =1

xD, Dz, 7+ a(x+(0, '), €)dy'dn’,

1T = 33 Di,alx, €)Li(x, €)
— @y emos— | [ e 53 [ opitt-m)x, €/ +om)ao
x D7, Dza(x+(0, y"), §)dy'dn’,

IV = Df’;la(x, EN.

As in the proof of Lemma 7.1-(2) applying Lemma 7.2 to oscillaroty inte-
grals in I~III we see that I4------IV is the form of the right of the equality in
Lemma 7.4. Q.E.D.

Proof of Lemma 3.8. This follows easily from the following lemma and
Lemma 7.3-(1). Q.E.D.

Lemma 7.5. Let ac=Sy, and let L, (i=1,2) be as in Lemma 1.3. Set
Ly;=&,—2;. Then

(LiLy)oa = (LyLyy)oa-+ fi‘: byoLo;+b,

with b,E Sy o"" (i=1, 2) and byc Sy s**", and
Lica = Lyca+ta,
with a, & S¥H1",
Proof. We have
L\L, = LyLyp—mLy—u,Loy+ 1014, .
Thus from Lemma 7.1-(1) we have with some bES;5"
(LyLy)ea = (LyLe)oa—Lyo(uy0a) — Ly o(u,0a)+ (s 265+ b)oa .

Hence the last term on the right is in S§5>"+Sy4 "~ 'c S¥2™. Thus ap-
plying Lemma 7.1-(1) to the middle two terms on the right we obtain the first
statement. The second statement is trivial. Q.E.D.

Proof of Lemma 3.9. We prove (1) first. We need a lemma.
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Lemma 7.6. Assume the notations in §3. Assume (I) holds.
(1) For any distinct 1<k, /<3

Loy = a\Ly+a,L,
with some a;E Sg 4 (i=1, 2) with suppa;C suppyr.
(2) For any distinct 1 <k, I <3 we have with some a,, a, as in (1)
Dyry = aLy+a,L, .
Proof. (1) Set
ay = Yo dy[(A,—Ay), @y = —Yrody[(A;—A4)
with a trivial convention outside suppyr,. These have required properties.
(2) Set
ay = Y @[(A;—4y), @y = — Y@ [(4,—4y) .
Then g, 85 5%(i=1, 2) and satisfy the equality in (2). Q.E.D.
If k=1, from Lemma 7.6-(1) and Lemma 7.1-(1) we have with some a,, a,&
S50 MESTS' '
Lyoyry = aoLy+a0Lita, .
Since

Lyoyr; = Lyo(1—yrg)oyri+ Looyreoys

the first statement in (1) follows. Next the proof of Lemma 5.2 shows that
coyrg—cyr, 8% 5. From this and that cy,/@Sy%, Lemma 5.2 shows that
with by=cy,/® and some b, E Sy}

coroovry = boo(DYrg)ovr+b, .

Now, the second statement immediately follows from Lemmas 7.6~(2), 7.1-(1).
This completes the proof of (1)

(2) can be proved similarly by using the following lemma Q.E.D.

Lemma 7.7. Assume the notations in §3. Assume (IT) holds.
(1) The statement of (1) in the previous lemma holds.
(2) If k=1, we have with some g;E85:%(=1, 2)
cYo=a Lit+aL,.

Proof. (1) If k=2, /=3, the same proof as that of Lemma 7.6-(1) works
well. In another cases we set
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ay = —yro Aif(c+A,—4p), @y = yroc+4)/(c+4,—4) .
We have
| cf3x, €| <Cugle(x, €)[(@7# @71*N) (x,&") forany e, (14)
because
|cf8Cx, €Y S Cog(@ 1P o1#1) (x, &7) if |a|+]8]>0.
Using (7.4) we can easily check g,€S55'% and the desired equality clearly

holds.
(2) Set

a, = —yyc/c+4—4), ay=g,cllc+4,—4p).
Then these have required properties. Q.E.D.
Proof of Lemma 3.10. We need a lemma.

Lemma 7.8. Let L; (i=1,2,3) be as in Lemma 1.3 and set g=]}.. L;.
Then we have for a, 8 with 1 < |a|+|8]| <2

61&'3 = ;2]. a;; II L, (7.5)

i€
with some a;; € Sg " "1PI(|e |+ ] =1),
Q((;; =>a; II L+ 23 a; L; (7.6)
SN ERTT iz
with some a,; €Sy }*" "%, a, € S5~ Fi(|a |+ 8| =2).

Proof. (i) Assume |a|+|g|=1. Ife,=1, (7.5)is clear. If a,;=0, we
have

3= > —(tm)g Il L.
§,7,k ¢ distinct IE€{i,j)
>
Here (2,)(g) €815/l C S5~ -1eh=g37}=l-=1fl_ " Thus (7.5) holds.
(ii) Assume |@|+|f]|=2. If @;=2, (7.6) is clear. If a;=1, we have

qé;; = ,%,} —(A+ 1)) L;.

Since |a’|+ 8] ——-1,(/li—i—ui)Ez;)ES},_‘,,!”‘""ﬁ'=S§,,“,!"""‘S'. Thus (7.6) holds. If
a,=0, we have
gdpn = 2 {-tm EOE;)IEl‘ZIj)Lx

i,j,k @ distinct
i>j
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a’
+ 5 (0)(0) ermmarapss L.
w<a u Y
v<B
| +v)=1

Here in the first term in the parenthis (l,,)f‘;;)ESl““’” =18l because —1-+
@] >—]4], and in the second term (2;+x)E}ESs ™, (3,44 )(7'_‘\,5‘)
Si-J#/I+IEL=IBI+IVl for the same reason so that their product belongs to
S2-1#’l.=1Bl_ This shows (7.6). Q.E.D.

Now we shall prove Lemma 3.10. From Lemma 5.7 we have with the no-
tations in Lemma 5.7, 5.8, 5.9

PBox = 31 _L_guHim p0.® ppUin g

0<j<z P rij!
YI+i<L- 1
I} ‘L ',
-+ os;z'sz w<§w-]-c”“"(—l)lm [0% DY x, P]m+(,~,v)(o,a+u) L, x,8)
LY+

NI 10 DY Llars i 0, %, ) (1—0y" =1 do
o<i<z rljl
LY +i<N

1 .
+ 3 S ™ 08D 2 bl 6,5, 6)

0<j<2  [K[=N-IY]-j
LY +i<N

X 3 Cpuu(l—0)*-1-1do

LL| ) =
= I+1I+1114-1V .
Assume 1< |ea|+]|£] <2 in the following. From Collorary 5.1 we have
for any j, r, »

(1.7)

. min(2,3- @y —f) bl £* a,+j<3
[ag" Di“” J‘-’:P]m+(_;,'1l)(o,[a:+t“4) (0, X, E) = { E ' ( e )

(@, +5>3)
with some {be} gero 11 being bounded in S§jF7~1GVI+HED(R® x R™-Y). From
Corollary 5.2 we have for any j, r

(1.8)

) mﬂin(2,3-w1—i) b/ Ek @, - £3
[p, Dy Z](w+(j,’?)(0,ﬁ) @,x,8 = { 25 i (ot )

(e, +i>3)
with some {bfg} g1 being bounded in S~ 10NV2 (R” x R*Y).
We devide our argument into two cases.

(i) Assume |a|+|F|=1. Take L=2, N=3. Then from (7.7), (7.8) we have

min(z,3-e;)

II—l"'III—[—IV == 2 bk 61 with some bkES%/zklllzm' (R” XR”_I) .
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Next from Lemma 7.8 and that supp ¥ C supp 4, we have

I= E Zai,, H LI
ik 1€, k)
+ 3, ¥R ar I Lt $a L)
0<j<2 i>k IE(ik
171+i=1

with some a;,ES; %18, gl:fe Sy ix-i-1M.-1Bl | gt g g2~ l@l-i-IM.=1Bl Here
we have DY 2 -al:{ €857} ~18, DYV x - al € Sy )-8,
(ii) Assume |@|-+]|F|=2. From Corollary 5.2 we have
min(2,3-w;) "
I-IIT-1V = ;Z_l by &% with some b, ESH5 51" (R" X B"™Y) .
Similarly as in (i)

I=x(San I Lt 34, L)

i>k

with a, €857 )18l g, $57)*'-1P1 From (i) and (ii) we see using Lemma 7.1,
7.3~(1), and that {&"YU=I-1BD2 gUel=1BD/2.(1B1=1a1)/2 that

e Y11 =1BD 20 (@0

min(2,3-a
— 3 4y 0LioL, +ZA°L+R+ > “B,€i
i>F
with some
Aii ESl-<|wl+|ﬁ|)/2,—(lwl+lﬂl)/2 Re Sé—émlﬂﬂl)/z,—1—(l~l+lﬂ|)/2
1/2 -32 (g .
4, { (le|+181=1) B,E S,
Sezt (el+181=2)°
This implies Lemma 3.10 in view of (3.6). Q.E.D.

Proof of Lemma 3.11. Let @, B as in the assertion. From Lemma 5.2 we
have with a notation in the claim (1) in its proof

(g{B07) (x, &) = Py T (ae' g DY %) (x,€")

17=3=|@]|

% S ho[af' gfg;a I’ l] (X, f/) (1 ___0)2-|¢| de .

The second summation on the right belongs to S5 7@~ 1*PC 8% T2 (R" x
R™1) from the claim (1) in the proof of Lemma 5.2, because 8% g{g} € S1,o(R" x
R*™H)C 8% if |7|+|a| =3. Next in the first summation we have 8% g{g) D,
e85 N-1el-M-IBl 5o it belongs to Sy5 "M1=I#-=32=1M-E since O(x, & )3S
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CLED2 L C'(@]p)*? on supp x. Thus the second and first summations multipli-
ed by <& D*I-IBD2 from the left in the operator product sence belong to
respectively to S?;g'ﬁ‘lﬁzl/Z(Rn xR"'l) and S;{i‘]yl"(i“|+]p|)/2:"3lz_l'“-(‘“|+|sl)ﬂg
S3/%3.12(R" X R"™). This proves the assertion. Q.E.D.

Proof of Lemma 3.12. This has been proved in the proof of Lemma 3.6.
Q.E.D.

§8. Imvariance of the Assumption of Theorem 1.1

Let £,=2,, X 2,, where £,,, 2,, are open sets in R, R""! containing the
origin respectively. Let o= C~(2,,) with ¢(0)=0, dp(0)=0 and set O(x)=
(x;—o(x"), x") where x'=(x,, -+, x,). Then ®(0)=0 and @ is a diffeomorphism
from £, onto some open neighbourhood of the origin. Set ¥=@"! and let
P(y, D) be a differential operator on £, with the symbol P(y, 7) defined by

P(y, D) u(y) =[P (x, D) (uo®)] (¥ (»)), uEC(2,) .
Then we have

1

a!

ﬁ(@ (xo), 77) = 2 P(“)(xo, t@ '(xo) 77) Dﬁ [ei(f(z,xo),'ﬂ)] | x=%0° xOE‘Ql

where f(x, x)) =@ (x)—0 (x))— @ (xo) (x—%o). If P(y,7)=Pn(y, 7)++
Py(y, n) with I~’i homogeneous of degree j in &,

P, (x,'0'(x) 7) = Po(® (x), 7)
Ppyy(x, D'(x) 77)-!—!%21’55’(96, '0'(x) 7) DIID(x), 7)[e! = P (D (x), 7). (8.1)

The aim of this section is to prove the following.

Lemma 8.1. P(y, D) satisfies the assumptions (i), (ii) in Theorem 1.1.

Proof. From the assumption (i) in Theorem 1.1, for any ;= R"*\(0)
there exist an open neighbourhood U of the origin in R" and an open conic
neighbourhood I' of &g in C*~*\(0) such that

0,5, &) = 0, ) Tl (61—24(x,€) (= 1,2)

for (x,£")€UXTI as polynomials in & where ;& C=(UXTI") which is holo-

morphic in £’ and satisfies that 4;,(x, £")==2,,(x, ') for all (x, £") when /=Fs.
Since ‘@’(0)=id and ®(0)=0, it is trivial that (i) also holds for P(y, D).

Thus we shall show that (i) holds for P(y, D). Assume that P,=d, P,=087
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P,=0 at (0, 5)ER"X(C\R)x(R"*\(0)). Then P,=d; P,=d P,=0 at
(0,&,). This implies that 2,,(0, £¢)=2,;,(0, £0)=& for some LE {1, -, m}
(i=1,2). Set

hyy =24, y—Ay,=c,

q(x, &) = Py,(x, e)) IE (61 —2y(x, € '))Z,E (E1—2(x, €)) .
Then

Pm = (51_1)2 (El—l—l—c) q, (x, EI)E UXP, E]_EC 5
A0, &) = &y, (0, £¢) =0, ¢(0,£,) == 0.

Let v C=(2,) with dy-(0)=(1, 0, --, 0). Then

P v} = 3L — 14 v}) (E1—2) (6 —x+-§’— g

+(E— (61—2+0) {g, v} (8.2)
- {e, v} q.

Here, by definition, {f,g}(x,&)=313-1(0s,/0,,2—9,,/0s;g) (x,€) for C=-
functions f, g in an open set of B" xC", which are holomorphic in £. Set

F(o, z,u,(x, &) = 3(s,(0)— {4, ¥} (%, £)) (0+%) a(x, A (x, ) +0z,£)

+o(o+1) z{g, ¥} (x, A(x, ") +0z,£")) (8.3)
+q(x, (A(x, EN)+o0z, &) uc
for (o,z,W)EC3 (x, E)EUXT .

Then

F(—~§-, 0,0, (x, &) =0 on UXT,
5, F(—%, 0,0, (0, E5)) % 0.

Thus from the implicit function theorem and the uniqueness of the im-
plicit function, there exists a C>-function o(z, u, (x, £')) on an open set V=
VixV,in C?x UXTI with V,CC? V,C UXI containing (0, 0, (0, £§)) such that

F(O‘ (Z: u, (x:v El))a zZ, U, (x’ EI)) =0on Vl ) (8'4)
0 (0,0, (x, £) = —% on ¥,. 8.5)

We may assume that
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(c(x, &), {c, ¥} (x, E")EV, when (x, E)EV, . (8.6)
Noting this we set
a(x,€) = a(c(x, &), {e, ¥} (x, ), (x, &) for (x,&)EV,.
Then (8.2)~(8.4) and (8.6) imply that
{Pp> ¥} (x, (A+ac) (x,€7),€)) =0 on V,. ®.7)

Since o (z, , (x, £')) is holomorphic in (z, u), (8.5) implies that there exists
an open subset W of V, containing (0, £f) such that with some g, C=(W)
(i=1,2)

a(u &) = =2 e, £) a0 E)Ho v} () anE)on W (1)
Since a(0, £§)= —%, we may assume that
la(e, &)+ <L on W (89)
3 10

Since {P,, ¥} (0, (&;, £§))=0¢, P,(0, (£, £¢)), the degree of a polynomial
{P,, ¥} (x,&)in &, is constant for (x, &) in an open subset W, of W contain-
ing (0, £§) where both of & =a(x, ') and &, =(2+ac) (x, £") are solutions of the
equation {P,, v} (x, £)=0 from (8.2) and (8.7). Since &;=42(x, &) is a double
root of this equation for (x, £’y W, with c(x, £)=0, and since A(x,£’) and
(A+ac) (x, ) are distinct for (x, )& W, with c¢(x, £")=4=0 because of (8.9), we
have that

{P, ¥} (%, &) = (61—(A+ac) (x, &) (6, —2(x, £) qu(x, £), (x, ENEW, (8.10)

as polynomials in &, where g, is a polynomial in &; with coefficients in C=(W}).

Let W, be the intersection of W, and {(x, é)ER"xC*1; |¢'| =|&4|} and
let W, be an open cone generated by Wl. We extend the restrictions of func-
tions a, a,, @, to Wl to functions on W, being homogeneous degree 0, —1, 0 in
&' respectively and we also extend the restriction of g, to C X Wl to function on
C x W, being homogeneous degree m—3 in . Then using homogeneity of c,
{c, ¥}, {P,, ¥} we see that (8.8) ~ (8.10) also hold on W, when we replace a,
a,, a,, q, by their extentions in the above. Moreover since multiplicities of the
characteristic roots of P,, are at most triple, we see from (8.10) ¢,(0, (2(0, £¢),
£5))=+0.

Thus taking v (x)=vr(x)=x,—¢(x’) and ¢(x)=x, we see that there exist
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an open subset U; of U containing the origin, an open conic subset I, of I"
containing &§, and an open conic subset I' of CxI" containing (2(0, £¢), &)
such that the following factorization of 8¢, P, and {P,, ¥} holds:

B, Pp(x, &) = (6,—(A+ay ¢) (x, &) (6,—2(x, £) 4(x, £)
{Pys i} (%, €) = (6,—(2+be) (x, €7) (E,—2(x, £V G(x, &) (8.11)

for (x,&’)EU,x I, as polynomials in &, where a,, b& C*(U, xTI'}) and §, § €
C>=(U, x I') satisfying that
2, 1
Ay+— <<—
| @+ 3 l T

a4y = —%—i—cam, (8.12)

= — b e v b
with some ay,, b,, b, C~(U, X I';) which are homogeneous degree —1, —1,0 in
&’ respectively; g and § are homogeneous degree m—3, and
Clg(x, &) >[€]"3 and C|g(x,€)|>|&|" 2 on UyxI"  (8.13)
for some positive constant C.
We may assume, decreasing U, and I if necessary, that
the inequality in the assumption (ii) in Theorem 1.1 holds
when (x, )€ U; xI" and 8¢, P,(x,&) =0 ; (8.14)
Clq(x,&)|>|&|™%on U xI" forsome C>0. (8.15)
We define z,, &€ C=(U, x I';) by
7o(x, ') = A+ay¢) (x, &) and =(x, &) = (A+bc) (x, &) for (x,EYEeU, xTI;.
To prove that the assumption (ii) holds for P(x, D) we must show that there

exists an open conic neighbourhood FcF of (0, &) in R" xC" such that

(@2 P) (2, D 2] +1@, B,) (0, D) )| Pes(3, 1) |

<CIP.(3, DI (| Py, D0 |+ | (PytPper) (7, )| 7]
+ | 7 l (4m/3)—(3/?)+1)

when (3, 7) = (@ (x), '®'(x)"! £) with some (x, &) E T satisfying
{Pp> Yo} (x, £)=0. (8.16)
From (8,1) it is easy to see that (8.16) follows if we prove that there exists an
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open conic neighbourhood I'C I of (0, £,)€ R" x C” such that
(1@¢ Py) (x, ) |E |+ (3, Pp) (x, E)]) (| P-s(x, 5)[+I§2|P$§)(xa OLIED
S| Pu(x, €)% (| Py(x, €)1 €|
+ | (Ppt+Ppy-y) (x, E)—l_].,,E:sz(x’ £) Di<<i®(x), '@’ (x)"L > [al| |E| ™3
| & | Um-Gr) 4 1) 8.17)

when (x, E)E]:“ and {P,, ¥} (x, &) = 0. Note that (8.11), (8.13), and the defi-
nition of z(x, £") imply that

{P,, o} =0if and only if £, = A(x, &) or &, = 7(x, &)
when (x, )T .

Thus since the inequality in (8.17) is trivial when (x,&)EI’ and &=
A(x, €'), it suffices for us to show that

there exists an open neighbourhood U,C U, of the origin in R"
an open conic neighbourhood I'yC I'; of £§ in C"~! such that the inequality
in (8.17) holds when (x, £)e U, xI'y and &,=7(x, &'). (8.18)

Indeed, if (8.18) is proved, (8.17) holds with F=rn (Uy X (C xT'y)).
We shall show (8.18). Let us choose an open neighbourhood U, of the
origin in R" and an open conic neighbourhood I', of £f in C*~*\(0) so that

v,ccU, I',n{e'ec* ;) |&'|=1}ccrl,; (8.19)
(zo(x, &), &), (z (x, &'), E'YET when (x, £)E U, X T (8.20)

Sublemma 8.1. The following estimates holds on U, X I,.

ClPy|lgymre = [cP1E7 " P2 C7H Py | gy2r, (8.21)
[P tyr—(Pu) B £1mre | SC L] 1671 [ e, Yok )| e 211 71BY g7 | m=3tlel
(8.22)
if la|+18] <2.
P& | 6oy = Cil B ] |21 m3—Cylc[3] €[ m31P1 (8.23)

ifacZ", peZ"" with |a|+|B|=1. Here, constants C, C,, C, are all posi-
tive.

Proof of Sublemma 8.1. (8.21) immediately follows from (8.12). To
show the next two inequalities we observe that
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[(Pa@] | gymry <C 7| m=3711 [ |P=141718 on U, X T (8.24)
if |a|+]|8] <2.
le—7o| <C([e][€" 7+ [{e, Yok D] on UpX T (8.25)

Then we obtain (8.22) by Tayolr expansion of (P,)} in &, at &,=1,,

substituting = for £, and estimating each term in the expansion by (8.24) and
(8.25) except for (P,)8|¢,—.,- Finally (8.23) immediately follows from (8.12)
and the equality that for @, £ as in (8.23).

(PP = 36D (G242 O g+elBE— 2P g
+(E =2 (6,—2+0) qfa” . QE.D.
Since ¢={c, ¥,} =0 at (0, £{), from (8.21), (8.22), and (8.25) there exists an
open nighbourhood U,;C U, of the origin in R" and an open conic neighbour-
hood I'yC T, of £ in C" such that for some positive constant C
C Pyl lgy=r=[c?|€ "> C7H Py |gy=r 00 Uy XT3 (8.26)
From (8.25) we have that
,Pm—l ' €1=T—Pm—1 l £1=7¢ l
<C(lel €|+ 1H{e, vk Dl [€7"7* on UpX T, . (8.27)
Using (8.21), (8.22), (8.24), (8.26), (8.27) we see that on U; XTI,

(19¢ Pyl 1€+ 10, Pm|)(|Pm-1|+lm|2=2|P$:)l 1€ g,=r
<CA{(10¢ Pl 11410, Pp) [ Poes |+ [ Pyl [E1™ 7} [gy=ry,  (8.28)
[P, %2 S5 [ PO g L SC| Py [€]™ 7 gymr - (8.29)
3

=2
In the same way one can deduce that on U; XTI,

| Py |2 Pyt Py | 1€ | gy,
<G| P, || Pyt-Pyey | |1 gyr
+Clel [ 17+ {e, wot ) ([e P 1€ [ P [€]7) | gyr
FC(lel [E 74 He, v DIE " Pl |y
<GPy P | Pyt Py | |E]75 g,
FClel 1€ 17 e, ok DIel?[€ 12| Pucs] |6yt Cs| P [E]77 g1 -

From (8.23) and (8.26) the middle term on the right of the second inequlaity
can be dominated on U; XTIy by a constant multiple of
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| Pyl [E1™ "  gymnt [ Ao | 1€ 118 Pyl | Prpes | £y, -
Thus we get with another constants

| Py |2 | Pyt Py | | €172 ] g
SC| Pyl ™| Pyt Py | | €] ™54 [ Pyl [E]™ D) g0 (8.30)
+Colady| 16110 Pl | Prueal g,

on U;x T

From (8.11) and (8.14) the inequality in (ii) in Theorem 1.1 holds when
(x, )€ UsxI'y and &,=7,. Thus conbining this inequality, (8.21), (8.26) ~
(8.30) we obtain

(106 Pul 1€1410, Pol) (| Pucsl + 33 [ PO11ED) 1
< G105 Pul 1£1+10, Pal) [ Pcs + | Pul 1€1%7} 1o, (831)
< CAIPu (P18 %7 | Py Py 1€]#55 |5 1) |5,
+Cald| €119 Pl | Pacsl 1,

on U XTI,
Moreover we see from (8.29) that on U;x T’y

]Pm|2/3|Pm+Pm—1] 15]M/3]E1='r
£C1|P1n12/3lpm+Pm—l+ 2 Ps;l”) D;}<ld)(X), tw'(x)—l E>/a" |E|m/3l£1=7
|l@[=2

+C2|Pm| |E|”’"1|51=,,..

This inequality, (8.31), and that dy»(0)=0 immediately imply that there
exists an open neighbourhood U,C U; of the origin such that the inequality in
(8.17) holds when (x, )€U, X I'; and &,=7. Thus, the proof of Lemma 8.1
is complete.

§9. Proof of Theorem 1.1

From Lemma 8.1, to prove Theorem 1.1 it suffices to show the existence of
an open neighbourhood 2'C 2 of the origin such that every ue C=(£2) satisfy-
ing P(x, D) u=0in £ and u|, <,>=0 vanishes in 2, where P(x, D) and £ are
as in Theorem 1.1.

In case that m;=0 or m,=0 Theorem 1.1 was proved by Calderdon [2],
Mizohata [5], and Hormander [4]. Thus we only have to prove Theorem 1.1
in case that m;>1 and m,>1. In this case the theorem follows from the fol-
lowing.
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Lemma 9.1. Let P(x, D) and 2 be as in Theorem 1.1. Assume that m;>
1 (i=1,2). Then there exist positive constants 8,, t,, C, such that when tT?>7,
and T™'>1,,

|lul|55r < Col| P (x, D) ullfP, u€ CF(By,(0)) N Szyo(R") .

Here, B,(0) is the open ball with the center at the origin in R" and the radius
r, and by definition

IflSr =, 3 en¥ia=) Ta=s~i87 ||, D ]|

i+2j<2s
i,J€EZy+
for uSR"),s=0, -, m.
Proof. We may assume that Q/(x, e;)=1 (i=1, 2), for P,(x, e;)! P(x, D)
also satisfies the assumption in Theorem 1.1.
Let & R*\(0). Then the possible cases are the following (i), (ii).

Case (i). Two equations Q40, 7, £5)=0 (i=1, 2) have no common root.
Then there exist an open neighbourhood U of the origin in 2" and an open
conic neighbourhood I' of &§ in B*~)\0 such that in U XI" we can write

Pux,6) = IL (=405, €02 TT (6= 2,05 €. ©.1)

Here 2,€C=(UXT"), (1< j<m,+m,) are homogeneous degree 1 in &’ being at
every point, pairwise distinct and non-real. Choose a C~-mapping Z(¢’) from
R*! to I' such that 5(£')=¢£" if £’ lies in a conic nieghbourhood of £} and
|€"|>1, and such that 5(£’) is homogeneous degree 1 in &’ when |[£'|>1
and satisfies that |Z(&")|>C(1+|€']). Let v=C=(R") with supp vC U,
v =1 in a neighbourhood of 0, 0<y<1. Set Z(x)=y(x) x. We set P, (x, &)
=P, (¥ (x), €1, E(E)), A%, ENV=2,F (x), E(€"). Then 1,81 (R"xR"Y),
ClIm2(x,6")| =1+ €], and 2,(x,E)=1,(x,&") and P,(x,&)=P,(x, &) for
(x, €') in a conic neighbourhood of (0, £¢).

Case (ii). Two euqations Q;(0, =, £;)=0 (i=1, 2) have exactly r(>1) common
roots.

Then there exist an open neighboruhood U of the origin in £” and an open
conic neighbourhood I" of &5 in B*~1\(0) such that in UXI" we can write

mytmy—r

Pm(x’ £) = _1];]; pj(x: E)

where
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€200 €N (E1—A,0x E) ey, €) (1< /<)
Py, &) = | (E1—2,0x, £)P (r<j<m)

El_lj(x9 &) (my<j <my+my—r)
with 2, ¢,€C=(UXTI) which are homogeneous degree 1 and satisfy that
2,(1<j <my+my—r) are non-real and distinct everywhere, 1; and 2;,—c; are
distinct everywhere if i+ j, and |Im ;| >2|c¢,| for j=1, ---, r. Since equations
p(x,£)=0in £, have no common zero for any (x, EYeUXTI, we can write

P8 = 3 0O o 8),
PutPad (58 = T (p05 O Ha6 N s ) 0)

where with the notation that /;—the degree of p; as polynomial in &,, g; is a
polynomial in &, of degree /;,—1 with coefficients in C=(U x I") and homogeneous
degree /;—1 in £, and s is a polynomial in &; of degree m—2 such that the
coefficient of &% is a sum of functions in C*(U x I') which are homogeneous in
&’ of degree k, -++, k-+2—min (r, k+2).

Then there exist an open subset U, of U containing the origin and an
open conic subset I'; of I' containing £§ such that for any i=1, .-, r we have
that

lq,(x, ©)[(10, pi(x, E) |+ |9 pi(x, E) [ |€])
<Cpix O (| pilx, O 1BIEP+ (Pt (x5 O E[ 1141 (9.3)
if (x,6)€U;X(€CXI'y) and g pyx,&) =0.

Indeed, from the proof of Lemma 8.1 there exist an open neighbourhood U,
of the origin in R" with U;C CU and an open conic neighbourhood I'; of
&4 in R*\(0) with I';N S**C CI" such that for any i=1, -+, r there exists
a;€C=(U,xI';) which is homogeneous degree 0 in £’ and satisfying the fol-
lowing:

a0, &¢) = —% ; 9.4)

with the notation that r;,=2,+¢; c;,
in the assumption (ii) in Theorem 1.1 holds when (x, £ )€U, xI';  (9.5)
and &,=7,(x, £’), and the inequalities (8.21) and (8.23) hold on

U, xI', with instead of z,.

the inequality

From (9.4) and (9.5) we may assume that on U, xI",
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Clpllg=my= €T i,
Cle;*> | psl f£1=—r,-2c_1lcil3- 9.6)
Using (9.5) and (9.6) one can easily see that for any i=1, ---, 7 on U; XTI,
(10, ¢;|+10g ¢; [ 1€ 1) ¢;1219:] | gy=r,
SCle (el 1€ 124+ | pit gl L gyer, [ €| HA+ 7)) . ©.7

Note that with notation that r,0=li—% ¢;

651 p; = 3(6,—2) (E1—74) -

Then using this inequality and that (p,-)&?,‘,’ﬂ)igl:m’:—;— ()3 ¢t if acZ?, pe

Z7' with |a|+|A]| =1, and using Taylor expansion of p, and g, in £, at
&,=t,, we obtain (9.3) from (9.7). Let us choose mappings Z(¢’) and Z(x) as
in (i) for I'; and U, instead of I and U. Then we define P,, P,_,, ZJ., ;s Pjs
d;, 5 as in the same way in case (). Then (9.2) holds for (x,¢’) in a conic
neighbourhood of (0, £5) with p;,4§;, 5 instead of p;, g;, s, and p; and g; satisfy
the assumption for p and g respectively in Proposition 1.1.

Now we prove the following lemma.

Lemma 9.2. Assume notations in the above arguments. Then we have
the following estimate in the above cases (i), (ii),

Case (). If ©T? and T are large, for uS,,(R")
i/ THUH(;Z,’T-E-T“I/ZIEI(HEW(E)(“’(X’ D) ul|+ || E-yo(Pr)a(, D) ul|F)
<C||P,(x, D) ul| .
Case (ii). If tT? and T! are large, for us Sy;(R")
HuHﬁJ?TJrT'wwE:l(HEm Q“(x, D) ull”+ || E-yp Qear(x, D) ul|7)
<C||Q(x, D) ull .
where Q(x, &)=TI7:1""(p;+4q;) (x, &).

Proof of Lemma 9.2. First we prove the estimate in case (i). The inequlaity
for ||u||%)7 is well-known. (See [8]). We shall show that the one for (B,),,).
This also contains nothing new.

Set Q,(x, )=(6:—;(x, &N for 1<j<my, Oy(x, &) =£,—2(x, €") for
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m+1<Lj<m+m,.
From Proposition 3.2 we have that if =72 and T~ are large,

T2 3 || Eqai- 1500, D) ull§¥ < C||Qy(x, D) ul|”, uESH(R") (9.8)

] +1B]=1

for any i.
We denote by 4, ,(sER, kEZ.,) the set of functions R(x, £) in C*(R" X R")
of the form

R(x, &) = ay(x, £') E1+-++ayx, §), , ESTFH(R" X R™™) .
Then if R;E4,,;, (i=1,2), we have that RioRy, Ry R,E A, ., 4,14, and if
RE4,,; and e, BEZ", with @, <k, we have that R E A, \,) 4-q,-

Using partial fraction decomposition we see that if |a|+j=m and j <m
—1 we can write

£ = 2 Ryx, &) I 0y(x, &)

where R,E4,, 1,-1.
Next using that for |a| =1

Y o(B)iy— 33 <ED o @)iarel 1T Q€ Ap-ot s

and (9.8) we get that for large 772 and 7! and uE€ S,(R")

T || By Bo(s, D) w9 < C G40 IT 01 G5, D) '+ T [l 24.1)

S G| Pulx, D) ullP +(( T+ T) [[ullfils,7)
SC.? ”Pm(x, D) u”(IT) .

The inequality for (P,)*® can be deduced similarly. This completes the
proof in case (i).

Next, we consider case (ii). We note that C |Im ;| >1+|€’| and |Im 7, |
>2]|¢;|. In case (ii) we shall use Proposition 1.1.

If my+m,—r=1, if follows that m=3. Thus the desired estimate is no-
thing but Proposition 1.1. So we may assume that my,-+m,—r >2.

We set Q~i=p,-+q,. and Q@ =T] .+, Qi. Since for any (x,£’) equations
bi(x,E)=01n &, (1=1, -+, m;+m,—r) have no common root, from partial frac-
tion decomposition we have that if |a|-+j=m and j <m—1

mytmy=r

g — X RkOQ(k)EAm—l,m—l
k=1
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for some R,E4,, ,,-;. Then from Proposition 1.1, we have that for large T2
and T, and u€S,(R")
=32 T8 2 HD'” Di"_'“l uH(;T)
o<l@w<m

m1+m2—r

<C(C 3 1100, D) ullP+ET)™ [lulfia,r) ©.9)
On the other hand as in the proof of Lemma 4.3 we see that for u&S(R")

1DT ul|¥> <||O(x, D) ull¥+C((=T)™* || DY ull(r")+uf:_}) [[D DY~ u]|i) .

This inequality, (9.9), and that ||u||5r < C(z T2 33, 1<al|D'® D1 4|
for u€S,(R") which follows from an interpolation on Sobolev norms on x’
and the first inequality in the proof of Lemma 4.3 imply that if 72 and T ~!

are large
m! + m2 -r

[l <C(T) #1100, D) ulliP+ 3 1040 Q®(x, D) ul|P) (9.10)

fOI‘ uESle(Rn).
We have to estimate the summation on the right in (9.10). We set Q,,=

Mjsin Q~J.. Since
0100P—0-+v/ =1 31 3 K&V (0 LE D 0(0))(0)° it S At m-s

@l=11{

we have from Proposition 1.1 that for large 772 and T, and uES,(R")

11042 0%, D) ull <[1QCx, D) ullf”
+C(Z 3 TP, D) Eospy [(@)wro Qal (5 D)l (0.11)

l@l=1ixk

+ 33 |IE; DY ul[) .
j<m-2

Setting @, =<&">7%0(Q))w We have that (040 0su—0;u°01)° Qs and Qe
0400, — Q0,00 are in A,—(y) m-» Thus from Proposition 1.1 a term in the
first summation on the right of (9.11) is dominated by a constant multiple of
T]|Q§°Q(‘)(x, D) u”(TT)‘f‘E;sm-z | E-carzy- {u||{ if zT% and 7" are large and
ue Sy p(R"). Thus applying this estimate to (9.11) and summing up it in k we
obtain that for large ¢ 7% and 7!

mytmy=r

W+ 2 110:20%(x, D) ullP<ClIQE, D) ), uE SR . (9.12)

Finally using <€">~"?0Q,)—<E"> 201" 27(0,)(4y° QP € Ay (23 m-2
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we have from Proposition 1.1 that for large 7% and T, and u€S,,(R")

my+tmy—1

-1 Qar(t, D) ullf SCC 3 T [|Q40 @ x, D) ullP+T [l 21.7) -

Similarly ||E;;, Q®(x, D) || is dominated by the same expression as the
right of the above inequality. Combining (9.12) and these estimate we obtain
the desired inequlity. This completes the proof in case (ii) and therefore the
proof of Lemma 9.2.

Now we can complete the proof of Lemma 9.1 by patching the estimates
in Lemma 9.2. We assume the notation 4, in the proof of Lemma 9.2.
Choose C=-functions 7 ,(£") on R"™* (j=1, -+, s) which is homogeneous degree
0 for |£|>1 and satisfy >j.: ¥;(")=1 for |£’|>1 so that there exists an
open neighbourhood ¥ of the origin in R" such that for any j € {1, ---, s} there
exists R;E 4, , with R;—ET € 4,, -, such that P(x, £)=R,(x, £) on V' X supp x;
and the inequality in case (ii) of Lemma 9.2 holds with R; for Q.

Let us choose 8,>0 with B, (0)C V. Let 4= C=(R") with ¢(t)=1 when
|£] <1, $()=0 when || 2%, and set B(x, &)=P($(05* | x|) %, &). Let z,&
C5(By,(0)) with Zy=1 on By ,(0). We set (x, )=2,(x) ;") (j=1, -, ),
@o(x, €)=Zo(x) (1 —237-1 Z (€ N+ (1 —%(x)).

Then we have that 31.0 ¢;(x, €)=1, P(x, £)=R(x, &) for (x, &")Esupp ?;
(=1, -+, 5).

Thus we have for large 72 and T, and uS,/,(R") that

| < 2 llitx D) ulle'r <|lpo(x, D) ull‘J?r+Cj§ I(R;o9;) (x, D) ul|3)r .

(9.13)

Since R,-"SZ’,' — gajof’ — \/:T 21w|=1 (<E I>_112°Rj(d)° [¢(j¢)<£ l>1/2] _ <E I>l/2°RS'u)°
[@;<E>"?) is in A4,,_; -1, We have that for any 7, T, uS S (R")

[I(R;o0;) (x, D) ullf
<CAIPG D) ullf+ T 53 R ;o(6CE > (5, D) ulf?
T 53 [Ryo(p e 5] G D) )
+ V2 T|[ullGle, r -+ E-y DY  uf|F) .
We set &, =¢{<ED, fg,-(x):(sz’,-)(w)(f ">7'2. Then we have that R;o%;,—

B;40P and R;0%,,—3;,0P are in Ap-(yp m-rr Thus we have from the above
equality that for large v 7% and T, and ueS,/,(R")
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”(-Rj°¢j) (x, D) u“(IT)
<C(P(x, D) ullP+ T2 (][22, r -+ E-yye DT 6l|F) -

As in the proof of Lemma 4.3 the last term on the right of the above ine-
quality can be dominated by C'{(zT)~* || P(x, D) u||'P+T°? ||u||$7} for any r,
T,ucsS7,(R"). Thus we get from (9.13) and the above inequality that for
large 7% and T, and uE Sp,(R")

e |52 <llgox, D) ull$Pz+C || P(x, D) ul|F . (.14
Finally using Leibniz rule we see that for any z, T, u€ S (R") N C5(Bs,/5(0))
llpo(x, D) ulli’r KC (™2 T [[ul|522, 7+ E-; DY ][0+ || E_, DY ul[7)

because @(x, D) u=@y(x, D') (%, u) for u€ C7(Bs,15(0)) and pyox, €S~ with a
notation that ¥,(x)=x,(4x). Again, the latter two terms on the right of the
above inequality can be dominated by C'{(1+(zT)™Y)||P(x, D) u||F 42T
l|u||$21, 7} for any 7, T, uS,,(R"). Thus we have that for any z, T, uc Sy,
(B") N C(B1y0))

llgoCe, D) ullr <C{U+ET)™) [|B(x, D) ullP 4772 T ul|51, 7}

Substituting this inequality into (9.14) we get the desired result with % for 8,

in the lemma because P(x, D) u=P(x, D) u for uc C5(Bs,(0)). The proof is
complete.
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