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§ 1. Introduction

In this paper we shall prove an uniqueness theorem for the Cauchy problem
for certain elliptic differential operator P(x9 D) in a neighbourhood of the ori-
gin in Rn of order m> 1 with C°°-coefficients and the principal symbol Pm(x9 f )
of the form

where Qi(i=l,2) is a homogeneous polynomial in <f of degree mi with C°

eoefficients such that
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if mg.>l? for every £ 'eJZ^VO) the zeros r of gg.(0, (r, £ ')) are non-real and

simple.

Our theorem is an extension of the Watanabe's theorem [6] in case of C°°-
coefficients. Our main result is the following.

Theorem 1.1. Let P(x, D) be a differential operator in an open neighbor-
hood Q of the origin in Rn of order m>l with C~ -coefficients and the symbol

P(x, £)• Let P(x,E)=Pm(x, <?)+••• +P0(xt£) with homogeneous polynomials
Pj(x, f) in f of degree j. We assume the fallowings .

(i) The principal symbol Pm of P takes the form (1.1) with Qi as above.

(ii) IfPm=d^ Pm=dl, Pm=Q at (0, (r0, ?0)) with non-real r0 and %€= JZ-MO),
r/?ere emftr a« open conic set F in Q x(C*\(Q)) containing (0, (r05 %)) satisfying

the following condition.

< c | p.fe o 1 2/3( I P.fe 0 1 1/3 1 c | -^ ] (P.+P..,) fc 0 1 K I

/or (^, C)er w/% (dh PJ (^ 0 = 0.

/ie assumptions (i), (ii) r/zerg exwto a« o/7e« neighbourhood J

or/gwi i>i J^K 5-wc/z that every u^C°°(@) satisfying P(x, D) u=0 in Q and u \ ,,^0=0

vanishes in Q',

Now, we give simple examples of differential operators P(x, D) satisfying
the assumptions of Theorem 1.1.

1.1. Let p(x, £)=(£ i-iStf (f j-jf 2-fl(jc) e2) and q(x, £)=b(x) f2
2

where a, b are C°° -functions in an open neighbourhood of the origin in R2, We
assume that a (0) = 0 and \b(x)\ \da(x)\<C\a (x) \ near the origin. Then
P(x, D)=p(x, D)+q(x9 D) satisfies the assumptions in Theorem 1.1.

2
Indeed we have 9^ p=3(f1—if^)((l—i£2— — a(x)£2)- When £i—i£2—

2
— a(x) ^^O, (x9 £)^M2xC2 and when \x'\ is small, we have that

\P\ |c|2>5|a|3 |f2 |5 for some d>0 .

Thus the inequality in the assumption (ii) in the theorem holds when f 1=/f2+
2— a(x)£2, (x, S)^M2xC2 and |*'| is small. This means that the assumption
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in the theorem holds for P(x, D).

Example 1.2. Let p(x, f) =(e?+-+e;)2 (ff+ - +

Here we use a notation that x'=(x2, • • • , #„). Lef g(X f^q^x, f ') f ̂ ^(x, f ')
where cv c0 are respectively homogeneous polynomials in £' of degree 4, 5 with
C°° -coefficients in an open neighbourhood of the origin in Rn. We assume that

\Ci(x9Q\ \C\ + \c0(x,£)\<C\x'\ \C\* for small \x\ andC^C9'1. ThenP(x,D)
=p(x, D)+q(x, D) satisfies the assumptions in Theorem 1.1.

Indeed we have d^p=6(Sl-\ ----- hf2)f i(f?H ----- rf l+— a). Assume that

"C* with | / /wf ' |<JL \Re£'\ and |jc' | is
2*

small. Then \x'\\dx.a\<C \a\ and \d^a\ |f| <C |a| , because \a\>
Since

\a\2 and \p\\S \5= — | a \ 2 1 £ | 5, the inequality in the assumption (ii) in the theo-

rem holds. This means that the assumption in the theorem holds for P(x9 D).

The main part of proof of Theorem 1.1 is to derive Carleman estimate for
some third order elliptic operators in the following proposition.

Proposition 1.1. Let P=p(x, D)+q(x, D) be a pseudo-differential operator
on Rn with p(x, £), q(x, f ) of the form

P(x, f ) = (£i-*(*, f ')«f i-^, D+c(x, f ')). *> c<=S{to(Ru x

q(x, f) - S a/x, £') f i , a/x, f OeSfro'C

with C\Iml\ ><e'>, I /w^(x, £') I >2 1 c(x, £') I •

for all (x,£)^Rnx(CxRn-1) with d^p(xf£)=Q. Then there exist constants
r0>0 a«rf C0>0 ^wc/7 that // rJ2>r0

|P«ll^
i<|o}| + ;^i<2

definition

ST(Rn} = {u^S(Rtt)i suppud[0, T]xR-1}

where <S(Rn) denotes the space of a/I rapidly decreasing C" -functions on Rn;
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\\u\\\(f\= S iW-M-'T-1*-! \\Eat D{u\\P for u<=<S(R"),

s = 031, — ,6,

where Z+ denotes the set of all non-negative integers and

The assumption (ii) in Theorem 1.1 is a translation of that of the above
proposition. The assumption in the proposition ensures a factorization of
P in the proposition into first order operators being differential operators in x1

and pseudodifferential operators of Beals-Fefferman's class in x'.
When c(%3<f') = 0 in the above proposition, our assumption on P makes

no condition on q(x9 <f). Carleman estimates for elliptic pseudo-differential
operators with smooth characteristics of arbitrary high multiplicity were studied
by Watanabe-Zuily [7]. But our result is stronger than theirs in our case.

This paper is organized as follows. We devote ourselves to prove Propo-
sition 1.1 from §2 to §7. Theorem 1.1 is proved as a corollary of the propo-
sition in the next two sections. In §2 we carry out local factorization of the
operator P in Proposition 1.1 modulo negligible terms. In §3 we derive local
Carleman estimates for factorized operators. In §4 we prove Proposition 1.1
by patching local Carleman estimates which follow from the results in §2 and
§3. Several facts on pseudo-differential operators used to prove Proposition
1.1 are collected in §5. In §6 we prove Carleman estimates for first order
factors which are essential in the argument in §4. In §7 we prove lemmas in
§ 3 on symbolic calculus. In § 8 we prove the invariance of the assumptions in

Theorem 1.1 under changes of variables such as y1=xl— <p(x')> yj=xj(j>2)

where ^eC00 with 9(0) =0, d<p(Q)=Q. In §9 we prove Theorem 1.1 using the
result in §8, Proposition 1.1, and theorems of Calderon [2], Mizohata [5]3 and

Hormander [4].
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§ 2. Factorization

Let ^, c&Sl^&xR"'1) satisfying

C|/ifiJ(*,Ol£<£'>, (2.1)

2\c(x,n\<\Im^(x,S')\- (2-2)

Let

/»(*, O = (£i-*(*. f '))2 <fi-*(x, n+<*x, O), (2-3)

q(x, O = 2 Vj(x> %') (Ei—*(x, £ '))' with 0y e S\-j(R* x .ft"-1), (2.4)
y=o

and set

P=P+q- (2.5)

We have

3*! X*, O = 3 (f i-Ji(x, £')) (f i-<*2(*> f')) (2.6)

with
•> •> ") •) ^ ,, /̂  gr\

Then,

Since Xl—X2=— c, q can be expressed as

2

#0c <?) "y1 b (x £') (f /I (x <f ')V 1=12 (2 9)
y = 0 J

with 6ly=fly, b2j<=S\-j(RnxRn-1) satisfying

bzj—b^ = cdj for some dj^S\~0
j(RnxRn~1) .

Setting

ft = 6io» ^2= — c3+6203 Cl=(-i)'c (2.10)

for/-1,2, and

^(A:, f) = (f i-^i(x, f'))2 (f i-^/fe O-c/(x, f'))+ft(^ f') (2.H)

we have

P(x, f) ^ ^(x, £)+ 2 6/y(x, f') (d-lfc, ny • (2-12)
y=i



368 SHIN-ICHI FUJII

Now we deduce the estimates of derivatives of gt from the assumption of
Proposition 1.1.

L 2.1. Assume that

dxP\ + \9t>P\\£'\)\q\<C\p\*<3(\p\w\£'\*+\P\\£'\ + \£'\5<*+l) (2.13)

when 8ilP(x,S) = 0. (x,<

Choose * e C"%R) satisfying X(t)=Q when t<.— and /(?) = ! when t>\.
Define ®, e C°°(R" X R"'1) by 2

/ < x<?/(*,£ )>

where <z>=(l+ |z|)1/2/<"- zeC. We afao define <p,^C°a(R"xRK-1) by

?»,(*, f')=<f>-1*i(*,f'). (2-15)

«,/9. (2.16)

Proof. From (2.6), S?1/?=0 means that f1=^(x,f) or f1=^(x,f')- Jf

O = (8«, c) (x, f ') c(x} f ')
2 ,

^(^> £ ) = c(*, £ )3 , ?(*, O = bm(x, f ) ,

JP(*,0=ft(*,f').
So from (2.13),

j=l 3 3=2

(2.17)

Now we shall show (2.16) for 1=1, 1. First we have

9? di. g2(X,n = ± u ^3 °'(£' n 8f 3 9f/'° ^, o27 2?=i««=a n<-i(«(0! y?(00'=i

S=1/?co=^
+ a*9f^20(x,f). (2.18)
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We note that

C-XO^^tXO, C-\?'>-l/2<?,<C for some C. (2.19)

To estimate the second term on the right hand side of (2.18) we show that for
each /

1 9« 9f, a(x, O | <Ca? 0f-"i(x, £ ') 97""(*, O
if ae^f.o^xie"-1) and |a| + |/9|>0. (2.20)

Indeed, from (2.19)

and from (2.15)

(07 W) <£ '»""+"" <£'>-"" = «7""(*. £ ') 9>7""(*, O • (2-22)

Thus, if | a \ + \ ft \ ̂  1, using (2.19), (2.21) we get

This inequality and (2.22) mean (2.20). From (2.18) and (2.20), in order
to show that (2.15) holds when | a \ -f j ft \ >0, it suffices to show that

when | a | + | £ | >0, 2 aw = a, S A<0 = P • (2.23)
»=1 * = 1

Set

Case 1. Assume (x, £ ')e-^i- We devide our argument into two subcases:

|«W| + | /9W|<1 for any /, (2.24)

|a,(0| + |/9(.-)|>2 for some z. (2.25)

First we assume (2.24). Put J= {i; \ «w> | + | p™ \ ̂ 0} and choose /0eJ. Then,

n 8?» S/K*) c(x, o = ? ^. f ') n»=i 4 .-sr

Wx, f) n = /+//. (2.26)
4 *er C( ,̂ f)
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Since #(./)= | a \ + \ ft \ , and since (x9 f')eAl9

l/i <C(®2(x, erXO)1"1^1 <f T1* ®t(*> £ ') - (2-27)

On the other hand, from (2.17) and the same reason as aboves

x
\C(X, O

Applying (2.21) to the first term in the last expression we get

£<I>2\x, f) <f '»i-i+iw <£'>-"•! (»S(je, f ') . (2.28)

(2.27), (2.28), and (2.22) mean (2.23). Next we assume (2.25). We have
with the set J as above,

f[.•=1

fW)<

because $(/)< 1«I + IPI -1. From (2.19), (2.21), and (2.22) we obtain (2.23).

Case 2. Assume that (.x, c)e J2,
 and define the set / as in Case 1. Noting that

$(J)<min{3, |«| + |^|} we have

•»
I c(x9 c JI

Thus (2.22) means (2.23). Q.E.D.

Corollary 2.1. $/ and <PI satisfy the estimates

1 ffi df, 0t(xf S'}\<C^ 0}-w <pT^(x, n , (2.29)
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| d» dl, 9l(x, £') | <CSJ3 <Z>7IPI(*, f') <p}~w(x, O . (2.30)

One can deduce these from (2.16) by using the following lemma which is
frequently used in the proof of Lemma 2.3.

Lemma 2.2. Let UdRn and VdRm be open sets, let F^C°°(U), and
letf: V-+U be C°°-mapping withf=(flf •••,/„). Suppose that there exist positive
functions Z(y), Nf(y) (j=l,—,n) on U, and Ma(x) (aeZJ) on V with M^
=MaMp satisfying

|FL: =sup \d*F(y)\

*eF '

Set

\F\L= max | F \ « , \f\e6= max max

Then

-W formy a B

Proof of this lemma is straightforward.
Now we define a symbol class for a pair of positive C°° functions <Z> and

9 on RnxRn~l satisfying that
(i) there exist C>0 and c>0 such that

(2,31)

(ii) for any aeZ+ and /JeZT1 there exists C^>0 such that

I ffi dl, ?(x, n I < C^ ®(x, f r IW 9fe O1-1-1 ; (2-32)

(iii) there exists C">0 such that

). (2.33)

For Af, meJg we say that a function aeC^^xlg*"1) belongs to the set
S0j™ if a satisfies the estimates that for any a, ft there exists COJ8>0 such that

1 0; 9f, fl(jc, f ') | < C-p O>M-»P«(JC, ?') ?m-W(x, f ) . (2.34)

(Z); and p/ in Lemma 2.1 satisfy (2.31)^(2.33) for each /. Now we shall prove
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the main lemma in this section. This gives a local factorization of P in Proposi-
tion 1.1 into first order factors for which Carleman estimates are deduced in
Proposition 3.2,

Lemma 2.3. One can find two families of a finite number of C°° functions on

RnxRn~l, iirjk}ke=i(j=®s 1) with irjk^® f°r any ]> k having the following prop-
erties.

(1) f^ifc} *e=j w a finite partitions of unity ofR*xR*~l.
(2) i^ok— 1 on a neighbourhood of supp ^lk.
(3) For each fce/ there exists /e {1, 2} ji/cA f/za*1 V> e ^i?*/ and one of the

following (I), (II), (III)

(I) (i) mp(Xi^SuPP*Jc
Pi(x,£)=H3j=i(£i — *i(x,E ')— dj(x,E ')) 0/z fl neighbourhood of supp i/rok

as polynomials in f x w/zere >iy e Sj^ depending on k with

(ii) inf | g/,^ | Im(^(xt f ') + ^y(^ f ')) I <f >-1> 0 /or ^om^ ^> 0,

(iii) inf(,in6«^o* I ^/^ f 0-^(^ f ') I ̂ r1^ £')>0 1/7 =i=7 f .
(ii) A(x, o=(£i-*ifo £')-^, f 0-^ife f ')) n?-2(f i-^/(x, eo-^/%, f '))
o« a neighbourhood of supp i/fok as polynomials in Si where A. e S^lfl depend-

ing on k with

(i) infrt/ia |/m(^ (x, f ')+^/^ f '))l<f ̂ "^0/or «>iii« £>() ifj=2, 3,
(ii) infie/i^ | Im(^(x, n+cfc, f ')+ A(*. f ')) I <f ̂ '^0/or wwe J?>0,

(iii) inffc.naw*.. I c(*. f ') 1 07\x, € ')> 0,

(iv) inf(,ft06»w*oi I c'^' f ')+^,(*, f ')-^(*. f ') I I ^, £') I -:>0 //7=2, 3,
(v) /J2(x, f ') * ^s(*. f ') for (x, £ ') e JM^ V^o*.

exists an open set U containing supp ^OA JMC/Z ?/;«?

Oe£, i a? ̂  ^f on 4(*. r)-^fe or1 ^FIPI (x, n 97^ (x, n
(Ill) (Z),^, f ') < C<f '>1/2 o^ supp i/rok for some C> 0.

Proof. Step 1. In this step we shall deduce the algebraic equations with
parameters to decompose^. Set

x/Z-1; <g,,(x, f '

f ')>3><g;(x, f ')» ,

<c(*. f 0>3} ,

r,(N) = {(x, f Oefi'xlZ--1; <g,(x. f
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where 0<e<l, JV>1 which are determined in Step 3.
We assume N > 500. Then

on J>ae,t

2}>l on

We have

Pi(x, f) = c,(x, S')3MZt(x, £), w,(x, £')) ^ (*, OeDn(», #) , (2-35)

/»i(*. 0 = I */(*, f) 1 /2<Zi(*, 0, *i(*. O) for (x, f OeDaCe, TV) , (2.36)

where

/x(z, w) = z3(z-l)+w2 w? , (2.37)

/2(z, w) = 22(2-^2)+^;! , (2.38)

for zeC, w=(w1; w2)eC2, and by definition,

Z,(x, f) = C|(x, f O^Cfi-M*. f ')) ,

for (*,f')

f ')! "1/3 (fi-^/(*. f 0)
5 O = (H>;1(X, f 0, > ' < ' •

for (x, f ') e Dw(e, JV). We have

I w,2(x, f ') | = 1 , | *„(*, f ') | <2£^ , (2.39)

I *,i(*. f ') I = 1 , I *«(*, f ') I < 20s- ̂  . (2.40)

If we denote by D(w) the descriminant of polynomial./^, w) of Z, we have

and

!)(*,(*, f ')) = 27 1 g,(x, n

Using the equality

if
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we see that there exists a constant C0 such that

I £(w/(*3 <?'))!>— if N2e>C0 and N>5W. (2.41)

Step 2. In this step we factorize/^z, iv) as a polynomial in z locally. We

first consider f^z, w). From the implicit function theorem there exists <50>0 such

that for any pair of positive numbers d, R with dR3<d0 there exist holomorphic
functions /%, A, B in we^O) xBl

R(G) satisfying

, w) = (z-Mw)) (z2+2A(w) z+B(w)) for w e #(0) X JBi(0)

with ^(0, w2)=l, /«1(w)=t=0 everywhere, ,4(0, w2)=£(0, w2)=0. Here, Bf(0) de»

notes the open ball with the center at the origin in Cm and the radius r. A

simple calculation shows that there exists a holomorphic function D(w) on

5a(0)x£i(0) satisfying

^(w)2-^(w) - Wi3 D(w), D(0, w2) = -w2 .

We take d, R as d=(dQ/4)^3
9 R=3.

Then one can choose a positive number d1 with #i<(<V4)1/3 and an open

covering {U^jl, of (^(OA {0} ) x ̂ (O)' H J5 J(0) in C\{0} x£7 such that

^.^(^^nt/Ox^,, 7 = 1, -,^2 (^iseven)

»i/ = (<(o) n eg x Blf , 7 = *i/2+i, -, *i
where C/j, I72 are two connected open sets in C with angles <2?r such that U± U

t/2=C\{0} and B^ are open sets in £j(0)\{0} with U *i.i B^

and such that there exist holomorphic functions #i^(w) in Ulj9 k=l,2 satisfying

z, w) = (z-^(w)) (^-

(2.44)

We also note that

191(1 -^(wBMwJ-i^CilwJ3 for we^^x^CO). (2.46)

Next we take up/2(z, w). We set for JTX), ̂ '>0 which are to be determined

in the next step

K(R',d')= {wtEC2; \D(w)\>d', Iwl^J^ '} .
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One can find open balls U2j.,j=l, ••• , k2 in Cz and holomorphic functions
jj,2jk on a neighbourhood of U2J9 k=l,2, 3,7=1, '~,k2 such that

|D(w)|^— on U2. and K(R', <5')c U U2j , (2.46)

/2fr W) = n (z-^,(w)) for wet/2.. (2.47)
k=i

Step 3. In this step we shall define a family of non-negative functions in
U Li Sfy**! where sum is greater than or equal to 1 such that on the support of
each one, one of (I), (II), (III), in Lemma 2.3 will holds. We take e, N as e =

min {— , C^Y}, N=max{500, (C0 f'
1)172}, and we take Rf, d' in the Step 2 as

2 \ 8 /

(90\2/3 1
— ) )1/2, 8'=±. We denote ,̂,., r,(JV), Dl}(*, N) by ̂ ;/, r,, Dlf.c / ^U

Choose *,eC°°CR), i=0, 1, 2 so that 0< J< 1, supp ^-C(19 oo), z.=l on [2, oo),
^rg.=l on a neighbourhood of supp7.+1 for j'=0, 1. Define C°° functions
VV-'\x, S') on R^R"-1 for i=0, 1, 2 and /=!, 2 by

where
Then we have that supp W(!'s^Dls and that

on rf(2^)nA (2-48)

where A = {fe fO^JZ'xJZ11-1; <g//(jc, O>>- <*/(*, f')»- Now we define

vy-'->\ VV-*\ A^>s'»^C"(RnxRn-1) (i=0, 1, 2; /, j=l, 2; fc=l, 2, 3;j-l, --,

A:s) with notations kl9 k2 in Step 2 where sK' •*•''>, F(/>0) are functions stated in
the beggining of this step such that (II) (resp. (I)) in Lemma 2.3 holds on supp

W(!>1>» (resp. supp r(/'2>y)) and (III) holds on supp ¥(/'°\ and where -4M"°
(resp. ^/i2J)) corresponds to Ak in the case (II) (resp. (I)).

To do so we choose <ptlj e C°°(C\ {0} xC), i=Q9 I929j=l9—9k1 and ^e

C0
M(C/2A /=0, 1, 2,7=1, -, k2 so that

<pisj<^Usj; <pisj = \ on a neighbourhood of supp <pi+isj for / = 0, 1;
_fei

= 1 on a neighbourhood of (Bl
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in C\{0}xC;
*2
S 922i = 1 on a neighbourhood of K(R'9 B'} ;
.7=1 J

1 8: 98,,(w) | < c: I wi I -i; 0<9,s .< 1 . (2.49)

&</•'•», Ay-'*» are defined as follows.

¥</'*>» ==Q, Ay-'-» = Q when A. = 0 •

When Ai 4=0,

ii/wi(*, O) ^M)(*3 f ) fe f '),
0 otherwise

o ,
otherwise

(*» f Oewr^t
otherwise

for Jfc=2, 3.

When Dn *0,

O
otherwise

^(./.2./)(jCj f 0 = / 9»ey(»,(x, eO) ̂ '•I)(*.
10

,2,y)(jCjr) = f lfc(*,f')lvsM*'(*'
1 0 otherwise

^0) is defined by

*Y'0> - (i-^2-i) (5-1 <g/> <e;>-3/2 ̂ -x) .
Since S*li yV.'.^>yJ/.*) from the definition of vitj, and since n f.i

U Li(^/(2^) n AX we have that

S 2 2 ^ •' §y) > 1 on (1 ̂
1=1 «=i y=i /=i

in view of (2.48). Thus, since U ?=i rol(— N) U 0 Li rl(2N)=MnxRn~\ we
have that

2 (2 2 ^(/'s'/)+^i/-0))>i - (2.50)
/=i s=i y=i

Since F(/_ii';) = l on a neighbourhood of suppWV'5'^ for /=!, 2, from
(2.35) and (2.36) we have that the factorization in (i) (resp. (ii)) in Lemma 2.3

holds ufor (x,£')^supp¥?>2'»(iQsp. supp¥{l'1J^ with Ak replaced by Atf-2-"

(resp. ^i'-1-^.
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Step 4. In this step we deduce the estimates of derivatives of functions de-
fined in Step 3. To do so, we have to deduce the estimates of derivatives of func-
tions <ft> <f •>-* | r/, <c>3/<g,> | Dli, <ft/>/<ft> | r, n D,, <g,>/<c>3 1 Dana}w w» HV

Definition 2.1. For an open set U in R" X R"'1 and a positive function
Z(x,f)on U we set

S,(U, Z) = {as C"(CO; I tflfoc, O I < C«3 M^(x, £') Z(*. f ) /or a«y a, /?}

Let us consider ^7 on T,. Since <P71><g;>'1/3>v/T"1/3!^|-1/3 on r,,
Lemma 2.1 implies that

g, | r/ e S,(r,, | ft | | r/) when r, =t= 0 . (2.51)

When r,*0, taking in Lemma 2.2 U=r,, V=R\{fy,f=(Re[gl\r^ Im\g,\r$,
F(y) =Z(y)=\y\ \s e JZ), Nfy) =\y\, M(a^ =M^ \ r, one obtain that

Iftn^e^r,, I f t i ' l / . , ) . (2.52)

When A 4=0, one also obtain taking in Lemma 2.2 U=rt, K=(0, +«>),/=

Ift I l/> ^(j)=<J>s/2
; ^(J)=<J>, MUip)=Mi'.'p |r/ that

<g,y\rieS,(rl,<giy\ri). (2.53)

Next we consider c on /)n. Noting the inequalities

l^F1 on Ai,
l^r1 on Ai, (2.54)

we see that <e'>1-iPi < C^ | c | M^,^ on D71 when | a | + I £ I =t=0. Thus we obtain

c\Dll^Sl(Dll, \c\\Dll) when Ai=*=0- (2-55)

From this and Lemma 2.2, we see that

cXI^) when Ai*0, (2.56)

*) for ^eZ when A i = f = 0 - (2.57)

We need a lemma which follows from Leibniz rule.

Lemma 2.4. £e£ Z,-(** f ')(/=!, 2) 6^? a positive function on an open set U
in RnxRn~l, and let a^S&U, Z,) (i=l, 2). T/ze/2 al a2<=Si(U, Zl Z2).

From (2.51), (2.52), (2.57) the above lemma implies that when Dn
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i(Ai, I wi l l ) and wae $(/>„, 1) • (2.58)

Since on Pl the estimates (2.54) with | c \ replaced by | gt \
 1/3 and Dn by Ft hold,

we see that

when D12*0 . (2.59)

From this, (2.51), and (2.52) Lemma 2.4 implies that

*,,e S,(Dn,l). (2.60)

Now from (2.53) and (2.56) Lemma 2.4 implies that

-wl/',) when F,*0S (2.61)

when />a=*=0 • (2.62)

From (2.59), c\DanDaeS^Daf}Dn, <c>\Dur\D,J when D/2n^/14=0 from
which one obtain <cy\D,2nDneS,(D,2r\ Dn, <£>'\D,znD,d by Lemma 2.2
when DKr\ Dn±0. Thus from this and (2.53) Lemma 2.4 implies that

<c^t<gi>\DanDnS,(Daf}Dn, 1) - (2.63)

Since (2.53) with F, replaced by /^(AT/lOO) also holds because of the fact that
(JV/100)>1, since r^D^r^N/lW) if /=t=/ ' , and since M^lOO"-'-^1'/3

M^ on r,[\D,, we see that <^>|r,nfl;^^(^nAX^'>l/-/n/>,) if/*/ ' .
From this and (2.53) Lemma 2.4 implies that

^'X^l^n^e^^/nAX^K^Ir^p,) when r,nA*0- (2-64)

Now we can show that yr^-i^Sy>°<fl. When r,=t=0, noting (2.61) and

taking in Lemma 2.2 U=r,, V=(0, +«>)> /=<*/><* '>"3/2. F(y)=Xi(N-1 y),
Ni(y)=y, Z(y)=l, M(a^=M^ one obtain that

Xi(N-l<g,> ^'y-^lr^S^r,, 1) . (2.65)

Similar argument as above shows that

^K^/^^l^e^AiJ) when Ai=f=0 . (2-66)

x ,(100 <&/>/<*,» | r/ n ̂  e ̂ (r, n A, 1) when r, n A * 0 , (2-67)

x*(— ^>)l^/«ni>/ieSr
/(/) /2nAi,l) when A2nAi*0. (2.68)

V e \c>d/

Since the support of any first order derivatives of X.(lO/e <g/>/<c)>3) con-
tained in Ai H A2, boundedness of X. and (2.68) imply that
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%i(™<gi>/<c>3)\Dl2^Si(Dl2,l) when A2*0- (2.69)

From (2.66), (2.67), and (2.69) Lemma 2.4 implies that

Fy-'^eSjCA,,!) when Ay*0 . (2.70)

Since supp yy^cz Ay, one obtains that

, for 74=0 . (2.71)

We also get that Fy^eS^, because (2.65) holds with N replaced by
N'>1 and supp ry-0)c/Y

Now we can derive the estimates of derivatives of W ( i ' s ' 3 } and A(l>St3\

Noting the estimates (2.49), (2.58) and using Lemma 2.2 we see that^ny(w/(-))^
Si(Dll9 1) when Ai=l=0- Using this, (2.71), and Lemma 2.4 we obtain that

,. (2.72)

Using similar argument for yy- 2 ' >> we get that

Using (2.46) and Lemma 2.2 we see that
(\c\\Dll)

3

when Ai=*=0. This implies that AV-l-»\Dr efrCAi, lgl1 |g" ) when Ai=l=0-
(kl 2

Noting supp A^-l'j^Dn one obtains that A(^lJ^S(^r Similarly, noting
supp Ay^'^ciw^CUy) when Dn=£$ and using (2.55), we see that

for ^ ^ 2 , 3 when Ai=t=0- (2-73)

From | c | | W | 1 |V2=i&Jon Ai> this implies that ^•1^')e5'^/ for

fc=2, 3. Similar argument also shows that A(
k
l'2-j}^S0fi<Pr Finally we shall

derive other facts on yy.1-') and A^-IJ\ vy-2-» and A(
k
l-2J\ W(!>^ respectively

corresponding to (II), (I), and (III) in Lemma 2.3. First we consider (II).
Since 0l=(gjy

1/3 on Fh the definition of Dn implies (iii) with -^Qk re-

placed by yc/ . i .y) when yc/.i.»^0. (iv) and (v) with irok, A. replaced by

WV-IJ\ Ay-1-*'* follows from (2.43) and (2.44) when ^-^^^O. (iv) with the
same convention as before follows from (2.73) and (2.43). (i) follows from the
fact that p =pi+blQ9 (2.1), (2.2), and that for k=2, 3

(^+4/>1J)) (x, £') = [VV^'^+Ay-1-^] (x,

on

where ^A /pli i ')(^, f /)=j"iyjb(w/(^:, f ')) c/(jr,f ')• (ii) follows from similar reason.
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Nest, with the convention that fak and A. replaced by r^-2t/) and A(/-2J'\ (II)

follows similarly. Finally (III) with ^Qk replaced by r(/'0) follows from the def-
inition Of &;.

Step 5. Now we shall define ^ik. Set

y = 2 2 2 &¥•
1 = 1 s=i y = 1

Thenr>l. We set

^

Since W~l^S\/2tl/2(R
nxRn-l\ and since ^/<C<e'>1/2

5 F^^eS^^. Using

the fact that 1/100<^>< 100 on A n A and that dV< C<e'>1/2 on r0/(JV) H
<^i> =

D/'y when l^pl', one can easily see F^'^eS^. Now we set

^ = y(*.o)(fc==lj2)

and we define ^ by the same definition as above with F(*>0) and W(a>''^ re-

placed by ^(/'0) and F(o '%a) respectively. Then ^ik is defined as follows:

where 0"(1), •••,y(*b)} ==0'» T?i/*0}. This {^} has required properties from
Step 4. The proof of Lemma 2.3 is complete.

§3e Local Carleman Estimates

Let 09 <p^C°°(RnxRn~l) be a pair of weight functions stated after Lemma
2.2. Let ir.(i=0, 1) e S^° satisfying that

^!*0,

^0 = 1 on a neighbourhood of st//?/? ̂  .

Let P be a pseudodifferential operator on J2M with the symbol p(x, f ) given by

X*, f ) - (f !-^(x, fO)2 (f !-^(^, f )-^fe £')

with

We assume that
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C\Im *(x, f')| ><£ '> , C \Im[(t+c) (x, f')

for some positive constant C, and that one of the following (I), (II), (III) holds.
(I) There exist A.(i=l, 2, 3)eSi£ such that

p(x, f) = II (fi—^<X f f)—A.(x, f')) when (x, f')ejw/p Vo»
1=1

^inf | yi,.(^ £')—Aj(x9 £')\®-l(x, f')>0 for any distinct ij,

min inf | /m [/I (x, f')+-^ ,-(*> f')] I <(f '> " x> 0 for some

(II) There exist 4,(i'= 1 , 2, 3) e 5^?, such that

^(^5 f ) = (f i-^fe f ')-c(^, f ')-^i(^ f ')

when (x, f ')

inf k^
C^^Oe^K^Q

inf |c(x,f')+^i(*,f')-^i(*,f')lk(Jc,f')|-1>0 for / = 2, 3 ,
Car.g'Dew^o

^f.(x, f ') (z = 2, 3) are distinct when (x, £')^supp T^O ,

| ̂  af, A,(x, ?')\<C^\A2(x, t')-A3(x9 S')\®-W(x, n 9-W(x, n

on a neighbourhood of supp T^O f°r '"=2, 3,

inf l / ff iK^+c+^OC^fOlKf'X^O and
!fxi>s

inf |//fi[(^+>i l)(x,f /)]|<f />"1>0 for / = 2, 3

with some J?>0.
(Ill) supCStn6ni^0 <z>(x, f) (i+ |f ' |
The main result of this section is the following proposition. This gives the
estimates for P in Proposition 1.1 on supports of functions i/r.k in Lemma 2.3.
We set yf.=^f.(*,Z>').

Proposition 3.1. (1) Assume that (/) or (II) in the above holds. Then
there exists positive constants TO, TQ, C0 such that

-* R(u» (3.1)
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for uGST(R") when TT*>TO and T<T0.
Here

Al(u)= 2

2

(U) = r-1 2 ll£i !«(*, 0) ullf
1=1

^fco-^o a = 2)
- (^ f ) = f i — ̂  (*> f ') - ^i(^ f ') «ccp/ /or

fo f ) = f i~^(^ e')-c(^ f ')-^i(^ f ') w ca^ (77).

(2) Assume that (III) in the above holds. Then there exist positive constants
r0, T0, C0 such that

W Al(Wl u)+B(¥l u^CMlPuilP+AM+T-V2 R(u)) (3.2)

for u^ST(Rn) when rT2>r0 and T<TQ,
Here

) (x, D) iilHf ?2+ 2 r-S r-1

e other notations are the same as in (1).

We shall prove this proposition in this section admitting one proposition
and several lemmas which will be proved in later sections. We first prepare a
proposition of Carleman estimate for first order factors in the factorizations of
p andp—g having the basic role for proof of Proposition 3.1.

Proposition 3.2. (1) Let L(x, £ ) =^ -a(x, £ ') —b(x, f ') with

a^S\t,(R
nxRn-l)3 6eSi£,

inf |7m[(a+6)(jc,f')]|<f/>"1>0 for some R>® . (3.3)
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Then there exist positive constants r0, T0, C0 such that

^•MINII^^Qimx,/))!!!!^,

T<TQ.

(2) Let L,(x, 0 (/ = !, 2, 3) be given by L-(x, £)=£i-«*(*, £')-*«(*, O wi
a-eS^oC^xJg11-1), b^S1^ satisfying (3.3) with a, b replaced by ai9 b* respec-

tively. Then there exist positive constants r0, ro, C0 such that

(Rn) for any /J,

, /)) tt||$r> ,

when zT2>r0 and T<TG. Here £3 is the symmetric group of degree 3.

Next we prepare some lemmas which need for the proof of both of (1)

and (2) in Proposition 3.1.

Lemma 3.1. Let a^Smi/2j\/2(RnxRn~1)- Then there exist positive constant

C such that for any r and T,

\\a(x9 D') u\\P<C\\Em u\\P , u^3(Rn) .

Next two lemmas give estimates for commutators.

Lemma 3.2. Let L{(x, () (i=l9 2, 3) be the same as in Proposition 3.2-(2).

Then there exist positive constants r0, TQ, C0 such that

Co'1 11(^0^01,3) (x, D) KHP^IKA L2L3) (x, D) t/||(r
T)<C0|| (AoL2oL3) (jc, D) u\\P

for u^ST(Rn) when rr2>r0 and T<TQ.

Lemma 3.3. Let X^S^V. Then we have that

.
y=o

with some a.

Lemma 3.4. Let X^S%-%. Then we have that for b$ESi$ffij(Rn xRn~l)

withj=Q, 1,2

2fl*fi"* with some

Next two lemmas are ones for handling neglizible terms.

Lemma 3.5. Let XEiS^f^3. Then there exist positive constants r0, JJj, C,
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such that when rT2>r0 and T<TQ.

B(Z(x, D') u)+\\g(x, D') Z(x9 />') W|

for u<=ST(Rn).

Lemma 3.6. Let zeS^"3. Then there exist positive constants r0, ro, C0

such that when rT2>r0 and T<TQ,

f?}(*, D') %(x, D') u\\V

R(u))

for uE:ST(Rn).

Now we start to prove Proposition 3.1.

Proof of (T). First we estimate A2(Wlu). We break up into ¥Q ¥l and
(l-r0)F10 Then

A2(¥, u)<A2(W, V, u)+A2((l -¥Q) Wl u) . (3.4)

We take up the first term on the right hand side first. From Proposition 3.2
and Lemma 3.2 there exist positive constants rl5 rj5 Q such that when rT2>rl

and T<T19

3) (x, D) u\\P , u^ST(Mn) . (3.5)

We need a lemma to estimate (Lj L2 L3) (x, D) WQ—WQ P.

Lemma 3.7. Assume that (I) or (II) holds. Then ifZ&S^ with supp Z^
supp -y^

(Lj L2 L3)o%-zop = 2 0|yo

+a0+ 2] a
1S|OS| + |PI

CySSS^1, fl,.eS£;;2 /or i=*=0,

We note that

') (-m>M>0)

, M<0). ^ '
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Substituting ¥Qu to u in (3.5)? using Lemma 3.7 with #=^0>
 anc* noting (3.6)

we obtain the following inequality with the notations in Lemma 3.7: there
exists a positive constant C2 such that when rT*>Tl and T<T19 for u

^2(^0 ")^Q(ll^o Pw||(r
T)+ 2 Ik/*' £>') (L,°Ly) (x, D) w||(r

T)

+ 2IW.^

S IM*, 2>') P® w||(rT)+ 2 HA/*, D') I>!-' «H(rT))
*1 + |£|<£2 1=0

2 II^WV^) (*, D) u\\P (3.7)

2
1*1

From Lemma 3.4 there exists a positive constant C3 such that for any r, T1

^(rlM)<C3J?(w)? Me^(Uw). (3.8)

From Lemma 3.3 there exists a positive constant C4 such that for any r, T

Rn) . (3.9)

Substituting Wl u into u in (3.7) and using (3.8) and (3.9) we obtain that when
r! and T<Tl9 for utEST(R")

V, u)<C2 C4(||PWli(
2r>+^1(t/))+C2(C4+2C3) R(u)

+ C2(T^2+T) A2(¥, u)+C2 Al(Wl u) . (3.10)

Next we handle the second term on the right hand side of (3.4).

Lemma 3.8. Let X e S J,V~3.
(1) Assume that (/) holds.

(i) ///=K/,

(ii)

(2) Assume that (//)
(i) Ifi^j and i =t= 1, j =j= 1, (j) i/i (1) Ao/£&. Ifi^j and one of i and j is equal
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to I,

with ai

(ii) Ifi^l, (ii) in (1) holds and we have

Lemma 3.8 easily implies the following.

Corollary 3d. Assume (I) or (II) holds. Let X e Sjfj ~\ Then there exists
a positive constant C0 such that for any r, T,

,oLy) (jc, D) *(*, DO ii||?>

( 23 ||^/2(L01oLOJfe) (x, D) x(x, D') ii||p)+ 23 ||£i L0,(^ D) W||

From the fact that Vo=l on a neighbourhood of «//»/» T^J we have

(I-V^W^OpS^--" for any 7V>0.

Noting this and using Corollary 3.1 we see that there exists a positive constant
C5 such that for any T, T, and uG<S(R")

T-l/2 2
2 2

k = l

-1 23 Pi !«(*, D) (!-¥,) V, u\\P+T^ R(u)) .

Using this we obtain that for any r3 T, and

A2((I-W.) W, */)<max(C5? 1) B((I-WQ) W, u)

+c5

From Lemma 3.5 there exist positive constants r^z^ and T2<Tl and C6 such
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that

B((I-WQ) W, u)< C6(\\Pu\\P+ A^+RM) , u^ST(Rn) (3.11)

when rT2>T2 and T<T2.

Substituting this inequality to the above one we get that when rT2>r2 and

^2((/-n) ^i t/)<max(C5, 1) C6(||PW||(7T
)+^1(W))+C5 T

1'2 A3(u)

+ {max(C5, 1) C6 T+C5(T«*+l)}T-iR(u) . (3.12)

From (3.4), (3.10), and (3.12) we obtain that when rT2>T2 and T<T2, for

+c2(r/
2+r) ̂ (r, W)+c2 ̂ (^ u) . (3.13)

Here

C7-C2C4+max(C5?l)C6,

CB.T = {C2(C4+2C3)+max(C5J 1) C6} r+C6(r/
2+l) . (3.14)

Next we estimate A3(W1 u).

Lemma 3.9. (1) Assume that (/) holds. Then for any distinct l<i,j<3

£oi°^i = «i° A-0Vri+^°^/0^i+a3+L01o(l — ̂ o)0^! (3-15)

geS'J;?1. And for any distinct l<i,j<3

w#/z alf fl^eS^ anda3<=S°0'-
1.

(2) Assume that (II) holds. Then for any distinct l<ij<39 (3.15) holds.
And for any i^=l

From Lemma 3.9 we see that there exist positive constants C10, Cn such
that for any r, T, and w

||JEi L01(x9 D) ¥, u\\P<Cg( HE, Lk(x9 D) T, Wi!(rT)
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HE, c(x, D1) ¥, M||(T
T>^C10( 2 Pi Lk(x, D) ¥, u\l^+\\E3/2 u\\P

+ \\ElC(x,D') (!-¥,) ¥lU\\P).

We obtain from these two inequalities that for any r, T, and ue.<S(R")

A3(Vl ») = T-m L01(x, D) V, fillf'+H^Aafo D)-c(x, />')) V, u\\P

Lol(x, D) ¥, wU^+Pi c(x, D') Tl M||?>)

<2{(C9+C10) ( 2 T-1 ||£i Lk(x, D} ¥, wH^+r-1 1|£3/2 ii||P) (3.16)

+ C9 T-1 HE, LQ1(x, D) (!-¥,) Wl u\\P

+ C10 T-1 ||£t c(*, D') (I-¥0) ¥, M||?'}

Substituting (3.13) and (3.11) into (3.16) we see that there exists a positive
constant Cu such that when rr2>r2, T<T2, and

2(¥, u)
1 R(u) . (3.17)

Here

Cu.r = 2 {C8jr+ C9+ C10+max (C9, C10) C6 J> . (3.1 8)

Finally we estimate A^(¥^ u). First we have

Al(¥1u)<A1(I-¥l)¥1u)+Al(¥
2

0¥lu), u^S(R") . (3.19)

To estimate the second term on the right we need

Lemma 3.10. Let *eSg;° with supp X^supp^. Thenifa,peZ"+with
|=1 or 2,

= 2 flffoLjoi + 2 «?^A-+ S
»4:y J i=i y=o

From Lemma 3.10 we see that there exists a positive constant C13 such
that for any r, T, and

W)<C13( ^-1/2 ll^(L,oLy) fe D) ̂ |CrT)
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i L((x, D) «||?>+r-* *(«)) (3.20)

Since ¥0 W^OpS^, from Lemma 3.4 there exists a positive constant C14

such that for any r, T, and u^S(R")

R(^^u)<CuR(u). (3.21)

Substituting !P0 ¥± u into w in (3.20) and using (3.21) we get that for any r, T,
and we<S(JR")

j Vl M)<C13(max (1, T1/2) J2(?T0 W, n)+Cu

Substituting (3.10) into this inequality we see that there exists a positive con-
stant C15 such that when rr2^ and

max(1) r/2) (||pM||(3:)+^1(M)+(r/
2+r) A2(¥, u)

. (3.22)

Since (I-V\) ¥^(1+^) (!-¥„) ¥lt and since (/-F0) V^OpS^--" for any
N>0, we have

(I-Vl)V^OpS^--N for any AT>0.

Thus from Lemma 3.6 there exist positive constants r3>r2 and T3<T2 and C16

such that when iT2>r3 and r<T3, for

From this inequality, (3.22), and (3.19) we see that when rT2>r3 and r<J3>

for

M)<max(l,
(3.23)

Combining (3.13), (3.17), (3.23) we see that there exists a positive constant C17

such that when rT2>r3 and T<T3, for

This completes the proof of (1).
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Proof of (2). Set

Po(x, f ) = P(X, £)—g(x, £') ,

Then we have that

4(^1 ")< 2
l:<ioJ| + l£l<2

(3.24)

We use the next two lemmas to estimate the right hand side of the above in-
equality0 The assumption (III) is used to estimate the second terms in the
parenthesis.

Lemma 3.11. Assume that (III) holds. Let zGS^ with supp X^supp Vv
Then

T+-1 with \a\ <2.

Lemma 3.120 For a, fi&Zl with \a\ + \ft\=lor2we have that

2 2
/&'\n«al — I0D/2 ( •*+ ̂ 05) V~l 7" F I X~l Z» F I Z.
\C /u ' IH|;/ °(^o)c^) ~ AJ flf*°A)l°J^0*+ i-J ^*0j^OA + ̂ 0

k=l k=i

From Lemma 3.12 there exists a positive constant Q such that for any r, !T

C 2 H^^IW-IM) (*, ̂ D) «II^T)+ S 11^ I«(x, i>) "UP

Summing this for a, ft with |a| + |/9| =1, 2 we get that for any r, r, and

,|f >j (3 25)
*=1

<Qmax(l, T)JS(ii).

Here C2=C1(2«+(2"+1\ Thus from (3.24) and (3.25) we have that for any
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T, T, and u<=S(Rn)

T-W Al(Wl u)<C2 max (1, T) B(Wl u)

2 \\Ew-mn g$(x, DO V, u\\P. (3.26)
l£l«l+IP,^2

From Lemma 3.11 there exists a positive constant C3 such that for any T, T, and

ll(rT) - (3.27)

From (3.26) and (3.27) we get that for any r, T, and u^<S(R")

T-w A,(¥, u)<C2 max(l, T) B(V, u~)+C3 T'^ \\E3/2 u\\P . (3.28)

Since c(x, f ')=(!« ~A«) (*, 0.

|||C(*, D1) u\\\f]2< £ \\\Lok(x, D) u\\\f]2 .
k = l

Thus

B(u)<\\\u\\\P6+ 2 r-1 |||(L0,.oL0.) (x, D) ̂ IlB+r-1 |||L01(^ D) u\\\^2

Using Proposition 3.2 and Lemma 3.2 we see that there exist positive con-
stants r1; Ti, C4 such that when rT2>r1 and T<T^,

. (3.29)

From Lemma 3.3 there exists a positive constant C5 such that for any r, T, and

(3.30)

From (3.27), (3.29), and (3.30) we get that when rT^^ and T<T1} for

, u\\P+\\g(x, D') ¥, u\\P}

+^(M)+^(M))+C3 \\E3J2 «||f >} (3.31)

<C4(C3+C5) (||PM||

Combining (3.28) and (3.31) we get that when TT2>r1 and T<Tlf for u

M)<(C2 max(l, T)+l) B(¥l u)+C3 T~^ \\E3!2 «||$r>
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with CG=(C2 max(!9 T)+l) C4(C3+C5). This completes the proof of (2).

§ 4* Proof of Proposition 1.1

In this section we deduce Proposition 1.1 from Lemma 2.3 and Propo-
sition 3.1. We define pt(x, S) from P(xy £) by (2.11) in the same manner as in
the beginning of section 2. We set

with the notations in (2.7) and (2.10). Then we define AV\u) for /=!, 2, /=
1, 2, u<=S(Rn), r>l, r>0 by

and we use the notations A^u) and R(u) in Proposition 3.1.
We use a family of C°°-functions {^he/0'̂ 0, 1) on RnxRn~l in Lemma

2.3 and we set

Since for any fce/ one can choose /e {1, 2} so that one of the conditions

(I), (II), (III) in §3 holds with <Z>=0/, <p=?h ^g=^iky p=ph *=*h c=ch g=gh

it follows from Proposition 3.1 that for any fce/ there exist /(fc)e {15 2} and
positive constants r(k\ T(k\ C(k) such that the following condition holds:
when /=/(&) and rT2>r^ and

u)+\\\wk u\\\ft
, D) i/||f >+4f)(«)+r^ xi'^+r-1 *(«)), we^r(jg

w) . (4.1)

Since L$(x9 £)-L$(x9 f )=— y ^ f ') and 4i}(^ O -£$(*, f )=y
we have for any /, r, T that

S3 SJ ll^i LW(x, D) W||(/^<
m=l k=l

This inequality and (4.1) imply that when 1=1 (k) and r>r(w and T<T(k\
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, D) u\\P+A{l\u)+T^ A«\u)+T-i R(u)) (4.2)

for u

To estimate Al{u) we need

Lemma 4.1. There exists a positive constant C such that for any /, r, T

S ll^cuiHpi^Sl-^/^C^^wllf^C^ii), K6=<S(JZ"). (4.3)

. Using the equality (2.12) it can be easily checked that when \a \

or 2,

with some aA e S^-^JR* X .R^"1). This implies the lemma.
From Lemma 4.1 there exists a positive constant Ml such that (4.3) with

C=M1 holds for any /, r, T. From Lemma 3.4 there exists a positive con-
stant M2 such that we have for any

. (4.4)

Then we have for any fce/that when /=/(£) and rT2>rw and T<T(k\

J-l/2 ^^gr^ w)

-1 R(u) (4.5)

for w

To estimate \\(p,—P) (x9 D) u\\(f} we need

Lemma 4,2, There exist positive constants r0, ro, C0 JMC/Z r/7ar wAew z-r2>r0

and T<TQ, for any I

\\(Pl-P) (jc, D) u\\P<C0(T-W \\P(x, D) ttH

Proof. We recall (2.12). It is easy to see that

,£') (f i-^,(x, f'M (*, ̂ )
y=i

= S

with some ra
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Thus there exists a positive constant Q such that for any r, T, and

\\(p,-P) (x, D) wll^QC 2 ||^-y I#i\x, D)j ull^+HA ull^+ll^ «H(rT)) .

(4.6)

Using Parseval's formula we can easily see that

\\ESU\\P<\\ES,U\\P if s'>s. (4.7)
So from (4.6) we have for any r, T, and u&<S(R") that

\\(p,~P) (x, D) Hll^Qdlliftx, D)2 ii||jr>+||£i L&\X, D) u\\P+\\Em D, «||$T>

ll(rT)) (4.8)

We have that

D)2+A e(x, D') L$(x, D)+^ (DXl c) (x, D')

— [^ (*, D'), c(x, D')]+ c(x, DJ .

Thus there exists a positive constant C2 such that for any r, r, and u

, L$(x, D) u\\P

Using (4.7) we see from this inequality that for any r, T, and u

Combining this inequality and (4.8) we obtain that for any r, T9 and u

\\(Pl~P) (x, D) ii||?><SCi \\L$(x9 D)2 wH^+C^+l) (TAy\u)+R(u)) . (4.9)

Note that p(x9 €)=L(
0\\x, f )2 L$(x, f ). Thus using Proposition 3.1 and Lemma

3.2 we see that there exist positive constants rl3 Tl9 C3 such that when rT2>r1

and

\\L$>(x9 D)2 u\\P<C3 r-*\\p(x9 D) u\\P , u^ST(Mn) . (4.10)

There exists a positive constant C4 such that for any r, T, and u

Since P=p+q, combining this inequality and (4.10) we obtain that when
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and T<T19

, D)2 u\\P<C3 r-1/2 \\P(X, D) u\\P+C3 C4 T
2 \\\u\\\%49 utE<ST(Rn) . (4.11)

(4.9) and (4.11) imply the lemma.

From Lemma 4.2 there exist positive constants r^max^/ r(k\ 7i<min*sr

T(k\ and M3 such that when rT2>rl and T<Tl9 for any / and u^<ST(Rn)

\\Pl(x, D) u\\P<M3(\\P(x, D) u\\P+R(u)+TAp(u)+T* \\\u\\\Pj . (4.12)

Combining (4.1), (4.2), (4.5), and (4.12) we see that there exists a positive con-
stant M4 such that when rT2>rl and T<Tl9 for any / and

Wk u)+ S Af\Vk u)+\\\¥k ii|||f)6
OT = 1

<M4(||P(.r, D) u\\P+A\'w\ii)+ T1/2 4'(*"(w)+ T~l R(u) (4.13)

Since Sje/ ^n «=" for u^S(Rlt), we have that

< 2 (r-1/2 A,(¥k «)+ 2 4m)(^, «)+lll» i* "III? ,'e) , «
jfeei m=i

(4.13) and this inequality imply that when *T2>Tl and T<T19 for

x, £>) M||(r
T)+ 2 AV«»(u

ks=i

Since A<i'\u)<A1(u~)+M1 R(u) for any / and u^S(R"), the above inequality
implies that when TT^>TI and T<Tl, for u

<M4 tf(/){||p(x, z») «||?'+^(ii)+r^ 2 4")(«)+(M1 r+i) r-1 *(«)
f«=i

+ r2 |IMII (rT, '4}. (4.14)

To complete the proof of Proposition 1.1 we need
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Lemma 4.3. There exists a positive constant C such that we have for any

T, T that

R(u)< \\P(x, D) u\\P

for us=<ST/2(R
n).

Proof. An integration by parts gives that for any r, T

\\DlU\\P>^ \\u\\P, u^ST/2(R
n).

Substituting E-lf2 D\ u into u yields that

\\D\ E.l/2 u\\P>^- \\E-M D\ n||?) , u^ST/2(R
n) . (4.15)

We have that P(x, Z>)=/)?+2!-o afc, D1) D{ with some ai

then

= E-1/2P(x,D)u-lE-1/2ai(x9D')Diu for u<=S(Mn) . (4.16)
i=0

Using the fact that <fr^"1^oai^S(
l%

2^i(RnxRn'1) and applying (4.7) to
the first term in (4.16) we see that there exists a positive constant C such that

for any r, T, and u

j = 0

(4.15) and (4.16) imply that for any r, J, and u<=ST/2(R
n}

11/7 , n2 7i |KT)^T II Pfy /Tl ?/ l l ( T )
ll^-ite ^i U\\T -^—— IK v-^j -^J w l l r

rJ

Therefore, for any r, T, and

2
P/.-A 1117 l~|2 1f||(T) i 'V-ij\(U) — \\£L^ij2Ui U\\T ~r y i

1=1

, D) ^||(r
T>+(2C+l) J3/2 |||n|||?>5 •

r

This completes the proof.

We take a positive number M2 such that the inequality in Lemma 4.3
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holds with C=M2. Then (4.14) implies that when rT^^ and T<Tlt for

<M4 #(/) [{H-(M, r+i) ~}\\P(X, D) if||?>+4(K)+r* £
?T* w=i

+(M, r+i)
<M4

+(^7^+1)

The second term on the right hand side can be absorbed into the left hand

side by decreasing T. Therefore, we have proved Proposition 1.1.

§5. Pseudodlffereetial Operators

In this section we collect the facts on the pseudodirYerential operators

which we use in this paper. In this paper we use the classes of symbols S0;™

with (0, <p) stated after Lemma 2.2 which contain Sd
ftl,f(R

nxRH~l\ %<p<l.

Definition 5.1. Let (<2>, <p) be a pair of weight functions satisfying

(2.23). And let a^S%$. We define an operator a(x, £>') on S(Rn) by the

standard formula

a(x, D')u = (ar)-'-1' J e*''*'a(x9 £')&(xl9 £')d£'

where u(x}, £') denotes the partial Fourier transform of u in x'.

a(x, D') transforms S(Rn) into <S(Rn) and ST(Rn) into ST(Rn). If (0, <p)

is a pair of weight functions, pairs of functions on Rn'1xRn~1, (0(x^ •)>

<p(x\ ?'))(^ie^) satisfy uniformly the conditions for weight functions of Beals-
Feefferman's class. This follows from (2.31)^(2.33) and the following lemma.

Lemma 5.1. There exist positive constants M, d satisfying the following

condition.

,(y', n'}<M
for any (yr, 7j'}^Ut(x', £') and t e.R where

0t(x', f ') = 0((t, x'), O,
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Proof. Using Taylor's formula and (2.31), (2.32) we see that there exists a
positive constant C0 such that when Cd<% with the constant C in (2.31).

for any (y'9 y ')e £/,(*', f ')• This implies the lemma.

Remark 5,1, We define semi-norms \ • | #•* i/i S%$ for N^Z+ by

\^-m = max sup

jy becomes a Frechet space by the topology defined by these semi-norms.

Lemma 5.2. Let a e S££ O/K/ 6 e S$'f. Then if we define a°b e C°°(.RW x
Jg^-1) 6y the formula

(aob)(x, f ') = (&)-^-«OS- | ( e-'^-^'^'-sV^ ?7')6((^i» ̂ 'X f ')*' ^' ,
(5.1)

we have that aob^S^M/-m+m/ and (a<>b)(x, D') - a(x, D')b(x, Dr). Moreover,
we have an asymptotic expansion that for any

(a°b)(x, f) = S -±-(d%,aD
a

x,b)(x, S')+rN[a, b](x, 5') (5.2)
i*i<^ a !

^Ja, *](^, £')0 -^"W f (5.3)
o

(jc, f) = TV S -1(2^)"(a"

'-f ')) xD"y,b((Xl, y'), t')dy'dri', (5.4)

frwJfl. 6]} (eb.il « « *OM«^erf je? in s*+«--*.»+"'-* . (5.5)

Proof. When c, beC^(RnxRn-1), it is not hard to check (5.2) with the
notations (5.1), (5.3), (5.4). Now let us consider an oscillatory integral

hja, b](x, O = (W^OS- ( [ «
J J

where aeS^1*, 6e5^w/, 0e[0? 1].

C/fl//w. (1) A0[fl9 Z?]eS^M/'m+m/ for all 0 and for any LG^V there exist posi-
tive constant C and P^N depending only on L, M, m, M'5 m'9 ®9 <p such that
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sup \

for any a, ft with | a \ + \ ft \ <L.

(2) Let K}r=i and {^}T=i be bounded sets respectively in S%$ and S$'f
such that there exist a<=S0'™ and b^S%f such that ak-*a(k-*oo) and 6A->

b(k-*oo) in C-GR'xJR11-1). Then Aflfo, &*](*, £')-*Aefo *](*, £ 'X^-*00) for
any 6 and (*, £'), and {he[ak, ^]heJMe[o>1] is bounded in sy+"'-m+m'.

Proof of claim. Set fj[a, b] (x, y', £', ?')=*(*, £'+0?') *((*i, J'+A''), f ')-
Then

< C |a |f f i iw |6 |M / < w / / M + / 2 + / + / 2 + '

with Ci depending only on M9m, M',m',a, ft,09q>. From this inequality
Leibniz rule shows that if L, N^N, one can find C2 depending only on L, N,

M9 m9 M', m'9 ®, <p such that

|ff*^ (5.7)

x

It also follows from the estimate (5.6) that if L,N^N satisfy that

-2N+ | Af|+J-^i <-(«-!), -2L <-(«-!) (5.8)

we have that

he[a,b](x,£') = '
(5.9)

We shall show (2). From the estimates (5.7) with a=ak, b=bk, and L, N

satisfying (5.8), and from the fact that fe[ak, bk](x. -, £', •)->/e[fl, A](JC, -, f', •)
in C00(JZ2(n~1))(fc-»oo) for any fixed ^, (x, f') Lebesgue dominated convergence

theorem shows the first assertion of (2), and the second one follows from (1).
To show (1) we use the following lemma which is Lemma 4.7 in [3].

Lemma 5.3. Let 0, <p be positive continuous functions on RnxRn satisfy-
ing the following condition (i)^(iv) with some positive constants C, c, e, C":
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(i)
(ii)

(iii) for any R>1 there exists M>\ such that R~l< "* ' ' <, R implies that

(iv) c ' - ^ C " , C~l<-<C' whenever (y.ij)GU(x,e)={(y,ii)
®(y, v) 9G>, ?)
\y-x\<v(x,£), |?-£|<0(x,0}-
, v, f , 77) &e a C°° -function in (y, rj) for any fixed (x, f) satisfying the

estimates

j8g6(x, y, f , 7) I < c-p s n sup (^-'
>-.ez+ y=i

x n

where K=the covex hull of {(x, £), (^, rj)9 (yf f), (j, 77)}, j|/y, m^R, k,

Set

<&l(x, y, £ , 7 j ) = 2

* + /

x n sup (fl>M6)9>">-r'(fi)) -

x, 0 - OS- e-i^b(x, y+x, f ,

r = max sup [I^

«e can find C0>0 awrf L^N depending only on C, c, e, C' , M(4), fc, /,
a permutation (Mlf • • • , MA+/, mx, • • • , mA+/) o/2(/c+/) real numbers such that

| aj>5 f ) | <C0 1 6 1 l^((Z>Mi+-+M*H-/9»i-|-"|-»*+/)(^ £) .

For a proof of this lemma, see the appendix in [2]. This lemma will also
be used in a later part of this paper.

Now we continue the proof of the claim. From (5.6)
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, *'),/-*', f ', r,, -f)]| < \a\tf\b\fc

(5.10)

where K=ch{(x', f '), (x'3 ??'), (v', f '), (y'9 ij')}9 and $„ 9^ are as in Lemma 5.1.
A remark just above Lemma 5.1 implies that if we take n—l, ®t('), <pt(*) for n,
0, <p in Lemma 5.3, the conditions (i)~(iv) in this lemma holds with uniform
constants C, c, e=%9 C' in t. Thus taking k=l=l9 Ml=M, ml=m, M2=M'9
mz=mr in Lemma 5.3 we see from (5.10) that there exist constants C3>0? A^N
depending only on 0, <p, M, m, M', mr satisfying

\he[a,b](x,t')\ <C3\a\^\b\f'm\0M+^+m/}(x^f) . (5.11)

In view of the estimate (5.7) Lebesgue dominated covergence theorem
shows that

dtjhjia, b] = he[di:.a, b]+he[a, d^.b] .

Thus we see by induction that

a, b] =- s " he[d«x-*dl,-»a, didl,b} . (5.12)

From (5.11) and (5.12) there exist constants C4>0 and B ̂ N depending
only on 0, <p, M, m, Mr, m', a, ft satisfying

|0;d£AJfl,6](x,OI^^

Thus the assertion (1) has been proved.

Let us return to the proof of Lemma 5.2. a°b^S0^M''m*m/ follows from
the fact that aob=he[a, b] when 6 = 1 and the claim (1). We have that

rN9[a, b] = N S - , [0£a , D$b] . (5.13)
io5|=jr a I

Since d&GS$^N-m and Dt,b&S$'f-N on the right hand side, the claim
(1) shows that the assertion (5.5) holds. Choose x e C ̂ (Rn x Rn~l) with

/(0,0) = 1 and set ak=x,fl9bk=xj> with %k(x,£')=z-,-. Then {ak}^i
\k k /

and ibk}!°=i satisfy the conditions in the claim (2). This implies that for all

+ and 0e[0, 1]

h9[d$ak, D«x,bk](x, D-+hj[d$a, D^](x, f ') (pointwise)
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as k-^oo being bounded in 6 for any fixed (x, £ ').
Since he[a,b]=a°b for 0 = 1, this implies that limk^00(akobk)(x, £ f)=(aob)

(x, £') for any (x, £'). From (5-7) and (5-9) hoia> b](x9 O is continuous func-
tion in 0 for any fixed (#,£')• Thus from (5.13) and Lebesgue dominated
convergence theorem, the above convergence also shows that lim.k^00TN\ak9 bk]
(x9 £')=rN[a, b](x, £') for any (x, £'). Letting &-»oo in (5.2) with a=ak, b=bk

we see that (5.2) also holds for general a, b.

Finally we show that (a°b)(x9 D')u=a(x9 D')b(x9 D')u for all u^S(R*).
This is easily checked if a,b^C^(Rn xRn~l). Taking 6 = l9a=ak9b=bk5 we
see that {ak°bk}%=1 is bounded in 5^M/>IB+W/. Thus Lebesgue dominated con-
vergence theorem shows that (akobk)(x5D')u(x)-^(a°b)(xyD

f)u(x) pointwise as
k-*oo. Thus (ak°bk)(x, D')u->(a°b)(x, D')u in 6"(^w) since {(akobk)(x, D»r=i
is bounded in <5(12W) and c5(12n) is a Montel space. On the other hand (akobk)
(x, D')u-a(x9 D')b(x, D')u=(ak(x, D')-a(x, D'))b(x, D')u+ak(x9 D')(bk(x, D')-
b(x,D'))u, and Lebesgue's theorem shows that ak(x,D')u-*a(x, D')u and
bk(x9 D'}u-^b(x< D')u for all u<=<S(Rn). Thus on the right hand side of the
above equality the first term converges to 0 in <S(R*) and the second term does
also because {ak(x, D')}?=i is equicontinuous in the set of all cotinuous linear
operators on S(Rn) into itself. This completes the proof.

Lemma § A Let a e S%$ and set

a\x, f ) = (^Y(n'l} OS- e-^'-x'W-^a&x^ y')9 y'jdy' 'dy' '. (5.14)

Then we have that

a\x, f) = 23 -Vt.Di*(x9 n+r*[a](x, f) (5.15)
i*\<jsr a I

where

rM(x, f ') = T rN9[a](x, f ')(! -<?)w-lrffl , (5.16)
Jo

'jwMteO =# 2 -^<2w)-(-"os- ( ( e-'(/-')-("'-s')
io»i=jy a! J J

,, j'), f ' + %'-f 0)*'̂ ', (5.17)

in S^"-—" . (5.18)

Moreover we have that

(a((t, x'), D')u, v) = (w, cf((f, A-'), D')v)for any u, vGS(Rn) and any fixed t^R
(5.19)
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-where ( , ) is the inner product of L\Rn
x7

l).

Proof. If a e Co(Rn x JR*-1), it is not difficult to check (5. 1 5) using Taylor's
formula and Fourier inversion formula. Now we set

£') = (2*r(u-"OS- J J e-'^'aKXtoy'+x^e'+Oii'WW

f;*, 0GE[0, 1].

C/awz. (1) he[a]&S$$ and for any LeN there exist C>0 and
depending only on 0, <p, M9 m, L such that

sup |0;0£,A,M(jc,£')l <C\a\^m®M-W(x,t')<pm-W(x^') (5.20)

for all a, £ with \a\ + \j3\<L.
(2) If {a*}?.! be a bounded set in S^* with ak-*a in
MaJ}}ig§1]

 is bounded set in S%$ and he[ak] (x, f O^^W (X f ') for any (*,£')
and ^.

Proof of claim. We show (1) first. We set

fja](x9 y', f ', 57') - a((^l3 ̂ '+x'), f '

Then we have that

(*,/,r,^i<^
XV*-™((xl9 y'+x')9 S'+drj') (5.21)

<C I f l l

where Q depends only on 0, 9, M, m, a, /#. We also have that for any L9 N
SEN

-J/^/aMfe J'5 £', 170] |

' ^

where C2 depends only on 0, <p, M, m, L, N. Thus, when L, N^N satisfy

we have that

fiJta](x, n = (2«)-(-« J J e-'/"'<j'
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From (5.21) and Lemma 5.3 we obtain the estimates (5.20) for L=0. Using
the estimate (5.22) for first derivatives of a and Lebesgue dominated conver-
gence theorem we see that dx.h9[a]=he[dxja]9 9^.h0[a]==he[d^.a]. Thus by induc-
tion we have that

Thus from case that L=0 in (5.20) we also obtain the estimates (5.20) for
all I,

Next we show (2). From the estimate (5.22) with ak for a and (5.23)
Lebesgue's theorem implies the second statement in (2) and the first one follows
from (1). This completes the proof of the claim.

Now we return to the proof of the lemma. cf^S0$ follows from the fact
that a®=he[a] 'when 6 = 1 and the claim (1). The boundedness of {rN0} 0e[0>1]
in sy-v*'m-N follows from (5.24), because

rNJid\ = N 52 --hJ[d$Dte] . (5.24)
1*1 =jy a\

Note that h9[a](x9E
r) is a continuous function in 6 for any fixed (x,£')

from (5.23). Take {^}T=iC C%(R* xIS""1) with the properties in the claim (2)
as in the proof of Lemma 5.2. (5.24) and the claim (2) imply lim^oo rN[ak](x9 £ ')

=rN[a](x, f ') pointwise from Lebesgue's theorem. Thus letting k— >oo in (5.15)
with ak for a we obtain (5.15) for a general aeS^;*. Finally we show (5.19).
When aeCotJZ'xl?*"1), this can be easily checked. Note that {4K=i is
bounded in Sfy™ and lim^^oo a\(x, £f)=a\x, £' ) pointwise from the claim (2).
Thus noting Lebesgue's theorem and letting k-^°° in (5.19) with ak for a we
obtain (5.19) for general a^S^1™. This completes the proof.

Let q(x,£)<=C°°(MnxRn) such that q(x, fHST-o a.(x9 <?'>? 1 with aye
D(.P>P^R2S0^ and am^0. This expression is clearly unique. Then we define
an operator q(x9 D) from <S(Rn) to S(Rn) by

^(JC, D)U = 5J fl/
y=o

gfe D) maps <ST(Rn) into

Lemma 5056 Let q^x, D)=S7=0 ^-/^ D')i)l O'=l, 2) be operators defined
as above. Then

, D) = qi(x, D) q2(x, D) (5.25)
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with

, D) = S &^p-OS- j j e-i^'(diiq1}(x, £+(0, 7'))

, /+*'),
and for any (TV,,, •••, Nm^^Nmi+1 with N}<1 we have that

= S -?r { 23
y=o j ! las

-\ \ e-'^'
J J

Proof. When ^f.(x, f ) are monomials in £15 the result follows from Lemma
5.2 and Leibniz rule. The general case follows from bilinearlity of (5.25),
(5.26). The results in the remaining part of this section are used to prove
Lemmas 3.7 and 3.10.

Lemma 5.6. Let q^C°°(RnxRn) be as before Lemma 5.5, and let <ze
S0$. Let N^N. Then there exist sets of constants {C^ ^zn-i and

^^}(a)l)^zn
+~1xZ+ depending only on N such that \0\<N

\a\=N,t<N-l

2

+ s

, x, f) =

Proof. It suffices to prove by induction on K, Q<K<N that

(aoq) (x, f) = a(x, f ')q(x, f)+ S C^d^cD^q) (x, f)

+ S T ?.(*, ̂  f) 2 Qs;(i -sy-
\a\=JST Jo l<&

This is trivial for J£=0 and we assume that this is true for K— 1. When
| a | =K, we have
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d%,a(x, 5 ')D"x,q(x, £) = (Sf-aofl-g) (x, f ) - S r da^a(x, £ 'Wq(x, f )
-

(AT ls\ X"1
—|^Y — f t ) /i —

\p\=jy-& 01 Jo

Substituting this into the equality for K—l we get one for K. This com-
pletes the proof.

Leinma 5J0 Let q(x, £)=5]y-o0y(x, £')£^ ^ye U (p./oejg2 S0.& a^J let aG.
S%$. Let N,L^N with 1<L<N, s<N. Then we have that

(qod)(x, f) = q(x, E)a(x, <f')+ 53

+ 53.^ -^

S
o

are constants depending only on its suffixes and N, L} and

J | e-^^^i^e+^o^O)^^^^^

J J €-"'«' dt,D$Dlia(x9 S'+^D^dyWx,, y'

Proof. By Lemma 5.5

(qoa)(x9 f) = 53

Applying Lemma 5.6 with D^D^a, d^S^q with L< \a\ +j<N, and N

\a\-j for a, g, N we have
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S I 101-1

?.«(*>*>£> 2 c^i-er^-'de .0 1 = 0 J

Substituting these equalities into (5.27) we get the second equality. This

completes the proof.

Lemma 5.80 Let q(x, 0=2?-o Qj(x, £ ')£i w^ a3=constant and a
STfo(RnxRn-1)forj<2, and set m3=0. Let aGS%;jt, and set for a, fi<=Ztt

+

k «W*, x, £) - (2*)-^0S- J J *-•>'•'' flfrf'+fl*')

x(9f^)((^, /+*'), £Xp W, ^^[0, l].

| a | + | ft | >0, we //ave that

fe ̂ ]^(^ ^ 0 = 2 6/^ eOfi (5.28)

where {^}0e[o,i] ̂  ^ bounded set in S'yiJ
("|y+*r|l*/l)f*"(^+«i"l*/l).

Proof. With a notation in the proof of Lemma 5.2 we have that when a1

[a, q}*itf, *, f) =
3 /I

2-^-

Since ^^eSr/o-'^K^x/Z^-OcSS^1*71'"^"1*7^, and since from the
assumption that a3=constant the term for 7=3 is dropped if «1=0 and |a | +
|/?|>0, the assertion follows from the claim (1) in the proof of Lemma 5.2.
The proof is complete.

Corollary 5.1. Let q be as in the above lemma with m.=3—j, and let

a^S[^yr]^/2(RHxRn~l) with a,fi<=Zn+ satisfying the same assumption as
above. Then (5.28) holds with {6/0}0e[o>l] bounded in S{^/2'

(^+^/2(RnxRn-1).

Proof. Let ®(x, £') =<O1/2
5 <p(x, £') =<f>'^9 M=-m=l+\a^~^\ .

Then a&S$£, and M+m/+aJl- | a' | =/+3-7- ̂  + ^L We apply Lemma

5.8. Since

the conclusion follows. The proof is complete.

Lemma 5.9. Let q and a be as in Lemma 5.8, and set for a,
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[q, a]af>(0, x, £) = (2*)-<-«0S- { { e-"'"'(9?aSg)(*, f +0(0, ?')

C/X<3 awJ |a| + |^|>0, we have that

{ .̂0}0e[o>l] w bounded set in S%$mJ+*^*'v-m-(m*+*r**'».

Proof, With a notation in the proof of Lemma 5.2 we have that if &1<3.

[q, *U*. *, £) = S . -7'1 . *J[9$d*a/9 a](x, £^{ .
^*i (7-«)'

Now the proof is similar to that of Lemma 5.8. The proof is complete.

Corollary §020 Under the same assumption as in Corollary 5.1, (5.29) holds

with {bje}eeio,n bounded in Sffifr u*™™*(R*xR*-*).

Proof. This is proved in the same way as in the proof of Corollary 5.1
from the above lemma. The proof is complete.

§ 60 Proof of Proposition 302

Proof of (I). SQtv=e1/2T^-T^2u, Then

e1/2T(*i-r>2L(X D)u = (L(x5 D)+ir(JC1-r))v .

Set

A, = Re(a+b) (x9D
f) , A2 = Im(a+b) (x, D') ,

A - A-^i » ^2 = ^z+rC^-T1) .

Then we have

(||I(*, 7))«||f y = HAvlP+ZMAv, i2v)+||L2v||2 , (6.1)

and

v) = r||v||2+4-{(v, [A, A2}v}+((Af-A^v, L2v)
2

-(v, [A,, A2]v)+((Af -A2)v, Ljv)} (6.2)

From the proof of Lemma 5.4 with a notation in it we have

[Re(a+b)]\x, f')-Re(a '
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Since d^D^Re(a+b)^S°0-ti;
1 when |a| =1, Af—A^OpSfa1 from the claim (1)

in Lemma 5.4. Similarly we have A$—A2&OpS0\~il. Thus from (3.6) and
Lemma 3.1 we have

\). (6.3)

From the proof of Lemma 5.2 with a notation in it we have

(Re(a+b)°Im(a+b) -Im(a+b)oRe(a+b)) (x, £ ')

= f S (Wd£lte(a+6), 1£^
Jo 1*1=1

Thus the claim (1) in Lemma 5.2 shows [Ai9 A2]^OpSl
0'^

1. Thus noting

that [A, A^GOpSfa1, we see that

l//| + |/F|<C2||v||||^vi|. (6.4)

Since ||£i/2v||2<||,£iv|| ||v||, applying (6.3) and (6.4) to (6.2) and using Schwartz
inequality we see that

7Im(Lp9 L2v)>r||vi|2-^-(||L1v||2+llL2v|i2)-C3||v|i H^vll . (6.5)

Now we shall use the assumption (3.3) of ellipticity to estimate the last term on
the right of (6.5). To do so we prove

Lemma 6.1. Let l^Sfa1 with d^eSfa1 and d^^S0^, and with

nfim/eM(*>OI®~Kx»O9(^O>° far some R>0. Then there exists

0Y such that ju(x, f ')= - - - when \£'\>2R and
'

Proof. Let •^eCoa(JR'1-1) with ^ = 1 when |<f ' |>2, ^=0 when |f | <1.
We define

10 |c

Then fj,^C°°(Rn xRn~l) and

\d«xdl,»(x,S'}\<C^ l ffl-'^-'^fefO when
I ^ \X9 * ) I

This implies p. e S^ l . Moreover since
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when | £'|>£,

from 0^eSj£ and d^.^^Co (JR*"1) we see that

x, 0)1 <C«e l (0-' V|al|)(*, O when |£'|>*.
I *(X9 * ) I

Thus d^.fi^S^2, Thus from the proof of Lemma 5.2 with the notation in
it we have

, n = f hJjjL, X\(x, S'
Jo

Thus juoA — l&S$y9 for ^ = 1 when |<f'|>2J?. This completes the proof.
From Lemma 6.1 there exists ̂ eS^1 with b1oIm(a~\-b) — l^S0^1. Since

with *2=<f '>°*i- Thus

|).

Multiplying this inequality by ||v|| and using Schwartz inequality we get
that

Substituting this into (6.5) we see that when T+ — <d for some ̂ >0,
T

Substituting this into (6.1) we get that when

- l+r^Hvll) . (6.7)
V6

From (6.6) and (6.7) we have that when T+—<d,
T

Finally from inequalities that \\Dlu\\(^<\\L(x,D}u\\(f)+Ce\\Elu\\(f} and

4=(r"1/2^"1ll£'i«llr)+^1/2l|w|l(rT)), this inequality and (6.7) im-
v2
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ply that

when r1/2T> 1 and T+—<d. This completes the proof of (1).
T

Proof of (2). Let r0, TQ, C0 be constants as in Proposition 3.1(1), and as-
sume that rr2>r0, T<TQ. Then from (1) we have that

2 r"/>-'r-'-M|Etf^
'/2r-'(| |L,.(*, 0)A«I If (6-8)

\\Lj(X,D)Elu\\V),

2
(6.9)

From the proof of Lemma 5.2 we have with a notation in it that

<O)(*, 0 = «O°£y)(*, 0+ 2
' =o i « i = i

Thus [L.(x, D), E^^OpS^1 from the assumption. We also have [Ls(x, D), D^\

fa1 from the assumption. Thus from (6.8) and (3.6) we have that

-'| \Eil2D[u\ |(r
T) < Qr-^r-KI I DiLfr, D)«| |(r

T>

L,.)^, D)u\\(?) .

This inequality and (6.9) imply the first inequality in (2). Next, we show
the second one. From the first inequality we have

-"*-'! \Ei/2Diu\ \p < r-^

II?} (6-10)

S r^-'^r-
i/2+j<2

(6.11)

if rT2 and T"1 are large. We use identities that
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l(L2oL3)(x, D), EJ = [L2(x9 D\ [L3(x, D\ £,}}+ S [L,(x, D\ E^Lt(x9 D) ,
{•',/} = {2,3}

[(L2oL3)(x, D), A] - [AOc, D\ [L3(x, D), DJ]+ S [L,(*9 D), DJL/x, D) .
{•-,/} = {2,3}

If ry=Lyo<f >-<f >oLy, ry eSi--1 as showed above and [£,.(*, Z>), ry(*3D')]
2 similarly from the proof of Lemma 5.2, We also have [L,-(*, D),

[Ly(^, D), An^OIP^2, since [Ly(;c, />), DJeOpSi^1. Using these facts for
above identities and noting (3.6) and Lemma 3.1 we get from (6.10) that

^

y=2,s

if rT2 and T~l are large. This inequality and (6.11) proves the desired ine-
quality- This completes the proof.

§ 7. Proofs of Lemmas in § 3

Proof of Lemma 3.1. For some C>03 \\a(x9 D')u(xl9 *}\\<>C\\Emu(xl9 - ) l l
for any x^R, since {a(xly •)} XI<=R is a bounded set in Si^.i^C^X/Z11""1).
Multiplying this inequality by eT(*i-r)2 and integrating on [05 T] in xx we get the
desired inequality. Q.E.D.

Proof of Lemma 3.2. The proof needs three lemmas.

Lemma 7.1. (1) Let L^^-X-p. with *GS\t<>(R*xR*-1) and
Let a^S$;™ (resp. Sfi0(R

nxRn-1J). Then we have that

(2) Let Li(i=l, 2) be as L in (1) with Ag, ju{ respectively for 1, JUL. Let

(resp. SffQ(RnxRn-1)). Then there exist alf a2^S^~l (resp. S*£m),

S®'™~2 (resp. 5J> *) such that

ao(LlL2)-aLlL2= 2 a,oL,.+flo • (7.1)

Proof. (1) We only prove that aoL-aL^S^'1 if a(=S%;™. The
others are proved similarly by using the fact that SfiQ^S0'^m in the case that

0£. From Lemma 5.2 we have with a notation in its proof that
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Jo 1*1=1

Since DJ/^+^eSj^1 for | a | =1, the right hand side of the above equali-

ty belongs to S™'™~1 from the proof of Lemma 5.2.

(2) We only prove the case that aeS^1*"1- The other case is proved simil-
arly. Using Lemma 5.2 for ao(L1L2) freezing the variable fl9 we have

, f) = (aL^X*, £)+ f
Jo

ra(x, f) = (arr'-yOS- ( f £-'>'•"' 2 9«,fl(*> *
J J y=2 '

x 2 (D
{*,/} = {1.2}

Applying Taylor's formula for L^x^y'+x'),?) in ^' and integrating by

parts we see that

where

'ufcc, £)

= - S ((&)-^--«OS- ( ( e-*7"' 2 9fyo(^
{*,/} = {1,2} J J j = 2

l, y'+x'), e'WdtfLfe, f) ,

= - 2 ( ( e-'^'fl 2 9t.
J J s,y=2

Thus using a notatoin in the proof of Lemma 5.2 we have

rie(x, S)dO = - 2 S3
O (k,l} = [l,2} j = 2 o

On the right of this equality, the coefficient of Ll belongs to S0$~~1. Thus

from (1), JJ re(x, £)dO takes the form of the right of (7.1). Therefore, to com-

plete the proof of (2), it suffices to show that {r2Q} e^io,ii is a bounded subset of

S0;™~2. This follows from the following Lemma 7.2 and Fact 7.1. Q.E.D.

Lemma 7.2. Let (Mlf •••,MN,ml, •••,mN) be a permutation of 2N real

numbers, and let a fa, y', f ', ij^C^R^xRf^l^j^l, — , N) satisfying the
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estimates that

\Qytyldfrfay', £', 37')! £<W sup (P^-iviHH(e)9,.y-i-iHPi(e) (7.2)

for all multi-indices where we use a notation K in (5.10). Then if we set a=

$$ and |a
of C^vlt in (7.2)}, a«J /Ae constants CQ> LQ are

depending only on I, ®, <p, and a permutation given above.

FaetToL Leta<=S%£. Then

sup \d«xd^Ma(x+t(Q, /-*'), f '

Fact 7.1 is obvious. We shall prove Lemma 7.2.

Proof of Lemma 7 .2. Set 6=n7-i fly Then we have the estimate

n
'

Thus from Lemma 5.2 \a(x, £ ')! <C0 II*-i|fl,lL.(0V)(*, f ')• Differ-
entiating under integral sign we see that

= 53 -

Thus from above estimate we have

Q.E.D.
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Lemma 3.2 is an immediate consequence of the second part of the next
lemma and Proposition 3.2.

Lemma 7.3. Let Li=Sl—^i—j^i (/'=!, 2, 3) with ^
S0'®<p. Then we have the fallowings.

(1) L^-L^eSi-.;1.
(2) For some? flj.e5j>10'=l, 2, 3) cwrf a^Sl

0'^
2 we have that

L.oL^L.-L.L.L, = 2 ajoL.+aQ . (7.3)
j=i J J

Proo/. (1) we have

-^1 ° ̂ 2 ^1 <J

Each of terms on the right hand side belongs to S^1 from the assump-
tion and Lemma 7.1.
(2) In view of (1) and Lemma 7.1-(1) L1oL2oL3—L1o(L2L3) takes the form of
the right of (7.3). Thus it suffices to show that L^L^—L^L^ does also.
We have

Ll0(L2L3) -L,L2L2 = 2 DXlLk • L,
{*./}- (2,3)

Each term on the right hand side takes the form of the right of (7.3) from
Lemma 7.1. Q.E.D.

This completes the proof of Lemma 3.2.

Proof of Lemma 3.3. Take a= X, q=p in Lemma 5.6 with N=3 and in
Lemma 5.7. with L=l and N=3. Then Lemma 3.3 follows from Corollary

5.1, 5.2. Q.E.D.

Proof of Lemma 3.4. This follows from Lebiniz rule. Q.E.D.

Proof of Lemma 3.5. From Proposition 3.2 and Lemma 3.2.

if rT2, — are large. Since go/eS^cS^i.yu, we have
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From these two inequalities we see that for large

\\B(Z(x, D')u)\\P+\\go%(x9 Df}u\\9^C1\\PoX(x

Applying Lemma 3.3 to the first term on the right we get the desired inequality.
Q.E.D.

Proof of Lemma 3.6. Taking ®(x, £') = <£'>> <p(x, %')=l in Lemma 7.1,
7.3-(l), we have that if | a | + | ft \ =1 (resp. 2)

+ 2 flf

with a^GSti1-1, ̂ e5l:0
|a>l fr«5P- ̂ M05') for i4=0,

From this we have that when | a \ + | ft \ =1 or 2,

with a0-e5i{o, flfeSl.o O'^O),

Thus Proposition 3.2 implies that if rT2 and — are large

Thus using <e'>(|05|-^l)/2og(
(^e^>3 and Lemma 3.2 we get the desired

inequality. Q.E.D.

Proof of Lemma 3.7. As in the proof of Lemma 3.3 we take q=p, a=%,
N=3 in Lemma 5.6 and apply Corollary 5.1. Then we have with some b^

Sijz/i/2 and constants Ca

= zp+ 2 Cadl,aod*,p+ S bf\-*.
|05| = 1,2 f=0

Thus Lemma 3.7 follows from the following lemma and Lemma 7.1, 7.3-
(1). Q.E.D.

Lemma 7,4. Let L,(/=l, 23 3) be as in Lemma 7.3 and a^S^a Then
3

2 a LL.+ 2 a
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with some atj<=S%$-1, at^S^~2 (z4=0), a0<=S%;™-3.

Proof. We have

, f +(0, ?')X*+0, /), W«V

+ 2 (2*)-<-»OS- e-"/"'(i|£,)(*, f+(0, 5')^«(*+(0, /), f 0*'̂ '

+ 2 (2K)-<-"OS- j je-'^'L^, f+(0, ̂ O^X^+CO, j'X f 0*'̂ '

Since (2^)-("-1) OS- SS e~i/"''a(x+(0, y'), g ')dy'd7i'=a(x, 5 ') by Fourier
inversion formula and a limiting argument, in the term I we see using Taylor's
formula for L,(x, £+(0, ;?')) in ??' and the integration by parts

± (2*)-<"-»os- ( ( e-"7"' 2 (1
1 = 1 J J |*|=1 Jo|*|=1 Jo

,/), O4yW H I./*, 0
y*' '

- 2 (27r)-(8-1>0,S'- ( ( «*/"'
Jrj2,j3: distinct J J

'l

x 2
*=l Jo

- ( f e-'>'-" 2 {ft T
J J \all,\(»2l,\(t3\=i k=i Jo

Similarly we have

- 2 (2«)-<»-»05- ( ( e-^' 2 T
/=w J J i«i=iJo

, J'), e'Wdri'-Lfr,
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--'•>'•"' 2 {
/i>/2 J J la1!,!*2!-! *=1

- 2 (^-'-"os- ( ( c-"'"' 2 f s
/ = ! J J |e»| = lJo

As in the proof of Lemma 7.1-(2) applying Lemma 7.2 to oscillaroty inte-
grals in I~III we see that /+---+/K is the form of the right of the equality in
Lemma 7.4. Q.E.D.

Proof of Lemma 3.8. This follows easily from the following lemma and
Lemma 7.3-(l). Q.E.D.

Lemma 7,5. Let aeS^", and let L. (i=I, 2) be as in Lemma 7.3. Set

= (L01L02)oa+ S b^L^
1=1

with biGSyZ1-m (/=!, 2) andb0<=S%+2'm, and

Proof. We have

^1^2 :::::: -̂ 01^02 ^1^02 —

Thus from Lemma 7.1-(1) we have with some

= (L01L02)oa— L02o(^l0a)—

Hence the last term on the right is in S^^+^V1*"^^2'*- Thus ap-
plying Lemma 7.1-(1) to the middle two terms on the right we obtain the first
statement. The second statement is trivial. Q.E.D.

Proof of Lemma 3.9. We prove (1) first. We need a lemma.
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Lemma 7.6. Assume the notations in §3. Assume (I) holds.

(1) For any distinct 1 <k, 1<3

with some ai^S0^(p(i=l, 2) with supped supp^Q.

(2) For any distinct I <k, l<3 we have with some al9 a^ as in (1)

Proof. (1) Set

al =

with a trivial convention outside supp^0. These have required properties.
(2) Set

Then ^^5^0'=!, 2) and satisfy the equality in (2). Q.E.D.

, from Lemma 7.6-(l) and Lemma 7.1-(1) we have with some a^
'

Since

the first statement in (1) follows. Next the proof of Lemma 5.2 shows that
coi/rQ—ci/r0^SQ

0'^
1. From this and that qft,/<Z> e £$'£ Lemma 5.2 shows that

with bQ=c^Qj0 and some

Now, the second statement immediately follows from Lemmas 7.6-(2)5 7.1-(1).
This completes the proof of (1)

(2) can be proved similarly by using the following lemma Q.E.D.

Lemma 7.7. Assume the notations in §3. Assume (II) holds.

(1) The statement of (1) in the previous lemma holds.
(2) If k 4= 1 , we have with some ai e SS;£(/= 1 , 2)

Proof. (1) If k=2, 1=3, the same proof as that of Lemma 7.6-(l) works
well. In another cases we set
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We have

| c$(x, £') | <Q, | c(x, £') | (0-w 9-1"1) (x, £') for any a, ft (7.4)

because

(0^^'^)(x9f
f) if H

Using (7.4) we can easily check a^S^v and the desired equality clearly
holds.
(2) Set

Then these have required properties. Q.E.D.

of Lemma 3.10. We need a lemma.

Lemma ?88. Le£ L- (/=!, 2, 3) 6e as- /« Lemma 7.3 awrf
we have for a, ft with I < \ a | + | ft \ <2

?S) = 2«,y H Lt (7.5)
/>/ 'yep.yj

wftA some afJGS£M'-M(\a\ + \ f t \ = l ) 9

ffSHS^iy H i|+S«,A (7.6);>/ '/ep.yj •=!

wi/A some at^S^-'^, a^S^^'^a} + \ft\ =2).

Proof, (i) Assume | a \ + \ ft \ = I . If aa = 1 , (7. 5) is clear. If ^ =Q, we
have

q(ll = 2 -(^+^)(g E i| -
i,J,k: distinct I G ( i J ]

Here (^eS^^cSi^'-^^^Si:^ Thus (7.5) holds.
(ii) Assume | a | + | £ | =2. If a1= 23 (7.6) is clear. If ̂  = 1, we have

Since |aM + l£l=l,(V^)[#^ Thus (7.6) holds. If
a1=0, we have

C = s {-&+»$$ n i,
» f j f * : distinct l&(ij)
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+ 2

Here in the first term in the parenthis (**)$ eS^*1'"1*1 because — 1 +
\a\2>-\ft\, and in the second term (J,+^)$eSi7^-'v^
5£H*'i+iH.-iPi+ivi for {kg same reason so that their product belongs to

SIT'1'-'*31. This shows (7.6). Q.E.D.

Now we shall prove Lemma 3.10. From Lemma 5.7 we have with the no-
tations in Lemma 5.7, 5.8, 5.9

X = 2] -— 0?+<y''» d(
x°'VpD(J'V X

O^J^2 7- ! j I

lYI+y^Z-1

+ 2 2 CwtX-0""[9&

2 [p, W *].+(y.»(..P) (», *, f ) (1 -ff)"-'-1

r \ \ J o '

+ 2 S (-0"if*i=2r-m -y o

X S Cwifc-ff)™-1-1 dO
L<\W-l

= I+II+III+IV .

Assume l<|a| + | /5 |<2in the following. From Collorary 5.1 we have
for any./, r, #

i* ^ f SV , *, f ) = 1 A10
(7.7)

with some {^}0e[0>l] being bounded in 5f
1

3
/l*r/2a5|~(l(y'y)l+lf"l)/2(12nxl?K-1). From

Corollary 5.2 we have for any j, r

lmin^S-a}.,-./) Z,/ sk /_, !_,'

- *Mfl '
U Vf

with some {%heo>1 being bounded in Sffi^-M'™* (
We devide our argument into two cases.

(i) Assume | a \ + \ p \ =1. Take L=2, N=3. Then from (7.7), (7.8) we have

minC2,3-ojp

//+///+/F- 2 bkS
ki with some

k = 0
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Next from Lemma 7.8 and that suppXdsupp ^0 we have

/ = s xaik n LI
i>k /<={»,£}

+ 2 #,'-¥)*(2aW n L,+ 2 «#'£,)
0^j<2 f>* /6={i,*} 1=1

w+/=i

with some aikGS^-"^9 atteS^-'-™-'™, a^'eS^-'-"*1'-"11. Here

(ii) Assume | a \ + | p \ =2. From Corollary 5.2 we have

min(2,3-a}p

n+III+IV = 2 **fi with some &*

Similarly as in (i)

.ik n .
j>A /e {«',&} 1=1

with fl^eS^*1'"1^, ^eS^*1-"^1. From (i) and (ii) we see using Lemma 7.1,
7.3-(l)5 and that <e'>(i^H^i)/2e^-^i)/2,(i^i-i*iV2 that

= 2

with some

This implies Lemma 3.10 in view of (3.6). Q.E.D.

Proof of Lemma 3.11. Let a, ^ as in the assertion. From Lemma 5.2 we
have with a notation in the claim (1) in its proof

), ̂  x} ( r) (1 _tf).-i-i <
m=3-i*i r °

The second summation on the right belongs to S^'^}^Sf
Rn~l) from the claim (1) in the proof of Lemma 5.29 because d|/ g($^S\tv(R* X
JS^"1) c ^° ;» if | r | + | a |-3. Next in the first summation we have 0|/ gg] Dj/ X

so it belongs to sJ/^-iYi-i-i.-^-m-iH since
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on supp X. Thus the second and first summations multipli-

ed by <£ />CI*I-IPI>'* from the left in the operator product sence belong to

respectively to S\fc$l\RnxRn-1} and s^T^-^'^^^^-^-w^'-^^'^c

S\$Mi(R* X Rn~1}. This proves the assertion. Q.E.D.

Proof of Lemma 3.12. This has been proved in the proof of Lemma 3.6.
Q.E.D.

§8. Invariance of the Assumption of Theorem 1.1

Let Ql=QllxQlz where Qll9£12 are open sets in R, Rn~l containing the

origin respectively. Let <p<=C°°(Q12) with p(0)=0, dp(0)=0 and set <Z>(*) =

(*i —?(*')> xr) where x'=(xz, • •• , xj. Then 0(0)^0 and 0 is a difFeomorphism
from Ql onto some open neighbourhood of the origin. Set ¥=0~l and let

P( j, D) be a differential operator on J22 with the symbol P(y, TJ) defined by

P(y, D) u(y) = [P(x, D) (uo0

Then we have

where /(x, x0) = (Z>(%)-(Z>(x0)-<Z>'(jc0) (x-x0). If

P»(y> 7) with Py homogeneous of degree 7 in <f ,

P.(*, '»'(*) 7) =!*.(<«>(*), 7)

P.-iCx, 0'(*) ^)+ 2 PLa)(x, '«>'(*) 7) «</<»W, 7>/«! = ^.-i(« (*), V) • (8.1)

The aim of this section is to prove the following.

Lemma 8.1. P(y, D) satisfies the assumptions (i), (ii) in Theorem 1.1.

Proof. From the assumption (i) in Theorem 1.1, for any

there exist an open neighbourhood U of the origin in Rn and an open conic

neighbourhood P of £ £ in C^VO) such that

I
>n(fi-<yXO) O' = i,2)

/ = !

for (#, £')el/xr as polynomials in fx where ^eC-Ct/xT) which is holo-

morphic in f' and satisfies that ^^(x, f')^^^, f') for all (x, f') when /4=J.
Since *(Z>'(0)=Wand 0(0)=0, it is trivial that (i) also holds for P(y,D).

Thus we shall show that (ii) holds for P(y, D). Assume that P^d^ Pm=^ll
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Pm=Q at (0,f0)eJBllx(C\JB)x(iZ-1\(0)). Then Pm=d^ Pm=d2
h Pm=Q at

(0,e0). This implies that ^i/1(0,fO=^2/a(0,fO=foi f°r some /^{l, — , m,}
(i=lf2). Set

^1/1 ~ ^ ? ^l/!""^2/2 = C ?

q(x, f) = P.C*, e,) H (£i-*i,(*, O)2 H (fi-^*, O) •
'*'i '*'2

Then

, (x, £')€

^(0, f 0 = f 01, c(0, «) = 0, ?(0, f o) =*= 0 .

Let ^e C"(J3i) with J^(0)=(l, 0, •••, 0). Then

(8-2)

Here, by definition, {f,g}(xiS)=-St
i.l(dtlfdfjg-dfifQ^g)(?ctS) for C"-

functions/, g in an open set of RnxCn, which are holomorphic in £ . Set

(8-3)

for (o,zs

Then

F(-—, 0, 0, (x, f 0) = 0 on Uxr ,

SO,F(—|-, 0,0, (o, «))=*= o.

Thus from the implicit function theorem and the uniqueness of the im-
plicit function, there exists a C°°-function o(z9u9(x9£')) on an open set V=
VlxV2inC2xUxr with FicC2, F2C Uxr containing (0, 05 (0, f {)) such that

F(a (z, w5 (^ f OX ̂  ^ (^ f 0) = 0 on Vl, (8.4)

cr(0, 0, (jc, f 0) = — on ^2 • (8-5)

We may assume that
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(c(x, D, fc VK*, £ '))e K! when (jc, £')e F2 . (8.6)

Noting this we set

a(x, f ') = a(c(*, £'), {c, ̂ } (x, O, (x, 5')) for (x, £')<= F2 .

Then (8.2)~(8.4) and (8.6) imply that

, £'). O) = 0 on F2 . (8.7)

Since o(z, u, (x, £')) is holomorphic in (z, w), (8.5) implies that there exists
an open subset W of F2 containing (0, f 6) such that with some ag.eC°°(JF)

0=1,2)

' ' , ̂ } (*, O a2(x, c') on W. (8.8)

2Since a(0, SQ) = — — , we may assume that

(89)

Since {Pm,ir} (0,(f l3fO)-^^^(0,(fi,fO), the degree of a polynomial
{Pm? ^} (x, f) in fi is constant for (A:, f ') in an open subset Wl of W contain-
ing (0, £ o) where both of f x= ^(x, f ') and f 1=(A+flc) (x, f ') are solutions of the
equation {/>„, i/r} (x, f)=0 from (8.2) and (8.7). Since C1=^(x9 f ') is a double
root of this equation for (x, E')GW1 with c(x,E')=Q, and since ^(x,f) and
(t+ac) (x, Sf) are distinct for (x, Sf)^Wl with c(*, f )=t=0 because of (8.9), we
have that

{PWI, ^} (x, O - (f 1-(^+flC) (x, f ')) (£i-*(*, f ')) ̂ , 0, (^ f )e ^ (8.10)

as polynomials in fl where ^j is a polynomial in f j with coefficients in
Let W^ be the intersection of Wl and {(*, f O^^xC""1; |f '| =|fS|} and

let JFj be an open cone generated by W^ We extend the restrictions of func-
tions a, al9 a2 to Wl to functions on W1 being homogeneous degree 0, —1, 0 in
c ' respectively and we also extend the restriction of q1 to C X ^ to function on

CxJFx being homogeneous degree m— 3 in f . Then using homogeneity of c,

{c, -^}, {Pm, i^} we see that (8. 8) ~~ (8.10) also hold on W^ when we replace a,
al5 a2, ^! by their extentions in the above. Moreover since multiplicities of the
characteristic roots of Pm are at most triple, we see from (8.10) ^(0, (/l(0, fo)>

Thus taking ^(.X)=^-O(A:) = XI— <p(x') and ^r(jc)=x1 we see that there exist
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an open subset Ul of U containing the origin, an open conic subset F1 of F

containing <?o? and an open conic subset f of CxF containing y(0,£o), £o)
such that the following factorization of d^ Pm and {Pm, -^0} holds:

*,0=(£i-(

for (jc, £ ') e £/! x A as polynomials in £x where GO, 6 e C'CL^ x /\) and ̂ ,
C^C/! xT) satisfying that

(8.12)

with some «01, 6l9 b2^C°°(Ur
1xF1) which are homogeneous degree —1, —1, 0 in

£' respectively; g and <f are homogeneous degree m— 3, and

C l^Ol^ l f l - 3 and C|?(x,£) |>|£|--3on^xf (8.13)

for some positive constant C.

We may assume, decreasing Ul and f if necessary, that

the inequality in the assumption (ii) in Theorem 1.1 holds

when (x, f ) e= U, x f and dfil P^JC, f ) - 0 ; (8.14)

C | ̂ , £) |> |£ |^-3on C^xf for some C>0. (8.15)

We define r0, r^C^U^F^ by

^ofe f ') = 0*+tfo c) (x, £') and r(x, £') = (^+^c) (jc, £') for (x, £')e C^ xA .

To prove that the assumption (ii) holds for P(#, D) we must show that there

exists an open conic neighbourhood fdf of (0, £0) in MnxCn such that

( I (d, PJ ( y, 7) 1 1 7 1 + 1 (9, 1>J ( J, 9) I ) I ̂ .-i( y, 7) I
<c | /Uj, 7) 1 2/3 ( I Pm(y, ?iW'3\n\ -l+ 1 A+^-i) (j', 7) 1 1 7 1 '"/3

when (y, TJ) = (0(x\ '^'(x)'1 £) with some (x, ̂ )eT satisfying

{P.,^(x,f)=0. (8.16)

From (8,1) it is easy to see that (8.16) follows if we prove that there exists an
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open conic neighbourhood TCP of (0, <f0)e Rn xCn such that

I11"3

(8.17)

when (*, f)er and {Pm, ̂ 0K*> f ) = 0 . Note that (8.11), (8.13), and the defi-
nition of T(X, £ ') imply that

&»,*£ = 0 if and only if ̂  - J(*, <?') or ̂  - r(*f £')

when (%, f')er .

Thus since the inequality in (8.17) is trivial when (x, <?)eF and ft =
^(*5 £')> it suffices for us to show that

there exists an open neighbourhood UQd Ul of the origin in Rn

an open conic neighbourhood F0C/\ of f o in Cn~l such that the inequality
in (8.17) holds when (x, £ ')^ ^Oxr0 and ^-r^, £'). (8.18)

Indeed, if (8.18) is proved, (8.17) holds with f=f n(£/0x(Cxr0)).
We shall show (8.18). Let us choose an open neighbourhood U2 of the

origin in Rn and an open conic neighbourhood F2 of <f £ in ^"^(O) so that

t/2c c J7lf T2 n {fee-1; | £' | = 1} c CA ; (8.19)

W^ f '), f ), (^(^ f '), f ')ef when (x, f ' )e t/2 xr2 . (8.20)

Sublemnia 8.1. The following estimates holds on U2xF2.

C I P. I I Sl=To > I c | 3 1 f ' | '»-3> C-1 1 PJ | ei.To (8.21)

(8.22)

S | |c|2 |f' |»'-3-C2 |c|3 |f' |»-3-^ (8.23)

|a I + |/9 1 =1. Here, constants C, Q, C2 are a//
tive.

Proof of Sublemma 8.1. (8.21) immediately follows from (8.12). To
show the next two inequalities we observe that



428 SHIN-ICHI FUJII

\(PM l^-ro^CIf l-'^'kl8-1-1-"11 on U2xr2 (8.24)

if |«| + |£|<2.

\T-T0\<C(\c\\ST+\ic^Q}\)\c\ onU2xF2. (8.25)

Then we obtain (8.22) by Tayolr expansion of (Pm)(&] in S1 at fi=r0,

substituting r for <f 1? and estimating each term in the expansion by (8.24) and

(8.25) except for (PJ^U^. Finally (8.23) immediately follows from (8.12)

and the equality that for a, ft as in (8.23).

fi-J+y tiq+cftfa-Xfq

&w- Q-E.D.

Since c={c, fa} =0 at (0, £{), from (8.21), (8.22), and (8.25) there exists an

open nighbourhood £/3C U2 of the origin in Rn and an open conic neighbour-

hood F3CF2 of f o in ^w such that for some positive constant C

(8.26)

From (8.25) we have that

(8.27)

Using (8.21), (8.22), (8.24), (8.26), (8.27) we see that on £/3xr3

(8.28)

(8.29)
|Q5|=2

In the same way one can deduce that on U3 X F3

From (8.23) and (8.26) the middle term on the right of the second inequlaity

can be dominated on U3xT3 by a constant multiple of
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|PJ If l-'k-r+l'tyol If I

Thus we get with another constants

(8-30)

on U3xT3.
From (8.11) and (8.14) the inequality in (ii) in Theorem 1.1 holds when

(x, f')eE/3xr3 and fi=r0. Thus conbining this inequality, (8.21), (8.26) ~

(8.30) we obtain

1| + |P1.||£|--1Hf1_^ (8.31)

{ | Pm | <">( | P. | ia | £ [ -1+ | P.+P.,-! | | f | ">3+ | £ 1 «-*-

on U3xF3.
Moreover we see from (8.29) that on U3xF3

< C, | P. | 2/3 1 P.+P..̂  SPl?' £)»</(2>(%), '0 '(x)-1 f> /a ! | | S |

This inequality, (8.31), and that rf^(0)=0 immediately imply that there
exists an open neighbourhood £/4C U3 of the origin such that the inequality in
(8.17) holds when (x, £')<=U4xF3 and ^l=r. Thus, the proof of Lemma 8.1
is complete.

§ 9. Proof of Theorem 1.1

From Lemma 8.1, to prove Theorem 1.1 it suffices to show the existence of
an open neighbourhood Q'dti of the origin such that every u^C°°(£) satisfy-
ing P(x9 D) u=Q in Q and w|X l^i^i 2=0 vanishes in *0, where P(x, D) and Q are
as in Theorem 1.1.

In case that m1=Q or mz=0 Theorem 1.1 was proved by Calderon [2],
Mizohata [5], and Hormander [4]. Thus we only have to prove Theorem 1.1
in case that m^l and m2>l. In this case the theorem follows from the fol-
lowing.
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Lemma 9.1. Let P(x, D) and @ be as in Theorem 1.1. Assume that mg->
1 (f=l, 2). Then there exist positive constants 00, r0, C0 such that when rT2>r0

Here, Br(0) is the open ball with the center at the origin in Rn and the radius
r, and by definition

\\U\\(
s
r)T= 2 T^W-ifi-lT*-*-"*-' \\Ert D{U\\P

i+2j<2s

for u^S(Rn)) s = 0, —, m .

Proof. We may assume that Q£x, e^ = l (/=!, 2), for Pm(x, ej-1 P(x5 D)
also satisfies the assumption in Theorem 1.1.

Let fo^-R^VO). Then the possible cases are the following (i), (ii).

Case (i). Two equations gg.(0, r9 E£)=Q (/=!, 2) have no common root.
Then there exist an open neighbourhood U of the origin in Rn and an open

conic neighbourhood F of f <J in /2n~1\0 such that in t/x J" we can write

/>„(*, f ) = ri (f i-j/*, eo)2 n 2 (f i-^, f '» - (9.1)y=i y^w^i y

Here A.&C^Uxr), (I<j<m1+m2) are homogeneous degree 1 in f ' being at
every point, pairwise distinct and non-real. Choose a C°°-mapping B(£') from
Rn~l to F such that S (£')=£' if f ' lies in a conic nieghbourhood of f £ and
|f ' |>l, and such that 5(f) is homogeneous degree 1 in f when |f ' |>l
and satisfies that \B(E')\>C(l+\£'\). Let ^ e C°°(12M) with sz/p/7 ^ c J7,
•^ = 1 in a neighbourhood of 0, 0 <^ < 1 . Set r (x) =^(;c) x. We set Pm (x9 f )

=Pm(W(x\ (f,, S(f '))), ^? f )=^ (*), ^(f '))- Then ^eSi.oC/Z'x/Z-1),
C l / m l / ^ e O l ^ l + l f ' U and ^(x9 Sr)=Ij(x9 £f) and Pm(x,e)=Pu(x,e) for
(̂ :, f ') in a conic neighbourhood of (0, f i).

Cose (ii). Two euqations Qf(Q9 r, fo)=0 (z = l, 2) have exactly r(>l) common
roots.

Then there exist an open neighboruhood U of the origin in R* and an open
conic neighbourhood F of f £ in J2B""1\(0) such that in C/x r we can write

»»l + «2~

= n
where



ON THE UNIQUENESS FOR THE CAUCHY PROBLEM 431

Pj(x, £) =

with /L, Cj^C°°(UxF) which are homogeneous degree 1 and satisfy that
^,-(1 <J ^Wj+mg—r) are non-real and distinct everywhere, /L and 2,.—ci are

distinct everywhere if / =t= J9 and \ I m ^ j \ > 2 \ C j \ for j = 1, - • •, r. Since equations
p (x9 f )=0 in f j_ have no common zero for any (x, <?')e UxF, we can write

Wl + m2-r

p /£ £\ _ yi 0/x (?) TT p (x <?)
i=i * y^i J

?M^ + ?»2 ~ r

\-* m >~ m~I/ \X9 £) == j_J_ \Pi\-^} **) i~tfi\-%9 ^))"i^vX, s) (y.J.J

where with the notation that /f.=the degree of Pi as polynomial in E19 qi is a
polynomial in £l of degree /,- —1 with coefficients in C°°(UxF) and homogeneous
degree /,. —1 in f, and s is a polynomial in f1 of degree m—2 such that the
coefficient of £ * is a sum of functions in C°°(UxF) which are homogeneous in
f' of degree k, —, /:+2-min (r, fc+2).

Then there exist an open subset C/j of £/ containing the origin and an
open conic subset Fl of F containing f J such that for any /=!, ••• , r we have

that

(9.3)
if (x9 S)^U1x(Cx F,) and 0fil /?,(x, f ) = 0 .

Indeed, from the proof of Lemma 8.1 there exist an open neighbourhood Ul

of the origin in Rn with C/jCCl/ and an open conic neighbourhood Fl of
^o in ^""^(O) with F^S'^ddF such that for any i=\9 ~-,r there exists
^.eC^t/jX/1!) which is homogeneous degree 0 in f ' and satisfying the fol-
lowing:

*,(0, fo) - -y ; (9,4)

with the notation that ^i=^i+ai ci9 the inequality

in the assumption (ii) in Theorem 1.1 holds when (x9 S
r)^U1xF1 (9.5)

and £1=ri(x9 £')» and the inequalities (8.21) and (8.23) hold on

U1xF1 with instead of r0.

From (9.4) and (9.5) we may assume that on U1xF1
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lc,!3. (9.6)

Using (9.5) and (9.6) one can easily see that for any /=!, ••• , r on UlxPl

(9.7)

2Note that with notation that T.Q=A.— — c{

Then using this inequality and that (pt)[o^ ti-r,0=— (c,-)[J) c? if

Z+""1 with |a| + I/? I =1, and using Taylor expansion of pi and qi in cx at
f J=rl.0 we obtain (9.3) from (9.7). Let us choose mappings 3(5 ') and ^(jc) as
in (i) for F{ and C/j instead of F and (7. Then we define Pm, Pm-l9 %jy cj9 pj9

qj9 5 as in the same way in case (i). Then (9.2) holds for (x5 <?') in a conic
neighbourhood of (0, ££) with p., qj9 s instead of p.9 qJ9 s, and p. and q^ satisfy
the assumption for^ and q respectively in Proposition 1.1.

Now we prove the following lemma.

Lemma 9,2. Assume notations in the above arguments. Then we have
the following estimate in the above cases (i), (ii),

Case (i). I f r T 2 and T~l are large, for u^ST/2(R
n)

^ r||n||£f>r + r-* S (\\El/2(Pmr\x, D) u\\P+\\E-d(PjM(x9 D) ii||f >)
1*1=1

<C\\Pm(x,D)u\\P.

Case (ii). I f r T 2 and T'1 are large, for u<=ST/2(R
K)

\\u\\%T + T-* S (\\Em Q^(x, D) KllF'+H^ QM(X, D) «||?>)
|fl»|=l

<C\\Q(x,D)u\\p.

where Q(x, S) = UK"rr(Pl+ql) (*, f )•

Proof oj Lemma 9.2. First we prove the estimate in case (i). The inequlaity
for Hull^.V is well-known. (See [8]). We shall show that the one for (-PJU).
This also contains nothing new.

Set ex,f)=(£i -•**> f ' ) 8 for l<
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From Proposition 3.2 we have that if tT2 and T"1 are large,

«)fc (9.8)

for any /.
We denote by A9fk(s&R9 &<EZ+) the set of functions R(x9 f) in

of the form

R(X, o - flo(*, f) £?+•••+**(*, o, fl.-
Then if R^A,.^ (/'=!, 2), we have that jR^, jR^e^^^, and if

Sik and a, /0eZi with a^fc, we have that ^e^,.,,^.^.

Using partial fraction decomposition we see that if \a\+j=m andj<m

— 1 we can write

where ^

Next using that for | a | =1

<f r^c^Jc.)- s <c'>-i/2°(&)(«)°[ n e,-A=i

and (9.8) we get that for large rT2 and T~l and

Ju,^, D) KII^^QC ll[fi*° H fij (*, /)) wll^
<C2(\\Pm(x, D) u\

The inequality for (Pm)w can be deduced similarly. This completes the

proof in case (i).

Next, we consider case (ii). We note that C \ Im 1{ \ > 1 + | <?' | and | Im I{ \

>2\ci\. In case (ii) we shall use Proposition l.L

If m1+m2—r=l, if follows that m=3. Thus the desired estimate is no-

thing but Proposition 1.1. So we may assume that m1+m2—r>2.

We set Qi=pi+qi and Q^ = TL&kQi- Since for any (%,<?') equations
Pi(x9 f)=0 in Si (i=l, • • • , m1-±m2—r) have no common root, from partial frac-

tion decomposition we have that if | a \ -{-j=m and j <?n—l

£ f<& £J "*\~^ DC Ci— 2j ^,
k=i
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for some Rk&Aikjk-i. Then from Proposition 1.1, we have that for large
and T"1, and ut=ST/2(R

n)

r-3/2r-3 S \D* Df-W UP

1 2

s ° ( *a)«l l£ ) +(^-MI«C' l i . r ) . (9.9)

On the other hand as in the proof of Lemma 4.3 we see that for u

)-1 \\D? *||?

This inequality, (9.9), and that \\u\\%]T<C(rT2yW 23i,i*JU>/- Df-i-i u\\P
for u&ST/2(R

n) which follows from an interpolation on Sobolev norms on xr

and the first inequality in the proof of Lemma 4.3 imply that if rj2 and T~l

are large

,/))M||f)) (9.10)
k=i

for
We have to estimate the summation on the right in (9.10). We set Qik =

G Since

2 23 <f
|a| =1 i^t

we have from Proposition 1.1 that for large *T2 and T~l, and

2] r* |ia(x, D) £_1/2 [(e,)(.,oj2lj (*, ̂ ?) wll?' (9.1
|fl»|=l «=FA

+ 23 II^Dr2-^!!^).

Setting 2g.«-<f />-I/2o(6,)(rt) we have that (Qk°Qitt-Qi*<>Qd*Qtt and fil-0

Qk°Qik—Qi<*°Q(^ are in ^»-(3/i)i»-2- Thus from Proposition 1.1 a term in the
first summation on the right of (9.11) is dominated by a constant multiple of

r||fi,oe«>(*, D) ttH^+23^,-2 ll^-(3/2)-,- D{ u\\P if T T2 and J'1 are large and
u^ST/2(R

n)' Thus applying this estimate to (9.11) and summing up it in k we
obtain that for large rj2 and J"1

INIS.V+ 's ne*oe(w(^ ̂ ) Mi(

Finally using ^'y-^Q^-^'y^^fir^^^
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we have from Proposition 1.1 that for large ?T2 and T~l, and

+ , D) u\\

Similarly \\El/2 Q
(*\x, D) u\\(f} is dominated by the same expression as the

right of the above inequality. Combining (9.12) and these estimate we obtain
the desired inequlity. This completes the proof in case (ii) and therefore the

proof of Lemma 9.2.

Now we can complete the proof of Lemma 9.1 by patching the estimates

in Lemma 9.2. We assume the notation AStk in the proof of Lemma 9.2.

Choose C°°-functions #,-(£') on Rn~l (j=l, •••, s) which is homogeneous degree

0 for | f ' |>l and satisfy 2/-i x.(£') = l for |<?' |>1 so that there exists an

open neighbourhood V of the origin in Rn such that for any j G {15 •••, s} there

exists R^Amtm with R.— <ff e^^ such that P(x, S)=Rj(x, S) on Vxsupp X.

and the inequality in case (ii) of Lemma 9.2 holds with R. for Q,

Let us choose <50>0 with £28o(0)c V. Let 0eC°°(J2w) with 0(0=1 when

I / 1 <1, 0(0-0 when 1 1 \ ^— , and set P(x, £)=P(t(^1 \x\)x,f). Let Z0(=

with ^0 = 1 on ^fio/2(0). We set p/x, f )=-^oW ^(f ') 0=1, -, s),

9o(x, f )=^oW (1 -SJ-i ^-(f '))+(! -^oW)-
Then we have that 2/-o 9y(^» £') = 1» -?(^, S)=Rj(xy f) for (x, S')^supp <p.

0=1,-^)-
Thus we have for large rr2 and T'1, and u<=ST/2(R

n) that

2 il^-fe i>') t/!ILT, .
(9.13)

Since Hyo9 . -<p .op _ V^I 2 lrfl

fe>/(oO<£ ;>"1/2]) is in Am-2,m-i, we have that for any r, T,

<C(\\P(x, D) u\\V+T* S ||[^f<O1/2] (x, D) «||jr>
|05|=1

1/2)l (*, D) «||jr>
1*1=1

-i D?-1 M||CrT)) •

We set ?ia=9(r<f>lf2, ^CD =(f y)u><f '>"1/2- Then we have that J?yo$5/(,-

pjci°P and Rj°yja— pja°P are in v4m_(3/2)_ffl_1. Thus we have from the above
equality that for large rT2 and T~\ and
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3 D) u\\P

As in the proof of Lemma 4.3 the last term on the right of the above ine-
quality can be dominated by Cr {(rT)-1 \\P(x, D) u\\P+T3'2 \\u\\%T} for any r,
T,u^ST/2(R

n). Thus we get from (9.13) and the above inequality that for
large rj2 and T~\ and u^ST/2(M

n)

\\P(x, D) i/||?> . (9.14)

Finally using Leibniz rule we see that for any r, T, u^ST(Rn) fl CT(J?So/8(0))

lb0(x?irHI^
because p0(jc, D') u=<pQ(x, D') (X1 u) for weCSTCff^O)) and ^ox^S'00 with a
notation that X1(x)=x0(4x). Again, the latter two terms on the right of the
above inequality can be dominated by C {(l+^T)'1) \\P(x, D) u\\(T}+r~1/2 T

||w||(Jlifr} for any r, T, u^ST/2(R
n). Thus we have that for any r, r,

Substituting this inequality into (9.14) we get the desired result with -^ for
8

in the lemma because P(x, D) u=P(x, D) u for i/eCiTG&^O)). The proof is
complete.
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