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Index for von Neumann Algebras with
Finite Dimensional Centers

By

Tamotsu TERUYA*

Introduction

Extending Jones’ index [J], Kosaki [Ko] defined index, denoted by Index E,
for a (normal faithful) conditional expectation E of an arbitrary factor onto a
subfactor, which is based on Connes’ spatial theory [Co] and Haagerup’s theory
on operator-valued weights [Hal, 2]. For a pair NC M of von Neumann alge-
bras, let £(M, N) denote the set of all faithful normal conditional expectations
from M onto N. When N C M are factors, Kosaki’s index of E€E (M, N)
is defined by Index E=E~%(1) where E~!is the operator valued weight from N’
to M’ determined by the equation of spatial derivatives

d(¢oE) _  d¢
dyr d(yroE™)
with faithful normal semifinite weights ¢ on N and v on M'. When NCM
are factors, the minimum index [M: N], is defined by

[M: N], = min{Index E; E€&(M, N)}

(see [Hil], [Lo}, [Hav]). Furthermore, Hiai [Hi2] (also Kawakami [Kk]) defin-
ed the entropy K, (M |N) of an arbitrary von Neumann algebra M relative to
its subalgebra N and a faithful normal state ¢ on M such that E€&(M, N)
with @oE=¢ exists, which is an extension of the entropy H(M|N) developed
by Pimsner and Popa [PP] for finite von Neumann algebras. He established
the relation between the minimum index [M: N], and the entropy K (M |N),
including the characterization of E<& (M, N) with Index E=[M: N], by means
of the entropy. On the other hand, the index theory in the non-factor case
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was discussed in several ways (see [BDH], [Jol], [Kk], [Wa] for instance).

In this paper, following [Ko], we shall introduce Index E of E€& (M, N)
for von Neumann algebras N C M with finite dimensional centers and give a
formula of Index E which is an element of the extended positive part of the
center of M. Havet [Hav] also gave the same formula of the index inde-
pendently, while his method is different from ours. When N C M is a connect-
ed inclusion, we shall uniquely minimiz ||Index E|| for EEE (M, N) and define
the minimum index [M: N],. Moreover we shall establish several character-
izations of E€& (M, N) with Index E=[M: N], extending those by Hiai.

§1. Preliminaries

In this section, we recall definitions of the minimum index and the entropy
K, (M|N).

Let NC M be a factor and a subfactor. If there exists E& (M, N) such
that Index E << oo, then Index E<C oo for all EEE(M, N) and we have (see [Hil]):

(M1) There exists a unique E,&&(M, N) such that

Index E, = min{Index E; EEE (M, N)} .
(M2) For EEE(M, N), E=Ey&E"Y| yroy=(ndex E) E | y'nur-

Definition 1.1. ([Hil]) For a pair NC M of factors, we define the mini-
mum index [M: N], by [M: N]y,=min{Index E; EEE (M, N)} where [M: N],=
oo if (M, N)=0 or Index E=o0 (E€E(M, N)).

Now, let M be a von Neumann algebra and N its von Neumann sub-
algebra. Let p=E(M) (=& (M, C)) be such that E€E(M, N) with poE=¢
exists. Taking account of Pimsner and Popa’s estimate of H(M | N) in the type
II; case [PP], Hiai [Hi2] introduced the entropy K,(M |N) of M relative to
¢ and N as follows. Set w=¢|ysny and @=@o(E~!| ysny). Then since
E-Y((N' N M),)is contained in the extended positive part of &(M) (=M NM'),
& is well-defined as a faithful normal weight on N'N M. But & is not neces-
sarily bounded (possibly not semifinite). So the relative entropy S(&, ®) of @
and @ is given by

S(@, o) = inf{S(o’, ®); &' e(N' N M)i, o' <o}
where S(@’, ) is Araki’s relative entropy [Al, 2].
Definition 1.2. ([Hi2, 3.1]) We define the entropy K,(M |N) of M relative



INDEX FOR VON NEUMANN ALGEBRAS 439

to ¢ and N by
K,(M|N) = —S(o, ®) .
Moreover we define
Ke(M|N) = sup{Ko(M|N); p€E (M), p°E = ¢} .

Note that K,(M | N) does not depend on the choice of f{. When NCM
are type II, von Neumann lagebras with atomic centers and r€&(M) is a
trace, we can show K.(M|N)=H(M|N) by arguing as in [KY1, 2], [Hi2].

Finally we recall relation between the minimum index and the entropy
K, (M|N). Let NCM be a pair of factors such that [M: N],=Index E,<oco.
Since E | ysqp and E7Y| y2 oy are scalar-valued for each E=&(M, N), the entro-
py K, (M |N) is independent of the choice of p=E(M) with po E=¢, so that
K (M|N)=K,M|N) for any such p = E(M).

Theorem 1.3. ([Hi2, 6.1, 6.3]) Let NC M be a pair of factors. For ES
E(M, N), Kz(M|N)<log[M: N, and the following conditions are equivalent:

(i) Index E=[M: N}, i.e., E=E,;

(i) Kg(M|N)=log[M: N];

(iii)) Kz(M|N)=log Index E,

(iv) for every nonzero projection e N' N\ M, Index E,=E(e)? Index E;

(v) for every nonzero projections e, -++, e, €N' N M with >}; e;=1,

Index E,,

E@y = log Index E .
€;

1 E(e;) log

§2. Index Formula

Let NC M be a pair of o-finite von Neumann algebras with finite dimen-
sional centers and let {p;, ---, p,.}, and {g;, -+, ¢,} be the minimal central pro-
jections of M and N respectively with 33, p;=1 and 3}; ¢;=1. Put N;=N,,;
CM;;=M,,,; (factors) if p; q;=+0. Let 4 denote the set of m-by-n matrices
[2;;] such that 2,,>0 if p;q;=0, 2,,=0 if p,q;=0, and 3}; 2;;=1 for any j.
Throughout this paper we shall consider only the pairs (7, j) with p;q;=0.
Consider the three-step inclusion

NCSNVAp}'cMnN {Qj}’gM'

The two intermediate algebras have the same center (the minimal central pro-
jections are {p,;q;}), and the joint central decompositions are
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When E;;€E(M;;, N;;) for all (7, j) and [2,;,]E 4 are given, we define the maps
F: ®;; N;;—N, G: ®, ; M;;~®,,; N;; and H: M—D; ; M;; as follows:

F(g yijpéqj) = ij_‘ (2 /Iijyij) q; for y;;EN,
G(‘};,.‘ x;) = 12 E; (x;;) for x;EM;,

H(x) = X p;4;%p;9; for xeM.
17

Propesition 2.1. If we define the map E: M—N by E=FoGoH, then EE
E(M, N). Conversely if EEE (M, N), then there exist unique E;;€E(M,;, N,;)
Jor any (i, j) and [2;;]€ A such that E=FoGoH where F and G are defined by
[2;;1 and E;; as above.

Proof. Suppose E; ;€&(M;;, N;;) and [2,;]E4. Since the central sup-
port of p;q; in N is q;, F is well-defined. Since F(y)=y for yEN, we get
Fe&(®;,; N;;, N). It is clear that GEE(D;; M;;, D;; N;;) and HE
EM, @, ; M;,). Hence E=FoGoHEE(M, N).

Conversely let E be in £(M, N). For a faithful ¢ =&(N) we have

o¥°E(p;) = p; (since p; is central in M),
o¥°E(q;) = o¥(q;) = q; (since g, is central in N)

so that o%°F leaves NV {p;}”” and M N {g;}' (and of course N) globally in-
variant. Thus it follows from Takesaki’s theorem that there exist unique
F'e&(®,; N, N), G'e&(D,; ; M;;, ®;; N;;) and H'€EM, B, ; M;;) such
that E=F'oG'oH'. Since M N(D; ; M;;)' =2(B;,; M;;), E(M, ©; ; M;;) con-
sist of only one element. Thus H'=H. Since E(p;q,)=E(p,) q,EZ(N)q;,
there exists 2;;>0 such that E(p; q;)=4,;q;. Since X3, E(p; q;)=q;, we get
23 4;=1 and hence [2;;]€4. Put Ej;=E,,;, ie., E;(x)=E(x) E(p;4,)" p;q;
=2} E(x)p;q; for x€ M;;. Then for any x& M we have

FoGoH(x) = F(3 Ei(p:9;%p:9,) = 2 (3 %; 4 EGp) 4; = E(x)
and thus by the uniqueness of ¥’ and G', we have F=F" and G=G'.
Let us define Inedx E of E€E(M, N) as in [Ko].

Definition 2.2. For E€&(M, N), we define Index E=E~Y(1). N is said
to be of finite index in M if there exists a conditional expectation E=&(M, N)
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such that Index E is bounded.

Since wE (1) u*=E~%(1) for any unitary u= M’, Index E is an element of
the extended positive part of % (M). Since M is not a factor, Index E is not
necessarily a scalar multiple of the identity.

Proposition 2.3. (1) &M, N)=+0 if and only if E(M,;, N;;)+0 for any
i J.

(2) There exists EEE(M, N) such that Index E is bounded if and only if
for any i, j there exists E;;EE(M;; N,;;) such that Index E; ;< oo.

(3) If there exists E€E(M, N) such that Index E is bounded, then for any
E€&(M, N), Index E is bounded.

4 If EEE(M, N) is defined by [2;;1€ 4 and E;;€E(M,

ij’

N,;) as in Prop-
osition 2.1, then

(R)) Index E = 33 (31 27/ ||Index E,i|) p; -
g

This formula does not depend on the chosen Hilbert space.

Havet [Hav] also obtained the same formula as (2.1) independently. His
presentation is based on a Pimsner-Popa type basis. We give a different proof.

Proof. If we obtain the formula (2.1), then by Proposition 2.1 and [Hil]
we can get (1), (2) and (3). Since H'(p;q;)=H 'q;)p,€EZ(M)p;, there
exists @;;>0 such that H~'(p;q;)=a,; p;. Since H, o, =idy,;, we have (Hp,o))"
=idy;;. By [Hi2, 1.4],

p:q; = (Hﬁ,-q,-)—l(Piqi) = H—I(P,ﬂj)l’iqj =Q;;0;9;

and hence @;;=1. Thus we get
(2.2) H7 (X xiip;q;) = 2 (X xi) p; for xl,eM'.
1,7 t J

If for € P(D; ; N;;) and v EP(D; ; M) we set ?i;=9|n;; and ;=
V|, > then

d?ij°Eij _ ‘1_'(¢°G)!M,-, _ deoG _ do
ayr;; d“#'M;,‘qj Ay lpe;a  AYoG4ig
do |, _ do;;

d@oG (G )

and hence G|y, q,=E,-‘,-1. Thus
11
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@3) G peyiing) = 5 EG(pgyipg)  for yLEN.
For any y'eN’, we get F‘l(p,.q,.y’pkq,)=0 if (4, j)==(k, ) and hence
F(y") = E’ FYp;q;y'piq;) = ;jp.- 9;¥'p:q; F~(p;q;) -
Since F,,‘,quid,v'.j, we have (Fpiqj.)“l———id%iqi. Again by [Hi2, 1.4],
Pid5 = Fp0)) (i q;) = FY(F(p; 9 P 4) P 95 = % F (23 4;) P; 9 -
So we get F~X(p;q;) p;q;=27; p;q;. Thus
24 FY) =2 %) pig;y'piq;  for y'EN'.
By (2.2)-(2.4), we have
E-Y(1) = H oG oFY(1) = H‘loG"l(;j 27} p; q;
= H“‘(;j 25 Eij(piay) = H’l(‘_l,.: 27} ||Index Ejjl| p;q;)
= 31(5 47} |ltndex By} s
So we get the formula (2.1). B

Definition 2.4. The pair NCM is said to be a connected inclusion if

ZN)NZ(M)=C.

If z,€ Z(M) N Z(N) with 33, z;=1, then Index E=¢P, Index E,,. So we
can assume without loss of generality that N C M is connected.

Let N be of finite index in M and p;q;+0. If p; M is a finite factor,
then so M,; is since M;;C p;M. Since N is of finite index in M, N; is also of
finite index in M;;. Thus N;;==q; N is a finite factor. Conversely if g; N is
finite, then M;; is also finite since NV;; is of finite index in M;;. So p;=31; p;q;
is a finite projection, i.e., p;M is finite. Hence if NCM is a connected in-
clusion, then either all of M; ; and N; ; are finite or they are infinite.

In the rest of this section we shall fix E;;€&(M,;, N,;;) for any (i, j) and
define for [2;;]€ 4

2.5) (12D = ,E 27 ||Index E ll and f(2;]) = fns.z}i.j;([l”]) .

7

Note that if E€&(M, N) is given by [4;;] and E;; as in Proposition 2.1, then
(2.1) implies |[Index E||=/([4;;]).

Lemma 2.5. Let NC M be connected and [2;;]€A.  If f([2;;]) are not con-
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stant for i, then there exists [A];]€ A such that f([27;])<f([2;]-
Proof. We set

I= {5 (%) = fQ@;D} and T = {j; p;q;40 for some i1} .

By the hypothesis, I+ {1, ---, m}. Since N C M is connected, there exists i,/
and j,&J such that p; q;,=0. By the definition of J, there exists /; &1 such that
Pi,4i,+0. For e>0, we define [2],] by 4] ;,=2;,7,—¢, 4,5, =2i,j, ¢ and A7;=2;;
for others. Taking a small >0, we get [A/;]& 4 with

So2D<f(4;;D) and £, (25D </([2]) -

If I={i;} then f([2/,'D<f([%;]). If I= {i} then we can do the same argument
for I\ {i;} instead of I. We get the statement by induction. B

Proposition 2.6. Let NC M be connected. There exists a unique matrix
[A};1€ 4 such that

(D = mm yACTE

Moreover f([2};]) are constant for i.

Proof. The existence of such [A};]J&4 is obvious. Let c=min[,".j]E 4
f(%;;D- Suppose f([2i;)=f((4};))=c for [2};],[2]€ 4. If [4i;]=[4%;], there

2 3 3 A+ .
F A Define [1};]€4 by /1,-,-=~’—2—’. Since f;

exists #, j, such that 1} oior

igip
are strictly convex, we have

In particular

(S ,])+f (Z5) <c.

folaED<

Thus by Lemma 2.5 there exists [2/;]€ 4 such that f([2};]) </([4};) <c. This
is a contradiction and hence there uniquely exists [2?;]€ 4 such that f([2?,])=c.
Lemma 2.5 implies that f;([4},]) are constant for ;. B

§3. Minimum Index and Entropy Kz(M|N)

Let N C M be as in the previous section. In this section we shall introduce
the minimum index for NC M and characterize E,&&(M, N) having the mi-
nimum index.
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Proposition 3.1. If NC M is connected and N is of finite index in M, then
there exists a unique expectation E;=E(M, N) such that

||Index Ey|| = min{||Index E||; EEE(M, N)} .

Moreover Index E, is a scalar multiple of the identity and |[Index (Ey)p,q;||=
M i ij][)forany ()]

Proof. For {E;} with E;;€&(M,

ij

S}, {E;j}) = max 33 455 ; |[Index Ey | .

N;;) and [2;;]€ 4, we set

Let co=infEe&(Mm,N) ||Index E||. Then by Propositions 2.1 and 2.3,
= inf min f([l”], {E;;}).
;) 1154
By [Hil], for any (i, ), there exists...E?;&&(M;;, N;;) such that ||Index Ef;||=
[M,;;: Nl If {E;}+{EY}, then for any [1;]1€4, f([4,;]), {ELH </,
{E;;}). So by Proposition 2.6, there exists...[4},]€ 4 such that

€ =, min S BV} = fQA%,), {E3}) -

Thus if E,&&(M, N) is determined by [4};] and {E?;} as in Proposition 2.1,
then

||Index E|| = ¢, = min |[|Index E||
Ec&(M,N)

and by Proposition 2.6, Index E, is a scalar multiple of the identity.

Definition 3.2. For a connected inclusion NC M, we define the mini-
mum index [M: N], as follows: [M: N], = ||Index E,}| if N is of finite index in
M where Ey,=&(M, N) is defined in the preceding proposition, and [M: N],=o0
if N is not of finite index in M.

Theorem 3.3. Let NC M be a connected inclusion such that N is of finite
index in M. If EEE(M, N), then the following conditions are equivalent:
(a) E=E,, i.e., ||Index Ey||=min{||Index E||; EE&(M, N)};
(b) If E is determined by [2;;1€ A and E;; as in Proposition 2.1, then

() llIndex E,,[|=[M,;: Nl for any i, ),

(ii) Index E is a scalar,

(iii) there exist p>0(i=1,--,m) and v;>0(j=1, -+, n) such that

277|[Index E;jl|=p; v; for any (i, j);
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(c) There exists o= E(M) with o E=¢ such that ¢o(E~| yn 1) =C*®@ | v’ au JOr
some constant ¢, in fact c=[M: N],;
(d) Kz(M|N)=log ||Index E||.

Proof. (a)=>(b). By Proposition 3.1, we can see that (a) implies (i) and
(ii). So we shall show that (a) implies (iii). We set «; jzl,ff ||[Index E;;||. We
shall prove that if p; q;, +0, p;,q;,+0, p;,4;,%0, -+, p;,q;,%0, p; 4,0, then

-1 —1 -1 _
@igy) Figjy Figjp Figiny® " Figiy Figjy = 1

We can assume without loss of generality that i,==i, ilf k==/. Suppose that

-1 -1 —1
@ 0 ey o, o <1,

i1j1 Ci2d2" iy Tingy
For e>0 and r>1, we define

51 =€ >
&, = TE ;. OTY
2 = T %y Fiziz»
_ -1 _ .2 -1
€3 T U & Figjp igjy = T

—1
€1 Finia Figip Figig s

_ -1 k-1 =L ... -L
€ = Tk aikik—l a'klk =T €®nir Liziz aikik—l tplp”
and
r _ r
liljlz - Ililik k> '1’111 - li1j1+el ’
/A _ I =
'1"2!'1 - lizil €15 izig 'ziziz—{_ez ’

A — —— / s = .
fpde-1 xikik-l €k-15 l'kfk x'kik_*_ek >

2i; = 4;; for others.

Taking r close to 1, we have

— — k-1 7L @l _
€r gy 61 iy = Edhh(r Fisiy Cigji " Cigiy Yirje 1)<0,
€1 ®ypjy 82 Liyjy = (I=7) & ai2j1<0 >
€r-1%ipjpoy Ck Xiyjy = (I1—7) &4 aikik—1<0 .

Taking a small e>0, we get [1/;]Je4. For 0<<s<1, we have

df;(1—s) [2,;]+s[27;])
ds

"JZ If_fz('z;j_lij) [Index E;j| .

In particular,
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df (1 —) [25;1+s[23;])

<0,
ds

] = 6 Xy 61 Qyyy

df; (1 —s) [4;;1+s[2,D

ds ls=0

Moreover if i€ {iy, -+, i}, then fi((1—s) [4;;]+s[2%,]) =f([4;]). When
{iy, =+, i} ={1, -+-, m}, there exists s&(0, 1) such that f((1—s) [4;;]+s[2:,])<
f(2;]. This contradicts E=E, When {i, -+, i} + {1, ---, m}, there exists
s&€(0, 1) such that fi((1—s) [2;;]+s[2i;]) are not constant and f((1—s) [4;;]+
s[271=f([4;;D. Then by Lemma 2.5, there exists [l /1€ 4 such that f([AH])<
S(2;]), contradicting E=E, again. So we have a7 ; @,; ey L >1. But

'1!1 271 2] mk—

we can do the same argument for aj; Sp Qpint @i, @i and hence we get

-1 -1 .
a5, Qo0 @5, =1, We shall from now fix i;. Since NC M is connect-

ed, for any i/ there is a path from i, to i, i.e.,

= €19 <0.

irik-1 ’f’]k

G2 h—=> ===
where i,— ji (also j,—i,) means p,, q;,#0. If there is another path from i to i

R e R P

—1 -1 _

then by the preceding remark, 04,1,1 @i @, aiika,” @y iy @ =1,
-1 - -1 =1

and hence “1111 Qi Qiyiy ijy =%iy5 Figjf Cugiy Cgjge SO p =05 aypjpee

a,-‘kljk a,;;, is well- defined. Also for any j, there is a path from i, to j

h—=>h === =],

imi — =1 cee@TL i -
Then by the similar argument, v =0 ATy 0 e @y is well-defined.

If p,;q;==0, then there is a path such that

Lh—=>j—>h—> > —> =i,

and then

= a7k cee7 L = -l 1w,
By = Eiggy Vi Cigiy Fijes Vi = iy Figiy" " Py gy Fidy g -

Thus u; v;=a,;. We get (iii) of (b).
(b)%(a) Assume that E satisfies (b) with [1;;]€4 and Ej;. If there
eixsts [4{;]€ 4 such that f([2;]) <f([;;]), then by (ii) we have
SAALD < 2D <fW%5D = f(25D
ie., f{([4};D)</fd[%;]) for any i. Since f; are convex,
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0> (=) Ws2D| = 32 (y—205) v by Gid.

0

Since #,>0, 0>37; (4;;—2%;) v; for any i. Hence
0>33 33 (4;—2i)v; = 2 (1—1)»v; =0.
i J J

This is a contradiction. Since ||Index E||=/([4;;]), we get E=E, by (i).

(b)=>(c). By taking i if necessary, we can assume 2; v;=1 and hence

1347

we can get 9 € E(M) with go E=¢ such that o(q;)=v;. If x&€(N'N M),,,;. then
by the proof of Proposition 2.3 we have
P(E7Hx)) = p(H oG o F7Y(x))
= @(H Y27 ||Index Eyj|| E;4(x)))
by (i) and (M2) in §1
= @(H™'(27} ||Index E;;|| E(x) p;4;)) -
Since E(x)=E(xq;)=E(x) ;€ Z(N) q;- there exists @ €C such that E(x)=ag;.

Then ¢(x) =@(E(x))=ap(g;) =av;. Also ¢(p;) = ¢(E(p;qr) =2k AV
So we have

P(E(x)) = @(H (27} ||Index E, || @p; ;)
= 47/ [|Index E;|| ag(p;)

= M; VJ.GC zk} lik Yy by (lll)
= o(x) ‘k;,‘ 27 ||Index E;| by (iii)
= ||Index E|| ¢(x) by (ii) and (2.1).

Hence for any x& N' N M, we get
P(E7x)) = 33 ¢(E™(xp; 4,) = [[Index E|| ¢(x) .

(¢)=>(b). Assume that @o(E~!|yny)=c+@|ynnu for some constant c.
Let ¢(q;)=v; and x&(N'N M),,q;. Since E7}(x)EZ(M;;), there eixts a&C
such that E7}(x)=ap; q;. Then we have since HY(p; q;)=p;

P(E7H(x)) = o(H'(A5} E7j (x)) = 45 ag(p)) = 2} @ 33 2y v .

Let E;(x)=#8p;q; with SEC. Then ¢(x)=¢(E(x))=2;; fv;. So by the hy-

pothesis, we have 27} 33 2,v, @=c-2;;»; 8. This shows that E7}(x)=c"E;{(x)
2y,

L2¥ By (M2) in Section 1, |[Index E|

for any xENi; N M;; where ¢'=
EAik Ve
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ciiy .
=[M,;: N;;], and ||Index E; || =—"_ %% Thus if we put p,=—F5 then
oY k Ak Vi 22 Ak
27} |lIndex E;;||=u; v; and ! !
A,
2 277 |Index E, || = i¥i — ¢ for any I.
f 20 Aie Ve

So we get (b).
(d=(b). For «;;>0, g,,>0 (i=1, ---m;j=1, ---n) such that ¢;;>0
B;;>0, we have

3.1 2 a; log ﬂ i> 2 (2 a;;)log =~ >;®

ij jrij

are constant for j. (This is a special case of the monotonicity of the relati\‘/::
entropy.)

If we set v;=0(q;) for g €E(M) with poE=gp, then v;>0 and 3};v,=1.
By [Hi2, 4.1, 4.2], letting 7(¢)=—t log ¢, t >0, we have

KM |N) = S 0(E(p)+ 32 9(p) Ko, (M, | Ny,
Kv,-(MP.-INP,-) = %3 77(50;'(10.'9,-))'{‘ ; ¢i(Piq;) Kfﬂ;j(Mileij) s

where ¢,=¢(p,)" ¢|u, and ¢;;=90(p;9,)" ¢;|u,; Since E(p)=3];2;; q,,
7E(p))=23; 1(2;;) q; and o(nE(p,))=3; 7(2;;) v;. Since ¢(p;q;)=¢(E(p;q;))=

2.V,
?(2;; 4;)=24;;v;, (p;)=2]; 4;; v; and hence we have goi(piq,,):#u’. Since

23 AV
@;;°E;;=9;;, we note (see the remark before Theorem 1.3) that K, (M;;|N;;)
—KEij( i1 V;;).  If we put @;;=exp KEij(Mi,.lN,.j), then we get
AV,
(3.2) K,(M|N) = —EZ” v;log2;; _El,] Jlog—fu
kAik Vi

—1—%1” v; Kg,; (M;|N;;)

AV,
= —>12;.v;log LA .
A DY S AT T

A v
Let F(vy, =+, v,)=~ !J U Vl (Zk kl;k)]x L If V].>0 and Ej Vj=1,
i zJ z]

then there exists ¢ €£(M) with po E=¢ such that ¢(g,)=v

i+ So we get

Ke(M|N) = sup {F(vy, -+, v,); v;>0,21v; =1} .
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Since F is continuous, there exists (v)}., with >0, 37; v}=1 such that
Ke(M|N) = F(3, -+, v3) .
Since for any j

oF
__’(Vl’ .’Vj7 "'9Vn)'11j=0:°°)

auj

we have v3>0 for any j. For simplicity we denote »}=v ;» Then

AV,
Ky(M|N) = — 5} 4;; v, log oh x,-k';k)Jl.-‘j‘ -
(3.3) — (S 4 log (Ek i;é’: jz,.—; » by (3.1)
—2(2 Aj J)IOgE/I
3.4) < E (2 A;; v;) log E 27} ||Index E;l| by Theorem 1.3
3.5) < ;j}xﬁ v; log ||Index E||
= 1;>g ||Index E|| .

If Kz(M | N)=log ||Index E||, then (3.3)-(3.5) are not inequalities but equalities.
By the equality in (3.5), Index E is a scalar. By the equality in (3.4), we get
a;;=||Index E; || for any i, j, i.e., ||[Index E;;||=[M,;: N;], for any i, j by Theo-

rem 1.3. By the equality in (3.3), are constant for j (see the remark

ij %ij
after (3.1)). So we can get ¢;>0 such that 17} a;;=p; v, Thus we get (b).
(b)=>(d). Since we can assume >};v;=1, we can get p=&(M) with
@o E=¢ such that ¢(q;)=v;. By the equation (3.2),

AV

log 7
(Zk ik yk) ll! al
g (308 Aix va) 277 7 ||Index Eu”

Ko(M|N) = =312, ,

=314 %;10 . by (0)
=314, log Mﬁ by (i)
= E A;v;log 2 A ||Index o by (iii)
= g 2;; v, log ||Index E|| by (ii)
= log ||Index E|| .

So we have Ki(M|N)>log||Index E||. But we know that K (M|N)<
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log ||Index E|| in general (see [Hi2]). Thus Kz(M | N)=log ||Index E||. B
Remark 3.4. When NC M is not connected, we can define the minimum

index [M: N, by [M: N}y;=33i-:[M.,,: N.,), z, where z,, -+-, z; are minimal pro-

jections of Z(M)NZ(N) with 33, z,=1. If N is of finite index in M, then

there exists a unique E,&&(M, N) such that Index E,=[M: N],. Then condi-

tions (a)-(c) of Theorem 3.3 are equivalent when we modify (ii) of (b) and (c) as

follows:

(i) Index E€ Z(M)NZ(N);

(c) There exists p =& (M) with o E=¢ scuh that @o(E™| y/q1)=0(c*) | vnu
for some ce (M) N Z(N).

§4. Corollaries

Let N;C M, (i=1,2) and NCM be von Neumann algebras with finite
dimensional centers. We consider the minimum index as in Remark 3.4.

Corollary 4.1. If N, is of finite index in M;, then
[MQMy: Ny@Noly = [My: N, Q[My: Ny

Proof. Let E;=&(M;, N;) be such that Index E;=[M;: N;|,. By Theorem
3.3 (Remark 3.4), there exists ¢; = E(M;) with @;0 E;=¢, such that ¢,0(E7"| Vo)
=@,(c*) | ninu, Where ¢;=[M;: NJ,. Since by [Hi2, 1.7]

(EQE)™" = ET'QE3!
and
(MON,)' N (M,QM,) = (NINM)QNSN M),
we have

(21 R (E,QE,) ™| (V1 @N,) 0 (1@ M5)
= (@1°(ET" | w0 1)) ® (22°(Ez" | w30 11)
= (pu(e1°) | N{nM,)@(S”z(Cz )| Ny an)
= (21Q9,) (a:Qcz°)| (N1® N3 n(My®@Mp) +

Since ¢,Q ¢, € Z(M,Q M,) N Z(N,QN,), Theorem 3.3 implies the conclusion. B

Corollary 4.2. Let a, be an action of a finite group G on M such that
@ (N)=N for all gEG, and M X, G(resp. N X, G) denote the crossed product
of M (resp. N) by a (resp. a|y). If N is of finite index in M and H is a
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subgroup of G, then
[M X, G: N X, H)y = = ([M: N),) [G: H]

where =, is the usual representation of M associated with «. In particular

[M X, G: N X, Gl ==,(M: N]),
[MNMG:M><]¢H]O=[G:H]'

Proof. Let E, &M, N) and p=&(M) with goEy=¢ be such that
@o(E7 |y o) =9(c*) |y’ o Where c=[M: N],. Regarding M X, G as a subal-
gebra of M@ B(1(G)), we set Ey=E,Qidp2) | uxac- Then E,€EM X, G,
N X, G) as in [Hi3]. By the same argument as in the factor case ([PP], [Ko],
[Wa]) we can show that there exists a basis {m,, .-, m,} in M for E,, i.e., x=
Vi1 m; E(m¥ x) for x& M. Then {x(m,), -+, =, (m,)} is a basis in M X, G
for E,, so that (cf. [Wa])

E{,‘l(X)zglrrw(mj)Xn,(mj)* for XWX, G6) .

Also define FEE(N X, G, N X, H) by
FOS, mals) K@) = 2, 74lx,) X@)

where x,EN, A(g)=1Q®4, and 2, is the left regular representation of G on
I(G). Let G=UT., Hg; be the decomposition of G into the left cosets with
[G: H]=m. Then it follows that {A(g)*, ---, 2(g,)*} is a basis in N X, G for
F. Hence

F(X) = 312(g)* X2(g)  for XE(NX, H) .

Furthermore, define ¢=&(M) by ¢(x)=|G| ™ 3, p(a,(x)) for x€M, and
38 (M X, G) by 3(X,ec 7ulx,) 2(g))=9¢(x,). By the uniqueness of E,, we
see that @ 0 Ejoa;'=E, and hence @ 0Eg oa; | ynyuy=Eq" | y7ny (cf. [Hi2, 3.2)).
This implies that c¢=E7'(l) is a-invariant. Hence =, (c)€Z(M X, GN
Z(N X, H). Since

FoF oy mlx,) A(g)) = B( S mulElx,) Ae)
= () = (oo S olBa )

=8 ( Eg“u(xg) ]‘(g)) s
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we have @oFoEy=3. If X=31,;=,(x,) A(g)e(N X, H)' N(M X, G), then
we have

Fo(FoE)™ (X) = oE5 oF~(X)
- a(g 2 3 mam;) Ag)* mulieg) A(g) Aey) mulem)
= ¢(gegﬁ} 3 7m; @,71(x,) @i () e g,)
= $(3) 3} m; a7i(x) mi)

Ir
-

j=1

= ¢(2 a, 10 Eg'(x,)
= m(Ev'(x,)) = mg(cx,) = md(z(c) X),

because x, eN' N M and so & (x,)EN'N M. Finally we have (see [BDH, 3.18])
that M X|, G and N X, H have finite dimensional centers. So we get the con-

clusion. &
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