Index for von Neumann Algebras with Finite Dimensional Centers

By

Tamotsu TERUYA*

Introduction

Extending Jones' index [J], Kosaki [Ko] defined index, denoted by Index E, for a (normal faithful) conditional expectation E of an arbitrary factor onto a subfactor, which is based on Connes' spatial theory [Co] and Haagerup's theory on operator-valued weights [Ha1, 2]. For a pair $N \subset M$ of von Neumann algebras, let $\mathcal{E}(M, N)$ denote the set of all faithful normal conditional expectations from M onto N. When $N \subset M$ are factors, Kosaki's index of $E \in \mathcal{E}(M, N)$ is defined by Index $E = E^{-1}(1)$ where E^{-1} is the operator valued weight from N'to M' determined by the equation of spatial derivatives

$$\frac{d(\phi \circ E)}{d\psi} = \frac{d\phi}{d(\psi \circ E^{-1})}$$

with faithful normal semifinite weights ϕ on N and ψ on M'. When $N \subset M$ are factors, the minimum index $[M: N]_0$ is defined by

 $[M:N]_0 = \min \{ \text{Index } E; E \in \mathcal{E}(M, N) \}$

(see [Hi1], [Lo], [Hav]). Furthermore, Hiai [Hi2] (also Kawakami [Kk]) defined the entropy $K_{\varphi}(M|N)$ of an arbitrary von Neumann algebra M relative to its subalgebra N and a faithful normal state φ on M such that $E \in \mathcal{E}(M, N)$ with $\varphi \circ E = \varphi$ exists, which is an extension of the entropy H(M|N) developed by Pimsner and Popa [PP] for finite von Neumann algebras. He established the relation between the minimum index $[M:N]_0$ and the entropy $K_{\varphi}(M|N)$, including the characterization of $E \in \mathcal{E}(M, N)$ with Index $E = [M:N]_0$ by means of the entropy. On the other hand, the index theory in the non-factor case

Communicated by H. Araki, May 16, 1991.

¹⁹⁹¹ Mathematics Subject Classifications: 46L10

^{*} Department of Mathematics, Faculty of Science, Hokkaido University, Sappoor 060, Japan

was discussed in several ways (see [BDH], [Jol], [Kk], [Wa] for instance).

In this paper, following [Ko], we shall introduce Index E of $E \in \mathcal{E}(M, N)$ for von Neumann algebras $N \subset M$ with finite dimensional centers and give a formula of Index E which is an element of the extended positive part of the center of M. Havet [Hav] also gave the same formula of the index independently, while his method is different from ours. When $N \subset M$ is a connected inclusion, we shall uniquely minimiz ||Index E|| for $E \in \mathcal{E}(M, N)$ and define the minimum index $[M:N]_0$. Moreover we shall establish several characterizations of $E \in \mathcal{E}(M, N)$ with Index $E = [M:N]_0$ extending those by Hiai.

§1. Preliminaries

In this section, we recall definitions of the minimum index and the entropy $K_{\varphi}(M | N)$.

Let $N \subset M$ be a factor and a subfactor. If there exists $E \in \mathcal{E}(M, N)$ such that Index $E < \infty$, then Index $E < \infty$ for all $E \in \mathcal{E}(M, N)$ and we have (see [Hi1]): (M1) There exists a unique $E_0 \in \mathcal{E}(M, N)$ such that

) There exists a unique $L_0 \subset O(M, M)$ such that

Index $E_0 = \min \{ \text{Index } E; E \in \mathcal{E}(M, N) \}$.

(M2) For $E \in \mathcal{E}(M, N)$, $E = E_0 \Leftrightarrow E^{-1}|_{N' \cap M} = (\text{Index } E) E|_{N' \cap M}$.

Definition 1.1. ([Hi1]) For a pair $N \subset M$ of factors, we define the *minimum index* $[M:N]_0$ by $[M:N]_0 = \min \{ \text{Index } E; E \in \mathcal{E}(M, N) \}$ where $[M:N]_0 = \infty$ if $\mathcal{E}(M, N) = \emptyset$ or Index $E = \infty$ ($E \in \mathcal{E}(M, N)$).

Now, let M be a von Neumann algebra and N its von Neumann subalgebra. Let $\varphi \in \mathcal{E}(M)$ (= $\mathcal{E}(M, \mathbb{C})$) be such that $E \in \mathcal{E}(M, N)$ with $\varphi \circ E = \varphi$ exists. Taking account of Pimsner and Popa's estimate of H(M | N) in the type II₁ case [PP], Hiai [Hi2] introduced the entropy $K_{\varphi}(M | N)$ of M relative to φ and N as follows. Set $\omega = \varphi|_{N' \cap M}$ and $\hat{\omega} = \varphi \circ (E^{-1}|_{N' \cap M})$. Then since $E^{-1}((N' \cap M)_+)$ is contained in the extended positive part of $\mathbb{Z}(M)$ (= $M \cap M'$), $\hat{\omega}$ is well-defined as a faithful normal weight on $N' \cap M$. But $\hat{\omega}$ is not necessarily bounded (possibly not semifinite). So the relative entropy $S(\hat{\omega}, \omega)$ of ω and $\hat{\omega}$ is given by

$$S(\hat{\omega},\omega) = \inf \left\{ S(\omega',\omega); \, \omega' \in (N' \cap M)^+_{*}, \, \omega' \leq \hat{\omega}
ight\}$$

where $S(\omega', \omega)$ is Araki's relative entropy [A1, 2].

Definition 1.2. ([Hi2, 3.1]) We define the entropy $K_{\varphi}(M | N)$ of M relative

to φ and N by

$$K_{\varphi}(M|N) = -S(\hat{\omega}, \omega)$$
.

Moreover we define

$$K_{E}(M | N) = \sup \{K_{\varphi}(M | N); \varphi \in \mathcal{E}(M), \varphi \circ E = \varphi\}.$$

Note that $K_{\varphi}(M|N)$ does not depend on the choice of \mathcal{H} . When $N \subset M$ are type II₁ von Neumann lagebras with atomic centers and $\tau \in \mathcal{E}(M)$ is a trace, we can show $K_{\tau}(M|N) = H(M|N)$ by arguing as in [KY1, 2], [Hi2].

Finally we recall relation between the minimum index and the entropy $K_{\varphi}(M|N)$. Let $N \subset M$ be a pair of factors such that $[M:N]_0$ =Index $E_0 < \infty$. Since $E|_{N'\cap M}$ and $E^{-1}|_{N'\cap M}$ are scalar-valued for each $E \in \mathcal{E}(M, N)$, the entropy $K_{\varphi}(M|N)$ is independent of the choice of $\varphi \in \mathcal{E}(M)$ with $\varphi \circ E = \varphi$, so that $K_E(M|N) = K_{\varphi}(M|N)$ for any such $\varphi \in \mathcal{E}(M)$.

Theorem 1.3. ([Hi2, 6.1, 6.3]) Let $N \subset M$ be a pair of factors. For $E \in \mathcal{E}(M, N)$, $K_E(M | N) \leq \log[M: N]_0$ and the following conditions are equivalent:

- (i) Index $E = [M: N]_0$, *i.e.*, $E = E_0$;
- (ii) $K_E(M | N) = \log[M: N]_0;$
- (iii) $K_E(M | N) = \log \operatorname{Index} E;$
- (iv) for every nonzero projection $e \in N' \cap M$, Index $E_e = E(e)^2$ Index E;
- (v) for every nonzero projections $e_1, \dots, e_n \in N' \cap M$ with $\sum_i e_i = 1$,

$$\sum_{i=1}^{n} E(e_i) \log \frac{\operatorname{Index} E_{e_i}}{E(e_i)^2} = \log \operatorname{Index} E.$$

§2. Index Formula

Let $N \subset M$ be a pair of σ -finite von Neumann algebras with finite dimensional centers and let $\{p_1, \dots, p_m\}$, and $\{q_i, \dots, q_n\}$ be the minimal central projections of M and N respectively with $\sum_i p_i = 1$ and $\sum_j q_j = 1$. Put $N_{ij} = N_{p_i q_j}$ $\subset M_{ij} = M_{p_i q_j}$ (factors) if $p_i q_j \neq 0$. Let Λ denote the set of m-by-n matrices $[\lambda_{ij}]$ such that $\lambda_{ij} > 0$ if $p_i q_j \neq 0$, $\lambda_{ij} = 0$ if $p_i q_j = 0$, and $\sum_i \lambda_{ij} = 1$ for any j. Throughout this paper we shall consider only the pairs (i, j) with $p_i q_j \neq 0$. Consider the three-step inclusion

$$N \subseteq N \lor \{p_i\}'' \subseteq M \cap \{q_j\}' \subseteq M.$$

The two intermediate algebras have the same center (the minimal central projections are $\{p_iq_i\}$), and the joint central decompositions are

$$\bigoplus_{i,j} N_{ij} \subseteq \bigoplus_{i,j} M_{ij}$$

When $E_{ij} \in \mathcal{E}(M_{ij}, N_{ij})$ for all (i, j) and $[\lambda_{ij}] \in \Lambda$ are given, we define the maps $F: \bigoplus_{i,j} N_{ij} \to N, G: \bigoplus_{i,j} M_{ij} \to \bigoplus_{i,j} N_{ij}$ and $H: M \to \bigoplus_{i,j} M_{ij}$ as follows:

$$F(\sum_{i,j} y_{ij} p_i q_j) = \sum_j (\sum_i \lambda_{ij} y_{ij}) q_j \quad \text{for} \quad y_{ij} \in \mathbb{N} ,$$

$$G(\sum_{i,j} x_{ij}) = \sum_{i,j} E_{ij}(x_{ij}) \quad \text{for} \quad x_{ij} \in M_{ij} ,$$

$$H(x) = \sum_{i,j} p_i q_j x p_i q_j \quad \text{for} \quad x \in M .$$

Proposition 2.1. If we define the map $E: M \to N$ by $E = F \circ G \circ H$, then $E \in \mathcal{E}(M, N)$. Conversely if $E \in \mathcal{E}(M, N)$, then there exist unique $E_{ij} \in \mathcal{E}(M_{ij}, N_{ij})$ for any (i, j) and $[\lambda_{ij}] \in \Lambda$ such that $E = F \circ G \circ H$ where F and G are defined by $[\lambda_{ij}]$ and E_{ij} as above.

Proof. Suppose $E_{ij} \in \mathcal{E}(M_{ij}, N_{ij})$ and $[\lambda_{ij}] \in A$. Since the central support of $p_i q_j$ in N is q_j , F is well-defined. Since F(y) = y for $y \in N$, we get $F \in \mathcal{E}(\bigoplus_{i,j} N_{ij}, N)$. It is clear that $G \in \mathcal{E}(\bigoplus_{i,j} M_{ij}, \bigoplus_{i,j} N_{ij})$ and $H \in \mathcal{E}(M, \bigoplus_{i,j} M_{ij})$. Hence $E = F \circ G \circ H \in \mathcal{E}(M, N)$.

Conversely let E be in $\mathcal{E}(M, N)$. For a faithful $\phi \in \mathcal{E}(N)$ we have

$$\begin{split} \sigma_t^{\phi \circ E}(p_i) &= p_i \quad (\text{since } p_i \text{ is central in } M) \text{,} \\ \sigma_t^{\phi \circ E}(q_j) &= \sigma_t^{\phi}(q_j) = q_j \quad (\text{since } q_j \text{ is central in } N) \end{split}$$

so that $\sigma_i^{\phi \circ E}$ leaves $N \vee \{p_i\}''$ and $M \cap \{q_j\}'$ (and of course N) globally invariant. Thus it follows from Takesaki's theorem that there exist unique $F' \in \mathcal{E}(\bigoplus_{i,j} N_{ij}, N), G' \in \mathcal{E}(\bigoplus_{i,j} M_{ij}, \bigoplus_{i,j} N_{ij})$ and $H' \in \mathcal{E}(M, \bigoplus_{i,j} M_{ij})$ such that $E = F' \circ G' \circ H'$. Since $M \cap (\bigoplus_{i,j} M_{ij})' = \mathbb{Z}(\bigoplus_{i,j} M_{ij}), \mathcal{E}(M, \bigoplus_{i,j} M_{ij})$ consist of only one element. Thus H' = H. Since $E(p_i q_j) = E(p_i) q_j \in \mathbb{Z}(N) q_j$, there exists $\lambda_{ij} > 0$ such that $E(p_i q_j) = \lambda_{ij} q_j$. Since $\sum_i E(p_i q_j) = q_j$, we get $\sum_i \lambda_{ij} = 1$ and hence $[\lambda_{ij}] \in A$. Put $E_{ij} = E_{p_i q_j}$, i.e., $E_{ij}(x) = E(x) E(p_i q_j)^{-1} p_i q_j = \lambda_{ij}^{-1} E(x) p_i q_j$ for $x \in M_{ij}$. Then for any $x \in M$ we have

$$F \circ G \circ H(x) = F(\sum_{i,j} E_{ij}(p_i q_j x p_i q_j)) = \sum_j (\sum_i \lambda_{ij} \lambda_{ij}^{-1} E(x p_i)) q_j = E(x)$$

and thus by the uniqueness of F' and G', we have F=F' and G=G'.

Let us define Inedx E of $E \in \mathcal{E}(M, N)$ as in [Ko].

Definition 2.2. For $E \in \mathcal{E}(M, N)$, we define Index $E = E^{-1}(1)$. N is said to be of *finite index* in M if there exists a conditional expectation $E \in \mathcal{E}(M, N)$

such that Index E is bounded.

Since $uE^{-1}(1)u^* = E^{-1}(1)$ for any unitary $u \in M'$, Index E is an element of the extended positive part of $\mathcal{Z}(M)$. Since M is not a factor, Index E is not necessarily a scalar multiple of the identity.

Proposition 2.3. (1) $\mathcal{E}(M, N) \neq \emptyset$ if and only if $\mathcal{E}(M_{ij}, N_{ij}) \neq \emptyset$ for any *i*, *j*.

- (2) There exists $E \in \mathcal{E}(M, N)$ such that Index E is bounded if and only if for any i, j there exists $E_{ij} \in \mathcal{E}(M_{ij}, N_{ij})$ such that Index $E_{ij} < \infty$.
- (3) If there exists $E \in \mathcal{E}(M, N)$ such that Index E is bounded, then for any $E \in \mathcal{E}(M, N)$, Index E is bounded.
- (4) If $E \in \mathcal{E}(M, N)$ is defined by $[\lambda_{ij}] \in \Lambda$ and $E_{ij} \in \mathcal{E}(M_{ij}, N_{ij})$ as in Proposition 2.1, then

This formula does not depend on the chosen Hilbert space.

Havet [Hav] also obtained the same formula as (2.1) independently. His presentation is based on a Pimsner-Popa type basis. We give a different proof.

Proof. If we obtain the formula (2.1), then by Proposition 2.1 and [Hi1] we can get (1), (2) and (3). Since $H^{-1}(p_iq_j) = H^{-1}(q_j) p_i \in \mathbb{Z}(M) p_i$, there exists $\alpha_{ij} > 0$ such that $H^{-1}(p_iq_j) = \alpha_{ij} p_i$. Since $H_{p_iq_j} = id_{M_{ij}}$, we have $(H_{p_iq_j})^{-1} = id_{M'_{ij}}$. By [Hi2, 1.4],

$$p_i q_j = (H_{p_i q_j})^{-1}(p_i q_j) = H^{-1}(p_i q_j) p_i q_j = \alpha_{ij} p_i q_j$$

and hence $\alpha_{ij} = 1$. Thus we get

(2.2)
$$H^{-1}(\sum_{i,j} x'_{ij} p_i q_j) = \sum_i (\sum_j x'_{ij}) p_i \quad \text{for} \quad x'_{ij} \in M'.$$

If for $\varphi \in P(\bigoplus_{i,j} N_{ij})$ and $\psi \in P(\bigoplus_{i,j} M'_{ij})$ we set $\varphi_{ij} = \varphi|_{N_{ij}}$ and $\psi_{ij} = \psi|_{M'_{p,q_i}}$, then

$$\frac{d\varphi_{ij} \circ E_{ij}}{d\psi_{ij}} = \frac{d(\varphi \circ G)|_{M_{ij}}}{d\psi|_{M'_{p_iq_j}}} = \frac{d\varphi \circ G}{d\psi}\Big|_{p_iq_j\mathcal{H}} = \frac{d\varphi}{d\psi \circ G^{-1}}\Big|_{p_iq_j\mathcal{H}}$$
$$= \frac{d\varphi|_{N_{ij}}}{d(\psi \circ G^{-1})|_{N'_{p_iq_j}}} = \frac{d\varphi_{ij}}{d\psi_{ij} \circ (G^{-1}|_{N'_{p_iq_j}})}$$

and hence $G^{-1}|_{N'_{p_iq_j}} = E^{-1}_{ij}$. Thus

TAMOTSU TERUYA

(2.3)
$$G^{-1}(\sum_{i,j} p_i q_j y'_{ij} p_i q_j) = \sum_{i,j} E^{-1}_{ij}(p_i q_j y'_{ij} p_i q_j)$$
 for $y'_{ij} \in N'$.

For any $y' \in N'$, we get $F^{-1}(p_i q_j y' p_k q_l) = 0$ if $(i, j) \neq (k, l)$ and hence

$$F^{-1}(y') = \sum_{i,j} F^{-1}(p_i q_j y' p_i q_j) = \sum_{i,j} p_i q_j y' p_i q_j F^{-1}(p_i q_j).$$

Since $F_{p_iq_j} = id_{N_{ij}}$, we have $(F_{p_iq_j})^{-1} = id_{N'_{p_iq_j}}$. Again by [Hi2, 1.4],

$$p_i q_j = (F_{p_i q_j})^{-1} (p_i q_j) = F^{-1} (F(p_i q_j) p_i q_j) p_i q_j = \lambda_{ij} F^{-1} (p_i q_j) p_i q_j.$$

So we get $F^{-1}(p_i q_j) p_i q_j = \lambda_{ij}^{-1} p_i q_j$. Thus

(2.4)
$$F^{-1}(y') = \sum_{i,j} \lambda_{ij}^{-1} p_i q_j y' p_j q_j \quad \text{for} \quad y' \in N'$$

By (2.2)-(2.4), we have

$$\begin{split} E^{-1}(1) &= H^{-1} \circ G^{-1} \circ F^{-1}(1) = H^{-1} \circ G^{-1}(\sum_{i,j} \lambda_{ij}^{-1} p_i q_j) \\ &= H^{-1}(\sum_{i,j} \lambda_{ij}^{-1} E_{ij}^{-1}(p_i q_j)) = H^{-1}(\sum_{i,j} \lambda_{ij}^{-1} || \text{Index } E_{ij} || p_i q_j) \\ &= \sum_i (\sum_j \lambda_{ij}^{-1} || \text{Index } E_{ij} ||) p_i \,. \end{split}$$

So we get the formula (2.1).

Definition 2.4. The pair $N \subset M$ is said to be a connected inclusion if $\mathbb{Z}(N) \cap \mathbb{Z}(M) = C$.

If $z_k \in \mathcal{Z}(M) \cap \mathcal{Z}(N)$ with $\sum_k z_k = 1$, then Index $E = \bigoplus_k$ Index E_{z_k} . So we can assume without loss of generality that $N \subset M$ is connected.

Let N be of finite index in M and $p_i q_j \neq 0$. If p_i M is a finite factor, then so M_{ij} is since $M_{ij} \subset p_i M$. Since N is of finite index in M, N_{ij} is also of finite index in M_{ij} . Thus $N_{ij} \simeq q_j N$ is a finite factor. Conversely if $q_j N$ is finite, then M_{ij} is also finite since N_{ij} is of finite index in M_{ij} . So $p_i = \sum_j p_i q_j$ is a finite projection, i.e., $p_i M$ is finite. Hence if $N \subset M$ is a connected inclusion, then either all of M_{ij} and N_{ij} are finite or they are infinite.

In the rest of this section we shall fix $E_{ij} \in \mathcal{E}(M_{ij}, N_{ij})$ for any (i, j) and define for $[\lambda_{ij}] \in \Lambda$

(2.5)
$$f_i([\lambda_{ij}]) = \sum_j \lambda_{ij}^{-1} || \text{Index } E_{ij} || \text{ and } f([\lambda_{ij}]) = \max_{1 \le i \le m} f_i([\lambda_{ij}]).$$

Note that if $E \in \mathcal{E}(M, N)$ is given by $[\lambda_{ij}]$ and E_{ij} as in Proposition 2.1, then (2.1) implies $|| \operatorname{Index} E|| = f([\lambda_{ij}])$.

Lemma 2.5. Let $N \subset M$ be connected and $[\lambda_{ij}] \in \Lambda$. If $f_i([\lambda_{ij}])$ are not con-

442

stant for *i*, then there exists $[\lambda'_{ij}] \in \Lambda$ such that $f([\lambda'_{ij}]) < f([\lambda_{ij}])$.

Proof. We set

$$I = \{i; f_i([\lambda_{ij}]) = f([\lambda_{ij}])\} \text{ and } J = \{j; p_i q_j \neq 0 \text{ for some } i \in I\}$$

By the hypothesis, $I \neq \{1, \dots, m\}$. Since $N \subset M$ is connected, there exists $i_0 \notin I$ and $j_0 \in J$ such that $p_{i_0}q_{j_0} \neq 0$. By the definition of J, there exists $i_1 \in I$ such that $p_{i_1}q_{j_0} \neq 0$. For $\varepsilon > 0$, we define $[\lambda'_{i_j}]$ by $\lambda'_{i_0j_0} = \lambda_{i_0j_0} - \varepsilon$, $\lambda'_{i_1j_0} = \lambda_{i_1j_0} + \varepsilon$ and $\lambda'_{i_j} = \lambda_{i_j}$ for others. Taking a small $\varepsilon > 0$, we get $[\lambda'_{i_j}] \in A$ with

$$f_{i_0}([\lambda'_{i_j}]) < f([\lambda_{i_j}]) \text{ and } f_{i_1}([\lambda'_{i_j}]) < f([\lambda_{i_j}]).$$

If $I = \{i_1\}$ then $f([\lambda'_{ij}]) < f([\lambda_{ij}])$. If $I \neq \{i_1\}$ then we can do the same argument for $I \setminus \{i_1\}$ instead of I. We get the statement by induction.

Proposition 2.6. Let $N \subset M$ be connected. There exists a unique matrix $[\lambda_{ij}^0] \in \Lambda$ such that

$$f([\lambda_{ij}^0]) = \min_{[\lambda_{ij}] \in \mathcal{A}} f([\lambda_{ij}]) .$$

Moreover $f_i([\lambda_{ij}^0])$ are constant for *i*.

Proof. The existence of such $[\lambda_{ij}^0] \in \Lambda$ is obvious. Let $c = \min_{\lambda_i j \in \Lambda} f([\lambda_{ij}])$. Suppose $f([\lambda_{ij}^1]) = f([\lambda_{ij}^2]) = c$ for $[\lambda_{ij}^1], [\lambda_{ij}^2] \in \Lambda$. If $[\lambda_{ij}^1] \neq [\lambda_{ij}^2]$, there exists i_0, j_0 such that $\lambda_{i_0j_0}^1 \neq \lambda_{i_0j_0}^2$. Define $[\lambda_{ij}^3] \in \Lambda$ by $\lambda_{ij}^3 = \frac{\lambda_{ij}^1 + \lambda_{ij}^2}{2}$. Since f_i are strictly convex, we have

$$f_{\boldsymbol{i}}([\lambda_{\boldsymbol{i}j}^3]) \leq \frac{f_{\boldsymbol{i}}([\lambda_{\boldsymbol{i}j}^1]) + f_{\boldsymbol{i}}([\lambda_{\boldsymbol{i}j}^2])}{2} \leq c$$

In particular

$$f_{i_0}([\lambda_{i_j}^3]) < \frac{f_{i_0}([\lambda_{i_j}^1]) + f_{i_0}([\lambda_{i_j}^2])}{2} \le c .$$

Thus by Lemma 2.5 there exists $[\lambda'_{ij}] \in \Lambda$ such that $f([\lambda'_{ij}]) < f([\lambda^3_{ij}]) \le c$. This is a contradiction and hence there uniquely exists $[\lambda^0_{ij}] \in \Lambda$ such that $f([\lambda^0_{ij}]) = c$. Lemma 2.5 implies that $f_i([\lambda^0_{ij}])$ are constant for *i*.

§3. Minimum Index and Entropy $K_E(M|N)$

Let $N \subset M$ be as in the previous section. In this section we shall introduce the minimum index for $N \subset M$ and characterize $E_0 \in \mathcal{C}(M, N)$ having the minimum index. **Proposition 3.1.** If $N \subset M$ is connected and N is of finite index in M, then there exists a unique expectation $E_0 \in \mathcal{E}(M, N)$ such that

$$||\text{Index } E_0|| = \min\{||\text{Index } E||; E \in \mathcal{E}(M, N)\}.$$

Moreover Index E_0 is a scalar multiple of the identity and $||\text{Index} (E_0)_{p_i q_j}|| = [M_{ij}, N_{ij}]_0$ for any (i, j).

Proof. For $\{E_{ij}\}$ with $E_{ij} \in \mathcal{E}(M_{ij}, N_{ij})$ and $[\lambda_{ij}] \in A$, we set

$$f([\lambda_{ij}], \{E_{ij}\}) = \max_{1 \le i \le m} \sum_{j} \lambda_{ij}^{-1} || \text{Index } E_{ij} ||$$

Let $c_0 = \inf_{E \in \mathcal{E}(M,N)} || \text{Index } E ||$. Then by Propositions 2.1 and 2.3,

$$c_0 = \inf_{\{\mathcal{B}_{ij}\}} \min_{[\lambda_{ij}] \in \mathcal{A}} f([\lambda_{ij}], \{E_{ij}\}).$$

By [Hi1], for any (i, j), there exists... $E_{ij}^0 \in \mathcal{C}(M_{ij}, N_{ij})$ such that $||\text{Index } E_{ij}^0|| = [M_{ij}: N_{ij}]_0$. If $\{E_{ij}\} \neq \{E_{ij}^0\}$, then for any $[\lambda_{ij}] \in A$, $f([\lambda_{ij}])$, $\{E_{ij}^0\} > f([\lambda_{ij}])$, $\{E_{ij}^i\}$. So by Proposition 2.6, there exists... $[\lambda_{ij}^0] \in A$ such that

$$c_{0} = \min_{[\lambda_{ij}] \in \mathcal{A}} f([\lambda_{ij}], \{E_{ij}^{0}\}) = f([\lambda_{ij}^{0}], \{E_{ij}^{0}\}).$$

Thus if $E_0 \in \mathcal{E}(M, N)$ is determined by $[\lambda_{ij}^0]$ and $\{E_{ij}^0\}$ as in Proposition 2.1, then

$$||\text{Index } E_0|| = c_0 = \min_{E \in \mathcal{E}(M,N)} ||\text{Index } E||$$

and by Proposition 2.6, Index E_0 is a scalar multiple of the identity.

Definition 3.2. For a connected inclusion $N \subset M$, we define the *minimum index* $[M: N]_0$ as follows: $[M: N]_0 = || \text{Index } E_0 ||$ if N is of finite index in M where $E_0 \in \mathcal{E}(M, N)$ is defined in the preceding proposition, and $[M: N]_0 = \infty$ if N is not of finite index in M.

Theorem 3.3. Let $N \subset M$ be a connected inclusion such that N is of finite index in M. If $E \in \mathcal{E}(M, N)$, then the following conditions are equivalent:

- (a) $E = E_0$, *i.e.*, $||Index E_0|| = \min\{||Index E||; E \in \mathcal{E}(M, N)\};$
- (b) If E is determined by $[\lambda_{ij}] \in \Lambda$ and E_{ij} as in Proposition 2.1, then
 - (i) $\||\text{Index } E_{ij}\| = [M_{ij}: N_{ij}]_0$ for any (i, j),
 - (ii) Index E is a scalar,
 - (iii) there exist $\mu_i > 0$ $(i = 1, \dots, m)$ and $\nu_j > 0$ $(j = 1, \dots, n)$ such that $\lambda_{ij}^{-2} || \text{Index } E_{ij} || = \mu_i \nu_j$ for any (i, j);

- (c) There exists $\varphi \in \mathcal{E}(M)$ with $\varphi \circ E = \varphi$ such that $\varphi \circ (E^{-1}|_{N' \cap M}) = c \cdot \varphi|_{N' \cap M}$ for some constant c, in fact $c = [M:N]_0$;
- (d) $K_E(M | N) = \log || \text{Index } E ||.$

Proof. (a) \Rightarrow (b). By Proposition 3.1, we can see that (a) implies (i) and (ii). So we shall show that (a) implies (iii). We set $\alpha_{ij} = \lambda_{ij}^{-2}$ ||Index E_{ij} ||. We shall prove that if $p_{i_1}q_{j_1} \neq 0$, $p_{i_2}q_{j_1} \neq 0$, $p_{i_2}q_{j_2} \neq 0$, \dots , $p_{i_k}q_{j_k} \neq 0$, $p_{i_1}q_{j_k} \neq 0$, then

$$lpha_{i_1 j_1}^{-1} lpha_{i_1 j_2} lpha_{i_2 j_2}^{-1} lpha_{i_3 j_2} \cdots lpha_{i_k j_k}^{-1} lpha_{i_1 j_k} = 1$$

We can assume without loss of generality that $i_k \neq i_l$ if $k \neq l$. Suppose that

$$\alpha_{i_1j_1}^{-1} \alpha_{i_1j_1} \alpha_{i_2j_2}^{-1} \cdots \alpha_{i_kj_k}^{-1} \alpha_{i_1j_k} < 1$$

For $\epsilon > 0$ and $\gamma > 1$, we define

$$\begin{split} \varepsilon_{1} &= \varepsilon , \\ \varepsilon_{2} &= \gamma \varepsilon_{1} \alpha_{i_{2}j_{1}} \alpha_{i_{2}j_{2}}^{-1} , \\ \varepsilon_{3} &= \gamma \varepsilon_{2} \alpha_{i_{3}j_{2}} \alpha_{i_{3}j_{3}}^{-1} = \gamma^{2} \varepsilon \alpha_{i_{2}j_{1}} \alpha_{i_{2}j_{2}}^{-1} \alpha_{i_{3}j_{2}} \alpha_{i_{3}j_{3}}^{-1} , \\ \vdots \\ \varepsilon_{k} &= \gamma \varepsilon_{k-1} \alpha_{i_{k}j_{k-1}} \alpha_{i_{k}j_{k}}^{-1} = \gamma^{k-1} \varepsilon \alpha_{i_{2}j_{1}} \alpha_{i_{2}j_{2}}^{-1} \cdots \alpha_{i_{k}j_{k-1}} \alpha_{i_{k}j_{k}}^{-1} . \end{split}$$

and

$$\begin{split} \lambda'_{i_1j_k} &= \lambda_{i_1j_k} - \varepsilon_k , \qquad \lambda'_{i_1j_1} &= \lambda_{i_1j_1} + \varepsilon_1 , \\ \lambda'_{i_2j_1} &= \lambda_{i_2j_1} - \varepsilon_1 , \qquad \lambda'_{i_2j_2} &= \lambda_{i_2j_2} + \varepsilon_2 , \\ &\vdots & \vdots \\ \lambda'_{i_kj_{k-1}} &= \lambda_{i_kj_{k-1}} - \varepsilon_{k-1} , \quad \lambda'_{i_kj_k} &= \lambda_{i_kj_k} + \varepsilon_k , \\ &\lambda'_{i_j} &= \lambda_{i_j} \quad \text{for others.} \end{split}$$

Taking r close to 1, we have

$$\begin{split} \varepsilon_k \, \alpha_{i_1 j_k} &- \varepsilon_1 \, \alpha_{i_1 j_1} = \varepsilon \alpha_{i_1 j_1} (\gamma^{k-1} \, \alpha_{i_1 j_1}^{-1} \, \alpha_{i_2 j_1} \cdots \alpha_{i_k j_k}^{-1} \, \alpha_{i_1 j_k} - 1) < 0 \,, \\ \varepsilon_1 \, \alpha_{i_2 j_1} - \varepsilon_2 \, \alpha_{i_2 j_2} &= (1 - \gamma) \, \varepsilon_1 \, \alpha_{i_2 j_1} < 0 \,, \\ &\vdots \\ \varepsilon_{k-1} \, \alpha_{i_k j_{k-1}} - \varepsilon_k \, \alpha_{i_k j_k} &= (1 - \gamma) \, \varepsilon_{k-1} \, \alpha_{i_k j_{k-1}} < 0 \,. \end{split}$$

Taking a small $\varepsilon > 0$, we get $[\lambda'_{ij}] \in \Lambda$. For 0 < s < 1, we have

$$\frac{df_i((1-s)\left[\lambda_{ij}\right]+s\left[\lambda'_{ij}\right])}{ds}\bigg|_{s=0} = -\sum_j \lambda_{ij}^{-2}(\lambda'_{ij}-\lambda_{ij}) ||\text{Index } E_{ij}||.$$

In particular,

TAMOTSU TERUYA

$$\frac{df_{i_1}((1-s)[\lambda_{i_j}]+s[\lambda'_{i_j}])}{ds}\Big|_{s=0} = \epsilon_k \alpha_{i_1j_k} - \epsilon_1 \alpha_{i_1j_1} < 0,$$

$$\vdots$$

$$\frac{df_{i_k}((1-s)[\lambda_{i_j}]+s[\lambda'_{i_j}])}{ds}\Big|_{s=0} = \epsilon_{k-1} \alpha_{i_kj_{k-1}} - \epsilon_k \alpha_{i_kj_k} < 0$$

Moreover if $i \notin \{i_1, \dots, i_k\}$, then $f_i((1-s)[\lambda_{ij}]+s[\lambda'_{ij}]) = f_i([\lambda_{ij}])$. When $\{i_1, \dots, i_k\} = \{1, \dots, m\}$, there exists $s \in (0, 1)$ such that $f((1-s)[\lambda_{ij}]+s[\lambda'_{ij}]) < f([\lambda_{ij}])$. This contradicts $E=E_0$. When $\{i_1, \dots, i_k\} \neq \{1, \dots, m\}$, there exists $s \in (0, 1)$ such that $f_i((1-s)[\lambda_{ij}]+s[\lambda'_{ij}])$ are not constant and $f((1-s)[\lambda_{ij}]+s[\lambda'_{ij}]) < s[\lambda'_{ij}]=f([\lambda_{ij}])$. Then by Lemma 2.5, there exists $[\lambda'_{ij}] \in A$ such that $f([\lambda'_{ij}]) < f([\lambda_{ij}])$, contradicting $E=E_0$ again. So we have $\alpha_{i_1j_1}^{-1} \alpha_{i_2j_1} \cdots \alpha_{i_kj_k}^{-1} \alpha_{i_1j_k} \geq 1$. But we can do the same argument for $\alpha_{i_1j_k}^{-1} \alpha_{i_kj_k} \cdots \alpha_{i_2j_1}^{-1} \alpha_{i_1j_1}$, and hence we get $\alpha_{i_1j_1}^{-1} \alpha_{i_2j_1} \cdots \alpha_{i_kj_k}^{-1} \alpha_{i_1j_k} = 1$. We shall from now fix i_1 . Since $N \subset M$ is connected, for any *i* there is a path from i_1 to *i*, i.e.,

$$i_1 \rightarrow j_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_k \rightarrow j_k \rightarrow i$$

where $i_k \rightarrow j_l$ (also $j_l \rightarrow i_k$) means $p_{i_k} q_{j_l} \neq 0$. If there is another path from i_1 to i

 $i_1 \rightarrow j'_1 \rightarrow i'_2 \rightarrow \cdots \rightarrow i'_l \rightarrow j'_l \rightarrow i$,

$$i_1 \rightarrow j_1 \rightarrow i_2 \rightarrow j_2 \rightarrow \cdots \rightarrow j_{k-1} \rightarrow i_k \rightarrow j$$
.

Then by the similar argument, $\nu_j = \alpha_{i_1j_1} \alpha_{i_2j_1}^{-1} \alpha_{i_2j_2} \cdots \alpha_{i_kj_{k-1}}^{-1} \alpha_{i_kj}$ is well-defined. If $p_i q_j \neq 0$, then there is a path such that

$$i_1 \rightarrow j_1 \rightarrow i_2 \rightarrow j_2 \rightarrow \cdots \rightarrow i_k \rightarrow j_k \rightarrow i \rightarrow j$$
,

and then

$$\mu_i = \alpha_{i_1 j_1}^{-1} \alpha_{i_2 j_1} \cdots \alpha_{i_k j_k}^{-1} \alpha_{i_j k}, \quad \nu_j = \alpha_{i_1 j_1} \alpha_{i_2 j_1}^{-1} \cdots \alpha_{i_k j_k} \alpha_{i_j j_k}^{-1} \alpha_{i_j j_k} \alpha_{i_j j_k}.$$

Thus $\mu_i \nu_j = \alpha_{ij}$. We get (iii) of (b).

(b) \Rightarrow (a). Assume that *E* satisfies (b) with $[\lambda_{ij}] \in \Lambda$ and E_{ij} . If there eixsts $[\lambda'_{ij}] \in \Lambda$ such that $f([\lambda'_{ij}]) < f([\lambda_{ij}])$, then by (ii) we have

$$f_{i}([\lambda'_{ij}]) \leq f([\lambda'_{ij}]) < f([\lambda_{ij}]) = f_{i}([\lambda_{ij}]),$$

i.e., $f_i([\lambda'_{ij}]) < f_i([\lambda_{ij}])$ for any *i*. Since f_i are convex,

446

$$0 > \frac{\partial f_i}{\partial_s} \left((1-s) \left[\lambda'_{ij} \right] + s \left[\lambda_{ij} \right] \right) \bigg|_{s=0} = \sum_j \left(\lambda_{ij} - \lambda'_{ij} \right) \mu_i \nu_j \quad \text{by (iii)}.$$

Since $\mu_i > 0$, $0 > \sum_j (\lambda_{ij} - \lambda'_{ij}) \nu_j$ for any *i*. Hence

$$0 > \sum_{i} \sum_{j} \left(\lambda_{ij} - \lambda'_{ij} \right) \nu_{j} = \sum_{j} \left(1 - 1 \right) \nu_{j} = 0 \,.$$

This is a contradiction. Since $||Index E|| = f([\lambda_{ij}])$, we get $E = E_0$ by (i).

(b) \Rightarrow (c). By taking $\frac{\nu_j}{\sum_k \nu_k}$ if necessary, we can assume $\sum_j \nu_j = 1$ and hence we can get $\varphi \in \mathcal{C}(M)$ with $\varphi \circ E = \varphi$ such that $\varphi(q_j) = \nu_j$. If $x \in (N' \cap M)_{p_i q_j}$, then by the proof of Proposition 2.3 we have

$$\varphi(E^{-1}(x)) = \varphi(H^{-1} \circ G^{-1} \circ F^{-1}(x))$$

$$= \varphi(H^{-1}(\lambda_{ij}^{-1} || \text{Index } E_{ij} || E_{ij}(x)))$$
by (i) and (M2) in §1
$$= \varphi(H^{-1}(\lambda_{ij}^{-2} || \text{Index } E_{ij} || E(x) p_i q_j)).$$

Since $E(x) = E(xq_j) = E(x) q_j \in \mathbb{Z}(N) q_j$, there exists $\alpha \in \mathbb{C}$ such that $E(x) = \alpha q_j$. Then $\varphi(x) = \varphi(E(x)) = \alpha \varphi(q_j) = \alpha \nu_j$. Also $\varphi(p_i) = \sum_k \varphi(E(p_iq_k)) = \sum_k \lambda_{ik} \nu_k$. So we have

$$\varphi(E^{-1}(x)) = \varphi(H^{-1}(\lambda_{ij}^{-2} || \text{Index } E_{ij} || \alpha p_i q_j))$$

$$= \lambda_{ij}^{-2} || \text{Index } E_{ij} || \alpha \varphi(p_i)$$

$$= \mu_i \nu_j \alpha \sum_k \lambda_{ik} \nu_k \qquad \text{by (iii)}$$

$$= \varphi(x) \sum_k \lambda_{ik}^{-1} || \text{Index } E_{ik} || \qquad \text{by (iii)}$$

$$= || \text{Index } E || \varphi(x) \qquad \text{by (ii) and (2.1)}.$$

Hence for any $x \in N' \cap M$, we get

$$\varphi(E^{-1}(x)) = \sum_{i,j} \varphi(E^{-1}(xp_i q_j)) = || \text{Index } E || \varphi(x) .$$

(c) \Rightarrow (b). Assume that $\varphi \circ (E^{-1}|_{N' \cap M}) = c \cdot \varphi|_{N' \cap M}$ for some constant c. Let $\varphi(q_j) = \nu_j$ and $x \in (N' \cap M)_{p_i q_j}$. Since $E_{ij}^{-1}(x) \in \mathbb{Z}(M_{ij})$, there eixts $\alpha \in C$ such that $E_{ij}^{-1}(x) = \alpha p_i q_j$. Then we have since $H^{-1}(p_i q_j) = p_i$

$$\varphi(E^{-1}(x)) = \varphi(H^{-1}(\lambda_{ij}^{-1} E_{ij}^{-1}(x))) = \lambda_{ij}^{-1} \alpha \varphi(p_i) = \lambda_{ij}^{-1} \alpha \sum_k \lambda_{ik} \nu_k.$$

Let $E_{ij}(x) = \beta p_i q_j$ with $\beta \in \mathbb{C}$. Then $\varphi(x) = \varphi(E(x)) = \lambda_{ij} \beta \nu_j$. So by the hypothesis, we have $\lambda_{ij}^{-1} \sum_k \lambda_{ik} \nu_k \alpha = c \cdot \lambda_{ij} \nu_j \beta$. This shows that $E_{ij}^{-1}(x) = c' E_{ij}(x)$ for any $x \in N'_{ij} \cap M_{ij}$ where $c' = \frac{c \lambda_{ij}^2 \nu_j}{\sum_k \lambda_{ik} \nu_k}$. By (M2) in Section 1, ||Index E_{ij} ||

TAMOTSU TERUYA

 $=[M_{ij}: N_{ij}]_0 \text{ and } ||\text{Index } E_{ij}|| = \frac{c\lambda_{ij}^2 \nu_j}{\sum_k \lambda_{ik} \nu_k}. \text{ Thus if we put } \mu_i = \frac{c}{\sum_k \lambda_{ik} \nu_k}, \text{ then } \lambda_{ij}^{-2} ||\text{Index } E_{ij}|| = \mu_i \nu_j \text{ and } ||| = \frac{c}{\sum_k \lambda_{ik} \nu_k}.$

$$\sum_{j} \lambda_{ij}^{-1} || \text{Index } E_{ij} || = \sum_{j} \frac{c \lambda_{ij} \nu_j}{\sum_k \lambda_{ik} \nu_k} = c \quad \text{for any } i.$$

So we get (b).

(d) \Rightarrow (b). For $\alpha_{ij} \ge 0$, $\beta_{ij} \ge 0$ (i=1, ...m; j=1, ...n) such that $\alpha_{ij} > 0 \Leftrightarrow \beta_{ij} > 0$, we have

(3.1)
$$\sum_{i,j} \alpha_{ij} \log \frac{\alpha_{ij}}{\beta_{ij}} \ge \sum_{i} (\sum_{j} \alpha_{ij}) \log \frac{\sum_{j} \alpha_{ij}}{\sum_{j} \beta_{ij}}$$

where $0 \cdot \log \frac{0}{0} = 0$. Moreover the equality holds in the above if and only if $\frac{\alpha_{ij}}{\beta_{ij}}$ are constant for *j*. (This is a special case of the monotonicity of the relative entropy.)

If we set $\nu_j = \varphi(q_j)$ for $\varphi \in \mathcal{E}(M)$ with $\varphi \circ E = \varphi$, then $\nu_j > 0$ and $\sum_j \nu_j = 1$. By [Hi2, 4.1, 4.2], letting $\eta(t) = -t \log t, t \ge 0$, we have

$$egin{aligned} &K_arphi(M\,|\,N) = \sum\limits_i arphi(\eta E(p_i)) + \sum\limits_i arphi(p_i) \, K_{arphi_i}(M_{p_i}\,|\,N_{p_i}) \ , \ &K_{arphi_i}(M_{p_i}\,|\,N_{p_i}) = \sum\limits_j \eta(arphi_i(p_i\,q_j)) + \sum\limits_j arphi_i(p_i\,q_j) \, K_{arphi_ij}(M_{ij}\,|\,N_{ij}) \ , \end{aligned}$$

where $\varphi_i = \varphi(p_i)^{-1} \varphi|_{M_{pi}}$ and $\varphi_{ij} = \varphi_i(p_i q_j)^{-1} \varphi_i|_{M_{ij}}$. Since $E(p_i) = \sum_j \lambda_{ij} q_j$, $\eta E(p_i) = \sum_j \eta(\lambda_{ij}) q_j$ and $\varphi(\eta E(p_i)) = \sum_j \eta(\lambda_{ij}) \nu_j$. Since $\varphi(p_i q_j) = \varphi(E(p_i q_j)) = \varphi(\lambda_{ij} \nu_j) = \lambda_{ij} \nu_j$, $\varphi(p_i) = \sum_j \lambda_{ij} \nu_j$ and hence we have $\varphi_i(p_i q_j) = \frac{\lambda_{ij} \nu_j}{\sum_k \lambda_{ik} \nu_k}$. Since $\varphi_{ij} \circ E_{ij} = \varphi_{ij}$, we note (see the remark before Theorem 1.3) that $K_{\varphi_{ij}}(M_{ij} | N_{ij}) = K_{E_{ij}}(M_{ij} | N_{ij})$. If we put $\alpha_{ij} = \exp K_{E_{ij}}(M_{ij} | N_{ij})$, then we get

$$(3.2) K_{\varphi}(M|N) = -\sum_{i,j} \lambda_{ij} \nu_{j} \log \lambda_{ij} - \sum_{i,j} \lambda_{ij} \nu_{j} \log \frac{\lambda_{ij} \nu_{j}}{\sum_{k} \lambda_{ik} \nu_{k}} + \sum_{i,j} \lambda_{ij} \nu_{j} K_{Eij}(M_{ij}|N_{ij}) = -\sum_{i,j} \lambda_{ij} \nu_{j} \log \frac{\lambda_{ij} \nu_{j}}{(\sum_{k} \lambda_{ik} \nu_{k}) \lambda_{ij}^{-1} \alpha_{ij}}.$$

Let $F(\nu_1, \dots, \nu_n) = -\sum_{i,j} \lambda_{ij} \nu_j \log \frac{\lambda_{ij} \nu_j}{(\sum_k \lambda_{ik} \nu_k) \lambda_{ij}^{-1} \alpha_{ij}}$. If $\nu_j > 0$ and $\sum_j \nu_j = 1$, then there exists $\varphi \in \mathcal{E}(M)$ with $\varphi \circ E = \varphi$ such that $\varphi(q_j) = \nu_j$. So we get

$$K_{E}(M | N) = \sup \{F(\nu_{1}, \dots, \nu_{n}); \nu_{j} > 0, \sum_{j} \nu_{j} = 1\}$$

448

Since F is continuous, there exists $(\nu_j^0)_{j=1}^n$ with $\nu_j^0 \ge 0$, $\sum_j \nu_j^0 = 1$ such that

$$K_E(M \mid N) = F(\nu_1^0, \cdots, \nu_n^0).$$

Since for any *j*

$$\frac{\partial F}{\partial \nu_j}(\nu_1,\cdots,\nu_j,\cdots,\nu_n)|_{\nu_j=0}=\infty,$$

we have $\nu_j^0 > 0$ for any j. For simplicity we denote $\nu_j^0 = \nu_j$. Then

(3.3)
$$K_{E}(M \mid N) = -\sum_{i,j} \lambda_{ij} \nu_{j} \log \frac{\lambda_{ij} \nu_{j}}{(\sum_{ik} \lambda_{ik} \nu_{k}) \lambda_{ij}^{-1} \alpha_{ij}} \\ \leq -\sum_{i} (\sum_{j} \lambda_{ij} \nu_{j}) \log \frac{\sum_{j} \lambda_{ij} \nu_{j}}{(\sum_{k} \lambda_{ik} \nu_{k}) \sum_{j} \lambda_{ij}^{-1} \alpha_{ij}} \quad \text{by (3.1)} \\ = \sum_{i} (\sum_{j} \lambda_{ij} \nu_{j}) \log \sum_{j} \lambda_{ij}^{-1} \alpha_{ij}$$

(3.4)
$$\leq \sum_{i} \left(\sum_{j} \lambda_{ij} \nu_{j} \right) \log \sum_{j} \lambda_{ij}^{-1} || \text{Index } E_{ij} || \text{ by Theorem 1.3}$$

(3.5)
$$\leq \sum_{i,j} \lambda_{ij} \nu_j \log || \text{Index } E ||$$
$$= \log || \text{Index } E || .$$

If $K_E(M | N) = \log || \text{Index } E ||$, then (3.3)-(3.5) are not inequalities but equalities. By the equality in (3.5), Index E is a scalar. By the equality in (3.4), we get $\alpha_{ij} = || \text{Index } E_{ij} ||$ for any *i*, *j*, i.e., $|| \text{Index } E_{ij} || = [M_{ij}: N_{ij}]_0$ for any *i*, *j* by Theorem 1.3. By the equality in (3.3), $\frac{\lambda_{ij} \nu_j}{\lambda_{ij}^{-1} \alpha_{ij}}$ are constant for *j* (see the remark after (3.1)). So we can get $\mu_i > 0$ such that $\lambda_{ij}^{-2} \alpha_{ij} = \mu_i \nu_j$. Thus we get (b).

(b) \Rightarrow (d). Since we can assume $\sum_{j} \nu_{j} = 1$, we can get $\varphi \in \mathcal{E}(M)$ with $\varphi \circ E = \varphi$ such that $\varphi(q_{j}) = \nu_{j}$. By the equation (3.2),

$$K_{\varphi}(M | N) = -\sum_{i,j} \lambda_{ij} \nu_{j} \log \frac{\lambda_{ij} \nu_{j}}{(\sum_{k} \lambda_{ik} \nu_{k}) \lambda_{ij}^{-1} \alpha_{ij}}$$

= $\sum_{i,j} \lambda_{ij} \nu_{j} \log \frac{(\sum_{k} \lambda_{ik} \nu_{k}) \lambda_{ij}^{-2} || \text{Index } E_{ij} ||}{\nu_{j}}$ by (i)
= $\sum_{i,j} \lambda_{ij} \nu_{j} \log \frac{(\sum_{k} \lambda_{ik} \nu_{k}) \mu_{i} \nu_{j}}{\nu_{j}}$ by (iii)
= $\sum_{i,j} \lambda_{ij} \nu_{j} \log \sum_{k} \lambda_{ik}^{-1} || \text{Index } E_{ik} ||$ by (iii)

$$= \sum_{i,j} \lambda_{ij} \nu_j \log ||\text{Index } E|| \qquad \text{by (ii)}$$
$$= \log ||\text{Index } E||.$$

So we have $K_E(M|N) \ge \log || \operatorname{Index} E ||$. But we know that $K_E(M|N) \le$

 $\log || \text{Index } E ||$ in general (see [Hi2]). Thus $K_E(M | N) = \log || \text{Index } E ||$.

Remark 3.4. When $N \subset M$ is not connected, we can define the *minimum* index $[M:N]_0$ by $[M:N]_0 = \sum_{k=1}^{l} [M_{z_k}: N_{z_k}]_0 z_k$ where z_1, \dots, z_l are minimal projections of $\mathbb{Z}(M) \cap \mathbb{Z}(N)$ with $\sum_k z_k = 1$. If N is of finite index in M, then there exists a unique $E_0 \in \mathcal{E}(M, N)$ such that Index $E_0 = [M:N]_0$. Then conditions (a)-(c) of Theorem 3.3 are equivalent when we modify (ii) of (b) and (c) as follows:

- (ii) Index $E \in \mathbb{Z}(M) \cap \mathbb{Z}(N)$;
- (c) There exists $\varphi \in \mathcal{E}(M)$ with $\varphi \circ E = \varphi$ scuh that $\varphi \circ (E^{-1}|_{N' \cap M}) = \varphi(c \cdot)|_{N' \cap M}$ for some $c \in \mathbb{Z}(M) \cap \mathbb{Z}(N)$.

§4. Corollaries

Let $N_i \subset M_i$ (i=1, 2) and $N \subset M$ be von Neumann algebras with finite dimensional centers. We consider the minimum index as in Remark 3.4.

Corollary 4.1. If N_i is of finite index in M_i , then

$$[M_1 \otimes M_2 \colon N_1 \otimes N_2]_0 = [M_1 \colon N_1]_0 \otimes [M_2 \colon N_2]_0$$

Proof. Let $E_i \in \mathcal{C}(M_i, N_i)$ be such that Index $E_i = [M_i: N_i]_0$. By Theorem 3.3 (Remark 3.4), there exists $\varphi_i \in \mathcal{C}(M_i)$ with $\varphi_i \circ E_i = \varphi_i$ such that $\varphi_i \circ (E_i^{-1}|_{N'_i \cap M_i}) = \varphi_i(c \circ)|_{N'_i \cap M_i}$ where $c_i = [M_i: N_i]_0$. Since by [Hi2, 1.7]

$$(E_1 \otimes E_2)^{-1} = E_1^{-1} \otimes E_2^{-1}$$

and

$$(N_1 \otimes N_2)' \cap (M_1 \otimes M_2) = (N_1' \cap M_1) \otimes (N_2' \cap M_2),$$

we have

$$\begin{aligned} (\varphi_1 \otimes \varphi_2) \circ ((E_1 \otimes E_2)^{-1}|_{(N_1 \otimes N_2)' \cap (M_1 \otimes M_2)}) \\ &= (\varphi_1 \circ (E_1^{-1}|_{N_1' \cap M_1})) \otimes (\varphi_2 \circ (E_2^{-1}|_{N_2' \cap M_2})) \\ &= (\varphi_1 (c_1 \circ)|_{N_1' \cap M_1}) \otimes (\varphi_2 (c_2 \circ)|_{N_1' \cap M_2}) \\ &= (\varphi_1 \otimes \varphi_2) (c_1 \otimes c_2 \circ)|_{(N_1 \otimes M_2)' \cap (M_1 \otimes M_2)}. \end{aligned}$$

Since $c_1 \otimes c_2 \in \mathbb{Z}(M_1 \otimes M_2) \cap \mathbb{Z}(N_1 \otimes N_2)$, Theorem 3.3 implies the conclusion.

Corollary 4.2. Let α_g be an action of a finite group G on M such that $\alpha_g(N) = N$ for all $g \in G$, and $M \rtimes_{\alpha} G$ (resp. $N \rtimes_{\alpha} G$) denote the crossed product of M (resp. N) by α (resp. $\alpha \mid_N$). If N is of finite index in M and H is a

subgroup of G, then

$$[M \rtimes_{\mathfrak{a}} G: N \rtimes_{\mathfrak{a}} H]_{\mathfrak{o}} = \pi_{\mathfrak{o}}([M:N]_{\mathfrak{o}}) [G:H]$$

where π_{α} is the usual representation of M associated with α . In particular

$$[M \Join_{\alpha} G: N \Join_{\alpha} G]_{0} = \pi_{\alpha}([M:N]_{0}),$$
$$[M \leftthreetimes_{\alpha} G: M \leftthreetimes_{\alpha} H]_{0} = [G:H].$$

Proof. Let $E_0 \in \mathcal{E}(M, N)$ and $\varphi \in \mathcal{E}(M)$ with $\varphi \circ E_0 = \varphi$ be such that $\varphi \circ (E_0^{-1}|_{N' \cap M}) = \varphi(c \cdot)|_{N' \cap M}$ where $c = [M:N]_0$. Regarding $M \rtimes_{\alpha} G$ as a subalgebra of $M \otimes B(l^2(G))$, we set $\tilde{E}_0 = E_0 \otimes id_{B(l^2(G))}|_{M \rtimes_{\alpha} G}$. Then $\tilde{E}_0 \in \mathcal{E}(M \rtimes_{\alpha} G, N \rtimes_{\alpha} G)$ as in [Hi3]. By the same argument as in the factor case ([PP], [Ko], [Wa]) we can show that there exists a basis $\{m_1, \dots, m_n\}$ in M for E_0 , i.e., $x = \sum_{j=1}^n m_j E_0(m_j^* x)$ for $x \in M$. Then $\{\pi_{\alpha}(m_1), \dots, \pi_{\alpha}(m_n)\}$ is a basis in $M \rtimes_{\alpha} G$ for \tilde{E}_0 , so that (cf. [Wa])

$$\widetilde{E}_0^{-1}(X) = \sum_{j=1}^n \pi_{\boldsymbol{\alpha}}(m_j) X \pi_{\boldsymbol{\alpha}}(m_j)^* \quad \text{for} \quad X \in (N \Join_{\boldsymbol{\alpha}} G)'.$$

Also define $F \in \mathcal{E}(N \Join_{\alpha} G, N \Join_{\alpha} H)$ by

$$F(\sum_{g\in G}\pi_{a}(x_{g}) \lambda(g)) = \sum_{g\in H}\pi_{a}(x_{g}) \lambda(g)$$

where $x_g \in N$, $\lambda(g) = 1 \otimes \lambda_g$ and λ_g is the left regular representation of G on $l^2(G)$. Let $G = \bigcup_{i=1}^m Hg_i$ be the decomposition of G into the left cosets with [G:H] = m. Then it follows that $\{\lambda(g_1)^*, \dots, \lambda(g_m)^*\}$ is a basis in $N \rtimes_{\alpha} G$ for F. Hence

$$F^{-1}(X) = \sum_{i=1}^{m} \lambda(g_i)^* X \lambda(g_i) \quad \text{for} \quad X \in (N \Join_{\alpha} H)'.$$

Furthermore, define $\phi \in \mathcal{E}(M)$ by $\phi(x) = |G|^{-1} \sum_{g \in G} \varphi(\alpha_g(x))$ for $x \in M$, and $\tilde{\varphi} \in \mathcal{E}(M \rtimes_{\alpha} G)$ by $\tilde{\varphi}(\sum_{g \in G} \pi_{\alpha}(x_g) \lambda(g)) = \phi(x_e)$. By the uniqueness of E_0 , we see that $\alpha_g \circ E_0 \circ \alpha_g^{-1} = E_0$ and hence $\alpha_g \circ E_0^{-1} \circ \alpha_g^{-1}|_{N' \cap M} = E_0^{-1}|_{N' \cap M}$ (cf. [Hi2, 3.2]). This implies that $c = E_0^{-1}(1)$ is α -invariant. Hence $\pi_{\alpha}(c) \in \mathcal{Z}(M \rtimes_{\alpha} G) \cap \mathcal{Z}(N \rtimes_{\alpha} H)$. Since

$$\begin{split} \tilde{\varphi} \circ F \circ \tilde{E}_0(\sum_{g \in \mathcal{G}} \pi_{\mathbf{a}}(x_g) \ \lambda(g)) &= \tilde{\varphi}(\sum_{g \in \mathcal{H}} \pi_{\mathbf{a}}(E_0(x_g)) \ \lambda(g)) \\ &= \hat{\varphi}(E_0(x_e)) = \frac{1}{|G|} \sum_{g \in \mathcal{G}} \varphi(E_0(\alpha_g(x_e))) \\ &= \tilde{\varphi}(\sum_{g \in \mathcal{G}} \pi_{\mathbf{a}}(x_g) \ \lambda(g)) \ , \end{split}$$

we have $\tilde{\varphi} \circ F \circ \tilde{E}_0 = \tilde{\varphi}$. If $X = \sum_{g \in G} \pi_{\alpha}(x_g) \lambda(g) \in (N \rtimes_{\alpha} H)' \cap (M \rtimes_{\alpha} G)$, then we have

$$\begin{split} \widetilde{\varphi} \circ (F \circ E_0)^{-1} (X) &= \widetilde{\varphi} \circ \widetilde{E}_0^{-1} \circ F^{-1} (X) \\ &= \widetilde{\varphi} \left(\sum_{\mathcal{E} \in \mathcal{G}} \sum_{i=1}^m \sum_{j=1}^n \pi_{\alpha}(m_j) \,\lambda(g_i)^* \,\pi_{\sigma}(x_g) \,\lambda(g) \,\lambda(g_i) \,\pi_{\sigma}(m_j^*) \right) \\ &= \widetilde{\varphi} \left(\sum_{\mathcal{E} \in \mathcal{G}} \sum_{i=1}^m \sum_{j=1}^n \pi_{\sigma}(m_j \,\alpha_{g_i^{-1}}(x_g) \,\alpha_{g_i^{-1}gg_i}(m_j^*) \,\lambda(g_i^{-1} \,gg_i)) \right) \\ &= \varphi \left(\sum_{i=1}^m \sum_{j=1}^n m_j \,\alpha_{g_i^{-1}}(x_e) \,m_j^* \right) \\ &= \varphi \left(\sum_{i=1}^m \alpha_{g_i^{-1}} \circ E_0^{-1}(x_e) \right) \\ &= m \varphi (E_0^{-1}(x_e)) = m \varphi (cx_e) = m \widetilde{\varphi}(\pi_{\sigma}(c) \, X) \,, \end{split}$$

because $x_e \in N' \cap M$ and so $\alpha_g(x_e) \in N' \cap M$. Finally we have (see [BDH, 3.18]) that $M \rtimes_{\alpha} G$ and $N \rtimes_{\alpha} H$ have finite dimensional centers. So we get the conclusion.

Acknowledgements

I am greatly indebted to Professor F. Hiai for his many useful suggestions, and to Professor Y. Watatani for his helpful discussions. I would like to thank Professors T. Ando and Y. Nakamura for their interest and encouragement.

References

- [A1] Araki, H., Relative entropy of states of von Neumann algebras, Publ. RIMS, Kyoto Univ., 11 (1976), 809–833.
- [A2] —, Relative entropy of states of von Neumann algebras II, Publ. RIMS, Kyoto Univ., 13 (1977), 173–192.
- [BDH] Baillet, M., Denizeau, Y. and Havet, J.-F., Indice e'une esperance conditionnelle, Comp. Math., 66 (1988), 199–236.
 - [Co] Connes, A., Spatial theory of von Neumann algebras, J. Funct. Anal., 35 (1980), 153-164.
- [GH] Goodman, F., P. de la Harpe and V.F.R. Jones, Coxeter Graphs and Towers of Algebras, MSRI Publ. 14, Springer-Verlag, New-York, 1989.
- [Ha1] Haagerup, U., Operator valued weights in von Neumann algebras I, J, Funct. Anal., 32 (1979), 175–206.
- [Ha2] _____, Operator valued weights in von Neumann algebras II, J, Funct. Anal., 33 (1979), 339–361.
- [Hav] Havet, J.-F., Esperance conditionnelle minimale, preprint, Orleans.
- [Hi1] Hiai, F., Minimizing indices of conditional expectation onto a subfactor, Publ. RI-MS, Kyoto Univ., 24 (1988), 673–678.
- [Hi2] —, Minimum index for subfactors and entropy, to appear in J. Operator Theory.

- [Hi3] ——, Minimum index for subfactors and entropy II, to appear in J. Math. Soc. Japan (1990).
- [Jo1] Jolissaint, P., Index for Pairs of Finite von Neumann Algebras, Pacific J. Math., 146 (1990), 43-70.
- [J] Jones, V.F.R., Index for subfactors, Invesnt. Math., 72 (1983), 1-15.
- [Kk] Kawakami, S., Some remarks on index and entropy for von Neumann algebras, Proc. Japan Acad., Ser, A 65 (1989), 323–325.
- [KY1] Kawakam, S. and Yoshida, H., Actions of finite von Neumann algebras and relative entropy, J. Math. Soc. Japan., 39 (1987), 609-626.
- [KY2] —, Reduction theory on the relative entropy, *Math. Japan.*, **33** (1988), 975–990.
- [Ko] Kosaki, H., Extension of Jones' theory on index to arbitrary factors, J. Funct. Anal., 66 (1986), 123-140.
- [Lo] Longo, R., Index of subfactors and statistics of quantum fields. I, Commun. Math. Phys., 126 (1989), 217–247.
- [PP] Pimsner, M. and Popa, S., Entropy and index for subfactors, Ann. Sci. Ec. Norm. Sup., 19 (1986), 57-106.
- [Wa] Watatani, Y., Index for C*-subalgebras, Memoirs Amer. Math. Soc., 424, 1990.