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Index for von Neumann Algebras with
Finite Dimensional Centers

By

Tamotsu TERUYA*

Introduction

Extending Jones' index [J], Kosaki [Ko] defined index, denoted by Index E,
for a (normal faithful) conditional expectation E of an arbitrary factor onto a
subfactor, which is based on Connes' spatial theory [Co] and Haagerup's theory
on operator- valued weights [Hal, 2]. For a pair TV CM of von Neumann alge-
bras, let <?(M, N) denote the set of all faithful normal conditional expectations
from M onto N. When TV CM are factors, Kosaki's index of E^£(M, N)
is defined by Index E=E~\l) where E~l is the operator valued weight from N'
to M' determined by the equation of spatial derivatives

d((t>°E) = d<t>

with faithful normal semifinite weights <f> on N and ^ on M'. When TVcM
are factors, the minimum index [M: N]Q is defined by

[M: N]Q = min {Index E\ E e£(Af, N)}

(see [Hil], [Lo], [Hav]). Furthermore, Hiai [Hi2] (also Kawakami [Kk]) defin-
ed the entropy KV(M \ N) of an arbitrary von Neumann algebra M relative to
its subalgebra N and a faithful normal state 9 on M such that E^6(M, TV)
with <poE=<p exists, which is an extension of the entropy H(M\N) developed
by Pimsner and Popa [PP] for finite von Neumann algebras. He established
the relation between the minimum index [M: N]Q and the entropy K9(M\N),
including the characterization of E^6(M, N) with Index E=[M: N]0 by means
of the entropy. On the other hand, the index theory in the non-factor case
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was discussed in several ways (see [BDH], [Jol], [Kk], [Wa] for instance).
In this paper, following [Ko], we shall introduce Index E of E^6(M, N)

for von Neumann algebras NdM with finite dimensional centers and give a
formula of Index E which is an element of the extended positive part of the
center of M. Havet [Hav] also gave the same formula of the index inde-
pendently, while his method is different from ours. When TV" CM is a connect-
ed inclusion, we shall uniquely minimiz || Index E\\ for E^S(MS N) and define
the minimum index [M: N]Q. Moreover we shall establish several character-
izations of E^8(M, N) with Index E=[M: N]Q extending those by Hiai.

§ lo Preliminaries

In this section, we recall definitions of the minimum index and the entropy

Let NdM be a factor and a subf actor. If there exists E^S(M, N) such
that Index E<oo9 then Index E<oo for all E<=£(M, N) and we have (see [Hil]):

(Ml) There exists a unique E0^£(M, N} such that

Index E0 = min {Index E; E<=g(M9 N)} .

(M2)

Definition I.I. ([Hil]) For a pair NdM of factors, we define the mini-

mum index [M: N]0 by [M: ^]0=min {Index E; E^8(M, N)} where [M: N]Q=
oo if S(M9 JV)=0 or Index E=oo (E^8(M, N)).

Now, let M be a von Neumann algebra and TV its von Neumann sub-
algebra. Let <p<=8(M) (=£(M, CJ) be such that E<=8(M, N) with <p<>E=<p
exists. Taking account of Pimsner and Popa's estimate of H(M \ N) in the type
Hi case [PP], Hiai [Hi2] introduced the entropy K^(M\N) of M relative to

<p and N as follows. Set <*>=<p\N'r\M an(i &=9°(E~l\N't\M)' Then since
E~\(N' n Af)+) is contained in the extended positive part of 2>(M) (=M n Af '),
6) is well-defined as a faithful normal weight on N' n M. But & is not neces-
sarily bounded (possibly not semifinite). So the relative entropy S(&9 o>) of o)
and a) is given by

S(d)9 CD) = inf {S(o)'5 a)); &re(N'nM)£9 a)'<a)}

where S(a>'9 co) is Araki's relative entropy [Al, 2].

1.2. ([Hi2, 3.1]) We define the entropy K9(M\N) of M relative



INDEX FOR VON NEUMANN ALGEBRAS 439

to <p and N by

KV(M\N) = -5(&>,cy).

Moreover we define

KE(M\N) = sup{K(p(M\N}; 9€=£(M), <p°E = <p} .

Note that Ky(M\N) does not depend on the choice of M. When TV CM
are type IIX von Neumann lagebras with atomic centers and re<?(M) is a
trace, we can show KT(M\N)=H(M\N) by arguing as in [KYI, 2], [Hi2].

Finally we recall relation between the minimum index and the entropy
K9(M\N). Let NdM be a pair of factors such that [M: 7V]0-Index £^<oo.
Since E\N^M and E~l \N't\M

 are scalar- valued for each E^<5(M, TV), the entro-
py KV(M\N) is independent of the choice of <p^8(M) with <poE=<p, so that
KE(M | N) =Ky(M | N) for any such 9 GE S(M).

Theorem 1.3. ([Hi2, 6.1, 6.3]) Let NdM be a pair of factors. For EG

8(M, N), KE(M\N)<log[M: TV]0 and the following conditions are equivalent:

(i) Index E=[M: N]0, i.e., E=E0;
(ii) KE(M\N)=log[M:N]0i
(Hi) KE(M | N) -log Index E;
(iv) for every nonzero projection edN' n M9 Index Ee=E(e)2 Index E;

(v) for every nonzero projections elf •••>en^NT\M with S8- ^,- = l»

^i cv M Index £..S £(e,) log ' - log Index E .
«=i £(eg.)

2

§2. Index Formula

Let TV CM be a pair of <J -finite von Neumann algebras with finite dimen-
sional centers and let {pl9 -~9pm}, and {#,., • • • , qn} be the minimal central pro-

jections of M and TV respectively with S^i—l and S/ ^/ — !• Put N*/"^w
dMij=Mp.q. (factors) if /?f. gy^0. Let yi denote the set of m-by-n matrices

[AIJ] such that ^f-y>0 if ^-^-^0, ^,-;-=0 if piqj=^9 and S,-^f-/
=l f°r anY 7-

Throughout this paper we shall consider only the pairs (/,/) with /?,•#,- =4=0.
Consider the three-step inclusion

The two intermediate algebras have the same center (the minimal central pro-
jections are {p^qj}), and the joint central decompositions are
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When Eii^.S{M{j, Ntj) for all (/,/) and [ X . s ] e A are given, we define the maps
F'- ®i,j Nff-^N, G: ©,.,,. M,y-»®<f/ Ni} and H : M-»®l>y M,v as follows:

for

*",/ *,j

for x e Af .

Proposition 2SL If we define the map E: M->N by E=FoG<>H, then

8(M, N). Conversely ifE<=8(M, N), then there exist unique Eij^6(Miji N{j)

for any (i,j) and [Afj]&A such that E=FoG<>H where F and G are defined by

as above.

Proof. Suppose Eij^8(Mij,Nij) and [^j\^A. Since the central sup-

port of piqj In N is qJ9 F is well-defined. Since F(y)=y for y^N, we get

F^S(®itJNij9N). It is clear that Ge£(0lV,- Mij9 0^- Nif) and H&

S(M9 0I(/ Mly). Hence E=FoGoH^8(M, N).

Conversely let E be in 8(M, N). For a faithful <f><=8(N) we have

GtE(Pi) = ^i (since /?,. is central in M) ,
G<t°E(^j) = °K<lj) = 4j (since ^. is central in N)

so that afE leaves N\/{pi}
// and MR {̂ .}' (and of course ^) globally in-

variant. Thus it follows from Takesaki's theorem that there exist unique

Ff^8(@itjN^N\ G'e£(euM,/9 0, ,. NJ and H'<=8(M, 0,>y M, .) such

that E=F'°GfoH'. Since M n (0,py Misy=2>(®iui MtJ), 8(M, ®tj MfJ) con-
sist of only one element. Thus H'=H. Since E(piqj)=E(pi) q.<=Z>(N) qJ9

there exists ^f-y>0 such that E(pi q.)=A.. q.m Since ^iE(piq])=qj, we get

S, ^y = l and hence [^ly]e^. Put E..=Ep.qj, i.e., £,/x)=£'(jc) E(piq.)-1piqJ

=Xjj E(x)piqj for x^Mijt Then for any x^M we have

FoGoff(x) = F(g Etfaqjxptq.)) = S (S ^y ̂ / ^(^,)) ?, = ^W ,

and thus by the uniqueness of Ff and G'. we have F=F' and G=G'. 9

Let us define Inedx £ of E<=8(M, N) as in [Ko].

Definition 2e20 For E^8(M,N\ we define Index £=£-1(l). JV is said

to be of finite index in M if there exists a conditional expectation E^8(M, N)
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such that Index E is bounded.

Since uE~l(Y) u*=E~l(l) for any unitary u^M', Index E is an element of
the extended positive part of Z(M}. Since M is not a factor, Index E is not
necessarily a scalar multiple of the identity.

Proposition 2.3. (1) S(M, N)=t® if and only if S(Mijf #|V)4=0 for any

i,j.
(2) There exists E EE G(M, N) such that Index E is bounded if and only if

for any i,j there exists Eij^8(Mij N^) such that Index Efj<oo.
(3) If there exists E^6(M, N) such that Index E is bounded, then for any

E<=S(M, N), Index E is bounded.
(4) If E^ G(M, N) is defined by [*..] e A and Efj GE S(M{j, Nfj) as in Prop-

osition 2.1, then

(2. 1) Index E = 2 (S ^ ! I Index £,vj |) ̂  .
* y

This formula does not depend on the chosen Hilbert space.

Havet [Hav] also obtained the same formula as (2.1) independently. His
presentation is based on a Pimsner-Popa type basis. We give a different proof.

Proof. If we obtain the formula (2.1), then by Proposition 2.1 and [Hil]
we can get (1), (2) and (3). Since H-1(piqj)=H-1(qj)pi^Z(M)pi, there
exists af.y>0 such that H~l(piqj)=aijpi. Since HPigj=idM.., we have (HPiqj)~

l

=idM'.r By[Hi2, 1.4],

and hence a.. = l. Thus we get

(2.2) jy-i(S x'iiPi q) = S (S ^ Jy) A for x?y e M' .

If for tp&P^.jNfj) and ^^P(@itj M'ij) we set <Ptj=<p\Ni. and
u/ , then

dpi-oEij _ d(9°G)\Mt, __ d<p°

d<P\Ni3 __

and hence G'1 \ N> .=£,-/. Thus
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(2.3) G-^S Pi qjy'tjp, Vj) = g ETfyi qjyijp, q,) for y',j eN' .

For any y'^N', we get F-l(piqJy'pkql)=0 if (i,j)=$=(ks /) and hence

ij

Since Fp,qj=idN.., we have (Fp.q^~l=idNf . Again by [Hi23 1.4],

Pi Q.J = (Fp.qj)~\Pj q^) = F"l(F(pi q^) p> q^pj q^ = ^,-y F~\pi q^)p^ qj ,

So we get F~l(p.q.)p.q—%7}p$q.-. Thus

(2.4) /J-1(/)=S^y1ft^/JP,^ for /

By (2.2)-(2.4), we have

*»j
i — i

So we get the formula (2.1). H

Delnition 2.4, The pair N CM is said to be a connected inclusion if

If zk e S(M) n S(tf) with S^z^- 1 , then Index E= ®k Index E,k. So we
can assume without loss of generality that TV CM is connected.

Let N be of finite index in M and /7 f-^y=t=0. If ^g- Af is a finite factors

then so M/y is since M,.yC/7f.M. Since JV is of finite index in M, Nf.y is also of
finite index in M£y. Thus N^^q^N is a finite factor. Conversely if q. N is
finite, then M^ is also finite since JVfy is of finite index in Mf.y. So/?f=SyA-^y
is a finite projection, i.e., /?,.Af is finite. Hence if TV CM is a connected in-
clusion, then either all of M^. and Nfj are finite or they are infinite.

In the rest of this section we shall fix Ei^8(Mi-, N^) for any (i,j) and
define for [A..] e A

(2-5) /f([^y]) - S Jr/ Illndex ̂ ,.|| and

Note that if £e£(M, JV) is given by [^,y] and EtJ as in Proposition 2.1, then
(2.1) implies |

Lemma 2.5e Let NdM be connected and [A^] e ^1. Iffid^tj]) are not con-
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slant for i, then there exists [*ij]GA such that /Q#y]) </(K-y]).

Proof. We set

} and / = {/; />,?,=*=() for some ie=7} .

By the hypothesis, 7=1= {1, ••• , iw}. Since NdM is connected, there exists ̂ ,
and y0 e / such that /7f.Q q/Q =£ 0. By the definition of J, there exists 7\ e 7 such that

^^0=1=0. For £>0, we define Wy] by «0/0=J<0,0-«, ̂ f1y0=^'i/o+e and ^f/=^
for others. Taking a small e>0, we get [^J/]eyl with

/,0([«/D</([^]) and 4([^y])</([^v]) .

If 7= ft} then/C^^-'])^^^.]). If 7=t= {/,} then we can do the same argument
for 7\{/J instead of /. We get the statement by induction. •

Proposition 2.6. Let NcM be connected. There exists a unique matrix
such that

= min

Moreover yj([^?y]) ^re constant for i.

Proof. The existence of such [^°y]e^i is obvious. Let c=min[X|. ]e>1

)- Suppose /a^1y])=/(Wy])=c for [tijUtidGA. If [^y]=l=Wy], there

exists i0f./0 such that ^}0y0=l=^0y0. Define [^j]^A by ^?y = . Since/:
are strictly convex, we have

In particular

2

Thus by Lemma 2.5 there exists Wj]^A such that/([^-y])</([^-y])<c. This
is a contradiction and hence there uniquely exists [^?y]e^i such that/([^°y])=c.
Lemma 2.5 implies that/j([^?y]) are constant for /. 3

§3. Minimum Index and Entropy KE(M\ N)

Let Nd M be as in the previous section. In this section we shall introduce
the minimum index for NdM and characterize EQ^S(M9 N) having the mi-
nimum index.
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Proposition 3.1. If NdM is connected and N is of finite index in M, then

there exists a unique expectation EQ^8(M, N) such that

||Index£0|| - min {|| Index E||; E^8(M, N)} .

Moreover Index EQ is a scalar multiple of the identity and \\ Index (EQ)p.qj\

Proof. For {Ei}} with Eij^S(Mij, N{j) and [JlV]e/i, we set

„}) = max 2 17} Illndex Eis\\ .

Let CQ=infE<Ee(M,N) || Index E\\. Then by Propositions 2.1 and 2.3,

c0 =inf min

By [Hil], for any (i9j)9 there exists... £?ye£(AflV, #,v) such that 1 1 Index J£?,-|| =

[Af,y:^]o- If {^v}^{^?y}, then for any [^]e^,/(^0.]), {
{̂ •}). So by Proposition 2.6, there exists... [$j]&A such that

c0 = min
c\,]

Thus if E0^S(M9 N) is determined by [A?y] and |E?y} as in Proposition 2.1,
then

Illndex^oH = c0 = min || Index 1£||
E<=G(M,N)

and by Proposition 2.6, Index £"„ is a scalar multiple of the identity. M

Definition 3B2e For a connected inclusion NdM, we define the mini-
mum index [M: N]Q as follows: [M: N]0 = || Index E0\\ if N is of finite index in
M where EQ^<5(M, N) is defined in the preceding proposition, and [M: N]0=°°

if N is not of finite index in M.

Theorem 33. Let NdM be a connected inclusion such that N is of finite

index in M. If Es=G(M, N), then the following conditions are equivalent:
(a) £=£o, i.e., ||Index £0|| =min{|| Index E\\\ E<=£(MS N)} ;
(b) IfE is determined by [Agjl^A and ESJ as in Proposition 2.1, then

(i) ||Index £y||=[M,y: N^for any (i,j\
(ii) Index E is a scalar,

(iii) there exist #f.>0 (/ = 1, ••• , m) and Vj>Q (j=l, •••, ri) such that

^7/ Illndex ̂ 11=^- Vjfor any (i,j);
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(c) There exists (p^8(M} with <po£=<p such that <p°(E~l
 N>(\M)=C'9 1 N'(\Mf°r

some constant c, in fact c=[M: N]0;
(d)

Proof. (a)=^(b). By Proposition 3.1, we can see that (a) implies (i) and
(ii). So we shall show that (a) implies (iii). We set a.. =^f \ [Index Eis\ \ . We
shall prove that if ̂ ^4=0,^^4=0,^^4=0, —,^^4=0,^^4=0, then

We can assume without loss of generality that /*4=// if k^pl. Suppose that

For £>0 and r> 1, we define

and

^o- = *ij for others.

Taking r close to 1, we have

Taking a small e>0, we get [ X ^ ^ ^ A . For 0<s<l, we have

_

In particular,
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s=Qds

ds s=0

Moreover if i $ {4, • • •, 4} > then /J ((1 —s) [^] + s Wj]) =./J([^/]). When
{4> •••j4}= ={lj '"•> m}-> there exists ^£(0, 1) such that/((I—s) [^y]+s[^-])<

/([^i/])- This contradicts E=E0. When {4, • • • , 4} 4={1, ° o ° 3 m}, there exists
5-^(0, 1) such that/f((l—j)[^f.y]+j[^{;-]) are not constant and /((I— s) [^y]+
JW/]=/([^,\D' Then by Lemma 2.5, there exists pjy]eyi such that/([/l'y])<

/([^i/])5 contradicting E=EQ again. So we have o^ aj2jl""aT^k
 asijk— ^ -^ut

we can do the same argument for aT^k
aikjk"'aT2hahh9 anc* ^ence we §et

a*ii'i ai2Ji'"a^*Jk ahh=^' ^e s^a^ from now ^x 4- Since NdM is connect-
ed, for any / there is a path from 4 to /, i.e.,

4 "^Ti ~> 4 —>""-» 4 """^7* "* *'

where 4^7i (als°7i^4) means pikqj[4=0. If there is another path from 4 to i

i > j/ > ir — > o 0 a _ » if > i' —> /

then by the preceding remark, ar^afc/i"-^/^^*^
and hence ar^"^''"^^/^^ So tt^al^a^.-
a~*kJk aHk *s well-defined. Also for any 7, there is a path from 4 to 7"

4 "̂ 7*1 ~* 4 ~*h ~~>a9°~*Jk-i ~* 4 ~*j •

Then by the similar argument, ^j=ai1j1
aT2Jl

ai2j2
a'aa^kh-iaikj *s well-defined.

If/7,-<fo4=0, then there is a path such that

and then

Thus ^ J>y=a,y. We get (iii) of (b).
(b)=^>(a). Assume that E satisfies (b) with [Jf.y]e/i and Eir If there

eixsts [^{y]e/i such that/([A{y])</([J,y]), then by (ii) we have

|([^fy]) for any /. Since /i are convex,
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Since #8->0, 0>S/ (^i/~~^/) vy f°r any '• Hence

0>S S av-^y) ", ̂  S (1-1) "/ = 0 .

This is a contradiction. Since || Index E\\=f([^j])9 we get E=E0 by (i).

(b)=^(c). By taking _ i— if necessary, we can assume S,- v f-=l and hence
2V&

we can get 9 e <?(M) with <poE=-<p such that p(#y) =Vy. If x e (TV' n M)p.qr then
by the proof of Proposition 2.3 we have

K} Hlndex £M|| E,/JC)))

by (i) and (M2) in § 1

= <p(H-\Xlf 1 1 Index Eis\\ E(x)Piq.)) .

Since E(X)=£(JC^)=£(X) qj^Z(N) q^ there exists a eC such that E(x)=aq..
Then 9 (x) = <p (E(x)) =a<p (q.) = ai>.. Also <p (p,) = ^k<p (E(pi qk)) = ^k Zik vk.

So we have

y|| aPi qf))

by (iii)

tt|| by (iii)

- Hlndex £|| ^(x) by (ii) and (2.1).

Hence for any x&N' R M, we get

POE-W) - g K^"^, ?y)) ^ Hlndex £|| 9W .

(c)=i>(b). Assume that 9°(^~1U /nM)=: :C '9l^ /nM f°r some constant c.
Let p(qj)=Vj and x^(N' [\M}p.qj. Since ET}(x)^Z(Mij)9 there eixts
such that ETj'(x)=ap. qjt Then we have since H"\pi qj)=pi

Let Eij(x)=^piqj with £eC. Then 9W=9?(£(x))=^fV /9^.. So by the hy-

pothesis, we have ^J"/ 2& ^ikvka==c'*ijvj ft- This shows that Ejj(x)=c'Ei-(x)
ch2- v

for any jce^fy n M{j where c'= - ^— ̂ -. By (M2) in Section 1, || Index £fV||
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= [Mtj: Jfyl and | [Index Etj\\ =
iJ"J • Thus if we put 0,==-^ - , then

| = 2 3 f ^ - = c for any/.
' J ^k^ik^k

So we get (b).
(d)=Hb). For alV>0, ft..>0 (i = l, ...m\j=\9 •••«) such that alV

Pij>Q, we have

(3.1) S «!V log -Ji> 2 (2 «,v) log |ji^i

A CK • .

where 0 • log — =0. Moreover the equality holds in the above if and only if —^
0 Pa

are constant for j. (This is a special case of the monotonicity of the relative
entropy.)

If we set Vj=v(qj) for <p^£(M) with <poE=<p, then vy>0 and Sy^. = l.
By [Hi2, 4.1, 4.2], letting r](t} = —t log r, f >09 we have

53

,{ (MPi | Np) = 53 V(ft^ ^))+ 53 9M ?y)

where 9,-=9(A-)"191M^- and <p.. =9i(piq3
:} l<Pi\Mir Since E(pi)=^. X.. q.9

lE(Pi)=^j y(*ij) qj and vfyEfa))=5]y ?7(^lV) vy. Since p(/?, ̂ .) =<p(E(Pi gy)) =

9(^,-y ^)=^,v yy 9(^,0=53y ^,-y *y and hence we have <p.(p.q^—iLJ—. Since
2jA ^,-A Vfc

tpijoEf.^ij, we note (see the remark before Theorem 1.3) that K9..(Mij\Ni^
=KE..(Mij|Nif). If we put a,,-exp A^./M,,| ATly), then we get

(3.2) *,(M | tf) = - 53 ̂ y ̂ y lOg J,,- 53 ̂ -y ̂ y log *""*'

Let Ffo,..., vJ = -53^^vy log;^TT?=i—' If ^>0 and Sy(2j^ *ikVk)Aij aij
then there exists <p^<S(M) with <poE=<p such that <p(q^=v^ So we get

- sup {F( 1̂5 .-, ̂ ); v.>0, 53 ^. - 1} .
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Since Fis continuous, there exists 0°)y=i with v°>0, 2y *;y = l such that

Since for any jf

— ("l» • • • > " , - > — ,*,•) Ivy-O = °° >

we have y°>0 for any 7. For simplicity we denote y° =*>,-. Then

KE(M \ N) = - 2 Ztf Vj log V' t
(S^^RvXv

(3.3) < - 2 (2 *<f vf) log s' *" "', i — ^t3-1)
'• I CS* *H *») Sy *</ «iy

= 23 (2 ^o- "y) log 2 Ki "a
i j j

(3.4) < 2 (2 ^« *y) log 2 ^r/ | [Index ^-,|| by Theorem 1.3
j j

(3.5) <S

If KE(M\N)=log 11IndexE\\, then (3.3)-(3.5) are not inequalities but equalities.

By the equality in (3.5), Index E is a scalar. By the equality in (3.4), we get

afV = ||Index E^\\ for any /, j, i.e., ||Index £0.||=[Aff.y: #f.y]0 for any ij by Theo-

rem 1.3. By the equality in (3.3), J^' j are constant for j (see the remark

after (3.1)). So we can get /^>0 such that ^7/ a•|-y=/£i v.. Thus we get (b).

(b)=^(d). Since we can assume 2y"y = lj we can get <p^8(M) with
(poE=<p such that <p(q^=Vj. By the equation (3.2),

K,(M | N) = - 2 *,y ^y log ^^^-ig

== S ^,-y ̂ y log — ^— by (i)

= 5] *ij v j log —k —~L by (iii)

- 2 ^v ̂
 lQg 2 ^/ Illndex Eik\\ by (iii)

by (ii)

= log ||Index E\\ .

So we have ^(Ml^^log ||Index E\\. But we know that KE(M\N)<,
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log 11Index E\\m general (see [Hi2]). Thus KE(M\ N) =log |[Index E\\. •

3A When TV"CM Is not connected9 we can define the minimum
index [M: N]Q by [M: N]Q=J>jl

km,i[Mgk: NZk]Q zk where zl5 • • - , zl are minimal pro-
jections of Z(M)f\Z(N) with 2***=1- If # is of finite index in M9 then
there exists a unique E0^£(M, N) such that Index EQ=[M: N]0. Then condi-
tions (a)-(c) of Theorem 3.3 are equivalent when we modify (ii) of (b) and (c) as
follows:
(ii) Index E<=3>(M)nZ>(N);
(c) There exists <p^8(M) with <po£=<p scuh that <p°(E~1\N^M)=(p(c^)\N^M

for some c<=Z>(M) D 3>(N).

§4 Corollaries

Let NidMi (1 = 1,2) and N CM be von Neumann algebras with finite
dimensional centers. We consider the minimum index as in Remark 3.4.

Corollary 4810 IfNi is of finite index in Mif then

= [M,: N^®[M2: N2]Q

Proof, Let Ei e S(Mi9 N{) be such that Index Ei =[Mi : Nf]Q. By Theorem
3.3 (Remark 3.4), there exists ̂ i^S(Mi) with <pi^Ei=<pi such that ̂ ^(Ej1 \ N^M.)

=9i(c»)\N'iHMi where c,-[M,: N&. Since by [HI23 1.7]

and

(N&NJ n (Mx® Ma) - (tf { H Mx)® (JVf H M2) ,

we have

Since cx® c2eS(M1®M2) n Z(Nl®N2), Theorem 3.3 implies the conclusion.

Corollary 4.28 Let ag be an action of a finite group G on M such that
ag(N)=N for all g^G, and MXL G(resp. Ny<\a G) denote the crossed product
of M (resp, N) by a (resp. a\N). If N is of finite index in M and H is a
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subgroup of G, then

G: tf XL H]Q = njdM: N]0) [G: H]

where n^ is the usual representation of M associated with a. In particular

G: JVXL G]0 = xJLM: N]Q) ,

Proof. Let EQ^<S(M, N) and <p^G(M) with <p°EQ=<p be such that
<po(Eol | N^M)=<p(c>) | N,nM where c=[M: N]Q. Regarding M XL G as a subal-
gebra of M®B(12(G)\ we set £0=£0®^(/2(G))lMx*G. Then £0GS(M^\tt G,
JVXL G) as in [Hi3]. By the same argument as in the factor case ([PP], [Ko],
[Wa]) we can show that there exists a basis {mly ••- , mn} in M for EQ, i.e., x=

Sy-i wy £"0(
wf ^) f°r x^M. Then {^(iwj), •••, ̂ (mj) is a basis in MXL G

for £0, so that (cf. [Wa])

3^00 - S^K) X*JtmjP for

Also define F <==£(# XL G,

= 2 ̂

where xg&N, A(g) = l®Ag and -^ is the left regular representation of G on
/2(G). Let G= U f.i ^gg- be the decomposition of G into the left cosets with
[G: H]=m. Then it follows that Ufa)*, ••- , *(gm)*} is a basis in #XL G for
F. Hence

for

Furthermore, define $e£(M) by #(^)=|G|-12tf6c9(a,W) for ^eM, and
£>e£(MXL G) by ?(2^ec *«.(**) ̂ ))=#(^)« BY the uniqueness of E09 we
see that agoEQoaj1=E0 and hence a^o^j-^aj1 1 N,(}M=Ef1 \ N^M (cf. [Hi2, 3.2]).
This implies that c=^1(l) is a-invariant. Hence

Since

:2>.(*,)*fe)) = ?c|>j
))==17TS

|G| «ee
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we have <j>°F°E0=<p. ff *=S^C *.(*,) Jfe)e(tf XL J^'n(MXI. G), then
we have

- l ( X ) = <po£oloF
m

m n

= p(S S 2] ̂ (w, «^ri(^) ^r^X/w*) ^fel"1 g^-))
^e^ 1 = 1 y=i f

(xe)) = m$(cxe) = mp(nj(c) X) ,

because x« e JV'fW and so a,fo) e #' n M. Finally we have (see [BDH3 3.18])
that M Xloj G and N XI* ^ have finite dimensional centers. So we get the con-
clusion. H
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