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On Algebraic #Cones in Topological
Tensor-Algebras,

I. Basic Properties and Normality

By

Gerald HoFMANN*

Abstract

The concept of algebraic #-cones (alg-% cones) in topological tensor-algebras Eglz] is
introduced. It seems to be useful because the well-known cones such as the cone of positiv-
ity Eg, the cone of reflection positivity (Osterwalder-Schrader cone), and some cones of a-
positivity in QFT with an indefinite metric are examples of alg-# cones.

1t is investigated whether or not the known properties of Eg (e.g., Eg is a proper and
generating cone not satisfying the decomposition property) apply to alg-# cones. For prov-
ing deeper results, the structure of the elements of alg-# cones is analyzed, and certain esti-
mations between the homogeneous components of those elements are proven. Using them,
a detailed investigation of the normality of alg-% cones is given.

Furthermore, the convex hull of finitely many alg-# cones is also considered.

§0. Imtroduction

The motivation of the present investigations comes from axiomatic quan-
tum field theory (QFT). Within the so-called nonlinear program of the alge-
braic approach to QFT there are considered several cones in tensor-algebras
Eg. Such cones are the cone of positivity Eg, [5], [30], the cone of reflection
positivity (Osterwalder-Schrader cone), [25], [29], and the convex hull of both,
[9]. Furthermore, indefinite inner product QFT and gauge field theories in
local (renormalizable) gauges demand some positivity conditions that lead us
to the investigation of the cone of a-positivity, [3], [16], [17], [18]. As a gen-
eralization of all of these cones the concept of algebraic #-cones (alg-# cones)
is introduced (see Examples 2.4).

This series of two papers is devoted to a systematic investigation of the
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structure of such cones. It is shown that these cones share some important
properties which lead to some interesting applications such as i) characteri-
zation of normal topologies on tensor-algebras, ii) explicite description of the
closed hull of alg-# cones, iii) representation of alg-# cones as the convex
hull of their extremal rays, iv) extension of linear functionals to positive ones.
It is worth mentioning that all the results apply also to the convex hull of finitely
many alg-# cones.

More precisely, the well-known results concerning the algebraic structure
of E} (such as Eg is a proper and generating cone for the hermitian part of
Eg, [32]) extent to some families of alg-# cones. However, in order to prove
deeper results, which are especially related to the topological structure of Eg,
the structure of the elements k of alg-# cones has to be investigated in more
detail. There are certain relations between the homogeneous components of
such an element k. If one considers functionals which satisfy some special
properties (Definition 3.1), then certain estimations between those homogene-
ous components are implied, see Theorem 3.3. This generalizes some results
given in [23].

Those estimations are the key for solving the above given problems i):--
iv). Concerning i), sufficient conditions are provided for locally convex (l.c.)
topologies such that a given alg-§ cone is normal (Theorem 4.2). It follows
further that these conditions are also necessary for the normality of a wide and
important class of l.c. topologies (Lemma 4.3, Corollary 4.4). This is a gen-
eralization of the known results for Eg, see [10], [11], [28], [7]. Problems ii),
iii), iv) will be considered in the second paper of this series.

The pattern of the present paper is as follows. For the convenience of
the reader, we will first recall, in Section 1, the for the further considerations
needed definitions and facts from the theory of topological tensor-algebras.
The definition of the class of alg-# cones and some properties connecting the
algebraic structure of Eg with the semi-ordering defined by an alg-§ cone are
given in Section 2, see Theorem 2.3a),---d). The aim of Section 3 is to prove
explicite estimations between the homogeneous components of the elements of
alg-# cones, see Theorem 3.3. Further, there are discussed some interesting
examples such as positive linear functionals, e- and o-semi-norms on tensor-
algebras. The results of Section 3 are used, in Section 4, for a systematic in-
vestigation of the normality of alg-$# cones and of the convex hull of such
cones.
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§1. Preliminaries

For the following let us be given a vector-space E over the field of complex
numbers C, and let

E,=EQEQQE

stand for the n-fold (algebraic) tensor product of E by itself, n&N. The tensor-
algebra Eg over the basic space E is then defined by

Eg = COE,PE,PH--- (direct sum),
i.e., the elements f € Eg are terminating sequences

f= (.ﬁ)!fl: "',fN’ 09 0, "') 5

where f/,€E,, n=0, 1,2, -« (E,=C, E,=F). Further, f, will be called the n-th
homogeneous component of f.
Defining componentwise algebraic operations

(f+8)s =141+8n»
@f)e = 2f0,
(f2)u =r+§” R8s (fi®g, = 8.0 =/08x) >

for f, g€ Eg, n=C (n=0, 1,2, ---), Eg becomes an (associative) algebra with
unity 1=(1, 0,0, --+). If an involution “#*” is given on E, then Eg becomes a
*-algebra by setting

f* = (f:)k) =1k’ '"5f1>‘\;: 0’ 09 "') >
f;k = h(”)*@h(ﬂ—l)*®,,.®h(l)*

for f,=hVQR---QI"EE, (nEN), f¥=/f,, and using antilinearity of . Then,
the cone of positive elements E is defined by

E} = f}f(i)*f(i) ,
i=1

fO<sEgy, MEN.

Let us be given some f=(0, -+, 0, fy,, ***, f,» 0, 0, --:) E Eg, where fy, 0,
Sfu,F0, Ny, N,EN* (N*¥={0, 1, 2, ---}). Then put

Grad (f) = N,, grad (f) = N, for f=0,
Grad (0) = —o0, grad (0) = o0,

where 0=(0, 0, :--)EEg. For f, gE Eg, it follows
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Grad (fg) = Grad (f)+Grad (g), M
grad (fg) = grad (f)+grad (g) , 1)
Grad (f+g)<max{Grad (f), Grad (g)} , 2
grad (f+g)>min{grad (f), grad ()} , @"

where (1), (1') are based on the fact that f,, f,,=0 imply £, & f,, =0, [19, §9.6(4)].
For the following let Q,: Eg— é E; denote the canonical projections,
where E_{ﬂa E, is considered as a subspac;:_;f Eg, i.e., for f=(fy, f1» ***» S5 0, 0, =*)
EEg i't_;'ollows
Q.(f) = (for *+3£, 0,0, ++-)..
Further, a subset M C Eg will be called filtrated, if

2. (M)C M

for all n=0, 1, 2, ---. Furthermore, let

fi = (Os "'50,fm 0,0, “')GE® ’

f,E€E,, and F,={f,, [,EF,}, F,CE,.

For any two l.c. topologies 7, z’, let r<<r’ and <z’ mean that ¢’ is finer
(stronger) than = and that ' is strictly finer than z, respectively.

Assume now that E[¢] is an Lc. space. On E, let us consider the class of
L.c. topologies that are compatible (with the tensor product), see [19; §44.1].
Recall that for every compatible topology ¢, on E,, ¢,<t,<t, follow, where ¢,
and ¢, denote the injective and inductive topology on E,, respectively (n=2, 3,
4, -.+). Further let =, denote the projective topology on E,. Concerning the
equivalence of some of these topologies ¢,, z, and ¢,, we refer to [12]. Let us
further mention that the importance of the inductive topology for applications
to axiomatic QFT was first discussed by J. Alcdntara ([1]).

Let us be given E,[t,] with ¢,<t,<¢,, n=2,3,4,---. An l.c. topology = on
Eg is called an intermediate one, if

TNy = In ©))
for m=0, 1, 2, -+ (;=t, t, denotes the Euclidean topology on C). In order to

define intermediate topologies r on Eg the algebraic structure of Eg defines the
weakest L.c. topology 7, (, ) and the finest L.c. topology zg(,,) such that (3) holds.

Recall that 7g,(,,) is the topology of the direct sum @ E,[1,], and 7, is the
0

m=
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topology which is induced by the topology of the direct product f[ E,[t,] on
m=0

its subspace Eg. Hence an l.c. topology * on Eg is an intermediate one, if

and only if

Tp (1) T TR, (1) -

Let the topologies #,, be defined by the following systems of semi-norms
;‘B(tm) = {fm Qp&':;)(fm)a amEAm} >

where f,,€E,, A, is a set of indices, m=1, 2, 3, -+, and

Bt) = {fo = p"()} »

HEE, p"(fo)=|f,|. Put A,={0}. Then let us introduce a semi-ordering
“<” in 4,, by setting @, <a,, if there is some constant ¢>0 such that

P (fu) < 05 (fu)

m

for all f,,EE,,.

In the following let respectively, RY* and 4 denote the set of all sequences
(7)w=0 and (a,);, such that 7,>0, ¢,E4,. A semi-norm g on Eg is called
graded, if there are t,-continuous semi-norms ¢ on E,(n=0, 1, 2, --+) such that

a(f) = Z ()

for all f=(f4, f3 ***» fx, 0,0, --:)EEg. Further, an l.c. topology = on Eg will
be called graded, if there is a r-defining system % (z) that consists only of graded
semi-norms.

The following definition introduces graded topologies on Eg.

Definition 1.1. Let us be given two sets I'C RY* and BC 4 such that

i) for each u&N* there is a (r,)EI" with 7.>0,

ii) for each u&N* and @.= Ay there is a (8,)EB with a,<Bu.. The
l.c. topology that is defined by the system of semi-norms

{f—= Py (f); T)ET, (@,)EB},

p('Y,,)(w,‘) (f) = 'E Ta pg"”n) (fn)’f:(f(')’ "':fN’ 03 01 "')EE®9 will be denoted by
o', B; B(1,)-

Remarks. a) Conditions i), ii) imply that for each f#0, fEEg, there
are sequences (7,) €I, (¢,)E B such that
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Py)ay (F)>0.

Hence «(I", B; B(¢,)) exists by [19; §18.1(3)]. Further, i) and ii) yield that
=(I', B; B (¢,)) induces the topologies ¢, on the subspaces E,,C Eg (m=0,1,2,-:-).

b) If I';CRY*, B,C 4 (i=1, 2) satisfy i), ii) and also I';CI',, B,C B,, then
T(Fl’ Bl; §B(tn))<1'(1125 Bz; qs(tn))
is immediately implied.

c) Let
I'y=A{(r,)ERY*, r,=£0 holds only for finite many n& N*}. Then

Tp,(t) — T(Pl’a 4; %(tn)) s
e, = t(BY, 4;B(2,)

hold true. Note also that =(I"p, 4; B(¢,)), 7(RY", 4; B (¢,)) do not depend on
the choice of the z,-defining systems $3(¢,) of semi-norms (n=0, 1, 2, -+°).

d) Ift,=e,(m=2,3,4,-), then let us write ¢, and ¢g instead of 7, ; and
7@, () Tespectively. Analogously, #p, ¢p, 7, tg are defined.

e) Let B@)={p"; «,€A4,} be given. Further let 4"=A4,X--- X4, (n fac-

1 2
tors), n=1, 2, 3, ---, denote the set of all multi-indices

a” — (a(lr”), a(zx”)’ oo, a(”r")) ,
atme [, i=1,2,--,n. Set A={0}. Then consider

A = {(@’)7.0; @’ E 47, there exists an a; € 4, such that

am =@ i=1,2,---,nandn=1,2,3, -} .
Further note that the systems of semi-norms
Bew) = PG m®@ @ Polnm; @™ E Ay, i = 1,2, -+, m}

define the injective topologies ¢, on E, (m=2, 3, ---), where

PR @Y (f) = sup{| TOR @T™(f,)|; TOE U

a,€4,i=1,2,:-,m},
UI‘;‘%) ={TE€E'; |T(f)| <pL)f) for all fEE}. Then the l.c. topology
€ = 7(RY", A3 B(e,))

is considered, where B(e)=P (), B(e,)={p"’}. Analogously, the l.c. to-
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pology 7., is introduced. It is straightforward to prove that the topologies
€, T d0 not depend on the choice of the #,-defining system PB(z). Let us
mention that e., was introduced by G. Lassner in the case of the tensor-algebra

Ses [20].

f) For further investigations on regular tensor-algebras and of l.c. topologies
that do not depend on the special choice of $3(¢,), we refer to [7].

g) Note that the following order-relations between the topologies introduced
above are valid:

Tp X, <L 7wy 4)

For a characterization of some of the topological properties of the basic-
space E[t] in terms of the equivalence of some of the topologies given in (4),
we refer to [12].

§2. Definition and Some Properties of alg-§ Cones
Let us be given a subspace

F:

1@

F, (%)

of Eg, where F,C E,. Further, let us consider an antilinear mapping %#: Eg—
Eg which satisfies

fE=f, (©)
(@) = 0./ 6"
for all f€EEg, n=0, 1,2, ---. Notice that # is bijective. Let us put
{F, 8 = {2/ /©; fOSF, MEN} .
i=1

It is immediate that {F, #} is a convex cone (containing its apex 0). In the
following such cones {F, #} will be called alg-# cones. If # satisfies additionally

(fo) =gif? ™

for all f, g& Eg, then {F, #} will be called involutive cone.
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For every subset HC Eg let us define the #-hermitian part of H by

h(H,§) ={f€H;f*=f} .

If H is a subspace, then A(H, 4) is a real vector space. Further, for every in-
volutive cone {F, #} it follows

{F, 8 Ch(Ee, ¥) - (™)

For every subspace HC Eg let L(H, C) (resp. L(H, R)) denote the set of
complex-valued (resp. real-valued) linear functionals on H. If H=H?® (={At;
he H}), then let us consider the set of #-hermitian linear functionals which is
given by

Finally, T € L(Eg, C) is called {F, #}-positive, if T(k)>0 for each k< {F, #}.

As in the well-known theory of *-algebras ([24]) the antilinear bijection
# implies a decomposition of Eg into a “real” and an “imaginary” part. More
precisely, the following hold true.

Lemma 2.1. If the antilinear bijection § satisfies (6), (6"), then the follow-
ing are satisfied.

a) For every subspace HC Eg with H=HE, it follows

i) WH D=L+ feH}={i(f*~f); fEH},

ii) H=h(H, §)+ih(H, §), (where i?=—1).

b) For every T € L(Eg, C),

T=TW4iT®
follows, where T “’(x)zé (T(x)--T(x¥), T(Z)(x)z% (T'(x)—T(x%), xEg, and
i

TO, TO<=I¥Eg, C). Furthermore, there is a linear isomorphism
#: I Eg, C) — L(h(Eg, #), R)

given by w(T)=L, where L(y)=T™(y), yEh(Eg, ).

¢) If TEL(Eg, C)is {F, #}-positive, then

i) T(N=T(f*9).

i) [T’ T(f*f) T(gtg) (Cauchy-Schwarz' inequality) hold for all
f,gEF.

d) If § satisfies (7) in addition, then 1¥=1.

e) If {F,#} is an involutive cone with F=F% and 1EF, then every {F, $}-
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positive linear functional T satisfies T = L¥(F, C).
f) The antilinear mapping # is graded (i.e., fS€E, for all f,EE,), and
(E,)t=E, are satisfied, n=0, 1, 2, +--.

Proof. All the proofs of a)---f) are straightforward and analogous to the
corresponding ones from the theory of *-algebras, see [24; §10. 1, 2].

The tollowing lemma collects some of the central and in the following
frequently used properties of the elements of alg-# cones. For the proof we
refer to [13].

Lemma 2.2. Let us be given an alg-§ cone {F, #} and an element k< {F, #}

M

with k=(Ko, ky, +++, Ky, 0, 0, =)= S} fOR# fD %0, fOEF, i=1,2, ---, M(M EN).
Then, the following hold. o

a) It is Grad(k)=2N (resp. grad(k)=2n), if and only if max{Grad(f®);
i=1,2, -+, M} =N (resp. min{grad(f®¥); i=1, ---, M} =n).

b) If grad(k)=2n and Grad(k)=2N are satisfied, then (T,QT,) (k,,) =0,
(TyQTy) (kyy) =0 hold for each T, L¥E,, C), Ty LY E, C).

c) If the assumptions of b) are satisfied, then there are TocL¥E,, C),
TYELXEy, C) such that (TYQT?) (k;)>0, (TYRT¥) (kop)>0.

Some of the immediate consequences of Lemma 2.2a) are collected in a),
b) of the following remark. In c), d) it will be shown by some examples that the

’ . ..
representation of k& {F, #} as a finite sum >} f®* £ is not unique, and it is
i=1
not necessarily implied that f¥F (i=1,2, ---, M).

Remark. a) If ke {F, #} has two decompositions
b’ n’ . .
k= 31 fORf6) = S gk o) |
i=1 j=1
max{Grad(f¥); i = 1,2, --, M} = max{Grad(g");j=1,2, -, M},
min{grad(f®); i =1, 2, ---, M} = min{grad(g?”’);j=1,2, -, M’}
are implied.

b) If 0=k {F, #}, then grad(k), Grad(k) are even numbers.

c) Assuming dim(F)>2, there is the following example for different decom-
positions of elements k& {F, #}: Choose linearly independent f,gEF, and
consider
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k=2ff+2g'g = (f+&) (f+&)+(f—g)f (/—2). @®)

Noticing that f%f, (f+2)¥ (f+g), and (f—g)f (f—g) are linearly independent,
(8) yields different decompositions of k.

d) Consider (€?)g, F,=C, F,=span {z,}, F,=span {z,}, where z;=x-1iy, z,=
iRx—xRy), x,yER? and X,y are linearly independent. Put F,=0 for
n=3,4, ---. Let us define an antilinear bijection “}” on (C?)g by 1#=1, (u+iv)¥
=u—iv for u, vE R?, and

(w(1)® eos ® w(”))s P W(")“@ “oe ® w(l)s

for wWeC?(j=1,2, ---,n). Setting

f(l) =(1,2,0,0, ), [P =, 0’—2!’_22’ 0,0,:),

g® = (i, y+ix,0,0, ), g2 =(l,0, _% 2,0,0, ),

it follows that

2 : : 2 . .
2 fORD = (2, 2x, xQx+y R, 0, % 24®72, 0,0, ) = 338 gP. @B
i=1 j=1

M . .
Noticing g & F, (8') shows that k= > f% e {F, 4} does not necessarily
: 21
imply fU'EF for all j=1, 2, -+, M. ’

Some of the basic properties connecting the semi-ordering which is in-
duced by an alg-# cone {F, #} with the algebraic structure of the vector space
{F, #} —{F, 4} are collected in the following theorem. Let us mention that in
the case of S (see the following example a)) the assertions b), ¢), €) of the fol-
lowing theorem are due to W. Wyss, [32].

Theorem 2.3. Let us be given an alg-§ cone {F, #}. Then the following are
satisfied.

a) The following are equivalent:

i) There is a certain nE N * with F Cé‘,,,

ii) {F, #} is a filtrated set.

b) {F, 4} is a proper cone.

¢) If1EF and 1¥=1 are satisfied, then

h(F, )C{F, 4 —{F, 4} .
If additionally {F, #} C h(F, #), then
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h(F, ) = {F, 4 —{F. 4 .

d) The following are equivalent:

i) dim (F)=1,

i) {F, #} is a lattice cone in the real vector space {F, #} —{F, #},

iii) {F, #} satisfies the decomposition property.

e) If {F, #} Ch(Eg, #), then {F, #} does not contain any topologically in-
terior points with respect to every t'=tyuzgeu, Where T is an arbitrary lc.
topology on Eg with ep<t<tg.

Proof. a) i)=>ii) is obvious. ii)=>i): Let us assume that {F,#} is a
filtrated set, and i) is not satisfied. Hence, there are 0&f,EF,, 0 f,,EF,,
n<<m, such that f= v,,—i—f:,, EF,f’=if:,+fvaF. Thus,

AR fut+/4® f,+0 )

or

are fulfilled. Using ii), it follows that Q,..(f* /) E{F, 4}, Q,u(f ' f)E {F #},
and

Grad (Q,4w(f4f)) = n+m (10)

or

Grad(Qn+m(f”f’) =n+m,

due to (9) and (9’). Assuming (10) for definiteness, Lemma 2.2a) yields the
existence of r €N and certain g’ = F (i=1, 2, ---, M) such that n-+m=2r and

M

Quen( 1) = 318489,
max{Grad(g¥); i=1,2, .-, M} =r,
Me&N. Choose iye{l, ---, M} with Grad(g%)=r, and consider
fo = ggorf.er.

It follows that f™¥fVe {F, #}, 0, ,(f¥fD)e {F, #}. Arguing as above,
there are r,& N* with m-4-r=2r, and 0=|=}v1,IEF. Itis

r, = (Bm+n)/4.
Applying this procedure k-times, one gets the existence of 0=l=lvz,kEF with

re = (@1 —1) m+-n)[2*" = m—(m—n)[2+* . (11)
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If k>log,(m—n), (11) implies a contradiction to r,E N*.
b) follows readily from Lemma 2.2b), c).
c) IfgE{F, 4§}, then

g = (g+e) = % (A+g)f 1+8)—(1—g)f A—g) € {F, 8} —{F, #

yields the first assertion of ¢). The second is a consequence of
()

h(F, ) CAF, 8} —{F $} Ch(F, ) —h(F, ) = h(F, 8) ,

where it is used in (x) that A(F, #) is a (real) vector space.

e) is a consequence of Lemma 2.2a).

d) ii)=>iii) holds because of [26; V.1.1].
i)=>ii): If dim(F)=1, then {F, #} —{F, #} is isomorphic to R (furnished with
its canonical ordering) as ordered vector-spaces. Hence, {F,#} is a lattice
cone.
iii)=>i): For the following assume that dim(F)>2. Let us consider the alter-

native:
I) There are elements 0+g,€FNE,, 0Fh,EFNE,, n<<m.

II) There is an nE N such that l*!',, =F.
I): Consider a=g¢,+h,, b=g, —}Vz,,,EF. Then,
(@ Dy = G QMW +HaR8,+0 (12)
(otherwise, replace k,, by —ih, EF,). It follows that
Fatbib =2k 5, ik h,),
o a€[0, 238 &,+H )], (13)

where [x, y] denotes the order intervall between x and y. Let c€[0,2 gf g,].
Then,

grad(c) = Grad(c) = 2n (14)
are implied. (Otherwise, in the case of 2s=grad(c) <Grad(c)=2¢ it follows that

s=En or t=n. If s=£n, then there is a certain 7€ L¥E,, C) such that (TQT)
(>0 and

(TOT) (28} &u—c)) = —(T®T) (620)<0.

This is a contradiction to Lemma 2.2b) and 2 g ¢,—c<= {F, #}. If s=n, then
t ==n, and the above given applies to ¢ instead of 5). Analogously, d [0, 2 g%, g,
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implies
grad(d) = Grad(d) =2m. (149
Using (12), (14) and (14"), it follows that
& ack[0, 2 & &,1410, 2 1, ] -

Hence, the decomposition property is not satisfied.
II) Using dim(F)>2, there are linearly independent g, /1, E F, such that

8:Qh, +hH®g,*0. (15)
Setting a,=g,+A,, b,=g,—h,, it follows that
BQa,+bi®b, = 2(gi®g,+HQh,) ,
& 4,E100, 2(8} &, b (16)
Let
cel0,288¢,]. (16"
Applying (14) and Lemma 2.2a), there are u}"”, ---, u € E, such that
Con = f)l uSRQuUH
MeEN. Choose a linearly independent system {1V, ---, v{¥}, v’ &€E,, and an
(M, N)-matrix A such that
u=A4vy,

where u=(", -, uM)t, y=({V, ---, v{")!, rank(4)=N (( . ) denotes the trans-
posed of a vector.). Taking a unitary (N, N)-matrix U=(y;;) with U(4%*4) U*
=diag[suy, -+, #y], #;>0, it follows that

B .

23w Qus) = (W) Qu = (' Q(4*4) v

= N . .

= (Uv)iQdiag[my, -+, uy] (Uy) = 33 #; wiFQwS?,
i=1
. b .
where l_lsz(uszl)s’ "ty uStM)')ta 2‘=(v£tl)’s °tty vSLN)‘)ts WE/)Z(UY),-: ’g uji Vﬁ.’),jzl, 2,
e, N.
Now, if span{wi", -+, w{¥’} #=span{g,}, then choose TEIL¥E,, C) with
T(g,)=0 and T(w{/o’)==0 for a certain j,& {1, --, N}. Then,
(TOT) 2 Q8 —C2) < — | T(Wi)) |2<0

yields a contradiction to (16°) and Lemma 2.2b). Consequently, there is a
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0<¢#<2 such that
c=Cp=088,. an
Analogously, d€[0, 2 l;?,, hv,,,] implies that there is an 0<<A<C2 with
d=dy, =l h, . (17%)
Because of (15), (17) and (17), it follows that
& i, 10,2 8 1410, 2 Hy ]
Hence, the decomposition property is not satisfied. This completes the proof.

Examples 2.4. a) Cone of positivity Eg.
If “4” coincides with the involution “*”” given in §1, then “}#” satisfies (6), (6'),
(7). Hence, Eg={Eg, #} is an involutive cone. Applying Theorem 2.3 and
(7'), it follows that Eg is generating for A(Eg, %) (i.e., h(Eg, ¥x)=E&—E}).
Further, E is neither a filtrated set nor a lattice cone.

b) Cone of reflection positivity (Osterwalder-Schrader cone). Let us con-
sider the Schwartz-space S=8(R?), dEN, d>2, of basic (repidly diminishing)

functions. Put S,=S®--QS (n-times). Further, let = é F s Fo=C and
m=0
G, = {/,ES8,; supp ()T {XxER™; 0<XI< X<+ <X} }

where x;=(x?, x}, -+, xiYER? (i=1,2, -, n),nEN. Let us introduce an
antilinear bijection # on Sg by setting

fsz(fg’fg, "")a
fg = j(‘) P
(fn)s(xli °°% xn) Zf‘n(-i:m s %),

where %,=(—x%, x}, --+, x}™) ER?, — denotes the conjugate complex value of -.
Notice that # satisfies (6), (6), (7). It follows that

) W, P={f€Se; LER, [,=0,n=1,2, -},
i) F¥+9,1¥=1,1€9,

i) AWE, DAL, #—{L. 4,

iv) {Z, 4 Ch(Se, #).

Furthermore, the assertions of Theorem 2.3b),e) do not apply to {<Z,#4}.
{F, 4} is also neither a filtrated set nor a lattice cone.
Let us mention that {<F, #} is the cone of reflection positivity of the Eucli-
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dean approach to axiomatic QFT (e.g., see [25], [29]).

c) Cone of a-positivity of free QED in local gauges.
Let us consider E;,=S(R*)®C* and introduce an antilinear bijection # on Eg
by setting

fA=h,

(fORQ @ fM)F = Q... Q) fVE

FOF = (fGO o fEIR — (—fEO FED ... FED)
fOEE, f¢HeS(RY), i=1,2,,n,j=0,1,2,3, nEN. Then, {Eg, #} is the
cone of a-positivity of the Gupta-Bleuler formulation of free QED, see [4], [17].
Obviously, # satisfies (6), (6'), (7), and thus {Eg, #} is an involutive cone. Fur-
ther, {Fg, #} is generating for 4(Eg, #), Theorem 2.3b), €) apply to {Eg, #}, and

{Eg, #} is neither a filtrated set nor a lattice cone. For further discussions of
the concept of a-positivity we refer to [3], [15], [18].

§3. Estimations Between Homogeneous Components of alg- Cones
To begin with let us discuss the following simple example.

Example. Let us be given the tensor-algebra Cg over the basic space C, its
cone of positive elements Cg, an integer N €N, and a sequence (f™);.;, f® &
C} such that Grad (f™)=2N, f'{¥_1%+0 (n=1, 2, -+) and

lim | f{)] =0.
n>oo
Using now Lemma 2.2a), lim | £§%_,| =0 is implied.
>0
The example given above indicates that there are certain relations between

the homogeneous components of the elements of alg-# cones. The aim of the

present chapter is to prove explicite estimations between those homogeneous
components.

For the following let us be given a sequence (®;)7-o, ®,;>>0, an integer nE N,
and a constant ¢>0. Set

@, = max{w; ;; i+j=m, i+j},
m=1,2,3, .. Let us then define the estimation-sequence (B5(c, ®;))m=n by

B — min{(  2n o)}, (18)

el
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B(

@y = mm{(Zm )s @@rt1) 0ult (18"

m=n, n+1, n+2, -, (If it is clear from the context, then let us write B’
instead of B (c, (@;)).)

Using (18), (18"),
B

2n @,

B;">>( ) >, (19)

B(n 1 ( Bg}’:-)l—l ) > B 2
m+1= Zi(m—{—l) d)m+] m+2 5
m=n, n+1, n+2, -, are implied. Hence, (B{);_, is a monotonously decreas-

ing sequence. Notice also that if ¢c<1, ®;>1 (i=0,1,2, --+), then

B = " () 0, T @i o)

(m, nE N, m>n) follows from (18), (18"), where "]_:[1 cee =

Further, let us define the uniform estimation-sequence (8,,)m-1, Which does
not depent on the upper index “n”’, by setting

B, = min{B{; n=1,2, -+, m} . (20)

Let us be given a functional £ : Eg—C and an alg-# cone {F, #}. Put £,(f,)
:£(.sz)’f;;EEm n=0’ 1: 2, °°

Definition 3.1. The functional £ is called to satisfy condition (A) (con-
cerning {F, #} and (w;)7..), if the following are fulfilled:

(4) I£n(a‘ +b.)| < |£4@) | +1£.06.)]; a, b,EE,, £(0) =0,
(Ay) fz,.(Ef">’®f“))>0 f{eF, MEN,

(Ass) l£n(:I: Py Ef(')"@f“))l
e x .
< 51 0, 0bul SR 1) huk 331D W,
7S
fsi)EE,fgi)EF;, n,r,§ = O: 1’ 2’ *

In the following let us put

L, = (6ol SR D
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M

for n=0, 1, 2, ---, and Lu=0 for u& N'*, Forevery D) /O fO e {F, 4}, fOe
i=1

F (i=1,2, .-+, M), let us consider the matrix

%I = (ars)7.8=0 H

o )
where a,,= > Y@ . Obviously, a,,=+0 is satisfied only for finitely many
i=1
r, SEN¥*,
Immediate consequences of (A;), (A;;;) are the estimations

(Ln/2)2+ En @, By Lr Ls> ( £n(,+§n ars) |
rs
>(Ln/2)z_ 2_ @, O Lr Ls H (21)
r¥s
n=0,1,2, ...
M .
Lemma 3.2. Let us be given k= >\ fO¥ fO = {F, #}, /O F(i=1,2,--, M),
i=1
and a functional £ satisfying condition (A). Then, Grad(k)=2N implies L,=0
Jfor n>N.

Proof. Assume that there is an index »' €V such that »'>N and L, =0.
Using (A)),
xr o .
DOEQf1+0
i=1

is implied. Hence, max {Grad(f®); i=1,2, .-, M} >n’. Applying Lemma
2.2a), Grad (k)>2n">2N follow. But this is a contradiction to the assumption
of the lemma under consideration.

Let us now state and prove the main theorem of this section.

Theorem 3.3. Let us be given an alg-§ cone {F,#} and a functional £ satisfy-
ing condition (A) with respect to {F,#} and a certain sequence (®;)7-o, @®;>0.

M
Further, let there be an element S\ fO¥ fO e {F, #}, fOEF (i=1, 2, -+-, M) such
i=1

that L,<1 for all n=0, 1, 2, ---.
a) If there is an odd index ny& N with

[£a( 2 @) =c>0, (22)
rs=ny
then there exists an even index 2m > ny such that

| £on 0,01 > 2 BED (e, (@) > Bunles (@)
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b) If there is an even index ny=2s, such that (22) is satisfied, and some con-
stant p>0 with

CoP<el Ll 2 al, @2)
rs

then there exists an even index 2m> n, fulfilling
1 c 1 c
. , ——B(»;;;)(__, .>>_B,,,<—, co,.).
on 33, 001 > 859 (5, @) >3 B (4. (@)
c) If there are an even index ny=2s, and two constants ¢>0, 1>8>0

such that
¢ = Lo P> hul 3 @)l @)
r+s= So

then there is an even index 2m>n, with
| 3 )| > B (A=0) €, (@) > Bunl(1—3) &, @)

Proof. a) Assume that the assertion of a) is not valid. Using (22),
(Aiy), and L,<1, it follows that there is an index j, with 1,/2< j; <7, such that

0<e = 14wl 2 a)I< B 0,0,L L,
<(m+1) @, maox{L, L r—{—os = no}y <(my+1) @, Lj, -
Hence,
L,-l/@:J:T%xm:;o’w@(ﬁ%g’)w, (23)
where (18), (19) were applied.
Now, let us be given r indices j,, j,, **+, j, €N such that 1< j,<|fi-1l, i=
1,2,..,r (r€N) and

. ()
Lz >(B,5 )

are satisfied, where |7, | =ji+h+- i, | Jol =0
The following inequalities are valid:
Lo _ % @7,1-1 15, 1+1 L7 1-1 L7041
9 af A r r r
17,1

1
3—2‘ (Lli’,l)2 ]Eﬂ o5 1-1 91700 Lisi-1 Lizia

(2 1

- 1 (n9)
3_2‘ l£2li,| ('+5§2|i‘;’| ars)l <Z le},.r' s
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where the last inequality holds because of the assumption of the proof. Hence,
there is an index j,,, with 1<j,,,<|j,| such that
1 qe iz
n
) 52,‘}’, < Z} @7,1-1 @i5,141 Li7 -1 Liga
<IJ| @az1 Lizoiei, ,, -

Consequently,

T oA -1 p(ng) (19)
Liz, =@\, | o507 B2 >(B]% W2,

2|7;-| 2ITr+1|
where (18), (19) were applied. Hence there is a sequence (s,);-1 §,=| J,|EN,
5 <85,<++, such that

L, >(Bge)>0. 23
(A;) and Lemma 2.2a) imply now a, , =0 and

Grad (3371 )25, 3

M
r=1,2,3,---. But (23"”) is a contradiction to 3} f®¥ f() & Eg,.
i=1

b) For ny=2s, there is an index 1< j,<s, such that

cS(Le)+ X 0,0, L Li<(o+1) 3 0,0, L L,
i+j=25y i+j=2s
i i+s
<(,0+1) 2SO c2‘)250 Lso+io ’

where (21), (22") were used. Setting j,=s,+ j, and using (18), (19),

L; >—c__> le"o) c(n0+1)’ ) 1/2
17 (0+1) 25, @y, B, <(p—|—1)7’l0 (w')>)
o) (€ /2 (29
> (B4 (p+1’ (@) )

are implied. If one considers (24) instead of (23), then the further proof is
analogously to that of a).

¢) (21) and (22”) imply

€= (L P20 Loy ( X )| 207 (L)'= 3 @, 0L, Ly).
r+5=25)

r+s=2s;
r*s
Hence, there is an index j; > s, such that
(1 _6) (Lso)2< 2 @D, O Lr Ls<2SD C?’Zso LJ'1 .

r+s=25,
ris
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It follows further that
Lj,>(1-0) (25, @y) ™ > (BE2((1—-0) ¢, (@) * = (BFR(A—0) ¢, (@), (24)

Considering (24') instead of (23), the further proof is analogously to that of
a). The proof is completed.

Let us consider some examples of functionals £ which satisfy condition
(A).

Examples 3.4. a) Let us be given an {F, #}-positive and linear functional
T==0 on Eg. Then, T satisfies (A) with respect to {F, 4} and (®,)7-0, @;=1.

Proof. (A;) and (A, are obviously satisfied. For f{)&€F,, f{)EF,,
i=1,2, -, M, (r, s, h& N*), the estimations

Tk 2 2R < 5 3 IT(sP

rs rs
< 3 3OS TR S
rs

< 3 (GA/PR ) Tl /4@ f 9

rEs

yield (A;;;), where Lemma 2.1c) ii) and the Cauchy-Schwarz inequality were
used.

b) Let us be given a semi-scalar product -, -> and an antilinear bijection
# on E, such that

{foo g =< e

for all f;, g,€E,. For each nEN, n>=2, let us be given a permutation z(-) of
{1,2, ---,n}. Then, let us define an antilinear bijection # on E, by setting

7

i =3 fEWR)... @ frmE (25)

i=1
for f,= Zr‘,f“"')@---@f'(""" E€E,, fY"YEE,. Notice that # satisfies (6), (6").
i=1
Let us put sO(.ﬁ))z l f(‘)l ’ Sl(fl):'<f‘1,f1>1/2-.ﬁ)EEOs fiEEla and

sn(fn) = (s1®c'"' ®a' Sl) (fn) = (<fu’fﬂ>)1/2
=( %} Z:': WD, LD fimi)| fomiySylz
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n=2, 3,4, ---. Further, let us be given a subspace F C Eg satisfying (5). Then,
the semi-norm

J=s(f) =25/
satisfies condition (A) with respect to {F, #} and (®,)7.0, @;=1.

Proof. (A;) and (A;;) are obviously fulfilled. (Aj;) follows from the fol-
lowing estimations:

Guenl S/IRSDN = 31 SITOTT S, 1
<(3 5 KA 1A 33 1K F0> 9

= 5, SR 1L) 5 BB

-

where the Cauchy-Schwarz inequality is used, n, m& N *.

c) Let us be given a semi-norm f;—>r,(f;) on E, such that r,(f)=n(f), LE
E,. Further, let the anti-linear bijection # satisfy (6), (6"), (25). Let us put
rn(fn):(rl®e"'®! rl) (fn)’f;tEEn (’1:2’ 3, "')a ro(f(.)): l .f(‘) I s .f(l!EEo’ and

M) = )

fEEg. Then, the semi-norm f—r(f) satisfies condition (A) with respect to
{F, #} and ()70, ®;=1.

Proof. The validity of (4,), (A;;) is evident. (A;;) is a consequence of
the following estimations:

Cuenl SRS
— Gup{| 33 LU S,/ s T,EUS,, Su UL}
<sup{ 3} | T/ TLEUS} sup{ 31 IS.U/4)1% Swe UL}
Z SRR S na SO ),

where U7 denotes the polar set concerning the semi-norm r, in E;. ((*): Set-
ting T3( /) =T,(f}) and using r,(f)=r(f}), LEE,, it follows that T;€ U}, if and
only if T4€U?,. This implies that 7,EU y if and only if i€ U;, for n=
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2,3,4, -, TYf,) =T/}, f,EE,. It follows that
r SR P) = supl] 2 T T3 T,, T, UL
— sup{| 3 THTP) U5 Th T,e UL}
= sup{ 3} | T,/ Te UL}

Treating the second factor on the left-hand side of (¥) in the same way, () is
implied.)

Now, let us be given two sequences (@,)r-0, (d,)n0 Of reals with @,, d,>0.
Further, let us consider the diagonalized matrix D=diag [d,, d,, 4,, ---]. Let
A, »» denote the set of all the sequences (@,);_o With @,>0, a,,;=0 (s=0, 1, 2,
---) such that the inequality of matrices G> D is satisfied, where

T q 0 —wyw,a, 0 —w, 0, a, 0 ]
G = 0 &, 0 @, W3¢y 0 — @ W5 g ece (26)
—wyw,a, 0 a, 0 —w, 0,0 0

(In 3.6 there it will be shown that %, »=+0.)
For every functional S: Eg—C let us set

1516, = 2 ol Sealfe) | (26)

where S,,(f,,)=S(f:,), f=(fo, =+, f3, 0,0, - )EEg. (If it is clear from the con-
text, then let us drop the index of ||-||.) If S satisfies (A;) ,then

IL+gll<If1I+llgll @7
is immediately implied.
Further, let us put
Aup =S+t Sk 28)
r=1 r=1

0
for 0<u< oo and nE N*, where X r*=0. Obviously, #>1 yields 4, ,<<oo for

r=1

each nN*. It holds also 2“’ r~*=¢(x) (Riemann’s é-function), and
r=1

I Y (28')
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where Ru(n)= i ZL <2 # 1) B,, n*~#*1 and B, denote Bernoulli’s numbers
r=22r \2r—

(see [8; 0.233, 0.121, 9.71]).

2
If 1<2<2, then = <&(x)< oo and |Ru(n)|—0 as n—>co. Hence, there is
an n’ € N such that

[Ru(n)| <1 (28")
for all n>n'.

Theorem 3.5. Let us be given an alg-§ cone {F, #} in a tensor-algebra Eg.
Let (w,), (d,) be sequences as described above. Further, let the functional £
Eg—C satisfy (A) with respect to {F, §} and (w,).

8) I (@50 €Ny 0 then

R LI Ollg (o

forfO€F,i=1,2,--, M (MEN).
b) Itis

I ,,i;o £n(,§n éfgi)‘®.f(si))l < ,‘2:0(1—’_14",/" Q)ﬁ) (L”)z

where 1 <u<oo, fOEF, i=1,2, -+, M.

Proof. a) Let us put x=(L,, L,, L,, -+-)*. Lemma 3.2 implies that there
are only finitely many nEN* with L,=0. The proof of a) is now a conse-
quence of

oo M . . hiad
2@y, | Lo 3 DR Zx Gx=xt Dx =3 dy(L,),
7n=0 r+s=2ni=1 n=0

where (21), (26) were used.
b) follows from

|33 £ 3 SR 1)

r+s=ni=1

co

<22 S (=) o, Ls—r)" o, L+ 3 (L)
n=1r+s=n n=0

< @I+ 3 B0, LI+~ L))
oo o IS o
< g_o (L )+ ”Z_OA,,_,L(Q)” L) = ’E) (A4, p 02) (L) .
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3.6. Construction of a sequence (@,);-0E N, 4)

At first let us prove the following.

Lemma. Let us be given an hermitian matrix H =(h“)§" i=0s By ;E€C, and a
sequence (c,)nso of reals with ¢,=0, ¢,, >0, m=1,2,3

Let us put
S by i S 20, ¢,>0,
j=0 j=o
Xy =1 lf -7 — B Cn=0,
[ 0 . n-1

i 5 1y 17 =0

n=1,2,3, . If >} x,<co, then the matrix-inequality K<H follows, where
n=1
K=(k5))7 j-0,

hi—ci— D%, if i=j, i=0,1,2 -,
kﬁj == r=i+1
0 if is].
Proof. Assume that i‘, Xpy < 0.
m=1

For every sequence (a;)7-0, ¢;EC, and
each ne IV the following estimations are satisfied:

S hi; 8,0, = 2 iy 8, 6+ hay |0, |2+ 2Re (2 By 3, 2))
#,7=0 i,j=0 j=

(%)
2

M i

'di aj+hun,an[2

I

_cnlanlz_cﬂll Zh

0
1

: &
1

nj JIZ (29)
n—-1
oh i @ a;—x, (};0 Iaj|2)+(hnn_cn)lan]2 .

Let us be given b=(b,, b,
many | € N*.

RY,

.

-++)!, where b;&C and b;=0 for all but finitely
Then, there is an N €N such that b;=0 for j> N, and

N
b*Hb Z_‘, i 0: b;
r-
”2=0h., b, ,_xN(E |b; |2)+(h1v1v_czv)lb1v‘z>
N i=1
== 2x( X b iz)+2(h,, —¢) | b;|*+hoo| bo |*

N
= | bo|*(heo— E x)+ g‘; [b; [z(hji—cj—ﬂ%lx,)-{— [by | My y—cn)

> 10yl h— 333+ 3 1b, 10k,

c_,— Zxr)
r=j+1
=b*Kb,
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where b*=(by, by, --+), and (29) were applied.
(Proof of (%). If ¢,>0, then (%) is a consequence of

n-1 . . m-1
l2Re(ﬁnj§ hyja)| <2|(Ve, a,) (Ve, 'ligo haja;)l
<c,la e B b,y a0
j=o
If ¢,=0, then 2” x, < oo yields
n=1
n—1 n—1 n-1
l Ehnj ajlzg 2 Ihnjlzz lai P = 09
ji=0 i=0 i=0

where ¢;?| ”5__,% hy; a;|*=0.)
j=o

Let us be given sequences (w,);-¢, (d,)n-0 as above. Further let > 1.
us put
szks = Wy max{wz(t—s); = S, S+1, "t 2S—l}" § = 13 25 3’ “tt

OF 1 = 0,y Max{wy_py41s t =1, r+1, -, 2r—2}, r=2,3,4,--.
Let us then recursively define sequences (@,)x-0, (¢,)r=0 DY

¢ =1¢,=0, @y = dy—*—f(ﬂ)—l, Apg—1 = 0,
Xy = ds+cs+ > m™,
m=s+1
R
Cas = (25) (@F5) 22} la;|?,
j=2s

4r—4
Cor-1 = (2)‘——1)"' ((l);k,._l)z 22 lC!J.lz )
j=2r

s=1,2,3, -+, r=2,3,4, .

479

Let

(30)

For showing (@,)7-0 €U, 4) let us consider the matrix G from (26) instead

of H in the above given Lemma. It follows that x;=0 and
o _145-2 2< _1 * 45—2 2 2 —p
Xps = (Cas) 225 la’,‘—z.s e ;|2 <3, 0F Ez Ia,‘l = (25)7*,
j= j=2s
_147"'4 2
Xpp-1 = (C2p-1) jEz | @ ;-3p11 @y a,
=2r

4r—4
'—<—(CZr—1)—1 w;kr—l 22 Iaj | LR (2r_1)—l-’~ ,
J=2r

s=1,2,3, -, r=2,3,4, ---. Hence é x,<cc, and the above given Lemma
n=1
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implies K <G, where K=(k; ;)7 j-o,

r=i+1

k —{“2,—c,.~§x, if i=ji=0,12-,
Y 0 if Q).

Using

o (30)
kyzay—c;— 1t =4,

r=i+1

i=0,1, 2, .-, it follows that diag|[d,, d,, ---]<K. Hence, diagld,, 4, ---1<G.
This proves (2,)y-0 € ey, 4)-

Now, let us be given / alg-§# cones {F®, #}, s=1, 2, ---, /, in a tensor-algebra
Eg. The following is aimed at an extension of the results given above to the
convex hull

3 {FO, 4 (1)

x, ) .

For a given functional £: Eg—C, and >!a'%9% g9 {FO g1 a9 F®,
i=1

i=1,2, v, M, (M,EN) set

M’ . .
LY = (Lol S - h@aii )y,
! X . .
R O

Let us modify condition (A) for the convex hull (31) by replacing (A;), (A;y;)
by

1 Mg . . X
(AL L2 2 ai-%Qai9)>0 forall a“9eF®,
s=1 =1

Af) | £u(r-§=":2=1 '5‘;1 A @) |

r¥k
1,... 1.
< E CD,Cl)kL(,’ 'I)Lg' ’l),

r+k=n

r$k

a(ri,s)ngs), al(bi,s)EF%s) =120, nr,k=0,1,2,---.

If £ satisfies (A’) with respect to the convex hull (31), then the following
analogous statement to (21) holds true:

[V Pt VORI

=n s=1 i=1
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> 3 o, 0 LD LD, (32)
r-:;:n
n=0,1,2, ---. Furthermore, the corresponding assertions to Theorem 3.3 ap-
ply also to (31).

A discussion of (A’) is given by the following.

Lemma 3.6. Let us be given | alg-§ cones {F9,#},s=1,2,---,1, in a

tensoralgebra Eg. If £ satisfies (A) for each {F®, #}, and if further there is a
sequence (e,)s=o0, €,>>0, such that
1

3 LO<e, L0,

s=1
n=0, 1, 2, ---, then the convex hull (31) satisfies (A').

Proof. Assuming that (A) is satisfied for each {F,#,} with (@{)x_,,
let us put
op = ep sup{el?; s=1,2, -+, [},
#€N*. The assertion to be shown is now a consequence of the following
estimations:

1

FA@I DY 1:2‘.1 & hQafi) |

r+k=n s=1
r¥k
7 M i) G
<A(S S dR@d)|
s=1 r+k=ni=1
=k
<3 3 ol L9 of If?
T s=1rik=n
rk

I ]
< 3 (D L) (3 of L)
s=1

_r+k=n s=1

rkk
< ST @, @ LD D)
r:’;—-n

Example 3.7. Let us consider the convex hull of the cone of positivity
8% and that of reflection positivity {&, #} in Sg, see Example 2.4. Let us men-
tion that this convex hull is used in the axiomatic approach to Euclidean QFT
given by G. Hegerfeldt ([9]).

For each m& N* let us consider the norm

f= () = B,
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S €8s, where

() = sup max | W £(xy, e, x|

xER” rim

"M

wimd — 1T (+GAP)” 00xd)h, rdeN¥, 5 = (o, v, i) ER'

(In the following let us abbreviate Wf,m” ) by W,.) Recall also that the system
of norms {p{™; m=0, 1, 2, -+-} defines the well-known topology on the Schwartz-
space S,. Further, let g,Q f,, 8, €S,,/,ES,, be identified with the function
g (%1, ++*5 X)) [(Xrats 05 Xr46) E Sy

For given a® €Sg, b €F, me N* let us put

L = (o (33 ™ @a")",
i=1

L® = (o (3 BB,
ji=1
V' . M .

LD = (4 (3 S*@ai )+ 3 BB,
i=1 i=1
n=0,1, 2, ---. Setting

AZn = {xERZd”; Xy = Xous Xg = Xgp—15 °*"» Xy = xn+l} >
Zyy = {xERY"; X3 < <XI<O0<x0 1 < - < X2}

it follows

H : 3
Lgtl) = (sup max ] VVZn( 2 a§,’ )(xm °tts xl) asz, )(xn+17 °ts xZn)) | )112 ’
zEJz" riLSm i=1

supp ( jﬁ: brQbC Z,, . (33)
j=1
Then,

M ; .
p (S S1a*@al)
r+s=ni=1
73S
k) M )
< E (Sup max(z I Wr a‘,’) (xh _._’x’)IZ)

res=n x = Rdn ri<m i=1

s
X ;
( 2 I Ws a(st) (xr+1, “ty x”)IZ))llz = 2 Ls'l) L(sl)
i=1 r+s=n
f¢$

imply that (Ay;;) is satisfied for Sg, where the triangle and the Cauchy-Schwarz
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inequality are used in (*). Analogously,

A3 SRS 3 L LY
r+s=n j=1 r+s=n
r¥s ’ s
follows, i.e., (Ay;) is also satisfied for {<, #}, n, m=0, 1,2, ---. Hence, Con-

dition (A) is satisfied for both §g and {Z, 4} .

The following lemma shows that Lemma 3.6 applies to the convex hull
Se+1<, 4}

Lemma. It holds L{"+LP <~/ 2 L, LP+LAOL(1++/2) LD, n=
1,23, .

Proof. If n=0, then the assertion under consideration is implied by the
inequality between arithmetic and geometric mean. Noticing Z,, N 4,,=@, (33)
implies

LO<Ig”, (34

n=1,2,3, ---. Applying the triangle inequality to the definition of L{"?, it
follows

LD > | (LPR—(LPR 2. (34)
Let us consider i) L <LV, ii) LP < L.  If i) applies, then (34) yields the as-
sertion to be shown. In case of ii), the inequalities
(LEDP > (LPP— L= LPP (LY,
L+ LB L4/ 2 L&A+ 2) LD

follow from (34), (34'). This completes the proof.

Let us mention that there are examples such that the equality signs apply
to the estimations in the above given lemma.

§4. On the Normality of alg-§ Cones

This section is devoted to a systematic investigation of the normality of
alg-# cones and of the convex hull of such cones in topological tensor-algebras
Egl[r]. Recall that the concept of normality is a central one in the theory of
semi-ordered topological vector-spaces (since it connects the semi-ordering in-
duced by the cone under consideration with the topological structure of the
underlying vector-space), and it has some interesting applications such as i)
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characterization of AO*-algebras ([27], [11], [22]), ii)) decomposition of con-
tinuous linear functionals into the difference of positive and continuous ones
([26], [33]), iii) characterization of state-related ideals ([34], [14]).

For a given alg-# cone {F, #}, let us introduce conditions which prove
to be sufficient for the normality of the cone under consideration. Concerning
a very large class of Lc. topologies it will be shown that these conditions are also
necessary for the normality of {F, #}.

Definition 4.1. Let us be given an alg-# cone in a topological tensor-algebra
Eg[z]. Then, = will be called to satisfy condition (B) w.r.t. {F, #}, if there is a
system of semi-norms PP (z) that defines z, and for each p=P () there are two
sequences of reals (®,)n-0, (@s)neo, @,>0, d,>1, and a constant 2, 1<2<2,
such that
(B, p satisfies condition (A) w.r.t. {F, #} and (®,),

Bo) 2SR SN, p(( SR 1))

for all fPEF (i=1,2, -, M"), M<M' (M, M'EN), n=0, 1,2, ---,
By for (8,)7-0, B,=d,(1+(1+n"*") wf), there is a sequence (@,)7.cE Uy, g
such that f—|| f1l(s, (s, f € Eg, is r-continuous.

Theorem 4.2. Let us be given an alg-§ cone {F, 4} in a topological tensor-
algebra Eg[t). If t satisfies (B), then {F, #} is v-normal.

Proof. Consider any semi-norm p&%3(zr), where B(r) is given in Defini-
tion 4.1. It will be shown that for

U= {g€Eg; p(g)<1}

there are a 0-neighborhood ¥V of = and a constant 0>0 such that [V]Cpe U,
where [V]=(V+{F, #}) N (V—{F, §}) denotes the {F, #}-saturated hull of V.
Setting p(g)=max{p(g), |Igll(;,u,n}> §E Eg, and using (By;) it follows that

V= {g€Eg; p(g)<1}

is a 0-neighborhood of r. Let us be given any f €[V]. Then, there are k&
{F, #} and v? &V, i=1, 2, such that

F=kO4y® =@ O

M . A M . . )
For k0= S1aW¥ g (@ = SV ¥ g, M'>M, a® EF, let us put
i=1

i=M+1
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L, = (5 &R,
Li = (p(( 5} @)™,
n=0, 1,2, .--. (B;;) implies
L,<vd, L.
For 2 given in Definition 4.1 let us set

j{;\ = sup{]R}‘(n)l ;n=0,1,2, "'} ’

where R, (n) is taken from (28'). (28") implies ., <co. The following estima-
tions are valid:

PUFY< PUD)-Ep(0) K 1+p(kD) <1+ 33 p(KsY)

(k) o
SI+ 3 (144, 00) L
n=0

oo A+1 A ]_n}\—l
<1+ (1 N+ n 2y 1.2
> (1 ( )+z+1+2+ 5 ) @5)

+ 3 IR |of L
oo A—
<+ 3 AHE@+ 247 2

+—+

= L2
PSR TR

SHA+0) 3 1+ -3 n) o)) 1
P EREAYIC S (1+(1+r) o) L)
SLHI+IL) € () 3 d,(1+(L+nM) o) (LiY

©)
<1+, EQ) D +ED][¢5, 00
)
<14+2(1+4,) Q) .
Hence, [V]C(142(144,) £(2) U. Thus, the theorem under consideration is

shown.
((x) follows from p(v®)<< p(vW)<1. (%*) is a consequence of Theorem 3.5b).

. . A+1 n nh—-l 3 .
(4) is yielded by 0 +?—!————<—2~ n1, where ne N*, 1<2<2. (++)is

n
24 12

a consequence of ~7§<6 ()<oo and £QQ) 1+n*)>E (Z)—I—% 1 (§) follows

from Theorem 3.5a). (#4) is implied by
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IED+ED]| = [y —y O] <[]+l <2)

The following is aimed at a discussion of (B;) and (B;;). It will be shown
that for a large class of alg-# cones, (B;) and (B;;) are also necessary for the
normality of these cones. Furthermore, a special class of l.c. topologies will be
distinguished such that (B;) and (B;;) are even equivalent to the normality of the
cones under consideration.

Lemma 4.3. Let us be given a topological tensor-algebra Eg[r] and an alg-§
cone {F, #} such that {F, #} Ch(Eg, #), and the mapping % is v-continuous. If
{F, #} is -normal, then (B,) and (B,,) are satisfied.

Proof. The proof is based on some ideas from [28; Theorem 3]. Using
Lemma 2.1a), the r-continuity of # implies the topological direct decomposition

Eglt] = h(Eg, P[] D i h(Ee, ) [r],

(for a definition of z’, see Theorem 2.3e¢)).
The r-normality of {F, #} yields that ' is defined on A(Eg, #) by the system of
semi-norms P={p q;; MM}, where

pa(f) = sup{| T(N)|; TeM ,

fEh(Eg, #), and M denotes the set of all the weakly bounded subsets of
{F, #}-positive and z’-continuous, real linear functionals on A(Eg, #), see [26;
Vv.3.3, Cor. 1].

Consider f{EF,, f{"EF, (i=1,2, ---, M, M €N, and put

G =3RS,
r,s€N*, Foreach HIN,
Paa,) = sup{| S TR )5 TE My
Ssup{ 3T TR WY) TR SN T H)
Ssup{( 3 TUSIR SN TSR fINP; T e Hy
<sup{( 33 TSR FMI; T € Hy
sup{( 3} T(/A'® fMP T SHy

= (P jl'l(éﬂ) Dy (‘vzss))lﬂ



ON ALGEBRAIC #-CONES 487

are implied. Thus

P 3 BRSNS S p )
ras ras
< 3 Paulln) PG
raps
follow for each me N*. Hence (B)) is satisfied, where (@,);-¢, w,=1. The
validity of (B;;) with d,=1 (n=0, 1, 2, --+) is a consequence of

PSSR INY) = sup{ 5 TR S4V); TE M
(k3k) M/ . . x o .
<sup{ TR S4); TE M = pa( B/,

where f\OEF, i=1,2, -, M', M<M', n=0, 1,2, ---.
M M
((+) follows from Lemma 2.1c). (%) is a consequence of >} (g; b,)*<( X3
i=1 i,j=1

a; b2, where ,>0, ;>0 (i=1,2, -, M). (%) is yielded by the {F, #}-

positivity of 7 H.)

An immediate consequence of Theorem 4.2 and Lemma 4.3 is the follow-
ing.

Corollary 4.4. Let us be given an alg-# cone {F, #} in a topological tensor-
algebra Eg[t] such that the assumptions of Lemma 4.3 are satisfied. Further, let ev-
ery system of semi-norms (), which defines z, satisfy the following: For each p&
B(z) and each sequence (r,)ERY", the semi-norm f—>3 r,, p(f;,,), fEEsg, is also

n=0

t-continuous. Then, {F, §} is t-normal if and only if there is a system of semi-
norms B that defines = and satisfies (B;), (By;).

Remark. The further assumption of Corolary 4.4 is satisfied for the topo-
logies ep, Tp, tp, Ew, Tw, Eg, Tg, Le, Which are given in (4).

Condition (B;;;) is discussed by the following lemma and the remark to it.
It is shown that, in the case of a filtrated alg-# cone {F, §}, there are l.c. to-

pologies = on Eg such that {F, 4} is r-normal, and however, (B;;;) is not satis-
fied.

Lemma 4.5. Let us be given a filtrated alg-§ cone in a topological tensor-
algebra Eg[r]. Further, let (By) be satisfied. Then, {F, #} is t-normal.

Proof. Using Theorem 2.3a) and Lemma 2.1f), there is an n&N* such
that
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{F,#CE,. 35)

Take any r-continuous semi-norm p, and consider U={g€ Eg; p(g)<<1}. If
hE[U], then there are uV €U, k"€ {F, #} (i=1,2) such that h=uV+k®=
u®—k®, Hence,

A< pu®)+p(®)< 14y, pD+K2)
= l+d,, pu® —u®) <1424,
are implied. Thus, [U]C(1+24,,)U. This proves the lemma under consi-
deration.

Remarks. a) The filtratedness of {F, #} implies that (B;) is satisfied.

b) If # is continuous on Ej[#] and fulfils in addition (25), then every
filtrated alg-# cone is normal with respect to every l.c. topology r which
satisfies €, <7< ég.

Proof. Using the continuity of #, there is a system of semi-norms P(z)
that defines ¢, and satisfies p,(g})=p,(g,) for all p,eB(¢), &;EE,. Note that
TIEg, — Con s

where # is taken from (35). Using now that

{P2n =P R ®.p (2n factors); peP()} (36)

defines ¢,,, an analogous consideration as in (*) of the proof of Example 3.4c)
yields that (B;;) is satisfied. Lemma 4.5 implies finally the assertion to be
shown.

c) Obviously, there are l.c. topologies 7 on Eg such that the assumptions
of b) are satisfied, and however, (B;;;) does not apply. As a concrete example
take

B = > 2puf)s nEBWI,
Pa =pl®e"'®ep1 (l’l faCtOI'S), n=1,2, "'91’0(/(‘)):]](‘)' .

In the case of involutive cones let us construct some examples of normal
topologies. For Eg, normal topologies are also considered in [10], [11] [22],
[281, [33].

Example 4.6. Let us be given an l.c. space Eyft,], a set of semi-norms (¢,) =
{p®; a=A;} which defines #; (4, denotes a directed set of indices), and an
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involutive cone {F, #} in Eg. Further, let
P (f) =p(Y
for all e 4,, i€ E, For each sequence ()7, =(4,)" with
PORKPHK -, 37
[iEE, let us consider the semi-norm f,—¢(f,), fLEE, (n=l,2, ), where

D1 PsQeDs Qe Qepi(f,) for n=2s

E(“)(f”) B {p1®e"'®eps®eps+1®eps®e'"®gp1(f,,) for n=2s-+1.

For each sequence (7,) € RY", let us define the semi-norm

e = Draeaf)
fEEs, cw(D=1Al .

If ' C RY" satisfies Definition 1.1i), and BC (4,)¥ fulfils that for each a&
Ay, kE N there is some (8°)7., =B with B*>a, then let us introduce a graded

topology ¢r 5 on Eg by
{em @i (r)ET, (@))€ B},
see Definition 1.1. Notice also that
ér.Blg, = €a

n=0,1,2,.-), e,=t,, ¢, denotes the Euclidean toplogy on E,.
Let us say that I" satisfies condition (N), if for each (r,)I" the following
are fulfilled:

(Ni) 1= TOSTISTS -,

(Ni)  7ew=max{(us )72 i=0, 1, -+, m—1}, m=1, 2, -+,

(N;;;) there are two constants ¢>0, 1<<2<2 and two sequences (7)) T,
(k)r0€U, 8y, B8,=2+n*", w,=1, such that r,k,<cr;, n=0,1,
2, e

Lemma. If I' satisfies (N), then {F, #} is ¢ g-normal.

Proof. For each (r,)ET, (¢')E B, the following estimations are valid:

€ <~n<¢)((l_+:E=” é FURR FUNV)

rs
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¥ )
< 3 (SR
r+s=n ji=
rEs
) x o . ¥y Sy
< X Tn(5<w>((j21f‘r”*®f‘/’) )5<¢>((_21f§”’®f‘s“) ek
r+s=n = j=
r¥s
+) M . Y M . Y
< X (E(yx,)((jiif‘/"@f ) )6(1)(a)((21f PRQ )N,
r+s=n = j=
r¥s
SOEF, j=1,2,--, M. Hence &), satisfies (A) with @,=1 (#=0, 1,2, ---).
Thus (B;) applies. Further, for each (¢®)eB, M'>M (M, M’ €N) it follows

M . .
€ (m)(?‘:lf YRR L)
= sup{lﬁ TOQ--QT(fHQf)|; TO, T ey,
i=1,2,+,n}

(%%) o . )
—sup{S) |TO Q- @ TW(fP) |2 TVEUY, i=1,2, -, n}
j=1
M’ ) )
<sup{D} [TOQR-Q TW(f)|% THESU%, i=1,2,-,n}
j=1
'M/ : .
= ¢ (DR,
7=

where fvﬁ,")EF, Uli={TEE"; |T(f)| < p“(f) for all fEE}. Hence, (B;)
applies, where d,=1 (n=0, 1, 2, ---). Finally, (N,;;) yields (B,;;). Using Theo-
rem 4.2, the lemma under consideration is shown.
((x) follows from (37) and an analogous consideration as given in Example 3.4c).
(+) is a consequence of 7, <min{(r,,7,)"?; r-+s=m}, which is implied by (N;).
(x%) follows analogously to equation (x) of Example 3.4c).)

Remarks. a) Setting B.={(¢'),_,=(4)?; a*=a?=..-}, it follows that
€pN* p_=¢.. Further, there is a I' which satisfies (N) and fulfils ¢, 5 =¢o.

Thus, {F, #} is é=-normal. The e.-normality of S3 was first shown in [22].

b) Let the antilinear bijection # be continuous on E,[#] and satisfy (25).
Arguing as above, it follows that every alg-§ cone {F, #} is ¢..-normal.

¢) If the o-topologies exist on E, (n=2, 3, -+-), then all the considerations
of the present example apply also to g-topologies.

Because ¢g is well-adapted to the structure of Eg considered as an l.c.
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space, it is of interest to investigate whether or not a given alg-§ cone is eg-
normal. In the case of &g, this question was answered by G. Lassner in [22].
The following considers E §.

Theorem 4.7. Let us be given an l.c. space E|[t;] such that t, is metrizable
and the involution f— f¥, A€ E,, is t;-continuous. Then, the following are equi-
valent.

i) Eg is eg-normal,
ii) Ey[t] is normable.

Proof. i)=>i): Assuming ii), ég=c¢.. follows from [12]. Then, i) is a con-
sequence of Remark a) to Example 4.6.
i)=>ii): The proof uses the following two assertions.

() If T denotes an sg-continuous and positive linear functional on Eg, then
the mapping

Ar:Egleg] X Egleg]—>C
is jointly continuous, where A.(f, g)=T(f* g), f, gE Es.

(I) If E\t,] is metrizable but non-normable, then there is an eg-continuous
linear functional S on Eg such that Ag is not jointly continuous.

Assume now that i) is satisfied, and that ii) does not apply. Take a linear
functional S from (II). Using i), there are eg-continuous and positive linear
functionals 79, j=1, ---, 4, such that

S = T(l) _T(2)+i(T(3) _T(4)) .

Noticing that there is a system of semi-norms P3(eg) which defines g and satis-
fies g(f*)=q(f) for all g=PB(eg), f EEg, it follows from (I) that there is a ¢’
PB(eg) such that

ITO(f*g)| <q' (M) q'(e) =a'(Nd'(®),

f,8EEg, j=1, .-, 4. Thus, S(f*g)<44'(f)q'(g). But this is a contradiction
to (II).

Proof of (1). Recalling Example 3.4a) and Theorem 3.5b), it follows
ITU*NIS 2 A+4,) T(f7® ) »

1<2<oo, fEEg. Setting r,=1+44,, and using
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| T /5 QLI S P2 £ ® 1) = (0 )V

where p, is taken from (35), f,€E,, it is implied that
ITU* NS G VT Pl 1)) - (37

Using that the right-hand side of (37) is a eg-continuous seminorm, Lemma
2.1c) implies (I).

Proof of (II). The proof follows straightforwardly from the Theorem of
Kolmogorov and a Hahn-Banach argument, see [14].

Remarks 4.8. a) If (B;) of Definition 4.1 is replaced by
(B;) p satisfies condition (A') with respect to the convex hull (31) and a
sequence (@,),
then all the considerations of the present chapter apply also to the convex hull
(31) of finitely many alg-# cones.

b) Examples 3.7 and 4.6 imply that Sg+ {<F, #} (convex hull of the cone
of positivity and the cone of reflection positivity) is &, p-normal, if I'" satisfies
condition (N). Especially, Sg+ {<F, #} is e.-normal.
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