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On Algebraic #-Cones In Topological
Tensor-Algebras,

I Basic Properties and Normality

By

Gerald HOFMANN*

Abstract

The concept of algebraic #-cones (alg-$ cones) in topological tensor-algebras E®[T] is
introduced. It seems to be useful because the well-known cones such as the cone of positiv-
ity E®, the cone of reflection posilivity (Osterwalder-Schrader cone), and some cones of a-
positivity in QFT with an indefinite metric are examples of alg-# cones.

It is investigated whether or not the known properties of £® (e.g., E® is a proper and
generating cone not satisfying the decomposition property) apply to alg-# cones. For prov-
ing deeper results, the structure of the elements of alg-$ cones is analyzed, and certain esti-
mations between the homogeneous components of those elements are proven. Using them,
a detailed investigation of the normality of alg-$ cones is given.

Furthermore, the convex hull of finitely many alg-$ cones is also considered.

§ 0. Introduction

The motivation of the present investigations comes from axiomatic quan-
tum field theory (QFT). Within the so-called nonlinear program of the alge-
braic approach to QFT there are considered several cones in tensor-algebras
jE1®. Such cones are the cone of positivity E®, [5], [30], the cone of reflection
positivity (Osterwalder-Schrader cone), [25], [29], and the convex hull of both,
[9]. Furthermore, indefinite inner product QFT and gauge field theories in
local (renormalizable) gauges demand some positivity conditions that lead us
to the investigation of the cone of a-positivity, [3], [16], [17], [18]. As a gen-
eralization of all of these cones the concept of algebraic $-cones (alg-$ cones)
is introduced (see Examples 2.4).

This series of two papers is devoted to a systematic investigation of the
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structure of such cones. It is shown that these cones share some important
properties which lead to some interesting applications such as i) characteri-
zation of normal topologies on tensor-algebras, ii) explicite description of the

closed hull of alg-jf cones, iii) representation of alg-$ cones as the convex
hull of their extremal rays, iv) extension of linear functionals to positive ones.
It is worth mentioning that all the results apply also to the convex hull of finitely
many alg-jf cones.

More precisely, the well-known results concerning the algebraic structure
of E J (such as E& is a proper and generating cone for the hermitian part of
E®, [32]) extent to some families of alg-# cones. However, in order to prove
deeper results, which are especially related to the topological structure of E1®,

the structure of the elements k of alg-jf cones has to be investigated in more

detail. There are certain relations between the homogeneous components of
such an element k. If one considers functionals which satisfy some special
properties (Definition 3.1), then certain estimations between those homogene-
ous components are implied, see Theorem 3.3. This generalizes some results

given in [23].

Those estimations are the key for solving the above given problems !)•••
iv). Concerning i), sufficient conditions are provided for locally convex (I.e.)
topologies such that a given alg-# cone is normal (Theorem 4.2). It follows

further that these conditions are also necessary for the normality of a wide and
important class of I.e. topologies (Lemma 4.3, Corollary 4.4). This is a gen-
eralization of the known results for E$, see [10], [11], [28], [7]. Problems ii),
iii), iv) will be considered in the second paper of this series.

The pattern of the present paper is as follows. For the convenience of
the reader, we will first recall, in Section 1, the for the further considerations
needed definitions and facts from the theory of topological tensor-algebras.
The definition of the class of alg-$ cones and some properties connecting the
algebraic structure of E® with the semi-ordering defined by an alg-jf cone are
given in Section 2, see Theorem 2.3a),--d). The aim of Section 3 is to prove

explicite estimations between the homogeneous components of the elements of
alg-# cones, see Theorem 3.3. Further, there are discussed some interesting
examples such as positive linear functionals, e- and tr-semi-norms on tensor-

algebras. The results of Section 3 are used, in Section 4, for a systematic in-
vestigation of the normality of alg-# cones and of the convex hull of such
cones.
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§ 1. Preliminaries

For the following let us be given a vector-space E over the field of complex
numbers C, and let

En =E®E®—®E

stand for the «-fold (algebraic) tensor product of E by itself, n^N. The tensor-

algebra E® over the basic space E is then defined by

• (direct sum),

i.e., the elements f£iE® are terminating sequences

/^(/o,/i, ••',/*, 0,0, •••),

B, /i=0, 1, 2, ••• (£i=C, #!=£). Further, /„ will be called the n-th
homogeneous component of/.

Defining componentwise algebraic operations

(f+g)n = fn+gn ,

(fg)n = S /r®^ > (/0®g« = ^«®/0 =/0 g») ,
r+s=n

for /, g^E®, fji^C (n=Q, 1,2, •••), E® becomes an (associative) algebra with
unity 1=(1, 0, 0, •••). If an involution "*" is given on E, then E® becomes a
*-algebra by setting

/*=(/?,/?, -,/*, 0,0,.-),
/* =A

for fn=h(l')®-"®h(n^En (n^N)9f*=f0, and using antilinearity of *. Then,
the co«e of positive elements E® is defined by

Let us be given some /=(0, — , O,/^, — ,/^2, 0, 0, —)GE9, where
0, JVls N2SEN* (N* = {Q, 1, 2, ...}). Then put

) = JV1 for

Grad (0) = — oo, grad (0) = oo ,

where 0 =(0, 0, - • - ) e .E'®. For /, g e £3, it follows
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Grad (fg) = Grad (/)+Grad (g) , (1)

grad (fg) = grad (/)+grad (g) , (1 ')

Grad (/+g)<max{Grad (/), Grad (g)} , (2)

grad (f+g) ^ min{grad (/) , grad (g)} , (2')

where (1), (!') are based on the fact that /„,/„ =1=0 imply fn®fm =t=0, [19, §9.6(4)].
n

For the following let Qn : E®-* 0 E- denote the canonical projections,
.

where 0 Ei is considered as a subspace of E®, i.e., forf=(f09fl9 •">/#» 0, 0, •••)
8=0

it follows

Further, a subset MdE® will be called filtrated, if

for all w=0, 1, 2, • • • . Furthermore, let

/I =(0,.-sO,/., 0,0,

For any two I.e. topologies r, r', let r<r ' and r^r' mean that r' is finer
(stronger) than r and that r' is strictly finer than r, respectively.

Assume now that E[t] is an I.e. space. On En let us consider the class of
I.e. topologies that are compatible (with the tensor product), see [19; §44.1].
Recall that for every compatible topology tn on En, en<tn<tn follow, where en

and tn denote the injective and inductive topology on En9 respectively (n=29 3,
4, •••). Further let nn denote the projective topology on En. Concerning the
equivalence of some of these topologies en9 nn and cn9 we refer to [12]. Let us
further mention that the importance of the inductive topology for applications
to axiomatic QFT was first discussed by J. Alcantara ([!]).

Let us be given En[tn] with £n<tn<cn, n=29 3, 4, • • • . An I.e. topology r on
£"0 is called an intermediate one, if

T\Em = lm (3)

for m=0, 1, 2, ••• (tl=t9 tQ denotes the Euclidean topology on C). In order to
define intermediate topologies r on E® the algebraic structure of E& defines the
weakest I.e. topology TPt^ and the finest I.e. topology r@>(tn} such that (3) holds.

oo

Recall that T@>(tn) is the topology of the direct sum 0 Em[tm]9 and ^Pf(tn) is the
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oo

topology which is induced by the topology of the direct product H Em[tm] on

»» = 0

its subspace £"$. Hence an I.e. topology r on E® is an intermediate one, if

and only if

Let the topologies tm be defined by the following systems of semi-norms

where fm^Em, Am is a set of indices, w=l, 2, 3, ••• , and

— l / o l - Put <40={0}. Then let us introduce a semi-ordering
<" in Am by setting am<a^ if there is some constant c>0 such that

for all fm*=Eu.

In the following let respectively, R$* and y4 denote the set of all sequences

(rn)r«o and (aj^=0 such that r«>0, ane^4M. A semi-norm q on 2s® is called
graded, if there are ^-continuous semi-norms q(n) on En(n=Q, 1, 2, •••) such that

»=o

for all/=(/0,/l5 --,/jv, 0, 0, — )e£®. Further, an I.e. topology r on ^ will

be called graded, if there is a r-defining system ̂ 3 (r) that consists only of graded

semi-norms.
The following definition introduces graded topologies on E®.

Definition 1.1. Let us be given two sets Pc.Rf and fid A such that

i) for each ju&N* there is a (rJ^P with r^>0,

ii) for each #e2V* and a^A^ there is a (BJe£ with a/ut<BfA. The

I.e. topology that is defined by the system of semi-norms

{/-*/>(*.)(-.> (/); (rjer, (a

= 2 » / ^ wil1 be ^noted by

Remarks, a) Conditions i), ii) imply that for each/ 4=0, f^E®, there

are sequences (rJ^A («jGjB such that
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/>(*„>(-„) C/>o.

Hence r(r, 5; «£(*„)) exists by [19; §18.1(3)]. Further, i) and ii) yield that
tnJ) induces the topologies tm on the subspaces EmdE® (m=0, 1,2, •••)•

b) If r.clgf*, Btc: A (i=l, 2) satisfy i), ii) and also Acr2, BldB29 then

is immediately implied.

c) Let
rp = {(r J e JZy* , r „ 4= 0 holds only for finite many » e 2V*} . Then

hold true. Note also that r(Fps ^4; $£(*„)), r(12^*5 A; $P(fJ) do not depend on
the choice of the ^-defining systems $P(fB) of semi-norms (n=Q, 1,2, ••-).

d) If tm=6m(m=2, 3, 4, •••), then let us write ep and e® instead of rp>(/j() and
r®,o«)> respectively. Analogously, ^P, ^, n®, c® are defined.

e) Let 5P(O = {/?«i);ai^^i} be given. Further let ^*=^1x— X^ (/i fac-
tors), n=l, 2, 3, • • • , denote the set of all multi-indices

an = (a<>l'n\ a&'n\ ...,«(«-«)),

a^'^e^!, i=l, 2, — , /i. Set ̂ °={0}. Then consider

^4oo = {(a')7-o; &j^Aj, there exists an a1^Al such that

aw '«> — al5 i — 1, 2, — , /i and » = 1, 2, 3, — } .

Further note that the systems of semi-norms

define the injective topologies em on Em (m=2, 3, •••), where

^e^, / = 1,2, —,/w} ,

; I J(/0 1 < pWft for all /x e £} . Then the I.e. topology
•*

is considered, where 5p(si)=^P(fi)) ^P(eo)=={?o°)}- Analogously, the I.e. to-
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pology TToo is introduced. It is straightforward to prove that the topologies
£00, TToo do not depend on the choice of the ^-defining system ^5(O- Let us
mention that £00 was introduced by G. Lassner in the case of the tensor-algebra

S®, [20].

f) For further investigations on regular tensor-algebras and of I.e. topologies
that do not depend on the special choice of ^?(^)3 we refer to [7].

g) Note that the following order-relations between the topologies introduced
above are valid:

LP ^ t$
V V

*P <= TT-o < K® (4)

V V
Zj> ^ £. < £„ .

For a characterization of some of the topological properties of the basic-
space E[t] in terms of the equivalence of some of the topologies given in (4),
we refer to [12].

§ 2. Definition and Some Properties of a!g-# Cones

Let us be given a subspace

^=0^. (5)
M = 0

of .E^ where FndEn. Further, let us consider an antilinear mapping $: E®->
E® which satisfies

/*=/, (6)

(Q.ff = Qn(f*) (60

for all/e^®, w=0, 1,2, • • - . Notice that $ is bijective. Let us put

It is immediate that {F, $} is a convex cone (containing its apex 0). In the
following such cones {F, %} will be called alg-% cones. If $ satisfies additionally

(/£)'=£*/' (7)

for all/, g^E®, then {F, %} will be called involutive cone.
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For every subset HdE® let us define the ^-hermitian part of H by

If H is a subspace, then /z(#, if) is a real vector space. Further9 for every in-

volutive cone {F, $} it follows

{F,#}C/KF®J). (7')

For every subspace HdE® let L(H,C) (resp. £(#, Jg)) denote the set of

complex-valued (resp. real-valued) linear functional on H. If H=Hi (={h§;

h&.H}), then let us consider the set of §-hermitian linear functional which is

given by

r,#) - {T^L(H,C);

Finally, T<=L(E®, C) is called {F, %}-positive, if r(£)>0 for each &<E {F9 #}.

As in the well-known theory of ^-algebras ([24]) the antilinear bijection

|f implies a decomposition of E@ into a "real" and an "imaginary" part. More
precisely, the following hold true.

Lemma 2.1. If the antilinear bijection $ satisfies (6), (6'), then the follow-

ing are satisfied.

a) For every subspace HdE® with H=H®, it follows

ii) H=k(H, 8)+i /*(#, #), (where i2=-l).

b) For every T^L(E9, C),

2
, r(2)eLs(F®, C). Furthermore, there is a linear isomorphism

given by ja(T)=Lt where L(y) = T™(y), ySEh(E®, #).

c) //Te L(F0, C) is {F, #} -positive, then

ii) | T(/f g) | 2 < T(/*/) T(g* g) (Cauchy-Schwarz' inequality) hold for all

F-
d) If% satisfies (7) 1/1 addition, then 1*=1.

e) TjT {F, |f} w a« involutive cone with F=F® and leF, ?/ze« every {F, jf}-
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positive linear functional T satisfies T^L*(F, C).

f) The antilinear mapping % is graded (i.e., fl^En for all fn^En), and

(En)*=En are satisfied, /i=0, 1, 2, • • - .

Proof. All the proofs of a)"-f) are straightforward and analogous to the
corresponding ones from the theory of ^-algebras, see [24; § 10. 1, 2].

The following lemma collects some of the central and in the following
frequently used properties of the elements of alg-j| cones. For the proof we
refer to [13].

Lemma 2.2. Let us be given an alg-$ cone {F, $} and an element k^ {F, $}

with k=(kQ, klt •••, km, 0, 0, — )= S/^/^O^'eF, i=l, 2, ••• , Af(Af e#).
*=i

Then, the following hold.

a) It is Grzd(k)=2N (resp. gmd(k)=2n), if and only if max {Grad(/co) ;
/=!, 2, • - - , M} =N(resp. min{grad(/(l'>); i = l, — , M} =/i).

b) If gmd(k)=2n and Grad(k)=2N are satisfied, then (Tn®Tn)
(TN®TN) (k2N)^Q hold for each Tn^L\En, C\ TN^L*(EN, C).

c) If the assumptions of b) are satisfied, then there are T®
T°NGL\EN, C) such that (TQ

n®T°n) (k2n)>0, (T°N®T°N) (k2N)>0.

Some of the immediate consequences of Lemma 2.2a) are collected in a),
b) of the following remark. In c), d) it will be shown by some examples that the

M

representation of k^ {F, %} as a finite sum S/(l)l/(O is not unique, and it is
1=1

not necessarily implied that/(0eF (i=l, 2, --, M).

Remark, a) If k^ {F, %} has two decompositions

i-l j=l

r then

max{Grad(/(l")); / -- 1, 2, • • • , M} = max{Grad(g(/'}); j = 1, 2, ••• , M1} ,

mm{grad(/<'->); / - 1, 2, -, M} = min{grad(g^); j = 1, 2, •», M'}

are implied.

b) If 04= k e {F, #}, then grad(^), Grad(A:) are even numbers.

c) Assuming dim(F)>2, there is the following example for different decom-
positions of elements k^{F,%}: Choose linearly independent /, g^F, and
consider
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k = 2/*/+2 g* g = (f+gf (f+g)+(f-gf (f-g) . (8)

Noticing that /»/, (/+g)s (/+g), and (/— g)* (/-g) are linearly independent,
(8) yields different decompositions of k.

d) Consider (C2)®, -F0=C? Fl= span {z,}, F2= span {z2}9 where *!=*+*>, z2=
*0>(EU— x® y), x,y&R2, and x?j are linearly independent Put Fn=0 for

n=3y 43 .... Let us define an antilinear bijection "#" on (C2)® by 1§=19 (M+/V)*
=u—iv for w, ve J22

9 and

for w(J-) e C2 (j = 1 , 2? - - - , n). Setting

- (1, zls 0, 09 .-) , /w = (1, 03 -1 z2J 0, 0,

= (1, 03 — z25 05 0,

it follows that

- 5 05 -I $®*» 0, 0, .-) = S g(/)§ga'} . (8)'
4 y=i

Noticing g(1)$F5 (8') shows that k= S/(y)l/(y)^{^ #} does not necessarily
imply /<» e F for all y=1, 2, —, Af.

Some of the basic properties connecting the semi-ordering which is in-
duced by an alg-# cone {F, $} with the algebraic structure of the vector space
{F, $} — {F, %} are collected in the following theorem. Let us mention that in
the case of <5® (see the following example a)) the assertions b)5 c), e) of the fol-
lowing theorem are due to W. Wyss9 [32].

Theorem 2.30 Let us be given an alg-$ cone {F, $}. Then the following are
satisfied.

a) The following are equivalent:

i) There is a certain n^N* with FdEn,
ii) {F, #} ^ a filtrated set.
b) {F, $} is a proper cone.
c) Ifl^Fand 1*=1 are satisfied, then

If additionally {F, $} cA(F, #), then
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d) The following are equivalent:
i) dim(F)=l,
ii) {F, $} is a lattice cone in the real vector space {F, $} — {F, $} >
iii) {F, $} satisfies the decomposition property.
e) If {F, $} dh(E®, #), then {F, %} does not contain any topologically in-

terior points with respect to every r'=r^(£0i|), where r is an arbitrary I.e.
topology on E® with ep<r<c®.

Proof, a) i)=^ii) is obvious. ii)==>i): Let us assume that {F, %} is a
filtrated set, and i) is not satisfied. Hence, there are Q=£fn^Fn, Q=^fm^Fm9

n<m, such thatf=fn+fm^F,f'=ifn+fm^F. Thus,

/l®/.+/l®/.=*=0 (9)

or

(9')

are fulfilled. Using ii), it follows that 2B+,(/s/) e {F, %} , Qn+m(f'*f) e {F, #} ,
and

Grad(2M+BI(/«/)) = n+m (10)

or

due to (9) and (97). Assuming (10) for definiteness, Lemma 2.2a) yields the
existence of r ̂ N and certain g(f")eF(/=l, 2, ••-, Af) such that n+m=2r and

max{Grad(g<»); i=l, 2, -, AT} = r ,

Choose /Oe {1, ••-, M}- with Grad(g('o))=r, and consider

It follows that /«»/<» e{F,ffl-,e,+.(/<1)l/(1))e{F,jj}. Arguing as above,
there are rte^* with m-f r=2rt and O^ArieF. It is

rj. = (3m+n)/4 .

Applying this procedure A:-times, one gets the existence of 04=/^e.F with

rk = ((2*+1-l) w+«)/2*+1 = m-(m-n)l2k+l . (11)
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If fc>log2(m— ri), (11) implies a contradiction to
b) follows readily from Lemma 2.2b)? c).
c)

yields the first assertion of c). The second is a consequence of
f*L,\

h(F, #)C {F, %} - {F, $} CA(F, fl)-A(F, #) = A(F, ft) ,

where it is used in (#) that h(F, $) is a (real) vector space.
e) is a consequence of Lemma 2.2a).
d) ii)==>iii) holds because of [26; V.I.I].

i)=^ii): If dim(F) = l, then {F, $} — {F, #} is isomorphic to J2 (furnished with
its canonical ordering) as ordered vector-spaces. Hence, {F9 $} is a lattice
cone.
iii)=^i): For the following assume that dim(F)>2. Let us consider the alter-
native:

I) There are elements 0 4= gn e F fl En9 0 =t= ̂  e F n £"m?

II) There is an w e 2V such that Fn =F.

I): Consider a=gn+hm, b=gn-hm<=F. Then,

(12)

(otherwise, replace hm by —ihm^Fm). It follows that

(13)

where [^, j] denotes the order inter vail between x and y. Let ce[0, 2
Then,

grad(c) — Grad(c) — 2n (14)

are implied. (Otherwise, in the case of 2s=grad(c)<Grad(c)— 2t it follows that
s^n or /=f=n . If J =)=/!, then there is a certain reL*(£f, C) such that (T®r)
(c2g)>0 and

(T® D ((2 i! gn~c)2s) = -(T®T) (c2s)<Q .

This is a contradiction to Lemma 2.2b) and 2glgn—c^. {F, $} . If ,s=^3 then
t =$= n, and the above given applies to t instead of s). Analogously, d e [0,



ON ALGEBRAIC t-CoNES 467

implies

grad(rf) = Grad(rf) = 2m . (14')

Using (12), (14) and (14'), it follows that

Hence, the decomposition property is not satisfied.
II) Using dim(F)>2, there are linearly independent gn, ha^Fn such that

t=0 . (15)

Setting an=gtt+hn, bn=gn—hn, it follows that

a!®fl,+«®6. = 2 fe«® £„+/** <8>/zB) ,

a*aBe[0,2(^gs+^AJ]. (16)

Let

cepUgJg-J. (16')

Applying (14) and Lemma 2.2a), there are wi1', •••, u(^'^.En such that

. Choose a linearly independent system {vi1}, ••- , v<*°}, v(
n
i}^En, and an

(M, JV)-matrix A such that

w = ^4 v,

where u=(*£\ -, itf0)1, K=(vi1}, -, v^)1, rank(^)=^(( . )' denotes the trans-
posed of a vector.). Taking a unitary (Af, JV)-matrix U=(usi) with U(A*A) J7*
=diag|>1, ••- , /£jy], jMy>0, it follows that

2 4ot®ML° - (u*y®u = (tf)'®(A*A) v

5 .-, fjLH] (Uv) = 2 /i,
1=1

where tf»=(ii<1)», -, 4M)')', v*=K1)«, •-, v^>«)', ^y)=(t/v),= S «„ vi'U=l, 2,
J = '

Now, if span{win, — , wi^^spanfej-, then choose T^L*(En,C) with
J =0 and r(w^"o)) =t= 0 for a certain ./0 e {1 ,—,#}. Then,

yields a contradiction to (16') and Lemma 2.2b). Consequently, there is a
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such that

Analogously, 6?e[0, 2 /4 hm] implies that there is an 0</l<2 with

d = d2m = thlhm. (17')

Because of (15), (17) and (17'), it follows that

Hence, the decomposition property is not satisfied. This completes the proof.

Examples 2.4. a) Cone ofpositivity E®.

If "|f" coincides with the involution "*" given in § 1, then "#" satisfies (6), (6'),
(7). Hence, £& = {£$,*} is an involutive cone. Applying Theorem 2.3 and
(7'), it follows that E^ is generating for h(E®9*) (i.e., h(E9, *)= JEJ — ££).
Further, E® is neither a filtrated set nor a lattice cone.

b) Co«e of reflection positivity (Osterwalder-Schrader cone). Let us con-
sider the Schwartz-space S=S(Rd), d^N, d^2, of basic (repidly diminishing)

functions. Put Sn=S® — ®S (n-times). Further, let 3= 0 3m, 3Q=C and

where xt=(x°, x], •••, xf-^SJR* (/=!, 2, ••-,«), «eJV. Let us introduce an
antilinear bijection $ on <5® by setting

/* = (/»,/!,-),

/o8=/o,

where ;?{=(— *?, ̂ L •••, ̂ f"1)^^, T denotes the conjugate complex value of
Notice that # satisfies (6), (6'), (7). It follows that

ii)
iii)
iv)

Furthermore, the assertions of Theorem 2.3b), e) do not apply to {3*,$}.
{£?, ^} is also neither a filtrated set nor a lattice cone.

Let us mention that {£?, $} is the cone of reflection positivity of the Eucli-
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dean approach to axiomatic QFT (e.g., see [25], [29]).

c) Cone of a-positivity of free QED in local gauges.
Let us consider E1=S(R4)®C4' and introduce an antilinear bijection $ on E®

by setting

/* = /o j

), i=l, 2, .-., n, y=0, 1, 2, 3, /i€=tf. Then, {£®, $} is the
cone of a-positivity of the Gupta-Bleuler formulation of free QED, see [4], [17].
Obviously, $ satisfies (6), (6'), (7), and thus {E@, $} is an involutive cone. Fur-
ther, {E®, %} is generating for h(E9, %), Theorem 2.3b), e) apply to {E®, %}, and
{£"0, |f} is neither a filtrated set nor a lattice cone. For further discussions of
the concept of a-positivity we refer to [3], [15], [18].

§ 3. Estimations Between Homogeneous Components of alg-# Cones

To begin with let us discuss the following simple example.

Example. Let us be given the tensor-algebra C® over the basic space £7, its
cone of positive elements C®, an integer N^W, and a sequence (fw)Z-i,fw^

C£ such that Grad(/W)=2^V,/^_i=t=0 (n=l, 2, •••) and

=0.

Using now Lemma 2.2a), lim | /2
c^Li | =0 is implied.

«->°°

The example given above indicates that there are certain relations between
the homogeneous components of the elements of alg-$ cones. The aim of the
present chapter is to prove explicite estimations between those homogeneous
components.

For the following let us be given a sequence (o>f.)r=oj Q>,->0, an integer
and a constant c>0. Set

a>m = max{o>. a);-, i+j=m, i

m=l, 2, 3, • • • . Let us then define the estimation-sequence (B^}(c, (y|-))w=K by

BP = min{( t
c ^ }\ (2n d),)2} , (18)

\(n+l)o)n/



470 GERALD HOFMANN

, (2 (m+ 1) o>M+i)
2} , (18')

m=n, n+l, n+2, •••, (If it is clear from the context, then let us write B^'
instead of BW (c, («,.)).)

Using (18), (18'),

( ROO
^ + 1— - , ^

2(ro+l)a

m=n, 72+1, n+29
 8 " - , are implied. Hence, (B^)^ is a monotonously decreas-

ing sequence. Notice also that if c< 1, o>.> 1 (f=0, 1,2, .°°)? then

- - m-l
B(^ = C2m~n+1 [((/i+1) d>J2 II (2i Q>,-) J"1

(m, n<=N,m^ri) follows from (18), (18'), where p — =1-

Further, let us define the uniform estimation-sequence (Bw)^-i, which does
not depent on the upper index "H", by setting

B. = min{Bi;>; /i=l, 2, -, m} . (20)

Let us be given a functional £: E®->C and an alg-$ cone {F, jf}. Put £n(fn)

Definition 30L The functional £ is called to satisfy condition (A) (con-
cerning {F9 $} and (<wg-)r=oX if the following are fulfilled:

(A,) \£«(an+bn)\< \£n(an)\ + \£a(bn)\,an,bn^En,£(Q) = 0,

(AH)

.(± 2

r+s=n t=i 1=1
r̂ *

/V'e/^/V'eF., wf r, j = 09 1, 29 ... .

In the following let us put
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for n=Q, I, 29 • • - , and L^O for v&N*. For every f]/(Of/(0e {F, #},/<''><
1=1

F (*=1, 2, ••• , M), let us consider the matrix

§1 = (O~.-o,
M

where 0M= S/r01®/*0- Obviously, 0r,=l=0 is satisfied only for finitely many

Immediate consequences of (AJ, (Am) are the estimations

2 «^s^ £*>!£«( 2 Ol
r+s=» r+*=«

(21)

/i=0,l,2,-.

Lemma 3.2. Let us be given k=^/<0i/(0 e {F, $} ,/<<> e F(/=1,2, —, M),

and a functional £ satisfying condition (A). 77ze«, Gmd(k)=2N implies Ln=Q

forri>N.

Proof. Assume that there is an index n'^N such that ri>N and LM/^0.

Using (A£),

is implied. Hence, max {Grad(/('>); /=!, 2, ••• , M}>w'. Applying Lemma
2.2a), Grad(^)>2«/>2AT follow. But this is a contradiction to the assumption

of the lemma under consideration.

Let us now state and prove the main theorem of this section.

Theorem 3.3. Let us be given an alg-$ cone {F, $} and a functional £ satisfy-

ing condition (A) with respect to {F,%} and a certain sequence (a>f.)r-o, fc>g->0.

Further, let there be an element 2/(l';l/(0 e {F> #},/(0eF (/-I, 2, —, M) such
i = l

that Ln^ 1 for all n=Q, 1, 2, —.

a) If there is an odd index n^N with

l ^ ( 2 3 O I = c > o , (22)
r+s=«0

then there exists an even index 2m > nQ such that

I £*,( S O | > B&8)(c, (<»,)) >~ B2.(c. (a,,)) .



472 GERALD HOFMANN

b) If there is an even index nQ=2sQ such that (22) is satisfied, and some con-
stant p>0 with

(LSQ)*<p\£no( 2 Ol. (22/)
r + s=nQ

r^s

then there exists an even index 2m>nQ fulfilling

l£a.( 2 ^ l > - B f t >
2

c) If there are an even index nQ=2sQ and two constants c>0,
such that

IW 2 Oh
r+s=2s0

w an even index 2m>n0 with

\£*m( s o i B
Proof, a) Assume that the assertion of a) is not valid. Using (22),

(AUi), and LB<19 it follows that there is an index jj. with «0/2<i/1<Wo suc^

2 *>r<».LfL.
r+s=nQ

Hence,

y2 , (23)

where (18), (19) were applied.
Now, let us be given r indices 7^72, •••9jr^N such that l<7i< |j|-il? i=

1,2, .»,

are satisfied, where \jr\ =Ji+j2+°°*+Jr, \j*\=ik-
The following inequalities are valid:

2 2 I J ». I • _ i T r f ?i t —L

2



ON ALGEBRAIC #-CONES 473

where the last inequality holds because of the assumption of the proof. Hence,

there is an index jr+1 with 1 <jr+i< \jr\ such that

1
—

Consequently,

where (18'), (19) were applied. Hence there is a sequence (jr)r.i ^r^ l7r I

'yiO2<"'5 such that

^>(B(21?r
))iya>0. (230

(Aj) and Lemma 2.2a) imply now aSrSr^=0 and

(23")
1=1

r=l, 2, 3, — . But (23r/) is a contradiction to
i = l

b) For »0=2j0 there is an index 1 < J0<s0 such that

where (21), (22') were used. Setting J\=s0+j0 and using (18), (19),

cfa+1)-, (o),) V
0 'V 'V ;

(24)

are implied. If one considers (24) instead of (23), then the further proof is

analogously to that of a).

c) (21) and (22") imply

Hence, there is an index j\>s0 such that
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It follows further that

L/SX1 -*) c(2sQ d^XfliVfll -d) c9 (a),)))1/2>(B(
2^((l -*) *, K-)))1/2 - (24')

Considering (24') instead of (23), the further proof is analogously to that of
a). The proof is completed.

Let us consider some examples of functional £ which satisfy condition

(A).

Examples 3.4. a) Let us be given an {F, $} -positive and linear functional
r=f=0 on E#. Then, T satisfies (A) with respect to {F, $} and (<yg-)7U, ®,=1.

Proof. (Aj) and (AH) are obviously satisfied. For /(/)eFr,./V
)eFf,

i=l,2, '•-, M, (r, s, «e^V*)9 the estimations

(± 2] 2/V'W(
s°)l< 2 2

r + s = n 1=1 y + s = « i = i

r^s r*s
M

S S (TU/
r+s=n i=l

2 (

yield (AHi)5 where Lemma 2.1c) ii) and the Cauchy-Schwarz inequality were
used.

b) Let us be given a semi-scalar product <-, -> and an antilinear bijection
K on El such that

for all /!, gi^Ev For each n^N, n^2, let us be given a permutation ^(«) of
{1, 2, •••,«}. Then, let us define an antilinear bijection jf on £M by setting

l')l (25)

1. Notice that # satisfies (6), (6').
*=i

Let us put Jo(/0)= l/o | , J1(/1)=</,,/1>
l/2,/oe£0,/1e£1, and

= ( S 2 </<M>,/(1-'')>-</("'''),/(B'')»1/2 ,
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n=2, 3, 4, •• - . Further, let us be given a subspace FdE® satisfying (5). Then,

the semi-norm

/^*(/) = 2
n=Q

satisfies condition (A) with respect to {F, $} and (Q>8.)?.o> o>/=l.

(AO and (A^) are obviously fulfilled. (Am) follows from the fol-

lowing estimations :

)1 = 2 2i=i 1=1 y=i

S S KA'^.^IWS S»=i j=i 1=1 y=i

1=1

where the Cauchy-Schwarz inequality is used, n,

c) Let us be given a semi-norm /i-*^/,) on ̂  such that

£*!. Further, let the anti-linear bijection if satisfy (6), (67), (25). Let us put

=2, 3, -.), r0(/0)=|/0|,/0e£i, and

. Then, the semi-norm /->r(/) satisfies condition (A) with respect to

. The validity of (A4), (AH) is evident. (AUI) is a consequence of

the following estimations :

(sup{| S

-Sf Jf

S/VW.") U 21=1 1=1

where C/JB denotes the polar set concerning the semi-norm rn in E'n. ((*): Set-

ting 7l(/1) = 7K/T) and using ̂ (/O-r^/f),/^^, it follows that rxe C/^ if and

only if T\<=U\. This implies that THGU0
fn if and only if T\^.U^n for n=
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2, 3, 4, »., T*(fJ=Tn(f*),fne=EH. It follows that

S,0) = sup{| s !•„(/<"•) ?„(/<'>) | ; r., f .el/?.}
1=1

= suP{| s
/=!

Treating the second factor on the left-hand side of (#) in the same way, (*) is
implied.)

Now, let us be given two sequences (cyM)*m0, (dn)n=>o of reals with con, dn>0.
Further, let us consider the diagonalized matrix D^diag [dQ, dly d^ •••]. Let

§I(w><f) denote the set of all the sequences («J^=o with «n>0? ®2s+i=® (s=®> 1» 2,
••-) such that the inequality of matrices G^D is satisfied, where

G =

aQ 0 — o)Qo)2a2 0 —(y0o>4cK4 0

0 a2 0 —G>i<w3
a4 0 — G^cy

; c y c K 0 « 0 — c y o > a 0
(26)

(In 3.6 there it will be shown that 9
For every functional S: E^-^C let us set

,(«»» = S«2J^(/2»)l, (26')

where 5r.(/J=5(/*),/=(/0, -,/w,0, 0, -)e£®. (If it is clear from the con-
text, then let us drop the index of || • ||.) If S satisfies (Aj) ,then

(27)

is immediately implied.
Further, let us put

(28)

u

for OO< oo and n^N*, where S ^=0. Obviously, ju> I yields An^<oo for

each nGN*. It holds also S r"**=f(^) (Riemann's f -function), and

w W „ W
2 r" = ̂ —+^+^—+^(«), (28')

2 12
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where R^,(n)= 2 — f ^ ) B2r n*~2r+l, and £2r denote Bernoulli's numbers
r=22r \2r — I/

(see [8; 0.233, 0.121, 9.71]).
2

If 1 < fj, ̂  2, then — < <f (#) < oo and | R^(n) \ ->0 as »-> oo . Hence, there is
an n'^N such that

|!W»)|<1 (28")

for all ri>ri .

Theorem 3.5. Lef t/5 &e given an alg-% cone {F, $} in a tensor-algebra E®.
Let (cyj, (dn) be sequences as described above. Further, let the functional £:
E&-+C satisfy (A) with respect to {F, $} and (Q) J.

a) //(a.)r

, /=!, 2, — , Af (Af
b) Aw

£.( S S/^

Proof, a) Let us put x=(L0, Ll9 L2, •••)*. Lemma 3.2 implies that there
are only finitely many n^N* with Ln=£Q. The proof of a) is now a conse-
quence of

2 2 ^ xx x =
+ s = 2n i = l

where (21), (26) were used.
b) follows from

LJ X ' \S F) ^r r V A f ) ^s s~>
=1 r+s=n

2 (iJ2+ S S ((*-r)-"
« = 0 « = 1 r+5=«

oo oo r<5

23 (LJ+ 23 X.X0'. L»)2 = 23
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3.6, Construction of a sequence (®K)~=0 ^ SCu,<*)

At first let us prove the following.

Lemma. Let us be given an hermitian matrix H=(h$3}™j=Q, hit*&C, and a

sequence (cj^o of reals with cQ=Q, cm^Q, m=l,2,3, •••. Let us put

'?%\hnj\* if Sl*i,y|2*0 ,
j=0 * j=Q 3

oo if - " - , c« = o,
if 2 |A.yl 2 = 0,

1=0 '

n—l,2, 3, ••• . If '2 XM<°O, then the matrix-inequality K^H follows, where

*«-«!- 2 *, // * =J. i = 0, 1, 2, - ,
r=i+l

0 if i*y .

Assume that S*m<°°- F°r every sequence (a,.)r=o, as^C, and

each neJV the following estimations are satisfied:

S A,ya,ay = 2 A|ya,«y+A..|a.|2+2Re(2 A.ya.«y)
/ ,y=o ' ' * f y = o y y=o ^ J

(*)»-i «-i
>. 2 hij ®i Gj + hnn \an\

2-Cn\an\ 2~Cnl \ 2 ^ tfy |
 2

n-i n-l

« .y=o s/° s J' * y=o J"

Let us be given b=(bQ, bl9 •••)*» where Ag.eC and b~Q for all but finitely

many /eJV*. Then, there is an N^N such that 4^=0 for j°>N, and

jy _
b* Hb = Y\ h,,btb*

- 2 ^-( 2 i 6, 1 2)+ 2 (A,,
i = l j = 0 * i=l

S*,)+ SJ^-l^v-c,-- _2 *,)

f] *,)+ 23 IM^yy-Cy- 2 «r)= = 3 u J =

= b*Kb,
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where b*=(bQ9 bl9 •••), and (29) were applied.
(Proof of (#). If cK>0, then (*) is a consequence of

a,) | <2 1 (y^T « J (x/^T1 2

If cw=0, then 53 xn<oo yields

»-i »-i »-i
y=o y=o «=o

where cJT11 ^hn. a, \ 2=Q.)
y=o '

Let us be given sequences (CD^^Q, (dn)n=Q as above. Further let #> 1. Let
us put

<y* =Q)2-max{G)2(f_ f ); t = s,s+l, —,2j—1}, j = 1,2,3, --• ,

cyfr-i = ^r-i max{w2(f_r)+1; t = r, r+1, ••• , 2r—2}, r = 2, 3, 4, ••• .

Let us then recursively define sequences (aJJT-o* (^M)r-o by

^ , (30)r ^LJ
m = s + l

4s-2

j = 2s

J=l,2,3, — , r=2,3,4, — .
For showing (aB)~==0eSt(ft)jrf) let us consider the matrix G from (26) instead

of /f in the above given Lemma. It follows that ^=0 and

j=l, 2, 3, • • - , r=2, 3, 4, ••• . Hence 2^B<°°J and the above given Lemma
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implies K^G9 where K=(ki3)™tj^Q,

a2i~Ci- S xr if i =J9 i = 0, 15 25 — ,
fc = 4

I 0 if i=K/ .

Using
(30)

fcw>«2«-c,-S'"|fc=4.
r=i+l

7=0, 1,2, • - - , it follows that diag[4, rflf °"]<K Hence, dmg[dQ9dls

This proves (<OE-oeSl(M).

Now, let us be given /alg-# cones {F(s), ̂ s}, s=\9 23 • • - , / , in a tensor-algebra
J51®. The following is aimed at an extension of the results given above to the
convex hull

(31)

For a given functional £: E®-*C, and S a(z''s^ flC«-')e {F(s>, #s}, a^"^
i=l, 2, --, Ms (MS^N) set

^••"•° = (^»( S 2 4!-l*'®4!-lW .
5=1 »=1

Let us modify condition (A) for the convex hull (31) by replacing (Au), (Am)
by

(AfO £*.(S fU'-')l'®«4'''))>() for all
s=l 1=1

(Af,,) |£.(S 23S«(r'-I
r+k=n s=l i=l

(j = 1,2, -,/), / f , r , f c = 0, 1,2, - .

If £ satisfies (A;) with respect to the convex hull (31), then the following
analogous statement to (21) holds true:

£n( S S S^J)l'®fl(l'f)| I
r + k=n s = l i = l
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2 a,^^1-"--"^1'--0, (32)
r+k=n

n=Q, 1,2, ••-. Furthermore, the corresponding assertions to Theorem 3.3 ap-

ply also to (31).

A discussion of (A') is given by the following.

Lemma 3.6. Let us be given / alg-% cones {F(s), $s}5 s=l, 2, •••,/, in a

tensoralgebra E%. If£ satisfies (A) for each {F(s), $s}-, and if further there is a

sequence (en)^0, en>0, such that

n=Q, 1,2, •••, £/*£# f/ze convex hull (31) satisfies (A').

Pros/. Assuming that (A) is satisfied for each {F&, #s} with

let us put

. The assertion to be shown is now a consequence of the following

estimations:

\£( S SS^-^®*''S))I
r + jfe=« s=l i=l

r^A

<SI£( S S4M)**
s=l r + jfe=n i = l

r^ft

<2 S a>(r-)4f)4
s=l r + fe=n

r*k

< S (S^S)4S))
r + A=« s=l

rr|:&

< S «v^41'"-'/)41'"-'/).
r + &=«
r^A

Example 3.7. Let us consider the convex hull of the cone of positivity

cS® and that of reflection positivity {2% $} in cS®, see Example 2.4. Let us men-

tion that this convex hull is used in the axiomatic approach to Euclidean QFT

given by G. Hegerfeldt ([9]).

For each m&iN* let us consider the norm
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5 where

P(nm\L) = sup max | Wim>rtifn(xl9 -,

i*=i y=i

(In the following let us abbreviate w[m'r$ by Wn.) Recall also that the system

of norms {/#"}; m=0, 1, 2, •••} defines the well-known topology on the Schwartz-

space Sn. Further^ let gr®f^ gr^<Sr3/secSs? be identified with the function

gr(xly - e 9 5 xr)ff(xr+i, aa'<, xr+s)£=or+s.

For given aa) e^S®5 6
(y) e2s m<^N* let us put

2 4°*®^°+ S
1=1 y=i

71=0,1,2,—. Setting

Z2« =

it follows

M
rC 1 ) — Amn max \w r V1/7(lVv ... rW ( f 'Vr ••« r ^ IV/2
iww — ̂ sup max i FK2wv 2ij ®n \xn9 , x^ an \xn+1, , ^2?ljj |; ,

(33)

Then,

(#) JC

< S (sup max ( S I »; 4° (*i, -, ^) 1 2)

( S I W. a^ (xr+l9 .~,
i=l r+s=»

r^:s

imply that (Ai^) is satisfied for <S®9 where the triangle and the Cauchy-Schwarz
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inequality are used in (*). Analogously,

S Ii2)£(.

follows, i.e., (Am) is also satisfied for {£?, $}, n,m=Q, 1,2, •••. Hence, Con-
dition (A) is satisfied for both S^ and {3, #}.

The following lemma shows that Lemma 3.6 applies to the convex hull

Lemma. It holds 41}+42)< vT 4M), ^1}+42)<(l+\/T) Zi1-2', n=
1,2,3, — .

Proo/. If /2=0, then the assertion under consideration is implied by the
inequality between arithmetic and geometric mean. Noticing Z2nn42n=0, (33)

implies

, (34)

n=l, 2, 3, ••- . Applying the triangle inequality to the definition of l£1>z>, it
follows

• (34')

Let us consider i) L^<L^\ ii) I42) <I41). If i) applies, then (34) yields the as-
sertion to be shown. In case of ii), the inequalities

iay^

follow from (34), (34'). This completes the proof.

Let us mention that there are examples such that the equality signs apply
to the estimations in the above given lemma.

§4. On the Normality of a!g-$ Cones

This section is devoted to a systematic investigation of the normality of
alg-# cones and of the convex hull of such cones in topological tensor-algebras
EQ[T]. Recall that the concept of normality is a central one in the theory of
semi-ordered topological vector-spaces (since it connects the semi-ordering in-
duced by the cone under consideration with the topological structure of the
underlying vector-space), and it has some interesting applications such as i)
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characterization of ^4O*-algebras ([27], [II], [22]), ii) decomposition of con-
tinuous linear functional into the difference of positive and continuous ones
([26], [33]), iii) characterization of state-related ideals ([34], [14]).

For a given alg-$ cone {F,$}, let us introduce conditions which prove
to be sufficient for the normality of the cone under consideration. Concerning
a very large class of I.e. topologies it will be shown that these conditions are also
necessary for the normality of {F, $} .

Definition 4.1. Let us be given an alg-$ cone in a topological tensor-algebra
E®[r]. Then, r will be called to satisfy condition (B) w.r.t. {F, $}, if there is a
system of semi-norms ^3(r) that defines r5 and for each/?e^3(r) there are two
sequences of reals (<*>„)"_<), (dn)n^, <y«>0, dn^l, and a constant
such that

p satisfies condition (A) w.r.t. {F, $} and (G>B),

for a]l./ )ef(i=l, 2, ••• , M'\ M<M' (M, M'eN), »=0, 1, 2, -,

(Biu) for (BX=o, 8B=^(l+(l+^+1) <ol\ there is a sequence (cOr-o
such that/-*!!/!!^)),/^^, is ̂ -continuous.

Theorem 4.2. Lef «5 be given an alg-$ cone {F, $} in a topological tensor-
algebra E®[r]. Ifr satisfies (B), then {F, #} is T-normal.

Proof. Consider any semi-norm />e$p(r), where 5j3(r) is given in Defini-
tion 4.1. It will be shown that for

there are a 0-neighborhood V of r and a constant p>0 such that [F]Cp C/,
where [V}=(V+ {F, #» n (F- {f, |f}) denotes the {F, #} -saturated huU of V.

Setting Xg)=max{X£), lkll(#.(«,))}, ge^g,, and using (Bm) it follows that

is a 0-neighborhood of r. Let us be given any/e[F]. Then, there are
{F, S} and v">e V, i=l, 2, such that

For k^ = S a^ a(i\ k^ = fj «(OS ®(i), M'>M, a^<=F, let us put
i=l i=Jf+l
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1=1

n=Q, 1,2, ••• . (BH) implies

For & given in Definition 4.1 let us set

(n)|;/i = Of 1,2,-},

where R^ri) is taken from (28'). (28") implies Mx<°°. The following estima-
tions are valid:

(**)

+ 2

2
»=o x+1 2 12

( + ) - Q

23«=o

<
(SI)

Hence, [F]c(l+2(l+c#x)<f W) C7. Thus, the theorem under consideration is
shown.

((*) follows from Xv(1)XXv(1))<l- (**) ^s a consequence of Theorem 3.5b).
OT M w

(+) is yielded by - — +A+^ — <— nx+\ where «e2V*, 1<^<2. (++) is
A ~i~ J. ^ JL 2* £

a consequence of —<l;(X)< oo and f W (l+nx+1)>f W+— n^1- (ft) follows
6 2

from Theorem 3.5a). ($$) is implied by
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The following is aimed at a discussion of (BO and (BH). It will be shown
that for a large class of alg-Jf cones, (BO and (BH) are also necessary for the
normality of these cones. Furthermore, a special class of I.e. topologies will be

distinguished such that (BO and (BH) are even equivalent to the normality of the

cones under consideration.

Lemma 4.3. Let us be given a topological tensor-algebra E®[r} and an alg-%

cone {F, $} such that {F, $} c:h(E&, $), and the mapping $ is r -continuous. If

{F, |f} is -normal, then (BO and (Bu) are satisfied,

Proof, The proof is based on some ideas from [28; Theorem 3]. Using

Lemma 2. la), the r-continuity of $ implies the topological direct decomposition

E*[*] = h(E*, #) [T'} © ih(E99 #) [r'J ,

(for a definition of r'9 see Theorem 2.3e)).

The r-normality of {F, $} yields that T' is defined on h(E^, $) by the system of

semi-norms ^5 = {pj% ; 3tt e 9W} , where

9$), and 501 denotes the set of all the weakly bounded subsets of

{F, #} -positive and r '-continuous, real linear functionals on h(E^9^)9 see [26;

V.3.3, Cor. 1].

Consider /^ef^/y'eF, (/=!, 2, —, M, MeJV), and put

r, s e 2¥*0 For each c5K e

O - sup{| 2

<sup{(2
1=1

sup{(S
1=1
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are implied. Thus

2
r+s=m i=l

S 23
r+s=m

follow for each m&N*. Hence (B^ is satisfied, where (<yn)r.o> °>n = l- The
validity of (BiL) with </„ = ! («=0, 1, 2, •••) is a consequence of

sup{23
i=l 1=1

, i=l, 2, • •• , M', Af <M', n=0, I, 2, •».

((+) follows from Lemma 2.1c). (*) is a consequence of
«=i i,y=i

a,.̂ .)172, where 0,.>0, 6,>0 (/ = !, 2, — , M). (**) is yielded by the {F, #}-
positivity of T^JH.)

An immediate consequence of Theorem 4.2 and Lemma 4.3 is the follow-
ing.

Corollary 4.4. Let us be given an a!g-$ cone {F, Jf} in a topological tensor-
algebra E®[T] such that the assumptions of Lemma 4.3 are satisfied. Further, let ev-
ery system of semi-norms ?P(r), which defines T, satisfy the following: For each p^

oo v

^3(r) and each sequence (rn)^R+*, the semi-norm /->S r2nP(fzn)>f^E®> is also
»=0

T -continuous. Then, {F, j(} is T: -normal if and only if there is a system of semi-

norms $ that defines T and satisfies (Bi), (Bn).

Remark. The further assumption of Corolary 4.4 is satisfied for the topo-
logies £P, Xp, cp9 £„, TToo, s®, TT®, t^9 which are given in (4).

Condition (Bui) is discussed by the following lemma and the remark to it.
It is shown that, in the case of a filtrated alg-$ cone {F, $} , there are I.e. to-

pologies r on F® such that {F, $} is r-normal, and however, (Bui) is not satis-
fied.

Lemma 4.5. Let us be given a filtrated alg-% cone in a topological tensor-

algebra F®[r]. Further, let (Bn) be satisfied. Then, {F, $} is r-normal.

Proof. Using Theorem 2.3a) and Lemma 2.1f)5 there is an /zeJV* such
that
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tfi#}c4. (35)

Take any r-continuous semi-norm p, and consider U={g^E®; p(g)<l}, If
Ae[l/l then there are n«> <= tf, #0 e {/r fl} (i=l,2) such that h=
uW-k®. Hence,

p(h) < X^(

are implied. Thus, [U]d(l+2d2n)U. This proves the lemma under consi-
deration,

Remarks, a) The filtratedness of {F$ $} implies that (Bj) is satisfied.

b) If H is continuous on E^] and fulfils in addition (25), then every
filtrated alg-# cone is normal with respect to every I.e. topology r which
satisfies

Proof, Using the continuity of $, there is a system of semi-norms
that defines ^ and satisfies Pi(gi)=Pi(gi) for all ̂ eSp^), gi^^i- Note that

where ?i is taken from (35). Using now that

®*P @n factors); p^fa)} (36)

defines £2n9 an analogous consideration as in (*) of the proof of Example 3.4c)
yields that (Bu) is satisfied. Lemma 4.5 implies finally the assertion to be
shown.

c) Obviously, there are I.e. topologies r on E& such that the assumptions
of b) are satisfied, and however, (Bm) does not apply. As a concrete example
take

TO = {/- 23 AC/".); A^Wi)K
«=0

^« ^A®s '
a '®8A (« factors), ?2- 1,2, — Sjp0(/o) = l /ol -

In the case of involutive cones let us construct some examples of normal
topologies. For E®9 normal topologies are also considered in [10], [11] [22],
[28], [33].

Example 486B Let us be given an I.e. space J^fo], a set of semi-norms
^ which defines tl (Al denotes a directed set of indices), and an
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involutive cone {F, $} in £®. Further, let

for all a e Al9 fi^E^ For each sequence (a1")"- i e C^)^ with

^X/iX^C/iX-, (37)

fi&El9 let us consider the semi-norm fn-*
£^(fn)> fn^En (n=l9 2, •••)» where

for/i=2y+l.

For each sequence (rn)&R+*, let us define the semi-norm

jy* satisfies Definition l.li), and ̂ c^j)^ fulfils that for each
is some (BOF-i^^ with Rk>a, then let us introduce a graded

topology er tB on ^ by

see Definition 1.1. Notice also that

6r,B\En
 = £n

(n=Q, 1, 2, •••), e1=f1, ff0 denotes the Euclidean toplogy on EQ.
Let us say that P satisfies condition (N), if for each (rn)^r the following

are fulfilled:

(NO 1 -
(NU) r2w>max{(rM+,-)2/r2,-; i=0, 1, — , m-\}9 m=l, 2, —,
(Nm) there are two constants c>0, 1<^<2 and two sequences (r«)

(fc,)r-oeSl(BfB), 6M-2+wx+1, cy^-1, such that rnkn<cr'n, n=Q, 1,

2, - .

Lemma. Tjf 71 satisfies (N), ?/7e« {F, ^} w sr B-normal.

Proof. For each (rn)^r, (a')^B, the following estimations are valid:

23
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(*)

< 53 r.(
r+s=n

( + ) X M

< 53 («w(.)((53/(/)l®/(ryr)eWr+*=» y=i y=i

, 7=1, 2, — , M. Hence e(^U) satisfies (A) with 0, = ! (»=0, 1, 2, • ••).
Thus (5i) applies. Further, for each (ai)^B9 M'^M (M, M' e JV) it follows

sup { 1 2
y=i

/ = 1,2,

M

53
y=i

y=i

where /V}eF, Z/i*={reF; |T(/)|<^(/) for all /€=£,}. Hence, (Bu)
applies, where dn = l («=0, 1, 2, ••-). Finally, (Nm) yields (Biu). Using Theo-
rem 4.2, the lemma under consideration is shown.
((#) follows from (37) and an analogous consideration as given in Example 3 Ac).

(+) is a consequence of rm<min{(r2rr2s)
1/2; r+s=m}, which is implied by (NH).

(**) follows analogously to equation (*) of Example 3.4c).)

Remarks, a) Setting B00 = {(ai)i=1^(Al)
N; a1=a2= —}, it follows that

£R%*,BOO
=£°°- Further, there is a P which satisfies (N) and fulfils er>5oo=e00.

Thus, {F. %} is foo-normal. The e ̂ -normality of ^5® was first shown in [22].

b) Let the antilinear bijection % be continuous on ^[^J and satisfy (25).
Arguing as above, it follows that every alg-$ cone {F, #} is e^-normal.

c) If the a-topologies exist on En (n=2, 3, •••), then all the considerations
of the present example apply also to er-topologies.

Because e® is well-adapted to the structure of E& considered as an I.e.
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space, it is of interest to investigate whether or not a given alg-j| cone is s®-

normal. In the case of <S®, this question was answered by G. Lassner in [22].

The following considers E&.

Theorem 4.7. Let us be given an I.e. space E^t^ such that t± is metrizable

and the involution fi-*f*,fi^Elt is t ̂ continuous. Then, the following are equi-

valent.

i) E ® is £®-normal,

ii) jEi[fJ is normable.

Proof. ii)==>i): Assuming ii), £®=£oo follows from [12]. Then, i) is a con-

sequence of Remark a) to Example 4.6.

The proof uses the following two assertions.

(I) If T denotes an £ ̂ -continuous and positive linear functional on E®, then

the mapping

is jointly continuous, where AT(f, g)=T(f* g),/,

(II) If /^[fj is metrizable but non-normable, then there is an £®-continuous

linear functional S on E® such that As is not jointly continuous.

Assume now that i) is satisfied, and that ii) does not apply. Take a linear

functional S from (II). Using i), there are ^-continuous and positive linear

functionals T('\j=l, • • • ,4 , such that

S = jT(1)— -

Noticing that there is a system of semi-norms ?$(£ ®) which defines e® and satis-

fies q(f*)=q(f) for all 0e$P(e®),/e£a, it follows from (I) that there is a #'<E

such that

I T&(f* g) 1 <«'</*) q'(g) = q\f) qf(g) ,

, 7=1, .-, 4. Thus, S(/*g)<4 q'(f) q\g). But this is a contradiction

to (II).

Proof of (I). Recalling Example 3.4a) and Theorem 3.5b), it follows

. Setting rn
=l+Anx and using
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I Tt.(f* ®fn) \ <p2n(f* ®/B) = (

where pn is taken from (35), /„ e En, it is implied that

/) K cs vr. Pn(f«yf • (37)
Using that the right-hand side of (37) is a s^-continuous seminorm. Lemma
2.1c) implies (I).

Proof of (II). The proof follows straightforwardly from the Theorem of
Kolmogorov and a Hahn-Banach argument, see [14].

Remarks 48. a) If (Bj) of Definition 4. 1 is replaced by
(Bi) p satisfies condition (A') with respect to the convex hull (31) and a

sequence (o>J,
then all the considerations of the present chapter apply also to the convex hull
(31) of finitely many a!g-$ cones.

b) Examples 3.7 and 4.6 imply that cSJ+ {£?, #} (convex hull of the cone
of positivity and the cone of reflection positivity) is e/^-normal, if T satisfies
condition (N). Especially, <5®+{f?5 #} is <?oo-normal.
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