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A Continuity Principle for the Bergman
Kernel Function

By

Klas DIEDERICH* and Takeo OHSAWA**

§ 0. Statement of the Results

Let DdCn be a bounded domain with C°°-smooth pseudoconvex boundary,

and letp^dD be any point. By a two-sided bumping family of D at p we mean

a family of smoothly bounded pseudoconvex domains {A}-i^<i satisfying the

following properties :

2)

3) {dDt} _!<,<! is a C°°-family of real hypersurfaces in Cn,

4) for any neighborhood U of p in Cn there exists a ^0<0 such that

A0VD-,0c[/.

Remark. A two-sided bumping family of D at p exists, of course, if dD

is strictly pseudoconvex at p. Recently, it was shown by Cho [Ch], that such a

family also exists, if dD is of finite type at p.

By a peak function at p we mean a continuous function / on D which is

holomorphic on D and satisfies f ( p ) = 1 and | /(z) | < 1 on D\{p} . By ^(z, w)

we denote the Bergman kernel function of D and we put KD(z) = KD(z, z).

Finally, we write ds2
D for the Bergman metric of D.

Our goal is to prove continuity results in the parameter t of a bumping

family for the Bergman kernel, the Bergman metric and related functions.

Namely, we will show the following theorems :
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Theorem 1. Let DC Cn be a bounded domain with C™ -smooth pseudoconvex.

boundary and let {A}-i<^i be a two-sided bumping family of D at some point
p^dD where dD is strictly pseudoconvex. Then there is for any £>0 and any
neighborhood U of p a number tQ£E(Q, 1) such that

for all t^(—tQ, t0) andz^D\U.
This theorem and the analogous result for the Bergman metric will be conse-
quences of the continuity principle for so-called maximizing functions. We
define:

1. Let D be a bounded domain in Cn and wGD an arbitrary
point. We denote N0=W(J {0}, fix an a^Nl and put

l with \ft\ < \a\9

By B(£\z, w)&Hfa)(D9 w) we denote the (unique) function satisfying

B%\w, w) = max { (%-}* g(w) far ge=Hfa(D, w) with \\g\\D = l\
I \dz/ J

and we write &£\w)=B(£\w, w).

We will show

Theorem 28 Let D, p^dD be as in Theorem 1 and fix a^Nt Then
there exists for any e>0 and any neighborhood U of p a number ^e(0, 1) such
that

for allt^-t*, /J and w<=D\U.

As an immediate consequence one obtains

Corollay* Under the assumptions of Theorem 1 there exists for any £>0
and any neighborhood U ofp a t'^(Q, 1) such that

onD\UforalltE±(-t',tr).

§ 1. The Maximizing Functions

From now on, unless explicitly stated otherwise, we always supposes that D
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and p e dD satisfy the hypothesis of Theorem 1 . Furthermore, we fix an a e No

and let Bz(w)=B(w, z)=B(£\w9 z) be the corresponding maximizing function as
defined in Section 0. The first crucial tool for the proof of the theorems is the
following

Lemma 1. For any s>0 and any neighborhood U of p there exists a ^G
(—1,0) such that

for all t such that tl<t<Q and for

Proof. We may assume e<l. Let /be a peak function of D at p. Since
suPz>w I/I <1 ^re exists an integer m such that supD\u\f\

m<£/4. Therefore
one can find a tl&(— 1, 0) such that

for all t such that t1

Let z^D\U be any point and put

^ = (1 -/»)->(! -.T

Then we have

for all /Se^Vg with \ft\ < \a\. Therefore |
On the other hand, one has

Hence we get

This finishes the proof.
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§ 2e An Approximation Lemma

The second technical lemma needed for the proof of the theorems deals
with uniform approximation on bumping families. For this we fix such a family

{A} -i£*£i °f & atP- We can choose a corresponding C°°-family {pt} of defin-
ing functions, i.e. a C°° function pt(z)=p(t9z) on [—1, l]x€n such that Dt =

n: pt(z)<Q} and dpt^Q on dDt and such that the functions pt(z) are

strictly plurisubharmonic in a neighborhood of D-\D^. With this we put rt =2pQ

—pt and Ut={z^D: rt(z)<0}.

We show:

Lemma. There exists a constant C such that for any <p^H2(D) and t^[Q, I]
one can find <pt^H2(D^) satisfying

\\9~9t\\D<C\\9\\ut

and

\\<Pt\\Dt<\\9\\D+C\\<P\\Ut.

Proof. Weputht=pjlrt. Then

(1) 8ht = -~ht pTl dpt+P7l 9rt

= -(*,+!) pj1 dpt+2pT1 dpQ .

Note that there exist constants C0 and Cf (for any s>0) such that

(2) dpj5flo^C0dp$pt+C9 Pt\
2~*dsl on D

where ds2
e denotes the eulidean metric.

Let ds2
t be the metric on Dt defined by

ds2=ds2
e+cQddlog(-pt),

where dd log(— pt) stands for the complex Hessian of log(— pt\ and CQ is a
sufficiently small positive constant, so that ds2 is a metric for all t. Let | - 1 1

denote the pointwise length with respect to ds2. Then, combining the strict
plurisubharmonicity of pt with (1) and (2)5 we obtain an estimate

(3) | dht I f < -2c0(ht+ l)2+C( | PQ | 2- PT1 on D

for all e>Q. Here Cg may depend on e.
Note that Ut = {z^Dt: —I <ht(z) <0} . Hence
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\Pt\ = \hTlrt\>\rt\>2\pQ\-\pt\ on Ut .

Therefore, one has on Ut

In particular, we obtain on Ut for some constant

(4) |̂

Let X: JZ->[0, 1] be any C°°-function satisfying Z=Q on (— oo, — 1] and x = l

on [0, oo). Given any function <p^H\D) and *e[0, 1] we put

By (4) there exists a constant C2 independent of £ such that

\\ut\\t<C2\\<P\\Ut,

where || -||, denotes the L2-norm with respect to ds*. Since the potential func-
tion ||z||2— cQ log(—pt) of ds] has a bounded gradient with respect to ds], with
the bound C3 being independent of t, in virtue of the L2-vanishing theorem of
Donnelly-Fefferman [D-F] there exists an (n, 0)-form vt on Dt satisfying

Sv,=i< f and \\vt\\Dt<C3\\ut\\t,

where we note that the L2-norm of vt does not depend on the choice of Hermi-
tian metrics since vt is of type (n, 0). Let us now define y>t&H2(Dt) by

Then we obtain

and

\\<Pt\\Dt<\\9\\D+C2C3M\Ut.

Thus the constant C=l + C2 C3 satisfies the requirement.

§ 3. The Proof of the Continuity Principle

In order to avoid hiding the essentials behind technical details, we will
prove here in detail Theorem 2 for the case a =Q. Theorem 1 is an immediate
consequence of this. At the end we will then indicate, how the proof has to be
modified in order to give Theorem 2 for general a.
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Let D, {D^-^t^p^dD and the neighborhood U of p be given so as to satisfy
the conditions of Theorem 1, take z^D\U and let B^=B(S\°,z) be the cor-
responding maximizing function. Choose a smooth family of defining functions
pf for the bumping family as in Section 2. By applying the approximation
lemma we obtain functions BZtt^H\Dt) for 0</<1 such that

and

Here Ut is as before and C is a constant independent of £. Hence we obtain

(5) \BZtt(z)-Bz(z)\*<C\\Bz\\*Ut KD(z)

and

(6) KDt

Combining (5) and (6) we obtain

KDt(z)>(\+C p.||&,)-1 (1 -C

Since KDt(z)^KD(z) we have

lim A:D(Z) AS/CZ) = 1
/-*• + <)

by Lemma 1. On the other hand it follows directly from Lemma 1, that

Thus the proof of Theorem 2 for a =Q and of Theorem 1 is finished.

The proof of Theorem 2 for arbitrary a is completely similar except that we
must have approximating functions B^^Hf^(Dt9 z) for Bfg^, z). In order to
realize this additional restriction one only has to replace the use of Donnelly-
FeSerman's vanishing theorem by that with weight functions of the form N

log|z— w|2(^V r>l). For such a modification of Donnelly-Fefferman's vanish-
ing theorem the reader is referred to Ohsawa-Takegoshi [O-T].

In order to see, that the Corollary on the Bergman metric follows from The-
orem 23 we only have to recall? that

= l and g(z) = 0}

for any z^D and any tangent vector X at z.
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