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A Continuity Principle for the Bergman
Kernel Function

By

Klas DiepericH* and Takeo OHSAWA**

§0. Statement of the Results

Let DCC" be a bounded domain with C=-smooth pseudoconvex boundary,
and let p=8D be any point. By a two-sided bumping family of D at p we mean
a family of smoothly bounded pseudoconvex domains {D,} _,<,<, satisfying the
following properties:

1) D,=D,

2) D,CD,ift,<t,

3) {0D;} _1<i<; is a C~-family of real hypersurfaces in C”,

4) for any neighborhood U of p in C" there exists a #,<0 such that

D,\D_, CU.

Remark. A two-sided bumping family of D at p exists, of course, if 8D
is strictly pseudoconvex at p. Recently, it was shown by Cho [Ch], that such a
family also exists, if 8D is of finite type at p.

By a peak function at p we mean a continuous function f on D which is
holomorphic on D and satisfies f(p)=1 and | f(z)| <1 on D\{p}. By Ky(z, w)
we denote the Bergman kernel function of D and we put K,(z)=Kp(z, z).
Finally, we write ds% for the Bergman metric of D.

Our goal is to prove continuity results in the parameter ¢ of a bumping
family for the Bergman kernel, the Bergman metric and related functions.
Namely, we will show the following theorems:
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Theorem 1. Let DC C" be a bounded domain with C*-smooth pseudoconvex
boundary and let {D,} _,<,<, be a two-sided bumping family of D at some point
pEdD where 8D is strictly pseudoconvex. Then there is for any €>0 and any
neighborhood U of p a number t,& (0, 1) such that

| Kp(2) Kp,(2)—1| <e
for all t =(—1t,, t,) and z& D\ U.
This theorem and the analogous result for the Bergman metric will be conse-

quences of the continuity principle for so-called maximizing functions. We
define:

Definition 1. Let D be a bounded domain in C”" and w& D an arbitrary
point. We denote Ny=NU {0}, fix an e N} and put

B
1D, W) = {ge B D): (2 ) g0 = 0V pe Ny with 181 < |al, e}
z
By B%(z, w)E H%, (D, w) we denote the (unique) function satisfying

B)(w, w) = max {[ <a%>w g(w)

for g€ Hi(D, w) with |[g]l, = 1}

and we write BS(w)=B3"(w, w).
We will show
Theorem 2. Let D, pE8D be as in Theorem 1 and fix a ENj§. Then

there exists for any € >0 and any neighborhood U of p a number t,<(0, 1) such
that

BE(w)
BE)(w)
for all te(—t,, t,) and we D\U.

—ll<s

As an immediate consequence one obtains

Corollay. Under the assumptions of Theorem 1 there exists for any €>0
and any neighborhood U of p a t' €(0, 1) such that

(1—e) dsh <ds},<(1+¢) ds}
on D\U for all t=(—t', t').

81. The Maximizing Functions

From now on, unless explicitly stated otherwise, we always suppose, that D
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and p= 8D satisfy the hypothesis of Theorem 1. Furthermore, we fix an e & N§
and let B,(w)=B(w, z)=B%"(w, z) be the corresponding maximizing function as
defined in Section 0. The first crucial tool for the proof of the theorems is the
following

Lemma 1. For any >0 and any neighborhood U of p there exists a t,=
(—1, 0) such that

[1B.l[5\0,<e
Sfor all t such that t,<<t<<0 and for all z& D\U.

Proof. We may assume ¢<<1. Let f be a peak function of D at p. Since
supp\y| f| <1 there exists an integer m such that sup,y | f|”<e/4. Therefore
one can find a f,=(—1, 0) such that

Supprp, | 11" <§

for all ¢ such that #,<<z<0.
Let z& D\U be any point and put

¥, = (1—/"(2) 01— B,.

Then we have

OV =(2Y B,
ow ow

for all SN with |#]| < |@|. Therefore ||y,|[p=>1.
On the other hand, one has

ealls = (1) " lla—™ Bl

<(1=9) Bl (1= " 1B
4 ‘16 4 I

= (=) (=) (1-2) 1Bdrns

Hence we get

e \? 2\ -1
18 ba<{ 1-(1-2 ) (1-5) " <e.

This finishes the proof.
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§2. An Approximation Lemma

The second technical lemma needed for the proof of the theorems deals
with uniform approximation on bumping families. For this we fix such a family
{D;} —1<1<1 of D at p. We can choose a corresponding C=-family {o,} of defin-
ing functions, i.e. a C= function p,(z)=p(t, z) on [—1, 11X C" such that D,=
{zeC": p(z)<0} and dp,=%0 on 8D, and such that the functions p,(z) are
strictly plurisubharmonic in a neighborhood of D\D_,. With this we put r,=20,
—p, and U,={z€D: r(z)<0}.

We show:

Lemma. There exists a constant C such that for any ¢ € H{(D) and t €[0, 1]
one can find o, H¥D,) satisfying

lle—edlo=<Cllelly,
and
lled o <llello+Cllelly, -
Proof. We put h,=p7'r,. Then

(4))] 8h, = —h, p7* p,+ 07t dr,
= —(h,+1) ‘0?1 6‘p,+2p;‘1 apo .

Note that there exist constants C, and C, (for any ¢>0) such that
) 00,00,<Cy00,00,+C,| 0, | 2ds: on D

where ds? denotes the eulidean metric.
Let ds? be the metric on D, defined by

ds? = ds%-+-c, 88 log (—p,) ,

where 90 log (—p,) stands for the complex Hessian of log(—p,), and c, is a
sufficiently small positive constant. so that ds? is a metric for all z. Let |- |,
denote the pointwise length with respect to ds7. Then, combining the strict
plurisubharmonicity of o, with (1) and (2), we obtain an estimate

3 |8k, |} < —2¢o(h+-1)*+C’ | 00|*~% 07" on D

for all 0. Here C; may depend on e.
Note that U,={z€D,: —1<h,(z)<0}. Hence
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lo| = |t r| = |re] 22| 00| — |0, o0 U, .
Therefore, one has on U,
[0h,|i< —2¢o+C o] '
In particular, we obtain on U, for some constant C;
@ |0k |2<C, .

Let x: R—[0, 1] be any C=-function satisfying ¥=0 on (—oo, —1] and ¥=1
on [0, o). Given any function ¢ € H%D) and ¢ [0, 1] we put

u; = 0 (h) p)Ndz A\ -+ Nz, .
By (4) there exists a constant C, independent of ¢ such that

llw:l, <G llelly, »

where ||+||; denotes the L?*norm with respect to ds?. Since the potential func-
tion ||z|[2—c, log(—p;) of ds? has a bounded gradient with respect to ds?, with
the bound C; being independent of ¢, in virtue of the L?-vanishing theorem of
Donnelly-Fefferman [D-F] there exists an (#, 0)-form v, on D, satisfying

v, =u, and ||v||p,<Cqllull,,

where we note that the L2-norm of v, does not depend on the choice of Hermi-
tian metrics since v, is of type (n, 0). Let us now define ¢, = H¥D,) by

@, dzy/\ - Ndz, = X(h) e Adzy\ -+« Ndz,—v, .
Then we obtain

llp—e:lo <(1+C, C)) llelly,
and

lledlo, <llello+C; Csliglly, -

Thus the constant C=1+C, C; satisfies the requirement.

83. The Proof of the Continuity Principle

In order to avoid hiding the essentials behind technical details, we will
prove here in detail Theorem 2 for the case @=0. Theorem 1 is an immediate
consequence of this. At the end we will then indicate, how the proof has to be
modified in order to give Theorem 2 for general c.
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Let D, {D,} -1<;<1, PE 8D and the neighborhood U of p be given so as to satisfy
the conditions of Theorem 1, take z&D\U and let B,=B$’(-, z) be the cor-
responding maximizing function. Choose a smooth family of defining functions
o; for the bumping family as in Section 2. By applying the approximation
lemma we obtain functions B, ;€ H(D,) for 0<¢< 1 such that

IB.,—B5<C||Bllz, and ||B,,l[5<1+C||B/l,.

Here U, is as before and C is a constant independent of 7. Hence we obtain

)] | B, ((2) — B(2)|’<C |B,]|5, Kn(2)
and
6 Kp(2)=(1+C|B,[[5)7"] B, «(2) |*.

Combining (5) and (6) we obtain
Kp(2)=(1+C|B/llz)* A—C|B.lIz,) Kn(2) .
Since K, (z) < Kp(z) we have
lim Ky(2) K57(2) = 1
by Lemma 1. On the other hand it follows directly from Lemma 1, that
lim Kp(2) K5,(2) = 1
Thus the proof of Theorem 2 for @ =0 and of Theorem 1 is finished.

The proof of Theorem 2 for arbitrary @ is completely similar except that we
must have approximating functions B{*} € HZ,(D,, z) for B§(-, z). In order to
realize this additional restriction one only has to replace the use of Donnelly-
Fefferman’s vanishing theorem by that with weight functions of the form N
log|z—w|2(N >1). For such a modification of Donnelly-Fefferman’s vanish-
ing theorem the reader is referred to Ohsawa-Takegoshi [O-T].

In order to see, that the Corollary on the Bergman metric follows from The-
orem 2, we only have to recall, that

dsp(X, X) = sup{| Xg(2)|> K3'(2): |lgllp =1 and g(z) =0}

for any z€ D and any tangent vector X at z.
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