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Principal Fiber Bundle Interpretation of
the KP-Hierarchy

By

Josef DORFMEISTER* and Jacek SZMIGIELSKI*

Abstract

The Grassmannian and the Lax pair approaches to the Kadomtsev-Petviashvili (KP) hierarchy
are analyzed in the framework of (formal) principal fiber bundles. The underlying factorization
problem is formulated as a local triviality condition. In particular the common object in the two
approaches — the Baker function — coordinatizes the base space, the fiber consists of certain
generalized differential operators.

An example is constructed to show that despite the apparent similarity to the splitting in [8], the
local triviality condition cannot be given a group theoretic interpretation.

Introduction

For about twenty years "completely integrable" nonlinear partial differential
equations have been investigated intensively from different points of view. In
particular, the Kadomtsev-Petviashvili hierarchy (KP-hierarchy) has been treated
from the point of view of Grassmannian like manifolds [12], [13], Lax pairs [6],
[7], [13], [14], and the general Riemann-Hilbert problem [8]. The original goal
of this paper was to clarify geometrically the relations between these three
approaches to the KP-hierarchy. In the end we were able to generalize the
pseudo-differential operator approach of [13] to give a natural relation between
the Grassmannian point of view and the Lax pair point of view via (formal)
principal fiber bundles. Even something like a Riemann-Hilbert splitting appears
(Theorem 3.6 and (5.7.27)). However, it turns out that this Riemann-Hilbert
type of splitting cannot be obtained as a ''group splitting" as in [8]. At this point
we have to leave it open to understand the relations between all these approaches
from a higher, unifying approach.

In §1 we recall the definition of the Grassmannian manifold X and the
associated r-functions. In §2 we consider a set °1/F0 that will turn out in §4 to be a
principal G£(//+)-fiber bundle over X and a map <p from W0 to generalized
pseudo-differential operators. In Theorem 2.6 we prove <pwh - (pkVw, W GE °W^
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b EL G€ (//+). This property of <p will be crucial for the principal fiber bundle
aspect of this paper.

In §3 we consider the usual flow jT+ on the Grassmannian X and introduce
two generalized pseudo-differential operators tyw an^ $V, W E W0. Here i/v is
the pseudo-differential operator associated with the Baker function ipw in [13]
and i//vv i§ an infinite differential operator. Qne of the main results (Theorem
3.6) of this paper is the "splitting'11 tyw0 <pw = $w- It allows us to define principal
Gt(H+) fiber bundles of pseudo-differential operators in §4. More precisely,
since X is a homogeneous space, X= GIF, we consider the principal G€ (//+)-
fiber bundle E = GxG£(H+). The main contents of §4 is to show that E is
isomorphic with "Wo as a principal fiber bundle and also with three (different but
isomorphic) G€(//+)-principal fiber bundles of generalized pseudo-differential
operators. The base of these bundles (of course isomorphic with X) is given,
roughly speaking, by {i/v; W G WQ} and the total space is given in one bundle
as (<pw\ W E °W(}}, whereas it is given in another bundle as (i/?jy; W E 14 ,̂}. This
gives an interpretation of ifiw and i/v as fiber and base elements in a principal
fiber bundle.

Finally, we discuss differential equations associated with generalized Baker
functions is Sections 3«8 and 3.9 and for <pw, ipw m §5- The last section of this
paper, 5.7, discusses the question of "invertibility'1 of ty+. This is of importance,
since one would like to write (pw = (tyw)~[° tyw a^d to relate this splitting to the
formally very similar splitting in [8]. We show that tyw is not invertible in any
obvious sense, thus leaving the question open how this paper relates to [8].

§1. Notation and Basic Results

1.1. We will use the notation of [2], but in this paper we will largely disregard
Banach structures. For the convenience of the reader we recall the basic set-up.

Let H = H+ + H- be the orthogonal sum of two infinite dimensional Hilbert
spaces; e.g. H=L2(Sl), /f+ = span{Ar; r>0}, //_ = span {A7; r<0}. We choose
subspaces V+CB(H+, //_), V~CB(H-, H+) such that V=(V+, V~) is a
Jordan pair, i.e. for x+ e V+, y~ E V~, we have x+y~x+ E V+ and y~x+y~ E
V~. In [2] we chose V+, V~ as Asymmetric normed ideal" and thus imposed
canonical Banach structures on V\ but for the purposes of this paper this seems
to be only of minor importance. Nevertheless we have always these examples in
mind.

1.2. Given V= (V+', V") one constructs a variety X by

(1.2.1) X= V+x V~l~,

where the equivalence relation "~" is given by:

(1.2.2) (*, y)~(x', yf) itl~(y~y'}x is invertible and x' =x[I- (y-y'}x]-\
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The equivalence class containing (x, y) will be denoted by (x:y).
An interpretation of the points of X as subspaces of H is given as follows:
For (x, y) E V set

(1.2.3) W= image

Then the map (x: y) •-» W is an isomorphism from X onto some independently
defined variety of closed subspaces of H (see [2; Theorem 2.6]).

We also note that if (x, y)~(x', y'}, then there exists some gGG€(//+)
such that

(1.2.4)
\ ^v / \ •* /

Finally, we would like to recall that the sets (V+ :y), y E V~, form an atlas
of X. Under suitable assumptions on the topology of X, these charts are all open
and dense in X. Therefore, frequently only one chart is considered. We note
that the chart t/0 = (V r+:0) corresponds to those (x, y), for which I-yx is
invertible. Large parts of this paper remain true for V~ = #(//_, //+). How-
ever, for certain results it will be necessary to use V~ = (V+Y - {yE £(//_,
//+), V+y is of trace class}.

1.3. The variety X admits natural group actions. We have discussed this in
[2] and found groups larger than the ones considered in [13] or [9]. Set

(1.3.1) G={(a b] E Gt(H)\ c E W, a is a Fredholm operator of index 0}.

Then G is connected and acts transitively on X. This action is described by the
equation

(1.3.2) (a ,, , ,-,v ' \ c d / \ - J t / \ - v

1.4. Of particular importance for differential equations related to X is the
subgroup r+ C G,

(1.4.1) F+ = {Mf e G; /£ /T(S1), /(O) = 1}

where Mf denotes "multiplication by/".
Most of the time the /'s under consideration are of the form

where the sum in the exponent is actually finite.
We note that Mf is of the form

(1.4.2) Mf-
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where A = MX is the shift operator.
We recall from [13] that b is of trace class if /is twice differentiable. This

applies of course, to the case where f=ep and p is a polynomial in A. In
particular, all determinants and traces considered in this paper will trivially exist.

1.5. We recall some notation from [2; §§5, 6]. For pE:X we set /-p = exp
(t\ A + t2A

2 4- . . .) •/?, where the operation of F+ on X is defined by (1.3.2) and
(1.4.2).

Now let x E V+, then (x : 0) G X and also t • (x : 0) = (x(t) :0)<EX for t in a
neighborhood of 0. With the notation of (1.4.2) we know from [2; 5.5.1]

(1-5.1) x(t)

Moreover, [2; 6] states

(1.5.2) dkx(t) = A*Lx(t) - x(t)Ak
+

(1.5.3) jr(/) /-y+1=jf(/) />1^-5Jj:COi.

Note that in (1.5.2) the matrices A+, sk, A_ are the natural nonzero components
of the matrix A.

In [2; 5.7] we considered n^er+ , where

(1.5.4) n,(X) = exp(- | k'[ ^kXk}.

We set

(1.5.5) ns=-(k-llTkYk=i.

(1.5.6) m(r, 0 = 1 + §
y=o

(1.5.7) r(r; jc

Then from [2; Lemma 5.7] we know

Note that m is essentially the first row of x ( t ) . Moreover, [2; 5.8.2] shows

(1.5.9) 3,lnifcjt) = -x(-0-i.n

Finally, we recall the Baker function

(1.5-10) yC'; 0 = exp( I £*ffc)ma; 0-
k = l

§28 A Map into Generalized Pseudo-Differential Operators

2.1. Let «(jc, •) E L2(5l) for x E C and A^JC) be the K-th Fourier coefficient of
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a(x, •)• We assume that AK(x) is C* for each A:GZ.

Definition 1. /I generalized pseudo-differential operator A(x, 3r) w'tfi
symbol o(A) = a^ L2(S{) is a formal expression

A(x, 5 X )= E>U*)3f.
*ez

We will frequently use the following convention

(2.1.1) *(*, A)*A l=,4(jc, SO*Ar,

in which

5^ = 5 '̂, for *GZ.

We denote the vector space of generalized pseudo-differential operators by W.
W is not an algebra and in fact this is not required in our context. We will
introduce a smaller subset of *F(see Section 4.3) which will have the structure of
a GL(H+) module. There, we adopt the standard rules of composing pseudo-
differential operators. They are determined by the generalized Leibniz rule:

(2.1-2)

(2.1.3)

Let

(2.1.4)

We set

We also write 1 = A° and subsequently compute the column with index "CT of
some element WeW by evaluating Wl.

In Section 3 we will be interested in pseudo-differential operators which are
defined on F+, i.e. all A^s in Definition 1 are functions F+-*C. We recall that
eKK E r+ for any x (E C. Moreover, a general element g e F+ can by parametrized
as g(;c, ̂ 2, ^3, . - 0 = e-rA+'2A2+'u2+"' with jc, f2, r3, ... EC. We will frequently
write g = exX+q(X} = eq(x^.

Definition 2. For g^F+ we define <p: W-+W, by

(2.1.5) a(

where g~{W= M~{ WTK. Here MK denotes the multiplication operator by
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g, Tg = IJ+Mgn+ and IJ+ is the canonical orthogonal projection on H+.

Remark. (1) Since in Definition 2 we have gET+ CH+ n//~, and since
WTgl = Wg holds; the condition (2.1.5) means

(2.1.6)

In what follows we will use the same symbol to denote both an element g E F+
as well as the corresponding multiplication operator Mg.

(2) We will frequently use another way of defining (p. We set

(2.1.7) q>w(g) =

In (2.1.7) we use the explicit parametrization of g in terms of jc, t2, £3, . . . -and
the rule

In view of (2.1.6) and (2.1.7) we have

(2.1.8) Vw(g) = Wg.

From now on a Greek letter with the hat "A " means an element of W, i.e. <p,
£ E W etc., on the other hand, cp, x> etc° (without "A") denote the functions in
L2(S{) obtained from cp and % via (2.1.8).

In the next few sections we will study the dependence of the coefficients of
<Pw(g) on x. In this case we will frequently write <pw(eq^} allowing x to vary
over C, while keeping g(A) fixed. We also note that (2.1.5) can be written as

/-» -i m /-(2.1-9) <K? _

fwwhere a, b, d denote the matrix blocks of £ and W= ( +
D \w-

It is easy to see that a(^w(eq^))^L2(S1) for each x£C. Moreover, in
Corollary 2.2.1 we will show that 0(<pw(eq^)) ^s an entire function of x. These
two facts ensure that cpw is a well defined map from W into W.

2.2. In this section we continue to study <p. First we recall that a basis {i/;J of
the Hilbert space H that is obtained from an orthonormal basis by a bounded
invertible operator is called a basis equivalent to an orthonormal basis [3].

Lemma. Let n^Z, gEF+. Then the sequence {un}, where un(g) = A"g,
nEZ, is a basis of L2(S1} equivalent to the canonical basis {A72}. Moreover, the
sequence {M,,},%O is a basis of H+ equivalent to {A"},%0.
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Proof. It suffices to notice that un(g) = MgX
l, where Mg is an invertible

bounded operator on L2(5l), given by Mgf=gf. D

2.3. We recall that any g e F+ can be written as g(A) = e
xk+^\ where q(X) is

holomorphicinZ>={A<EC, |A|<1}, g(0) = 0, q'(0) = Q, and* (EC. Let us fix q
and allow x to vary over C. We set q(x, A) = xX + g(A). Next we define the maps

We note that the functions u%(x} are entire. This follows from u%(x} =

goW S —£j—, go(A) = e'/(A), since

Iko(A)—;~xK\\2<C—r for some C>0.

In addition to this we will need

Lemma. Let h: C|->L2(S1), x— *h(x) be an entire map. Then h(x) =
h,,(x}u'!,(x) where h,,: C>-»C is entire.

ll EZ

Proof. Set v&(x) = Kme~q^\ then <ug(jc), v^(x)) - d».n. Hence ^(jc) -
(h(x), ve/,(x)) = (e~Ci(x^h(x), A"). Since here the first vector is entire,
e-<7(*.A) ^^^ js ^-i on any Open subset of C. Since the scalar product is continuous
we get that hn(x} is C1 on any open subset of C, thus showing that hn(x) is
entire. EH

2.4. We will apply the above results to the symbol of (pw(g)-

Lemma. Let WE I/I/", then

Wwo(g) = go(yw(g}) = <Pw(g)

As a consequence, the coefficients of A;" in 0(<pw(g)) ar? the same as the co-
efficients of Wu()(g) = <$w(g) relative to the basis ( u n ( g ) ] .

Proof. The claim follows directly from (2.1.7) and (2.1.8). D

As to the .^-dependence of a(q)w(g)) we have the following

Corollary 1. Let q(x, K)=xX + q(K). Then for a fixed q(X) and any
the map x*-* o((pw(ecl^x^}} is an entire map from C to L2(S1).

Corollary 2. <pw(ec^K^) (E W and all the Fourier coefficients of 0(q>
are entire functions of x.
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2.5. Above we have described Wu^eq^^). Next we consider

Lemma. Let W=W, then WuK(eq(x^} = 3^ Ww0(^(^A)), for ic> 0. In par-
ticular, relative to the basis {um(eq(x^}} of H and {w,(^(j:))}r=o of H+, the
matrix entries of W satisfy

1=0

Proof. The map jr-> WuK(eq(x^} is entire. Since uK(eq(x^)
we have WuK(eCf(x^) =

rfEZ

Since WMjr(<*<-r'A>) - Wm K(jc)ww(^(r'A)), the claim follows. D
t=0

The claim of the lemma holds pointwise in *, thus the lemma holds for any
ger+ if interpreted properly. To see this we start with a given g = e

x^+ci(^\
then we extend it to e^

+c^\ apply the lemma and finally evaluate all the
statements in the lemma at x = XQ.

Corollary. Let W and W'E°MT and 0(yw(eq(x^) = a(^(^(-^A)), then
W=W.

Proof. From Lemma 2.4, it follows that Wu(eq(x^} = W u(ell(^X}\ Thus
from the lemma above we obtain WuK(eq(x^} = WuK(eq(x^) for all K>0, which
proves the claim. D

2.6. The following result is fundamental for this paper.

Theorem. The map (p: W*-^> W is injective and <pwb = <Pb<Pw for &U b^
B(H+)CW, W<EW. In particular, setting V>+ = v(GL(H+)), GL(H+) is (anti)-
isomorphic to ip+.

Proof. We have already proved injectivity in Corollary 2.5. To prove
— <Pb<Pw we note (see 2.1.7)

<Pwb(g)g = <Pwb(g) = Wbg for g E r+.
), then

v(e^} = W I bm *(x)um
m>0

m>0
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where in the last step we used Lemma 2.5. We see now that by Lemma 2.4 and
(2.1.7)

Similarly by Lemma 2.4, Wwn(^(r'A)) = (pw(e^^). We thus have

which completes the proof. D

§3o "Factorization" of <fw(g) and Generalized Baker Functions

3.1. We will be interested in the subset W0CW defined by

(3.1.1) l/l/o- \W= ( + HEW: W: #+-» W(//+) is injective and
I \H>_/ ,
>v + is a Fredholm operator of index 0 >

Let us denote by p(W) C L2(5'1) = /f the image of H+ under W. We have the
following result

Lemma, a) p(W) is a closed subspace of H.
b) W: H+—>p(W) is a bounded isomorphism of vector spaces.

Proof. Clearly, W: H+-*p(W) is an isomorphism of vector spaces. Also,
this map is bounded. We claim that T= W"1 is bounded. This is equivalent with

(*) There exists some e>0 such that for all x(EH+ with ||jr|| = 1: e< ||W*||.

Suppose this is not true, then for £ = - there exists some *,7E//+ such that

||jc/;|| = 1 and || Wjc/;|| <-. Since w+ is Fredholm of index 0 we know w+ = a+ + /c+,

where a+ E G£(H+) and k+ is compact. Since the sequence (jc/;) is bounded,
(k+xn) contains a convergent subsequence. Choosing a subsequence of (xn) we
can assume that (k+xn) converges. Repeating this argument we can also assume

that (w^xtj) converges. From || Wjc/;|| <- we obtain iv_jc7I—>0 and a+xn + k+xn-+Q.

Therefore (xn) converges in //+, say to x. But then ||jc | =lim||x/2|| = 1 and
\\Wx | = lim||W;i|| =0, whence jcGKer W. This yields a contradiction, since
Ker W= 0 by assumption. As a consequence, p(W) is a complete subspace of //,
thus closed. D

3.2. The relation between W0 and Jf (see (1.2.1)) is given by the following
lemma.
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Lemma. The map p: W^X, W->p(W} is onto.

Proof. This is plain from the fact that in view of Lemma 3.1 we have
p(Wu) = Gr(H), where Gr(H) is defined in [13; Theorem 2.6], see also [2; 2.2].
Moreover, [2; Theorem 2.6] shows that Gr(H) is isomorphic to X. D

3.3o There is a natural right action of G€(//+) on WQ. More specifically, for
gEGL(//+), we set

(3.3.1)

We recall that a group G acts freely on a set B if gb = b for some g E G and
b E B implies g = e, where e is the identity element of G.

Lemma. GL(H+) acts freely on W0.

Proof. Wg=W for some WE 1f0 and g E GL(H+) implies W(e - g) = 0.
Hence also for every a E H+ we have W(e — g)a = 0. Thus (e — g)a E Ker W for
all a E H+. By Lemma 3.1 however, Ker W= 0, thus (e — g)a = 0 for all a E //+,
whence e = g. D

3.40 From now on we assume V~ = (V+)* = {y E#(//_, //+), V+y C Bi(H-,
//+)}, where #i(/f_, //+) denotes the trace class operators.

Following [13] we introduce for W&X the set

(3.4.1) r^= {gEr+; g-1WE Uo}.

We recall from 1.2 that f/0 — {(x: 0), ;c E F+} is an open and dense set in X
In what follows we give F+ the topology induced from the inclusion F+ C G,

where G is defined in (1.3.1).

Lemma 1. F™ is open and dense in F+.

Proof. Let W= (x: y) and g"1 = ( n . j E F+, then we have

(3.4.2) /T={ger+;7

It is not hard to verify that the map P->B(H+), g*->I- ayxa~~l - bxa~l is
continuous, where P denotes the stabilizer of H+ in G. Hence F^ is open in F+.
On the other hand, by [2; Theorem 2.5.1] we can choose W= (x :y) so that y is
of finite rank. Since also b is of trace class, we see that (p(g) = det(I-ayxa~{ -
bxa~l) exists and is continuous for all g E P. Finally, using [11, Theorem 3.5(b)]
we obtain (p(g) + 0 if and only if /- ayxa~l - bxa~l E G€(//+). Thus
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(3.4.3) rf={gE/\

In view of [13; Proposition 8.6] anfl Lemma 2 below we see that F+ is dense in
D

We would like to remark that F+ = F+. Moreover, we have the following
simple

Lemma 2. Let /z E T+ . Then 1F*W = h~ l rf for any

Since it is rather easy to give examples of W'sinX for which F™ + T+, we know
that the sets F™ are not trivially identical. Their role in our framework will
become clear in the following section.

Finally we remark that F+ acts on Wo by g • W=gWa~i. For WEiWn we set

(3.4.4) fT={ger+;g-1

For h E G€ (//+) it is straightforward to check

/I /i r\ r-VV r^VV^(3.4.5) r+ = 1+ .

This implies that F™ actually only depends on the image p(W) of W in X.
Moreover,

(3.4.6) f

Therefore we will not distinguish between F™ and

3.5. In this section we will use the construction outlined in 1.2 to write a given
cpw, WEl/l^o, as a product of generalized pseudo-differential operators. From
(2.1.7) we know that for WGW and g£T+ we have

where, by (2.1.5),

/ ""*

The matrix form of g"1 • W is

/o c i\ -i IT/ ia b\/W+\ _i iaw+a~i + bw-a~l\(J.j.l) e • W = I ̂  . I T I , ]a =1 . _i
\0 d/\W-/ \ dw_a i

We restrict (3.5.1) to gE/^, thus ensuring that

(3.5.2) G(g) = ̂ +«-1 + ^^_fl-!

belongs to GL(H+). Therefore, whenever gEF^, we can factor g"1- W as
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We note that for w+ - / and w- = —x we have w(g) = —x(—t) as defined in
(1.5.1).

To obtain the symbol 0(q>w(g)) one applies g l- W to 1. This suggests
factoring (p\v(g) according to (3.5.3). First, we define a generalized differential
operator ifiw(g) by

(3.5.4) o(ip

Furthermore, we define a monic pseudo-differential operator i/v(g)

_ / /
(3-5.5) o(tl>w(g))= Lv/

We note that

(3.5.6) g°($w(g» =

is usually called the "'Baker function'1 associated with WE.X.
We introduce some more notation. We denote by ££+(Ff), respectively

2P_(Ff) the generalized pseudo-differential operators for which only nonnegative
(resp. nonpositive) powers of dK occur. We assume further that the coefficients
of these operators are defined only on Ff. For the sake of comparison, let us
recall that cpw was defined on the entire F+. Hereafter we will frequently use the
restriction of <pw to Ff denoted by (pwlr*- We clearly have

306o The following theorem expresses (pw in terms of ifiw(g) an(3 ^w(g)- This
result is a geometric analogue of the lower and upper Volterra operators intro-
duced in the context of direct scattering on R for the KP equation by [15]. An
algebraic version of these operators appears in [8].

Theorem, (a) ^jftg) ° $w(g) = $w(g), 8 ̂  *T. Moreover, ifp+ E 9+(r?)
andp+(g)°vw(g) = p _(g) for all g E Tf ', thenp+(g) = ij)^(g) and p _(g) = ipw(g)
for all g erf.

(b) For each We W^ and each g E F™ there is a unique element Xw(g) Ep( W) G
X and a unique element Xw(g) £//+, such that

(3-6.1) Xw(g)=g(l + i«w(g)A-w),
/i=i

(3-6.2) Xw(g) = Wxfcg).

(c) Let WE WQ. Then for the functions Xw and Xw associated to W in (b) we have

(3.6.3)

(3.6.4)

(d) Let WE Wo and choose Xw(g) as in (b). Define ipw(g) by (3.6.3) and
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by (3.6.3). Then $w(g) ° Vw(g) = $w(g}*

Proof. Part (b) follows from [13; Proposition 5.1] and from the fact that
for WE Wo the map W: H+-^p(W) is bijective. To prove (a) we start from the
defining equation (3.5.3)

which via (3.5.4) and (3.5.5) determines $£ and Vv- We rewrite (1) using
(3.5.1) to obtain

Now we apply both sides to the constant function I and make use of the
definitions of ifiw and ifiw- Thus we obtain (interpreting a^w) and go(ij)w) as
elements of H+)

(3)

Applying the remark after (2.1.7) we have gcr(^(g)) = <Pw(g)g- Therefore the
lefthand side of (3) can be rewritten as

(4)

But the last term is just (tyw(g)0<Pw(g)g where "°" denotes the composition of
pseudo-differential operators and where we used (2.1.7) and (2.1.8). Hence,
altogether we obtain

The uniqueness of (5) follows from the fact that (5) used along with (2.1.7) and
(2.1.8) implies (3), which by (b) shows that (5) is unique. This finishes the proof
of (a). To show (c) we start with ifty e 9^(1^) for which (a) is true, whence (5)
is true. But (5) implies (3) and thus, if we define Xw an<3 Xw by (6) and (7), we
obtain (b). To verify (d) we define ipw(g) and ipw(g) by

(6)

From (3.6.2) we get (3) which implies (5) and thus,we have that (a) holds. D

3.7. This section contains material parallel to that of 2.2. First we will slightly
generalize the results from the last section. Let
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be the first factor in (3.5.3).

Definition. Let W E °irn, g E Ff , * E #, tfzera f/ze function

(3.7.2) fc(g) = g

vw'// be c<z//ed the K-th order Baker function of W.

Remark. Functions similar to (3.7.2) were introduced in [1] to study the
modified KP hierarchies (see also [5]). We will give a new interpretation of
these functions and we will use them to describe the KP hierarchy rather than
the modified KP hierarchy. Clearly, ?/% introduced in Section 3.5 is the 0-th
order Baker function. When no confusion can arise we will frequently suppress
the label 0 in this case.

As before, by p(W) we denote the closed subspace WH+. Since W: H+*-*
p(W) is bijective we can define the scalar product on p(W) by setting

(3.7.3) (r/, D w =<W- 1 i j , W^>,

for rj, £E/?(W), where {•, •} denotes the canonical scalar product on H+.

Lemma. Let WE°l/f() and gEF.^. Then the collection of Baker functions
is a basis of p(W) equivalent to the basis {WAK, *:EA/}.

Proof. First we note that { WXK, KE:N] is an orthonormal basis relative to
the scalar product (3.7.3). Using (3.5.3) and (3.7.2) it is straightforward to show
Vv^Cg) = ( Wa"~l Q~l W"1) WA*, whence the claim. D

Corollary. For We °M/o and g E Ff define Viv,*(g) E H+ by

(3.7.4) yw,K(g} = Wy^K(g).

Then (tyw,K(g), KE.N} forms a basis of H+ equivalent to the canonical basis {A1',

Proof. Indeed, from the proof of the lemma above we obtain tyw,K(g) =
gQ~l(g)kk and thus the claim. D

3.8. In this section, we will prove a parallel statement to Lemma 2.5. We
parametrize g E F^ as before by

(3.8.1) g = exX+^-- •

We note that this time, as opposed to §2, q has to satisfy certain restrictions in
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order to yield g E P™. In the notation of the previous section we have

Lemma. Let We W0, g E FW and K> 1, then

(3.8.2)
m=0

)_ l i 7- is the (—1, j)-th matrix entry of w(g) in (3.7.1).

Proof. We note first that Uw(g) satisfies

(3.8.3) ^-f/w(g) = -AkUw(g) + Uw(g)Ak
+ + Uw(g)skw(g),

Olfc

where

(3.8.4) " ~\Q

and ^j = jc. Clearly, (3.8.3) is only a restatement of the Riccati equation satisfied
by n>(g) (= -*(—t) in (1.5.2)). Using the definition of tyw^ given in (3.7.2) and
the fact

(3-8.5) -j-g = Akg,

together with (3.8.3), we obtain for ;> 1 and />0 by a straightforward compu-
5

tation "^~"^w,i(g) — ̂ w,/+i(g) + gUw(g)sjW(g)XL. We note that 5;-iv(g)Al =

w(g)_m L)j~m holds. Thus altogether we have

(3.8.6)

In particular, setting i = 0, we obtain

d l

(3.8.7) T~V;iv,o(g) = V;iv,y(g)+ 2 iv(g)_m,oV;iv,;-m(g)-
Otj m=l

We will now explore more closely (3.8.7). For j= 1, (3.8.7) gives

(3.8.8) 3r Viv,o(g) = Viv,i(g) + w(g)_ l f0 ̂ ivfo(g),

which in turn implies

(3-8.9) Vw,i(g) = (3r - w(g)-!,0) Vw,o(g)

Furthermore, from (3.8.6) by choosing ; = 1 and t = fc - 1, we obtain

(3.8.10)
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This can be written as

(3.8.11) Vvv,*(g) = 3X Vw,k-i(g) ~ w(g)-\*

Using the equations (3.8.9) and (3.8.11) it is straightforward to prove by induction

(3.8.12)

whence the claim. D

Remark. We would like to comment briefly on the relation of the last
theorem to Sato's program of realizing infinite dimensional Grassmannians as
families of ^-modulus. We refer the reader to [10; Second Lecture] for an
account of his theory. Let 3 be a ring of formal differential operators, i.e.

® = {A= E «,(*)#;*/ EC}
0^/«3C

where 0 is a differential algebra with the derivation <9X. We will also use the ring
of formal pseudo-differential operators

In Sato's approach a central role is played by the family of left 2)-submodules
{/} of % for which % =J®^(~1\ where

Any 23-submoduie /G^ with this property is cyclic and in addition the cyclic
vector Q(0) G 1 + (g(~1). Let /I/ denote the projection on J along %(~i}. Then it
can be shown that the set

spans /. Moreover, the relation

induces the relation

where a^ G 0.
Writing (3.8.11) as an equation for pseudo-differential operators we see that

tyw,k satisfies the same equations as Qk. Thus we have a direct construction of
the basis Qk of the submodule J out of the data WC. W0. Later we will show that

is actually defined on the Grassmannian X (see Theorem 4.5.1). The
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method of constructing / given in [10, Sect. 2.5] uses the Pliicker coordinates of
W. Subsequently O0 can be expressed in terms of Pliicker coordinates. The basis
of the module / is then recovered from the recurrence relations given above.

3.9. The results derived in the previous sections have implications for the KP
hierarchy. We recall that ipw(g} = tyw$(.8) holds.

Lemma. Let WEl/l/o and gE:F+. Then the Baker function ipw(g) satisfies
the KP hierarchy equations:

(3-9.1) -j-Vw(g)=Pk(3J'<l>w(g),dtk

k-l

where Pk($x) = d* + S am(w(g))d"\ and am are some polynomials in matrix
m = 0

entries of w(g) and their derivatives.

Proof. Indeed, from (3.8.7) we obtain

d k~l

(3.9.2) — -^-(g) = Vw,k(g)+ ^ w(g)m-kflVwAg)'
otk m=o

Applying Lemma 3.8 to the right hand side of (3.9.2) we obtain (3.9.1). D

3.10. We finish this chapter with the following generalization of [13; Proposition
5.1].

Theorem. For each WEW0 and gET^, the k-th order Baker function is
the unique function satisfying

(i)

(ii) V>w,k(g) has the form:

/=!

§4. Natural Principal Fiber Bundles

4.1. As mentioned in the introduction we want to relate the Grassmannian
manifold X (see 1.2) to generalized pseudo-differential operators. The starting
point for this is Theorem 2.6. To set the stage we claim the following

Lemma. (Wo, p, X) is a principal (Banach) fiber bundle with the structure
group GL(H+).
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Proof. We introduce

(4.1.1) G<" = te

Clearly Ge> is a Banach subgroup of G. Moreover,'the map /: G-^°W^ given by

(4.1.2) X(a
c £) =

is onto and descends to G/Ge-. The first fact is an easy consequence of p: °W^—>
X being onto and the transitivity of the G action on X. Moreover, x descends to
GIGe'

 as the right multiplication by Ge> does not change the first column of

g E G. Now, let ( , /1 be the inverse of g = ( ,) and g' be an element of G
\K I/ \c d/

with the same first column as g. Then from the equations

and

ka + lc = 0,

we easily see that g~*g' E Ge>. Thus, if x denotes the map obtained from x by
descending x to GIGe', then x- G/Ge'-^Wn is bijective. Since GIGe' is a Banach
manifold, so is WQ. We note that in (3.3.1) we had defined an action of G€(//+).
on WQ. It is straightforward to verify that in G/Ge> this action of Gf(H+) is

( C**¥ ( f-f ^ 0\
n + /)' ^ext we consider the sequence

(4.1.3) G-* GIGe' = ̂ o-^ GIF = X.

It is easy to see that the orbits of H on °f/f0 are exactly the fibers of the canonical
projection W0-*X. Using Lemma 3.3 it is not hard now to verify the claim.

4,2e It is sometimes convenient to work with another description of WQ. For
this we consider

(4.2.1) E=GxGL(H+)

where G = Aut(Ar)°, the connected component of Aut(X) and />={gEG;
g-H+= H+}. We recall that G x GL(H+) = (G x GL(H+))/~, where (g, b) ~
(g', b'} if and only if there exists p E P such that g' = gp and b' = (p~ l)+b where

for p E P we write p = (*j+ J. We will denote the equivalence class of (g, b)

by {g, b}. We have

Lemma. E is isomorphic with W0.
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Proof. In the course of the proof of Lemma 4.1 we showed that GIGe> is
isomorphic with W0. Let [g] be the equivalence class of g in GIGe . Then we
define the map

(4.2.2) M:E->G/Ge^{g, b} = [gb],

where we embed GL(H+) into G by 6-> L J . Note that /^ is well defined

because p{gp, (p~1)+^> = [gk/^1] where p' = (p~l)+p, and thus ^{gp,
( jp~1)+b} ^^{g, £}. Moreover \JL is injective. Indeed, let ^{g, b} = ju{g', fo'}.
Thus, there exists a q£.Ge> such that g'b'=gbq, and we get g' = gp with
p = bqb'~l E P. Moreover, (p-1)+ = 6'Z?"1 which shows that b' = (p~l)+b. We
note that JJL is also onto as ^{g, e] = [g] for every gEG. As a result, \JL is
bijective. Since \i is induced from the map Gx G€(//+)^»G, (g, &)->gfo, the
map ;U is differentiable. Finally, in view of the action of G it suffices to show that
the tangent map of \i at {e, b} is bijective. This is easily seen. D

We finish this section by considering the canonical right action of GL(H+)
on E. For h E GL (//+), we set:

(4.2.3) {g,b}-h = {g,bh},

for all {g, b} GE. With this action of GL(/f+), ^ becomes a GL(/f+)-equiv-
ariant isomorphism of Wo and E.

4.3. In the following sections we interpret the map (p: "Wo— * ̂ , the restriction
of the map defined in Definition 2.1.2, as a bundle morphism [4; §4. Section
3.1]. We consider the subset ip(r+) = U (^(g)0^ of ty. It is now easy to defines^r+
an action of GL(H+) on \p(r+). For 0EG€(//+) and gET+ we set

(4.3.1) 9w(g)-a = Vwa(g)-

In view of Corollary 2.5 this map is well defined. Moreover, by Theorem 2.6 we
have

(4.3.2) yw-a=ya(pw.

It might appear that (4.3.2) describes a left action of GL(H+). That this is not
so follows from the fact that ^ is an antihomomorphism of G€(/f+) (see
Theorem 2.6). Moreover, since GL(H+) acts freely on WQ (see Lemma 3.3)
Theorem 2.6 implies

Lemma. GL(H+) acts freely on ^(J"+) on the right.

4.4. We denote by B(F+) the quotient space of y(F+) by the equivalence
relation induced by GL(H+). The canonical projection from ip(F+) to B(F+)
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will be denoted by Hv,. Thus we have

Theorem. <p is a principal isomorphism between (Wo, /?, X) and
Jljy,, B(F+)), i.e. there exists a (uniquely determined} map h: X-^B(F+) such
that the following diagram is commutative

x > B(r+)

Remark. (1) The map h is induced by q) and therefore uniquely deter-
mined. (2) We would like to point out that we have not specified any topology
on ip, making the above discussion slightly formal. This deficiency keeps us from
claiming that (W(F+), JTV,, B(F+)) is locally trivial. Of course, if we give ip(F+)
the topology induced via (p, then (W(F+), Uv,, B(F+)) becomes a principal fiber
bundle with the local triviality induced from (W0, p, X).

405o We have remarked at the end of Sect. 3.4 that if we take W, W
such that W = Wb for b E GL(H+), then F™ = F^' . Thus Theorem 3.6 applies
to W and W simultaneously. We claim

Theorem. Let W, Wf E WQ and Wf = Wb for some b E GC(H+). Then for
flf/gETf =r.T we have

b)

Proof. By Theorem 3.6 there exist unique $?(£• ESP+, $?vr £2P- sucn tnat

(1) tfwig) vw(g) = $w'(g), g e rf .
In view of Theorem 2.6 this gives

(2) 9
From the definition of ^ it is clear that <p&(g) e^+. Hence ^'
and V?^(g)ESP_. The uniqueness part of Theorem 3.8 applied to (2) and
now yields

and
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(4) $W'(g)=9ti(g)- D

4.6. The last theorem allows one to introduce a new principal GL(H+) bundle
for which we interpret Theorem 3.6a as providing the local trivialization. First,
we define

(4.6.1) 9 = U Vw\r»,
°

(4.6.2) 3C

Note that i/v is defined only on J^ by (3.5.5). Next we consider the map
nF: &-»w,
(4.6.3) nF($w(g)) = ̂ (g), for g €E rf .

Finally, by r: i/;(r+)— >SF we denote the restriction map:

(4.6.4) <Pw*-*<Pw\r»-

We note that the action of GL(H+) on ^(F+) defines a right action of GL(H+)
on 9^. We set

(4.6.5) <Pw'<*\r? = <Pwa\r¥°-

for a E GL(H+). In fact rf " = Ff , so (4.6.5) is well defined. From Lemma 4.3
we get

Lemma. GL(H+) acts freely on 9? on the right. ,

We summarize the present section in the following theorem.

Theorem. (9% JT/r, H) is a principal GL(H+) bundle and r is a principal
fiber bundle isomorphism between (i/;(T+), /Iv,, B(F+}} and (3% ITF, 3^). /«
particular r induces a unique map f: B(F+)-^H making the diagram below
commutative

v(r+) * 9

f
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Corollary. The map X-* //, p( W) »-> i/% is bijective.

4.7. In this section we construct yet another principal GL(H+) bundle which is
also isomorphic to (W^ p, X). First we define

(4.7.1) 9?' = U

3F' admits a right action of GL(//+). Indeed, in view of Theorem 4.5, we have

(4.7.2) tywb(g) — ̂ w(g)9b (&)? g^r^.

Thus GL(H+) acts on <F on the right.

Lemma. GL(H+) acts freely on (3*' on the right.

Proof. Assume that for some WE°r0, b E GL(H+)

(1) tfw(g) Vbl(g} = $w(g), for g ̂  ry.

Applying both sides to g we obtain Vivfe) = tfw(g)g and ^1(g)g= %~1(g)g =
ft^g, where we have used Theorem 2.6 and (2.1.6). Hence (1) implies

(2) $w(g)b~lg = ViJKg), for all g E Ff.

Interchanging 5"1 and i/v(g) we thus obtain

(3) ^~1V/iv(^) ~ tyw(g)i for all gE JTj^.

Next we use (3.8.2). Hence Vv,*(#) = S6^^iv(g) = 2)A:W6~1i/;vy(g), where ®bk is
the differential operator occurring in (3.8.2). Interchanging ^k with '"constant
coefficient operators" we obtain in view of (3.7.4) and the injectivity of W

But from Corollary 3.7 we know that the set {tyw,k(g)i &EAT} forms a basis of
H+, thus implying b = I. D

Let 2C' denote the quotient space of SF' by the equivalence relation induced by
GL(H+). The canonical projection on $£' will be denoted by n&>. We have

Theorem. The map ij)+: °W^—>^', W—•> ^;^E2^+(ri^/) w a principal iso-
morphism between (°Wo, p, X) and (9^', Jly, $T). r/ze following diagram is
commutative

°ur > qr /
w n c?^
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§5. Differential Equations

5.1. In this section we will discuss the action of F+ on WQ and on ^(T+) as in
(2.1.5).

K h\ 1 / h
^ ,) EGf on Wo. We set forg= L ,
u a J \u a

t F W f W

(5.1.1) g-W=M{,Wa~i.

It is not hard to see that the projection p: WQ-^X is equivariant relative to
this action of P. Since ^: WQ-^ ^(r+) is an isomorphism, we can transport the
action of P on WQ to an action of P on ^(F+) such that (p is P-equivariant, i.e.

(5.1.2) g-Vw=

The action of F+ C P on W(F+) takes a particularly simple form.

Lemma. Let g^F+ and WE Wo, then

(5.1.3) (g-

Proof. From (2.1.8) and (5.1.2) we obtain yg.w(h}h = (g- W)h =
h = ^^ D

Since q>w(h) = $w(h)h it is natural to set

(5.1.4) (g-<p)w(h) = <pg.wW, ££P

With this notation the proof above implies

Corollary. For g, h ET+, WE°l/l/o we

(5.1.5) te-?)W(A)

Remark. In view of Theorem 4.4 we obtain naturally an action of P on
B(F+) such that the diagram of Theorem 4.4 is equivariant relative to the action
of P on all four occurring spaces.

5.2. In [2; §4] we described all holomorphic vector fields on X. It was shown
there that all such vector fields come from the infinitesimal action of G on X.
Clearly, (5.1.2) transports the vector fields corresponding to F+ to W(r+}. In
the following sections we will describe the infinitesimal action of F+ on V(F+)
and on 3£ (see 4.6).

In these discussions only subgroups of F+ are involved which are Lie sub-
groups of G. Actually, in view of the differential equations in questions we are
primarily interested in the action of {e'"A", tnE.C} CT+.
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The vector fields associated with this action will be denoted by

(5.2.1) Tnyw = j-\ (e-^'-Vw).
ain tii=o

Lemma. For We W(} and n>\ we have

(5.2.2) Tn(pw=-— (pw

(5-2.3)
uln

Proof. Differentiating (2.1.8) for tn yields

(5-2.4)

H 1 / H \

Using (5.2.4) and (2.1.7) we obtain — <pw(g)=:^-Vw(g)g=(-^-<Pw(g))g +dtn dtn \dtn /
<fw(g) ^lg - 3"^w(g)g, whence (5.2.3). Next we want to compute Trl<pw. In

view of (5.1.3) and (5.2.1) we obtain (Tnyw)(h)=-j-\ (ef"x" • yw}(h) =

), whence (5.2.3). " '" D

Remark. (1) We would like to note that the equation (5.2.3) can be called
the linear KP-hierarchy. Our derivation of (5.2.3) thus shows that the linear KP-
hierarchy appears naturally as an expression of the flow of F+ on W(F+).

(2) The equation (5.2.4) uses substantially the fact that A" is the product of
n factors A, i.e. we use that Lie F+ is actually an associative and commutative
algebra. The linear KP-hierarchy is essentially an expression of this fact.

5.3. In view of Theorem 4.6 and Section 5.1 we can induce an action of P on 9
and $£ such that the diagram of Theorem 4.6 is equivariant relative to P.

The corresponding actions are given for g E P by

(5.3.1) g'(<pwr?) = yg.w\r8
+

w

(5.3.2) g'$w=iPi-w-

As a consequence, for gGF+ , h^F+w = g~lr^ we have

(5.3.3) (g'

Indeed, a comparison of (5.3.2), (5.1.1) and (3.5.5) yields (5.3.3).
Consequently, defining Tnij)w as in (5.2.1) we obtain
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To find a more explicit description of Tflcpw we compare (5.3.4) to (3.9.1),
where Viv(g) = $w(g)g by (3.5.6). We obtain

Proposition. For the n-th infinitesimal flow on 3t we have

(5.3.5) Tnipw = Pn(dx)ipw- $w%

where pn depends on W and is given in (3.9.1).

Remark. (1) The coefficients of pn are differential polynomials in M, where
u is the coefficient of d~l in i/%. This follows as in the proof of [2; Proposition
6.4].

(2) Setting K= ipw we have thus recaptured [13; 5.8]. As a consequence,
pn(dx} = (Kd"K~l}+ and Q = KdxK~l satisfies the Lax pair equation for the
KP-hierarchy

(5-3.6) -^-Q = (Qr
+,Q].

°^/z

5.4. Though the Lax pair equation (5.3.6) is often used to derive the KP-
hierarchy we feel that the approach below may even be preferable, in particular,
since it produces a hierarchy that has the usual KP-hierarchy as a consequence.

First we note that the vector fields Tn and Tm given by (5.3.5) commute.
Thus a straightforward computation yields

Proposition. For the differential operators pn we have the hierarchy of
equations (n, m > 1)

(5.4.1) ~^~P™ ~ ̂ P» = \P'» P"A-dtn dtn

As mentioned in the last section the coefficients of pn are differential
polynomials in u. These polynomials can be computed inductively as explained
in the proof of [2; Proposition 6.4]. However, it may be more convenient to use
in place of (5.4.1) the equivalent hierarchy [2; 6.3.3]

7-1 /-i
(5.4.2) Pi+iP,-u-PJ+iPi

k=l k=i

where Pk denotes the k-th Schur polynomial.

5.5. In the following sections we will discuss the invertibility of ipw and related
questions. In this context we need to consider expressions like a+ °b+ °c~ where
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a+ and b+ are differential operators (of infinite order) and c~ is a pseudo-
differential operator of degree 0. We set

(5.5.1) 2)= 2,flBa";a l,:r+-»C[.
U=o J

For a function /= 2 /,,,(*) ̂ '" and fl+ e® we define

(5.5.2) a
m<=Z

wherever the expressions a+fm make sense.
We will use frequently for.0+, b+ E2)

/C c o\ (n~^~ h~^~\ f n~^~ ( h^ f\

Where the occurring changes in the order of summation are admissible, a+ °
b+ is the usual composition of two differential operators (of infinite order). This
applies in particular if all fm and all b^ are polynomials in x.

5.6. In view of (5.5.3) it is interesting to know when ipw has polynomial
coefficients.

Theorem. Let WE Wo and assume w+= I and that w_ has only finitely
many non-zero coefficients. Then the coefficients of tfw and i/% are rational in x
and can be expressed as fractions with a common polynomial denominator. The
coefficients of (pw are polynomials in x.

Proof. From (3.5.4) we know that the coefficients of Q~1(g)l, where

Q(g) = 1+ bw-a~{ by (3.5.2). Writing w_ G V+ in block form (^ *H and

correspondingly a~! = fn »_ i ] , where q and a are NX N matrices, we see that

w^a~{ = (n n ) an^ qa~{ is an Af x JV-matrix the coefficients of which are

polynomials in x = t± (and also in r2, . .., tN). Decomposing b = (,l }, we
obtain

(i)
where R = / +

Note, the coefficients of R and of b\qa~l are polynomials in x = t± (and also
in t2, . . . , tN). Next we consider

(2)
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From this we see that the coefficients of o(ij)w) = Q(g)~il are rational functions
in x with the same denominator det R. This proves the claim for ijiy/.

Next we consider <pw. From its definition we have

(3) v^w^g)) = jvig \w_)8 = \dw-a~1

Using (1) and (3) we obtain the claim for qiw. Finally we consider i/v- From

(3.5.5) we see that a(ij)w) = ( , _i o_i, ,j. Hence the coefficients of tyw are

rational with the same denominator det R. D

Remark. From (1) above it is clear that we have det R = det Q(g). Hence
the definition of Q(g) shows rw(g] = det R. Moreover, since d is upper-diagonal
and w_ is a finite matrix, i/% has finitely many terms and qiw has finitely many
terms with negative powers of dx as it can easily be seen from (3) and the
formula for 0((f>w)-

5.7. In this section we will address the question of invertibility of tyw- To
illustrate some of the problems one encounters we will consider the simple
example of We Wo, for which w+ = I and

(5.7.1) iv_ l fo = l,

while the remaining coefficients of W- vanish. Using the notation of 5.6 we get

(5.7.2) R = l-x

assuming that we consider only g = exX. Thus, using (2) of the proof of Theorem
5.6 it is easy to see

(5.7.3)

We will consider only

<5-7-4' k-'-lu
and ask if %w has a left inverse. We introduce

(5.7.5) ?=

and want to determine what it means for £ to satisfy

(5.7.6) Miv=l.

We obtain the following set of conditions
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(5.7.7) £ , i " 4 " " / ) + 2 en
,,=0 A:=0 \K/ «=r+l

where

(5.7.8) ofo=

/_*)*+!
(5.7.9) «=

Computing derivatives of the ox's with respect to x we get

4m) = (-l)"X_m k>m,k=zl,

(5.7.10) afck) = (-!)** A: >1,

.o£*+1> = (-!)* *>l.

After elementary computations (5.6.7) gives

(5.7.11) £b=l

(5.7.12) a r+£ r(l-*)

Clearly, et cannot be determined from this recurrence relation. However,
er, r>2 is determined by Si. We list the first few terms

(5.7.13)

(5.7.14) £

and in general we have

(5.7.15) er+1=
m=l T\ T\

We conclude that t=w has a family of left inverses depending on an arbitrary
function £j. Actually we can even allow £j to be a formal power series. It is not
difficult to see that in this case all sn are formal power series. We will see below
that the equation

(5-7.16) ?w°?* = l

can be solved. From (5.7.16) we obtain the following equations

(5.7.17) £n = l,
9 DC / _ yi+1

/<: 7 i ON „ X~ y I X) >)-n
(5-7'18) ^"^"^(n+l)!"1 -°

and
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(5.7.19) Si* t ftU'r/)+
,l=0 £=0 \*C/ «=r k=Q

Equation (5.7.18) has a unique formal power series solution

rm

(5.7.20) £1= E ^-.
m=2 m

If fact, if |*| < 1, the right hand side is absolutely convergent and in this regime

(5.7.21) e1 = l

To see now that (5.7.19) can be solved we rewrite these equations in the
following form:

n + A (n)>V in\ f / z ) , V fn+l\ (n) , V2, afl 4/l) + 2, or/z+1 I e^ + Z or/?
,l=0 w/ «=0 \ A / ,l=0

^ = 0, r>2.

Because of (5.7.17) we can simplify the last term above. Thus (5.7.19) is
equivalent with

(5.7.22)
»=0

Theorem. Equation (5.7.22) has for r>\ a unique formal power series
solution such that

(5-7.23) er= S 7r,m~

(5.7.24) yr,r+1-

Proof. For r= 1 we see that (5.7.22) reduces to (5.7.18), the solution to
which is (5.7.20) and thus it is of the required form. Assume that we have solved
the first r—1 equations (5.7.27) and the solutions are of the form (5.7.23) with
their first non vanishing coefficients satisfying (5.7.24). Using deg Oo=l and

deg ak = k + 1 and expanding sr into a formal power series with coefficients -^y
we get the following coefficients yr^m

(5.7.25)
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(5.7.26) ^y+r ;%m_!=0 m > r + l ,

where r;v/7_! depends only on yr,r+i, . . . , y,-,m-i, and y^ with € < r. This shows
that (5.7.22) can be solved uniquely by a formal power series, satisfying (5.7.23)
and (5.7.24). D

Remark, (1) We have seen that tjw has more than one left inverse. Now
we know that it also has a unique right inverse. This clearly contradicts associ-
ativity: by the nonuniqueness of the left inverse we can always choose t,L + £/?,
e.g. by choosing e{ = 0 in £L. Then ?L°(£M/°?/?) * (?/.°;?iy)0?/?.

(2) An important consequence of this non-associativity is that the fiber
bundles of generalized pseudo-differential operators cannot be interpreted in
terms of "group splittings". Thus the approach of this paper differs fundamentally
from the one of the paper [8]. It would be desirable to understand these
different approaches from a unifying higher point of view.

(3) In spite of the fact that we have to be cautious about associativity, we
obtain some "splitting" of (pw. From Theorem 3.6 we know ipw(g) ° <Pw(g) =

$+(g). For WE.°WO we know from Theorem 5.6 that ipw(g) is of the form
®wl(g}£w(g\ Hence iw(g)°Vw(g) = Dw(g)J$w(g)-

Let now £L(#) denote any left-inverse of £w(g) w^h polynomial coefficients,
the existence of which has been shown in Section 507. Since £L, t;w, and cpw are
polynomial, we can apply (5.5.3) and obtain cpw= CL°(?VK°^/?) = £L°DW$WI

(5-7.27) yw(g) = £L(g)*Dw(g)ij>ti(g).

Therefore (pw splits into the product of a "differential operator" and an "integral
operator". Therefore, in some sense we have obtained a "Riemann-Hilbert
splitting" of cpw.

(4) It would be very interesting to find out whether Fourier-Integral-
Operators (generalizing pseudo-differential equations) can overcome the diffi-
culties outlined above.
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