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Crossed Products by Groupoid Actions
and Their Smooth Flows of Weights

By

Takehiko YAMANOUCHI*

§0. Introduction

In [Yl], we introduced notions of an action and a coaction of a measured
groupoid on a von Neumann algebra, which are regarded as natural generali-
zations of group actions and group coactions in [N&T]. We also exhibited
constructions of their crossed products and dual (co)actions. Moreover, it was
shown that we could extend a Nakagami-Takesaki duality theorem for group
actions and coactions to the groupoid setting, although, in order to prove duality
for coactions of measured groupoids, we needed to restrict ourselves to integrable
ones. Several examples of groupoid (co)actions were also considered there.
However, since our principal concern in that paper was to show the duality,
some important things were left untouched. One of them is to locate the
commutant of the crossed product by a groupoid action. To compute the
commutant is, of course, very essential to analyze the structure of a crossed
product, such as the factoriality and its algebraic type in the sense of Murray-von
Neumann. The program in this direction was successfully accomplished in the
case of group actions by realizing a crossed product as the left von Neumann
algebra of a left Hilbert algebra. This realization enables us to know a modular
operator and a modular conjugation of the crossed product. Our aim in this
paper is to extend this technique to the groupoid setting. In the group action
case, several mathematicians were engaged in the above program such as [T2],
[D], [H2] and [SI]. Here we will closely follow works of Haagerup and Sauvageot
in particular.

Now we describe the plan of this paper. In §1, we first review the P. Hahn's
construction of a groupoid von Neumann algebra from a measured groupoid.
His method is to construct a Tomita algebra, denoted by 9l/, out of a given
measured groupoid, and a groupoid von Neumann algebra is, by definition, the
left von Neumann algebra associated with the Tomita algebra. We shall form a
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new left Hilbert algebra 9? / from a measured groupoid, which is a subalgebra of
?(/, but still equivalent to 9l/. We make use of this new algebra in the next
section. Section 2 is concerned with constructing a left Hilbert algebra from an
action (% { M ( x ) } , {ar}) of a measured groupoid <§ whose left von Neuman
algebra coincides with the crossed product M x '£% by the action. One conse-
quence of this is that M x a^ is generated by operators of the two kinds, as in
the case of group actions. Another consequence is that we can locate the
commutant of the crossed product. In §3, we compute relative commutants of
some subalgebras of the crossed product by a principal measured groupoid. As a
result, the center of the crossed product can be identified as the fixed point
algebra of a certain groupoid action. In §4, as one of the applications of the
result in §3, we compute the T-set of a crossed product. Section 5 is devoted to
computation of the smooth flow of weights of the crossed product by a principal
measured groupoid action. In §6, we give several examples of actions of principal
groupoids. These examples will be constructed by exhibiting a homomorphism
from a given groupoid into the normalizer of an (ergodic) countable group G of
automorphisms on a Lebesgue space (Q, m). The homomorphism is lifted to the
one into the group of automorphisms of the von Neumann algebra obtained by
the group measure space construction from (G, Q, m). Thus we get an action of
the given groupoid. This construction was suggested to the author by Hamachi.
We prove in Theorem 6.7 that the crossed product arising from such an action
can be captured as a von Neumann algebra derived from a measured equivalence
relation. Finally, we consider some concrete examples of actions of the type
described above, one of which is due to Hamachi, and determine the algebraic
types of their crossed products.

This work was done while the author stayed in Japan as a postdoctoral
scholar at University of California, Los Angeles. The author heartily thanks
Professor Masamichi Takesaki for having given him such an occasion.

The author would like to express his sincere gratitude to Professor Toshihiro
Hamachi for helpful suggestion and fruitful discussion.

§1. A Left Hilbert Algebra 9J7

In this section, we first establish several facts on a left Hilbert algebra
derived from a measured groupoid, which will be used in the next section. Then
we review the construction of a crossed product algebra from a given action of a
measured groupoid.

Throughout this note, we fix a standard Borel groupoid % We assume that
all relevant maps and sets that are related to the groupoid structure of ^ are
Borel. We denote the source (resp. the range) of an element y of the groupoid
by s ( y ) (resp. r(y)). The unit space of % which is the image of the groupoid
under the source (or the range) map, is denoted by X. For every xE.X, W
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(resp. ^r) designates the inverse image of the range (resp. the source) map
r~1(;c) (resp. 5~1(jc)). We assume from now on that the groupoid admits a
faithful proper transverse function {)?}x^x an^ a transverse measure A with a
module 6. For these terminologies and basic properties of transverse functions
and transverse measures, we refer readers to [C2]. Given such a system
({Ar}r(EA-, A, 8) on % we have a cr-finite measure, denoted by AA (or, simply by
\JL if there is no danger of confusion), on the unit space X. Let v be the cr-finite
measure on °§ given by integrating the transverse function with respect to the
measure \JL. We also let kx (x^X) and v"1 be the images of A* and v, respec-
tively, by the inverse map. By definition, v is equivalent to v~l in the sense
of absolute continuity and the module 8 is the Radon-Nikodym derivative
dvldv"1. Hereafter we call a groupoid with such a system a measured groupoid.
Given a measured groupoid, we may construct a von Neumann algebra out of it,
following Hahn's idea. The algebra is obtained as the left von Neumann algebra
associated with a left Hilbert algebra ?l/. In [Yl], we call the algebra a groupoid
von Neumann algebra and denote it by 91 (°§) without referring a system
({A*}V(E^, A, <5). Now let us review the construction of the left Hilbert algebra
9l/. Define

9l/={§eL2(<S, v ) : £ i s Abounded, ||§||/<*>}.

See [Ha2] for the definitions of (5-boundedness and the norm ||-||/. The definition
of the set 91 / is exactly the same as that of % in [Ha2]. However, it should be
remarked that our situation is slightly different from P. Hahn's in [Ha2] in that
our measure pt may or may not be a probability one, while his JA is a probability
measure. In any case, it can be shown as in [Ha2] that this set is an involutive
(#) algebra with the convolution as its product, where the convolution * and the
involution # are defined respectively by

91,),

Indeed, we can verify that, for any £ and 77 in s?l/, ||§#||/= ||£||/; ||?*^||/ —
imi/ IMI/ ; ||i*||2^VS|||||2 if £ is ^-bounded; || £* r,\\2< \\ ^\\,\\r,\\2; £ is
(^-bounded <=> ^* is cvbounded; if § and rj are da and ^-bounded, respectively,
then £*?? is (^-bounded .

Now we choose a symmetric probability measure r from the measure class
[v]. We put T= r+(r) (namely, f ( E ) = T(r~l(E))), which is a probability measure
on X. We define two Borel functions P and Q on ^ by

Let
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=jvxdr(x)

be the r-decompositions of r and v with respect to r, respectively. By Theorem
2.1 in [Hal], almost all TX are probability measures and P = dvx/drx a.e..

Observation 1.1. Let / be a nonnegative Borel function on % Then, for
any Borel function h on X, we have

Since h is arbitrary, it follows that

for \JL a.e.x in X.

Observation L2e Let / be an arbitrary Borel function on % Then we
calculate

The fourth step is guaranteed by the assumption that r is symmetric. From this
calculation, we see that

for v a.e.

For any 0 > 1, we set
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E(a) = {y^^: P(y), PCy'1), G(y) E [I/a, a]},

which is a Borel subset of % Before we state the following lemma that is
essentially due to Hahn, we let 1E denote the characteristic function of a set E.

Lemma 1.3. Iff=flE(a) <*-*• for some a > 1 and /E Lx(<@, v), then /E ?l,.

Proof. We put M= H/ll*. Then we have

because T is a probability measure. So / belongs to L2(% v). Next, due to
Observation 1.1, we have that, for \JL a.e. xELX,

since almost all rr are probability measures. In view of Observation 1.1 and 1.2,
we also have

< oo.

Thus we conclude [|/||/<00. Finally we show that /is (5-bounded. Note first that
the subset {yG^ :/(y) + 0}\E(a) is a null set. It follows from Observation 1.2
that 6(y) = P(y)P(y-1)"1e[l/«2, a2] for almost all yEE(a) with/(y)^0.
Therefore, /belongs to ?(/. Q.E.D.

We have the following corollary to the above lemma, whose proof can be
seen in Corollary 2.7 in [Ha2].

Corollary 1.4. The set 9l/nL3C((S, v) is dense in L2(<§, v).

Lemma 1.5. (Lemma 2.9 in [Ha2]). // h E s?l/ is 5wcft tfnif (/* g | A) = 0 /o
/, g E ?l/ H L30^, v), fA^/i h = 0a.e..

Proof. Let {F(m)}m>! be a countable generating family for the Borel
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structure of % Let /7,m = 1^(/l) lF(m) and //I,m=/«,mP"1. By Lemma 1.3, both
/„,,„ and //z?m belong to Jl/DL00^, v). By Fubini's theorem on a measured
groupoid [Hal], we have

Since /iE?l,, J J/M(yfV)lMy)l^K*Hy)^yO < HAJJ^ By the dominated
convergence theorem, we have that JV(m) J/p,<7(yf1y)^(y)^Ar*yi)(y)dT(y1) = 0.
Since {F(m)} is a generating family, there exists a null Borel subset Nof^S such
that for each y{(E<$\N, J/^(yfV)M^Ar(ri)(y) = 0 for any pair (p, ^) E
N x N. By the dominated convergence theorem, there is a null Borel set N± such
that, if (m, yOSENxCSX/VO, then Jl f ( y y l)(yr1y)A()OrfA r<^(y) = 0. Thus, if
(m, y i jENx^XA^i) , then we have Jl/r (m)(y)/2(yiy)rfA5( l / l )(y) = 0. Hence, if
yiE^XNi, then the function y->A(yiy) is 0 for As(yi)-a.e. y, so that
J \h(Yi r)|2 ̂ A5(ri)(y) - 0 for all yr E

 cS\Ni. Let us take a positive Borel function
/on ^ such that J/(y)^Av(y) = 1 for all xEX. The existence of such a function/
is guaranteed by Lemma 3 in [C2]. Then, by Fubini's theorem, we have

Therefore A = 0 a.e.. Q.E.D.

Lemma 1.6. The conjugate linear operator 5 : ^>-> §# defined on ?l/ w

Proof. First we note that r?b E ?(/ whenever 77 is in ?l/, where g"(y) = g(y l).
For any |, 77 E 9l/9 we calculate
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This shows that r? is in the domain of the adjoint of the ^-operation 5 and that
its image is rf . Since ?(/ is dense in L2(% v) by Lemma 1.3, the adjoint is
densely defined, so that ^-operation is preclosed. Q.E.D.

It is now readily checked from the discussion so far that, letting //= 5l/2f#

(/EL2(^, v)), ?l, with multiplication *, left involution #, is a left Hilbert
algebra (in fact, a Tomita algebra) with the corresponding modular conjugation
/, the right involution b and the modular operator A given by

Let H£ denote the abelian von Neumann algebra LX(X, p). On the Hilbert
space L2(^, v), we have two natural ^-actions; one is derived from a repre-
sentation sending /iE^£ to an operator M(/i°r), and the other comes from a
representation carrying /zE££ to M(h°s), where M(/) indicates the multipli-
cation by /EL00^, v). We call the former action the left action of ££ and the
latter action the right action of 2£. Thus L2(<@, v) becomes a ^-bimodule. The
left (resp. right) action shall be written as h'E, (resp. gh) .for any h E££ and gE
L2 (<8, v). Set

2E/? = {M(h°r) : h E3£}, 2E, = {M(h°s} : h E££},

which are both von Neumann subalgebras of Lx(<@, v). From now on, we shall
write ^L2(^, v) (resp. L2(^, v)^) when the left (resp. right) action is specifically
considered on L2^, v). We define D(^L2(^, v), ^) to be the set of all /i-
bounded vectors in L2(% v) relative to the left action of 3£ with a faithful normal
semifinite trace ^, where the /^-boundedness of a vector ^eL2(^, v) is defined
in [C3] as the property that there exists a positive number C such that ||/z£||2<
C $\h(x)\2dit(x) for any ^-square-integrable function /ze£E. We also define
D(L2(^, v)af, fjj) similarly for the right action. By Lemma 2.1 of [Yl], £ is in
DfeL2^, v), IJL) if and only if A(| §|2) e L36^, JM), where A(/) is a function on A"
definied by A(/)(jc) = J/(y)dA*(y) for any Borel function /on CS. On the other
hand, £is in D(L2(^, v)^, ̂ ) precisely when A'(| ^|2) E L~(X, ^), where A'(/) is
a function on X given by A' (/)(*) - J/(y)rfA;(y) with dA; - &/Ar.

We now consider the following subspace of ?l/:

«/ = 9l,nD(aL
2(<8, v), /^)nD(L2(^, v)a, p).

Our next purpose is then to show that 23/ becomes a self-adjoint subalgebra of
the left Hilbert (Tomita) algebra ?l/ and that 93 / is equivalent to 9l/ as a left
Hilbert algebra. Namely we will prove 93/= ?l/. In particular, they generate the
same left von Neumann algebra 8ft ((§).

Let §E93/. We assume that £ is strictly ^-bounded. Then we have
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This shows that ^ED^L2^, v), /^). We also compute

Thus | belongs to D(L2(<&, v)2, ^). Accordingly the vector ^ falls in S3/. It
follows that 3?/ is closed under #-operation. Let r) be another vector in 33/.
Then, by Schwarz inequality and Fubini's theorem,

= ll i l l / / ( / l>Kyr1y)l2dA"

This means that t;*r] lies in Z)(^L2(S§, v), a). We also have
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which implies that £* rj belongs to D(L2(C§, v)s, /*). Therefore, we conclude that
S33/ is a self-adjoint subalgebra of s?l/.

Lemma 1.7. The self-adjoint subalgebra 8?/ is dense in ?!/ with respect to the
inner product ( • ) • )# o/ s?l/ given by the ^-operation. Namely, (||?7)# = (£1^) +

Proof. First we note that 9?/ is dense in L2^, v), because 3?/ clearly
contains the set ^t/nL"^, v) which is already dense in L2(<S, v) by Corollary
1.4.

Let 77 e ?(7 be such that ( || rj)# = 0 for all £ £ 9?/. This is equivalent to

(1)

If we take § to be a real- valued function, then we get

Since S3?/ is dense in L2((S, v), we see that there exists a v-null subset N of ^ such
that 77(7) + 6(7)77(7) = 0 for all y^ <3\N. It follows that, letting 77! be the real
part of 77, we have that (1 + 6(7)) ^(7) = 0 for all 7e^\7V. Thus ^ = 0 a.e..
Hence, if rj2 is the imaginary part of 77, then equation (1) turns into

where £' indicates the imaginary part of £. Since 9}/ is dense in L2(^, v), 772 = 0
a.e., which implies 77 = 0 a.e.. Therefore, s£/ is dense in 9l/ with respect to the
inner product (• | •)#. Q.E.D.

Proposition 1.8. The subalgebra 33 / is equivalent to SI/ as a left Hubert
algebra. Namely, we have 33/ = 3t/.

Proof. The assertion follows from the combination of Lemma 1.7 and
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Lemma 5.2 of [Tl]. Q.E.D.

For readers' convenience, we now briefly recall the construction of a crossed
product algebra from an action of % A detailed discussion and various results
concerning measured groupoid actions and crossed products by them are
contained in [Yl], the notations of which we mainly adopt as well. Let ((S,
{M>(x)}x^xi {^ylyEE^) be an action of our groupoid % Let 2C(jt) be the canonical
L2-space of the von Neumann algebra M(x) and u(y) be the canonical imple-
mentation of the *-isomorphism ar from M(s(y)) onto J/C(r(y)). Thus u(y) is
the unique unitary from 2C(s(y)) onto 3£(r(y)) satisfying ar=Adu(y). By de-
finition, {M(x), %£(X)}X<EX is a measurable field of von Neumann algebras over
(X, ju). Let { J/i, 3€} be the vori Neumann algebra obtained as the direct integral
of the above field. Namely

M=
/

= IJx

For each x E X, we set $C(x) = W,(x) <S> L2(<3X, Av). Next we define a subspace
it(y) of S(3K(s(y)), t(r(y))) by

where A(y) is a unitary operator from L2(<Ss(Y\ A*(l/)) onto L2(<Sr(r), Ar(r)) denned
by

y,

The symbol A is called the left regular representation of the measured groupoid
<§. Since {$£(%}} x^x is a measurable field of Hilbert spaces over (X, /i), we may
form its direct integral:

fJA-

which is equal to the relative tensor product 3(£®lU^2(% v). Note that we can
identify ^(gJ^L2^, v) with the set of all functions 77 from <8 into IIx

such that (i) T?(y)E3«(r(y)), (yE«). (ii) a function xE^^J/m(y)(
JA'r(y) is measurable for any m, n G N , where {|«}n>i and {/m}m>i are funda-
mental sequences of measurable fields for {$€(*)} anci {L2(^, A^)}, respectively.
(iii) J ||??(y)||2dv(y) <3o. The norm of such a function 17 is defined by

We let y(^, nye<s ^t(y)) denote the set of all sections A from <8 into

/Iyecg Jt(y) with the following properties:
(1) A is of the form A(y) = fl(y)w(y)® A(y) (a(y) G JL(r(y))) for which a

function yE^i-* <a(y), cor(y)>is measurable for any a)= J®(wrdju(jc) E J/i^ =
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(2) The quantity \\A\\H = max {||A(p(.)||)||)|U ||A(||A*(-)||)||,} is
bounded, where A#(y) = <5(y) lA(j 1)' . Note that, if A(-} is of the form
A(y) = a(y)u(y) ® A(y) as before, then ^(y"1)* is given by

We will write tf(M) = y(<3, JTye<g M(y)) for short, if there is no danger of
confusion. y(M) becomes a vector space under pointwise addition and scalar
multiplication. We can further equip ^P(M) with a #-algebra structure. Its
product * and involution # are given by

(A,

See [Yl] for the details of this algebra. Next we shall define a representation of
the algebra <f(M) on a Hilbert space ^®A^L2(CS, v). It will be obtained by
"integrating" each section in ^f(M).

Let A be in <f(M) and £ ije^®^2^, v). We may regard £, 17 as
functions on ^ as we observed before. The equation

defines a bounded operator <P(A) on ^(g^L2^, v), where ^4 has the form
A(y) = fl(y)w(y) ® A(y), a(y) e J/i(r(y)) for any yE^. It turns out (see Lemma
4.2 of [Yl]) that cP is a nondegenerate norm decreasing He-representation of the
algebra y(M) on %C = %£ ® ̂  ̂ L2^, v). The crossed product algebra of the action
(% {^(^)}.veA-5 {^y}ye<s) of the groupoid ^ is by definition the weak closure of
the nondegenerate ^-algebra <P(y(M)) and is denoted by M x a

cS. We showed in
[Yl] that there exists a coaction of the groupoid on this new algebra which is
called the dual coaction of the original action.

In the next section, we show another important way of constructing the
crossed product algebra from an action, which enables us to locate the corn-
mutant of the algebra.

§2. Another Construction of Crossed Products

It is known that, in the case of a group action, its crossed product can be
concretely realized as the left von Neumann algebra of a left Hilbert algebra (see
[T2], [D], [H2] and [SI] for the construction of the left Hilbert algebra). One of
the important applications of this realization may be that we can locate the
commutant of the crossed product. Moreover it can be shown that there corre-
sponds a canonical weight on the crossed product, called the dual weight, to
each faithful normal semifinite weight on the algebra on which the group is
acting.
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This section is devoted to following this line of thought in the groupoid
setting. Namely, we are going to present a method of realizing the crossed
product algebra of a groupoid action as the left von Neumann algebra of a left
Hilbert algebra.

Let (% {k*}x^xi A, 6) be a measured groupoid as before. We fix an action
(% {M(x)}x<=xi {#y}ye<s) -°f ^. We keep our notations from the last section.
Assume the existence of a faithful normal state on M. Due to [Su], we may
decompose it into (p= J^q^djuOO along the direct integral M= ^MJ(x}d^(x).
By Theorem 3.3 of [Su], every cpx is a faithful normal semifinite weight on M(x).
Moreover, since (p is a state, almost all q>x are finite. Thus, without any loss of
generality, we may assume in the later discussion that each cpx is a faithful
positive functional on M(x). Let 9€^ be the Hilbert space obtained by the GNS
construction from cpx. Since <px is faithful, {M(x), 3^ J is a standard represen-
tation. So we may and do identify 3^ with the canonical L2-space 3£(x) from
now on.

For a notation, given a normal positive functional p on a von Neumann
algebra Jf , we denote by r]p the canonical injection of M into the Hilbert space
%tp associated with the cyclic (GNS) representation {np, 3£p, ^p] of Jf .

Let 3F(M) be the set of functions a from ^ into nx(=x M>(x) with properties;
(1) fl(y)e,/tl(r(y)) (yEE<S) (2) for any pair £= Jfg^(*) and ij = Sx^d^(x)
of elements in 3¥= J®^(x)^^(jc), a function y€=c§ |-»(fl(y)£r(y)|f7r(y)) is v-
measurable. This set becomes a vector space under pointwise addition and scalar
multiplication. Moreover we can introduce a # -operation on 8F(jH) by the
formula; a#(y) = <5(y)"~1ory(fl(y~1)'1) (y^^, ̂ e^(it)). Next we define a subset
S^(JL) of ^(J/l) consisting of elements a that satisfy the following conditions;

(Fl) ||/fl||/«* and A(/,2), A'(/fl
2) GL30^, M), where /fl(y) = ||a(y)|| (ye«).

(F2)

We often write 9^ for S^(^i) if there is no danger of confusion. It is easy to see
that SF<p is a subspace of 3*(M). For any pair a, Z? of elements in 9^, we may
consider their product a * 6 given by the equation;

It can be readily verified that the product belongs to SF(J/t). We shall show
below that the product in fact falls in 9^. For this, we start off with the following
lemma.

Lemma 2.1. Let f and g be nonnegative measurable functions on ^ such that
II/IU \\g\\i<" and functions A(/2), A(g2), A'(/2) and A'(g2) belong to L~(X, p).
Then we have ||/*g||/<«>, and both A((/*g)2) and A'((/*g)2) are in L°°(X, -y).
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Proof. Since ||/||/, ||g||/<°°, it follows from [Ha2] that ||/*g||/<°°.
Let xeX. Then, by Schwarz inequality and Fubini's theorem, we have

Thus we have proven that A((/*g)2) EL^(^, fj). Moreover we compute

This shows that A'((/*g)2) also belongs to LX(X, fj). Q.E.D.

Corollary 2.2. Lef a and b be elements in <3f<f. Then we have ||/01fc||/ < °° and

Proof. This is an easy consequence of combination of the inequality fa^b <
fa *fb and the previous lemma. Q.E.D.
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It follows from the above corollary that, if a, 6ES^, then a*b satisfies
condition (Fl) for an element of <3*(M) to belong to 9^. Hence, in order to show
that 0*&E2FV , we have to prove that the product also satisfies condition (F2).
For this purpose, we need some preparation.

First we introduce a notation. Let p and co be faithful normal semifinite
weights on a von Neumann algebra M . We consider semicyclic representations
{JTP, 3^p} and {;rfu, 3€w} of JV. It is known that these two representations are
unitarily equivalent. We denote by Up^w the unique unitary from 2CW onto %tp

such that (i) JIP(X} = Up^Jtll}(x) Up^ (x e JV) (ii) I/p,«,9>* - 9^, where ®* (resp.
SPp) is the self-dual positive cone in 3CfU (resp. 3£p) associated with o> (resp. p).
Using this unitary, we are able to describe the unitary implementing the He-
isomorphism ar First consider a unitary F(y) defined by

V(y) carries 2C(s(y)) onto 3^(v)0a-i. Then w(y) is written as

(I) «(y) = ^,(n.VlM.«?.V(y).

So we get

(II) W(y)r^(y)(c) = U^^}0^r!v(aY(c)) (c E

We will make good use of the above identity in the following discussion.
Now we define a linear map A^ from 3*(M) into the set of functions 77 from

^ into nx<=x%£(x) satisfying conditions (i) and (ii) that appeared in §1 by

), yE<8).

Note that A^a) satisfies condition (iii) in §1 as well, if a belongs to 9^. Thus
Ay(a) falls in'^®A^L2(^, v) whenever a e 9^.

Let a and 5 be in 9^. Then we compute

rt-^

^
Due to the above identity (II), we calculate
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^.^o^^^

Thanks to this observation, we may continue the above computation of
as follows;

Thus, if we define an element A in ^(J/i) by A(y) = «(y)"(y) ® A(y), then it
follows that Ay(fl * 6)(y) = { 4>(/l) A,p(&)} (y). Therefore we obtain the following
proposition.

Proposition 2.3. Let a and b be elements of 9^. Then, defining an element A
in y(M) by the formula A(y) = «(y)w(y) ® A(y), w

Hence Ay(a*b) defines an element in yt®^<%L2(^, v).

Corollary 2.4. Let a and b be as above. Then a*b belongs to 9^. Namely,
^ is closed under the product operation *. Thus 9^ becomes an algebra.

Proof. As we noted before, it is enough to show that a *ft satisfies condi-
tion (F2). By definition, Av(a *6)(y) - U ̂ ^^^^^^((a *6)(y)). Since
UCP, ^v^,°a-i is unitary, we have

Therefore condition (F2) is satisfied. Q.E.D.

Now we look at a #-algebra 9^H 9^. Let us then denote by ?lv the image

of 3^n9^ in ^®A<2£L2(^, v) under the linear map Av. We will show next
that 9^n 9?*, hence 91^, contains plenty of elements which make Wv dense in

Lemma 2.5. The set Stv is a rfen5e subspace of ^ ®^^L2(^, v).

Proo/. Let b = Jf b(x)dfi(x) E. M= J^ jH(jc)d]u(jc) and fee 93,. Then we
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define an element ab h in ®(M) by ab A(y) = /z(y)6(r(y)) (ye<8). Put/a/ ,(y) =
K*(y)ll = l |A(y)&Wy))ll = |A(y)l l | f t(r(y))l | . Note that /fl,,,(y)^(y)|'||&IU.
It follows that ||/fl/, ,||/«=° and A^), A'(/^;j)eL"(A', p). Moreover we have

This proves that a €E ^.
Let us now look at a£h. Since afrh(y) = d(y}~1 a7(ab^(y~1}4} =

h#(Y)ar(b(s(Ym /f l j rfc(y) = |A4 t(y)l| |6Wy))l|. Thus we have /^(y)^
|A # (y) l l l&IU, which implies that ||/^J|/<«: and A(/?f<A), A'^jEL30^, p).
Furthermore we calculate

Hence a*^h also belongs to 9^. Therefore fl^^GS^n^.
Next we consider the image of 0^ under the map A^. We have

Let {c,,},,̂ ! be a countable family of measurable fields of operators such that
{£„(*)}„>! generates M(x) for almost every jcGX Then, since 3?/ is dense in
L2^, v), it is not so difficult to see that the subspace in ^(g^L2^, v)
generated by {Av(ac n^ : n> 1, AeSJ/}, which is contained in 91 ̂ , is dense in

L2^, v). '" Q.E.D.
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Our next aim is to show that the set 91^ becomes a left Hilbert algebra when
it inherits the #-algebra structure of 9^ n <&* through the map Av. We shall
also prove that the left von Neumann algebra of H^ coincides with the crossed
product algebra M x *& by the action of ^. For this aim, we first introduce a
nonsingular positive self-adjoit operator and a unitary conjugation on
d^^^^L2^, v), which turn out to be the modular operator and the modular
conjugation of 91 .̂

In the following lemma, A^p denotes the relative modular operator corre-
sponding to two faithful normal semi-finite weights CD and p on a von Neumann
algebra.

Lemma 2.6. There exist a nonsingular positive self-adjoit operator A^ and a

unitary conjugation J^ on ^(g^L2^, v) given by

^̂MKy-1) (§e*®M3EL2(% v)),
where J^ is the unitary conjugation on %£(x) associated with the standard repre-
sentation {M(x), 3C(jt)}.

Proof. Let us begin by the remark that 4'£i(wp<p oa

)°a~l)t)Al^oc^L. Hence it is clear that the equation

{ £7(0 1} (y) =

defines a one-parameter unitary group {C/(0} on ^®Li%L2(^, v). For con-
tinuity, we take vectors £, ^E^^^^L2^, v) and compute

= Jim J 6( y)/r
M

The third step is guarateed by Lebesgue dominated convergence theorem. This
computation implies the continuity of U(t). It follows from Stone's theorem that
there exists a nonsingular positive self-adjoint operator Av on 3f®|u2L

2((S, v)
such that

£7(0 = 4J, ( fER) .

It is immediate to see that Jv defined above is a conjugate linear unitary
operator on ^(S^L2^, v). The identity 7^=1 follows from the equation

Q.E.D.
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Lemma 2.7. The set 51^ is invariant under A^for any t E R. In fact, we have

A^A^a) = Av(p?(a)) (a E % fl 9?*),

p

Froo/. First we will show that p?(a) E 9jp PI 3F* whenever 0E3^
Let /py(f l)(y) = ||pf(0)(y)||. Then it is clear that we obtain

Namely, /py(fl)</fl. This implies that ||/p,(fl)||7< ||/fl||/oc and that
A'(/py( f l))EL3C(A r, ju). Moreover we compute

It follows from this computation that

This shows that pf(a) e S^.
Next we look at pf(a)#. We have

So we have /p,(fl),(y) < 6(7)-' Ikr'1)!! =/a*(y). Namely fpW*^fa*. It
follows that ||/p';(fl)*||/=£||/;,*||/<=° and that A(/2,(fl)*), A'(^(a)*)ei*(^, A*)-
Furthermore we compute

Due to this calculation, we get

/IK:,̂
This means that pf(a)# E 9^. So we conclude that pf(«) E 9^n 3?*.

Finally we compute
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Therefore our assertion follows . Q . E . D .

Lemma 2.8. We have the following identity,

, (t e R).
Therefore it yields

Proof. From the definition of V(y), it follows that

(f

(c

Due to these identities, we have

The second assertion is an easy consequence of the first one. Q.E.D.

Lemma 2.9. TTie map Av(fl) »-> Av(a*) (cES^nS?*) is « densely defined
preclosed linear operator on %C ®^^L2(^, v) iv/Y/z to domain as 91 .̂ // closure Sy
has a polar decomposition

^qj •* (pAqi .

Proo/. Let a e 3^ n &*. We compute
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Here Jp^ denotes the relative modular conjugation corresponding to two
faithful normal semifinite weights p and co on a von Neumann algebra. The fifth
step in the above calculation is guaranteed by the identity Uv i( v),^( v)OCCi =
J<pt(v}J<pl(v},<P«v)°cGl- The second last step is due to the previous lemma. Thanks to
the computation, we have

Namely

It follows that the map in question is a preclosed operator contained in J^A^2.
For the second assertion, it is sufficient to show that 91^ is a core for A^2. Lfet p
be the projection of ̂ (g^L2^, v) onto the closed subspace [(1 +
By Lemma 2.7, p commutes with A^ so that

Hence, if £E9l<p, we have

which implies that p t~ = 0. Since 3(<p is dense by Lemma 2.5, it follows that p = 0.
Therefore ^ is a core for A"2. Q.E.D.

As we saw just before Proposition 2.3, every element a E 3^ gives rise to a
member ^4fl of $f(M) given by A*(y) = a(y) u(y) ® A(y). Remark that we have

Aa,b=Aa*Ab (a, be&(pn&*)
A *- A*s*a

# ~~ s*a •

Thus the ^-algebraic structure of S^nS^ is compatible with that of <f(M)
through the mapping a e ^ H &# *-*Aa E ^(jtl).

In the following lemma, (P denotes the representation of £f(J/t) on
L2^, v) defined in [Yl].

Lemma 2.10. rfte 5e^ { <P(/4fl) : fl E 9^ fl 3^^} w a nondegenerate *-algebra.

Proof. It is obvious by the above remark that the set is a *-algebra. For
showing nondegeneracy, we keep the notation in the proof of Lemma 2.5. We
consider elements in S^fl 3^^ of the form a^j (/E 33/). We have

Note that fli,/*fli,g = fli,/J.g (/, gES3/). This implies that we obtain a represen-
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tation of «/ on ^®MSEL2(% v) through <P:/E «/-> ®(AaJ. We will now
exhibit a useful interpretation of this representation. Let us consider a represen-
tation (w(r) ® A(y)}yeEc£ of ^ on a Hilbert bundle {3€(*) ® L2(^\ A*)},̂  over
(Jf, /i). Then, if one looks at (*) above carefully, it is not difficult to see that the
representation /E 9J/»-> &(Aai ) of 33 / is realized as the integrated representation
(«®A)(/) of the representation (u(y) ® A(y)}y€Ecg of % Thus #(Afli/) =
(w ® A) (/) is a nondegenerate representation of 33/. Therefore { ̂ (Afl) :
0 E S^fl 8F*} is nondegenerate. Q.E.D.

Theorem 2.11. 91 ̂  becomes a left Hilbert algebra with respect to the follow-
ing product and # -operation',

Av(a) * Av(b) = Ay(a * b) (a, b E ̂  n 9?*)

91^ /zfl5 J<p and A^ as its modular conjugation and modular operator.

Proof. In view of Proposition 2.3, left multiplication is continuous. It is an
easy exercise to check that we have

for any |, 77 and £E9I<p. By Lemma^2.9, the ^-operation £•-» ̂ # is preclosed.
From Lemma 2.10, it follows that 91^ is dense in ?l Therefore 91^ is a left
Hilbert algebra. The last assertion is due to Lemma 2.9 again. Q.E.D.

Theorem 2.12. The left von Neumann algebra ^(91^) associated with 91 ̂  zs
exactly the crossed product algebra MX £%.

Proof. Obviously, 2^(91^) is contained in the crossed product.
Suppose that A E y(M). Then there exists an element a of &(M) such that

A(y) = «(y)w(y) ® A(y) with ||/«||/<00, where /fl is, as usual, given by/ f l(y) =
||fl(y)||. Let &E3vng?*. Since ||/,||/<^ we have ||/«*//7||/< ||/«||/||MI/<^-
Moreover, the computation in the proof of Lemma 2.1 shows that, since fa^b <
/fl*/fr, both A(/jl6) and A'(/,7,/0 belong to ^(JT, JLI). It follows that fl*feE9?p.
Remark that 0(A)0(Afe)= <P(A f l l fc). Since {^(A f l):aE9^n 9?*} is non-
degenerate, we need only to prove, for the reverse inclusion, that every element
of the form 0>(Afl) (flESg lies in S^(9y.

Suppose that a E 9^. For any n > 1, define

E^iye^^Cy)^^-1, TI], and ||*(y)||, ^(y-1)!! <n}.

Note that En is symmetric. Namely, yE £„ if and only if y"1 E En. Then we put
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We assert that each an belongs to S^flSFj. For this we first observe that

and that fl,,(y)*fl,i(y) = l£M(y)«(7)*«(y)^«(7)*?(y). It easily follows that
fl/fE9^. Next we show that a* £3^. Since £„ is symmetric, we have/fl#(y) =
ll«,f(y)ll = U-,,(y)5(r)-1||«(y-1)|| = ifi.(y)/*(r)^/?(y); so H/^ll,^ ||/a* ||7 =
||/«||/<0°- Moreover we compute

and

These computations imply that A(/2*) and A'(/2*) belong to LX(X, p). We also
estimate the following;
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Thus we conclude that an E 3^ H 3?*.
Finally we prove that <£(^U belongs to S^(?l<p). Suppose that £, 77 G

, v). Due to Lebesgue dominated convergence theorem, we have

B)£|ij) = to

Hence ^(^4fl) lies in ^(9lv) that is the weak closure of the *-algebra { <P(Aa) :
y*. Q.E.D.

Definition 2.13. The faithful normal^ semifinite weight cp on J/l x JS as-
sociated with the left Hilbert algebra ?lv is called the dual weight of the
originally given state cp on J/L

Theorem 2.14. TTze crossed product algebra M x ^ is generated by elements
of the forms a®%l (a G Jl) 0nd (w ® A)(/) (/G 3?/).

Proof. Let us denote by 2, the von Neumann algebra generated by oper-
ators of the above forms. Suppose that b = J ® 6(jc) d/^jt) E Jl and /E 33/. Since

where ?, r/e^^^^L2^, v), it follows that <P(A,M) = (&®21)(M® A)(/).
Upon taking 6 = 1, we have (w ® A)(/) E M x CV

CS. Let {/}} be a net in 9J/ such
that the net (M ® A)(/-) converges weakly to 1. Then we have

60^1 = weak-lim(6 ® 2l)(w ® A)(//)

= weak-lim

This implies that 6 ® ̂ 1 £ J/l x JS. Accordingly, a is contained in Ji x CV
CS. In

order to prove that 1 indeed coincides with M x ^, we show that a normal
functional on Jl X J§ that vanishes on 2, must be zero. Let o>G {Jt x ^}* be
such a functional. From Theorem 2.12, it follows that {M x JQ, W ®^L2(<$, v)}
is a standard representation; so every normal functional on M x J& can be
written as a vector functional. Thus there exist vectors £, r? in SC®^^2^, v)
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such that G > = < W g i T ? . We write %= $x%xdp(x), rj= Sx^d^x) according to the
direct integral 3€®A1sL2((a, v) = Jf W(x) ® L2(<9*, A*)^*)- Let {c«}«i be a
countable family of measurable fields of operators that appeared in the proof of
Lemma 2.5. We denote by S^o the polynomial algebra over the rational complex
field generated by {1, c/n c^},,,ms=1, which is a countable subset of M. Let b E S^o
and /E S3/- Then, by Fubini's theorem, we have

Since / is an arbitrary element in 23/, it follows that there exists a v-null subset N
of <8 such that

for all yE'SXAf. We may assume here that (i) this holds for any b E SP0> due to
countability of 3>0; (ii) the set {b(r(Yi)) : b E S^o} is weakly dense in M(r(yi)) for
any y±E:c$\N. Note that identity (*) can be rewritten as

Let us fix one ylE.(@\N. Since {^(^(y^) : b E SPn} is weakly dense in
we have that ((6® l)(M(yO® A(y1))^(Vi)|j?Kri)) = 0 for any 6E
Namely, we get

(**)

Now let a E 3^ n S^*. Then, by Fubini's theorem, we have

The last equality is due to (**). Since { <P(^4«) : a E 3^ Pi 9^^} is a- weakly dense
in M x cv

cg, we have that co = 0. Therefore the algebra 2, coincides with the
crossed product algebra. Q.E.D.
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Corollary 2.15. The commutant {M X 0^S}' of the crossed product is gener-
ated by elements of the forms a'(b') (b1 E. M') and l®<%p(f} (/£$?/), where

L2CS, v))

and p is the right regular representation of % that is,

Proof. By the preceding theorem, the commutant is generated by elements
of the forms ^,(fl®al)^, (a£M) and J£,(M® A)(/)£ (/£«/). Let £e
Sfigi^L2^, v). Then

Put 5' =J(paJ(p= $xJq> ̂ a(x)Jcp ^djji(x)^ M' . Then the above computation shows
that

Moreover

which implies that

Thus our assertion follows . Q . E . D .

We close this section with the following lemma which tells us how the
modular automorphism group of the dual weight (p acts on the crossed product.
Since our proof involves only a simple calculation, we leave verification of the
assertion to readers.
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Lemma 2.16. Let a^M and /E9J/. Then we have

a?(a®vl) = a?(a)®vl

and

{of((u ® A)(/)) £}(y) = | <5(7lr/(y,) I/ .̂*^ <r),<^-

44^.ft-ir^^

wftere §G^®^L2(% v).

§3. Relative Commutants in a Crossed Product

In this section, we compute relative commutants of various kinds of sub-
algebras of a crossed product (by a groupoid action).

Before we state our results, we need to introduce a notion of a fixed point
algebra of a groupoid action.

Definition 3.1. Let (<§, {M(x)}x<=Xi {^ylye^) be a groupoid action. Then
the fixed point algebra of the given action is a set Ma of all elements a = J ®
a(x)dp(x) inM = $^M(x)du(x) such that aY(a(s(y))) = 0(r(y)) for v-a.e.y E <8.
It is clear that Ma is a von Neumann subalgebra of M.

We still keep our previous notations in the present section.

Theorem 3.2. Let (<$, {M(x)}x^x> {Oy}ye<s) ^ #" action of^ as before. We
assume that <% is a principal groupoid. Then

(i) {c ® 3! : c e 2£( Ji)} ' H A x ff<8 = {a ® al : a E Jt} ,

2£(JV) hereafter denotes the center of a von Neumann algebra N.

(ii) {« ® ugl : a E M} ' H M x ^ - {c <g> al : c e 2E( Ji)} .

(iii) 2(jHxa») = {c® il:cE2(j(t)fl},

where %£,(M)a, of course, denotes the fixed point algebra of an action

(iv)^ The center %((M x „<&)$) of the centralizer (M x ^)^ of the dual
weight <p is contained in the algebra {a®^

Proof, (i) Clearly, the right hand side is contained in the other. For the
reverse inclusion, let Y be a member of the crossed product commuting with
2£(J/l) ® <sC. From Corollary 2.15, it follows that 7 satisfies (2.10) and (2.11) of
[Y2]. Hence Y belongs to the commutant of C ® <^9l(c§)'. Since operators of. the
type l®?M(h<>s) (/iEL°c(X, //)) lie in C®^^)', we have
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(3.3) [Y, l®aM(Aos)] = 0 (h€EL™(X, p)).

Let us note that, if kE:L°°(X, ju), then 1 ® ^M(A:°r) C {c®^l :cE^(J/l)}; so
we also have

(3.4) [y, l®2Af(fco r)] = o (*EL%Y, p)).

Since ^ is principal, the algebras ^R and 2£5 generate Lx(<@, v). Thus, in view of
(3.3) and (3.4), Y satisfies (2.9) of [Y2]. Then we apply the argument in the
proof of Theorem 2.6 of [Y2] to our operator Y so as to conclude that y must be
of the form Y=a®<%l (a^M).

(ii) It suffices to show that the left hand side is contained in the other. By
(i), we have

{a ® <%! : a E M} ' n M x a<§ c {c ® 21 : c E S( J/l)} ' n H x ^

This proves (ii).

(iii) By (ii), we have

Thus every element in ££(Jlx J&) has the form c<8>^l (cG^(JL)). Note that
the condition that [c ® &1, (w ® A)(/)] = 0 for all /E SS/ is obviously necessary
and sufficient for an element c ® ^1 (c E 2E(^H)) to belong to 3?( Ji x „<§). Recall
that (M® A)(/) is the integrated representation of a (groupoid) representation
{w(y)®A(y)}yecg of « on the Hilbert bundle {^(;c) ® L2(^r, A*)},̂ . It is
known that the commutant of {(M ® A)(/) :/ES3/} is the algebra of decompos-
able operators # such that R ( r ( y ) ) ( u ( y ) ® A(y)) - (w(y) ® A(y))/?(5(y)) for

It now easily follows that, for cE3£(Ji), we have

l) for

for

for v-a.e.

(iv) Let R ES((Ji x a
c§)^). Due to Lemma 2.16, we know that M.V®^C is

contained in (M x Q^)^. In particular, 'SL(MJ) ® ^C is a subalgebra of (M x a
cS)^.

Thus R commutes with Z(M) ® ^C. Accordingly, /? is of the form R = a ® ^1
(flE J/i) by (i). Again, by Lemma 2.16, the element a must lie in M^. It is now
easy to see that a is in ^(M^). Q.E.D.
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§4. The T-set of a Crossed Product

This section is devoted to computing the T-set of the crossed product
algebra by a groupoid action.

As usual, we fix an action (% { M ( x ) } , {&Y}) of a measured groupoid ^ and
a faithful normal state <p on M. The notations introduced so far are retained in
this section too. It should be mentioned that computation of the T-set of a
crossed product heavily depends on the results established in the preceding
section. So we need to assume that our groupoid ^ is principal. For a von
Neumann algebra >T, let T(N) denote the T-set on Jf in the sense of Connes
[Cl].

We define a subset r(% M\ a) of R to be the set of real numbers t such that
(Tl) tET(M)
(T2) (D<pKr) :0%(r)°^^=5(y)- />M;(r(y))a>(j(y))+) for v-a.e.yE<S,

where w= J® w(x] dp(x) E.M is a unitary satisfying of = Adw.

Remark 4.1. In (T2), w satisfies of = Adw, so we have of" = Adw(x) for
'. It then follows that op1* = Adw(s(y)) and of( "» = Adw(r(y)) for

Theorem 4.2. // fS w principal, then we have

, M, o) =

Proof. Let £E r(°§, JL, a) and take a unitary ivEJ/t in (T2). By Lemma
2.16, it is easy to check that of = Ad(w ® fl); so we have t E T(JL x a«).

Next suppose that we take rG T(Mx a,
cg). Then there exists a unitary in

MX cf& implementing of , which we may assume belongs to 3£((J/t x <$)$). By
Lemma 3.2 (iv), the unitary has the form H>®^1, where ivE2£(J/tg,). From
Lemma 2.16, it follows that of = Adw. Thus f E 7(^1). For /E 23/, we compute

If we compare this with the second assertion of Lemma 2.16, then we obtain

for v-a.e.yG^ and Ar(r)-a.e. yx in
 (Sr(r). From this, it follows that, for

and Ar(y)-a.e. y, in (Sr(r),

^
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= w( V) <(^<^» ̂ V^r1-*" M(

Accordingly, we have

(Dcpr(r) : Dcps(Y) ° or"1),

for v-a.e.y(E% Thus re T^, M, a). Q.E.D.

§5. The Smooth Flow of Weights of a Crossed Product

This section is concerned with computation of the (smooth) flow of weights
of the crossed product by a groupoid action.

It is known (see [C&T]) that the (smooth) flow of weights of a von Neumann
algebra M can be realized as the restriction of the dual action to the center of the
crossed product by a modular action on Jf. It should be noted that this realization
is independent of the choice of a faithful normal semifinite weight on the
original algebra Jvf. Hence, in order to compute the flow of weights of a groupoid
crossed product, we may consider the modular action on it derived from a dual
weight.

Let (<§, ( M ( x ) } , {#y}) be an action and cp be a faithful normal state on M as
before. Also in this section, we keep our previous notations. As we have
explained now, we look at the crossed product 2P = (M x a<@) x a^R. However it
is very difficult, only by looking at this algebra 2P, to grasp the center 3£(8P),
which is the very algebra we are most interested in. In order to circumvent the
difficulty, we will employ a standard method (in the case of group actions) in
which we construct another action of the original groupoid ^ whose crossed
product is isomorphic to 9. Then our next step is to resort to the results
established in §4 so as to capture the center of the crossed product.

To make our theory consistent, we change definitions of the crossed product
of a von Neumann algebra by an action of a locally compact group. Our
definition is as follows. Let a: G*-* Aut(JV) be an action of a locally compact
group G on a von Neumann algebra Jf. Suppose that {JV, 3£} is a standard
representation. Let u(g) be the unique unitary on 3C implementing ag, that is,
&% = Adu(g). Then our definition of a crossed product Jf x aG is the von
Neumann algebra generated by operatorsy 0 1 (y E JV) and u(g) <8> A(g) (g E G),
where A(-) denotes the left regular representation of G. Remark that our crossed
product is spatially isomorphic to the conventional one defined in [T2]. If we
adopt this definition, then we have that

9> - (M x a<@) ® C v { Afp <8> A(0 : t E R}".
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Combining this with Theorem 2.14, we obtain

Lemma 5,1. The algebra 9 is generated by operators (a ® ^1) ® 1 (a G J/l),
1 (/E 93,) flnrf 4* ® A(f) (r E R).

Our next objective is, as we stated, to realize the algebra & as the crossed
product by an action of tS. For this purpose, we consider a family of von
Neumann algebras (N(x) = M(x) x a',,R}x^x °n {^(*) ® L2(R)}.YeA-. It is easy
to see that {JV(*)> 3^(jc) ® L2(R)}rGA- is a measurable field of von Neumann
algebras over (X, ju).

For each yE<S, we define a unitary W(y) from $£(s(y)) ® L2(R) onto
3€(r(y))®L2(R) by

{I^y)£}(0 = ̂ yrX,w(^

where £e 3C(s(y)) ® L2(R) = L2(R, 3C(s(y))). It is readily verified that W(y) is
indeed a unitary and its adjoint is given by

where 77 is, of course, in 3€(r(y)) ®L2(R) = L2(R, 3€(r(y))). We assert that
AdW(y) carries J»T(s(y)) onto JV(r(y)). Indeed, we have

(5.2) W(y)(a<8>l)W(y)* = ay(a)<8>l (cejM,(s(y)))

(5.3)

Moreover it can be shown that W(y) is a (measurable) groupoid representation
of <S on the Hilbert bundle {3€(jc) ® L2(R)}X^X. Thus we obtain a new action

{0^ = AdW(y)}ye<g) of the original groupoid c§. We set

We consider the crossed product Jf x -^ by the new action of (S. Let ( W® A)(-)
denote the integrated representation of the groupoid representation (W(y)®
A(y)} on the Hilbert bundle (3K(jc) ® L2(R) ® L2(^v, Ar)}.,eA- over (X, JM). Then
it follows from Theorem 2.14 that the crossed product N x £% is generated by
operators y®^! (ye Jf) and (W® A)(/) (/e93,). Since >f itself is generated
by a® 1 (flE^H) and 4'J® A(0 (fER), we obtain

Lemma 5.4. F/ze crossed product SI = JV X -^ w generated by operators

(/E83,)-

Proposition 5.5. TTze von Neumann algebra <3> = (Mx a
(S) X CT^R is spatially

isomorphic to the crossed product 2, = (Jit X aVR) X 5
(S.
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Proof. The algebra 9 is acting on (^(g^L2^, v))®L2(R) and a is
acting on (^i ® L2(R)) ®^^L2(^t, v). Note that these Hilbert spaces are canoni-
cally isomorphic to each other; so we regard them as the same Hilbert space $,
which can be viewed as the set of all measurable functions £ on ^ X R into nx<=x

W(x) such that (i) £(y, t) E 3£(r(y)) (ii) J || £(y, t)\\2d(v x m)(y, t) < °°, where m
is the Lebesgue measure on R. We define a unitary K on $ by

The adjoint A"1 is given by

, 0 =5(y) -"<H(y) (D^ y ) o^ :D V i M ) ;« (y)^ (y , 0-

Thus K is in fact a unitary. It is only a matter of computation to verify the
following identities

(5.6) (a ® si) ® 1 - K((a ® 1) ®

(5.7) 4 J ® A(0 - XX(4* ® A(0) ® ̂ 1)^' (/ E R)

(5.8) (M ® A)(/) ® 1 - X(W® A)(/)X* (/E «/

Thus it follows from Lemma 5.1 and Lemma 5.4 that AdK gives an isomorphism
between the algebras SP and SL Q.E.D.

Let 0 be the dual action o^ of the modular automorphism ov. We decom-
pose 0 into

f ®0= 0x
Jx

along the direct integral J/lx a V R= J® J^(jc) x a ,%RrfjM(jc). Then dx is the dual
action of a^ for jM-a.e.^e^. Note that, in view of (5.2) and (5.3), we have

(5.9) dcf)^°ar=ar°a^ (yE^).

Accordingly, we get

(5.10) O'^oa^a^F^

for v-a.e.y E ^ and any t E R. It follows that the dual action 6 leaves (M X ^R)"
as well as 3t(M x 0<,R)a globally invariant.

Now we are in a position to state the main theorem in this section.

Theorem 5.11 (The smooth flow of weights of a crossed product). Let (<§,
{J/l(*)}, {tfy}) and q) be as before. Assume that <% is principal. Then, as covariant
systems, we have

x a<S) x ^R), 5$, R} - {%(M x aVRf, 0, R}.
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Proof. Remark first that, because of the above observation, the co variant
system {^(M x ^R)^, 9, R} makes sense. Let 2P and 21 be as in Proposition 5.5.
Then, due to the same proposition, 3£(SP) is spatially isomorphic to ££(&). Since
^ is principal, it follows from Theorem 3.2 (iii) that ££(2,) is isomorphic to
2E( M x ^R)* Thanks to (5.6) and (5.7), it is easily verified that

S?(4* ® A(0) (* e R).

This proves our assertion. Q.E.D.

§6. Examples of Groupoid Actions and Types of Their Crossed Products

In this section, we give a few examples of actions of measured principal
groupoids. Then we apply the results established so far to those examples in
order to obtain some information on their crossed products. The examples will
be constructed in the following manner. First we exhibit a homomorphism from
a given principal groupoid into the normalizer of an (ergodic) countable group
of automorphisms on a measure space. Secondly, we lift the homomorphism to
the group of automorphisms of the von Neumann algebra derived from the
ergodic transformations. Thus we obtain an action of a principal measured
groupoid. In [Yl], we gave several interesting examples of groupoid actions.
However we should say that the type of actions constructed below is new.

As we explained above, we are interested in this section mainly in groupoid
actions (<§, { M ( x } } , {a-y}) in which von Neumann algebras {M(x)}^x do not
vary in each fiber, that is, M(x) = MO for every x E X. Thus we believe that it is
convenient to rephrase Theorem 5.11 in this direction. For this, we need to
introduce a notation. Suppose that M is a properly infinite von Neumann algebra,
and that /3 is an automorphism of M. Let #be a faithful normal semifinite weight
on JV. Then, as in [H&S], we may extend /J to an automorphism /3 of the crossed
product Jf x a/R in such a way that

It is shown in [H&S] that the restriction of /3 to the center of the crossed product
can be regarded as mod /?, the image of /J under the fundamental homomorphism
mod in the sense of Connes and Takesaki [C&T]. (Note that Haagerup and
St0rmer proved this fact in [H&S] in the case of JV being a properly infinite
factor. But their proof is still valid even if M is no longer a factor.) We now
consider an action (<S, {M(x) = JC0}, {%}-) °^ a PrinciPal measured groupoid <@.
By Theorem 5.11, the smooth flow of weights of the corresponding crossed
product is isomorphic to the flow (Z(M x a<,R)a, 0,, R), where <p is a faithful
normal state on M. In our case, M = M^® LX(X, ju); so we may take cp to be a
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state of the form cp = %® r, where x (resp. r) is a faithful normal state on J/L0

(resp. LX(X, p)). Then 2£(^t x a,R) = %(M0 x a,R) ®L%Y, //). Let (XM(),
MJV FfUl) be a point realization of the smooth flow of weights (S(J/t0x CT/R),
5?,' R) of Jin. Thus Z(M x a,R) can be viewed as LX(X^ x X, p^ x ju). We
now look at the induced action ar of <§ discussed in the previous section. In our
situation, each ay is an automorphism of J/10 x aXR. We assert that, with the
notation introduced above,

(*) Sy=ofogd(r)oa :
r (ye<S).

Indeed, by (5.2),

ccy(a ® 1) = *y(«) ® 1

for any 0E J/10. By (5.3), for any f E R , we have

Sy(4'® A(0) - - -

Thus we get the identity (*). From (*), it follows that, upon identifying
<3L(M. x a(/R) with Lx(XMi{i xX, p^x p), ^(Mx ^R)^ is a von Neumann sub-
algebra F( J/10, tf) of L20(X/!/(o X X, p^ x ju) consisting of functions / on X^ x X
with the following property:

f ( r i , r(Y))=f(F^^o(mod a)r,, s(Y))

for any rj^X^ and yG^. Thus the smooth flow of weights of the crossed
product M x ^°is (P(Mn, a), Ff ' x /d, R).

Let ^ be a principal measured groupoid. In this section too, we keep the
notations introduced so far. Let us take a not necessarily ergodic countable
group G of automorphisms (i.e. nonsingular transformations) on a Lebesgue
space (Q, ra). Then we choose a measurable homomorphism y>-> T7 from ^ into
the group A(Q) of all automorphisms on (Q, m) such that ryEAf[G], the
normalizer {T<EA(Q) : TGT~l = G] of G, for all ye % where^4(O) is equipped
with the Borel structure induced by the topology described in [H&O]. We
denote by Jt0 the von Neumann algebra constructed from the transformation
(<2, G, m) by the Krieger's construction. Since ry E Af[G], each Ty extends to an
automorphism <x7 of J/L0- It is an easy exercise to verify that the system ((S,
{M>(x) = M®}x<EX'> l^ylye^) is an action of CS. Let us now exhibit below two
examples of groupoid actions of the above type.
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Example 6.1. Let ^ be a principal measured groupoid associated with a
strictly aperiodic automorphism T on a Lebesgue space (X, /i). Namely,

By "strictly aperiodic", we mean that the transformation T admits no periodic
points. We take a (measurable) homomorphism f(-) from ^ into the set R of real
numbers. (Such a homomorphism can be easily constructed. For example, let us
take a measurable real-valued function /. Then define /(•) by

Obviously, t(-) is a measurable homomorphism from <§ into R. Note that /(•) is
nontrivial unless /=0.) We now make use of an example given by Hamachi in
[Hm]. Let R be an ergodic automorphism of type II '1 \ on a Lebesgue space (Y,
^r), and {F,}reR be measurable ergodic flow of automorphisms on a measure
space (Z, juz). We put Q=YxZxR, m = / /yx fj,z x e"dw, where dw is the
Lebesgue measure on R. Define automorphisms /? and {Fr},eR on Q by

R(y, z9 u) = (Ry, z, u-log

Ft(y, z, u) = (y, Frz, u + t-

for reR and (y, z, u)^Q. We denote by G the countable abelian group
generated by automorphisms R and {Fr]rer, where F is a countable dense
subgroup of R. Clearly, G is ergodic. It is shown in [Hm] that the Krieger factor
M0 coming from this system (G, Q, m) is a factor of type /// whose smooth flow
of weights is isomorphic to the given flow {F,}. For each yG^, define an
automorphism Tr on Q by

TY(y, z, u) = (y, z, w-f (y) ) .

It is easy to check that TY commutes with elements in G; so TYEN[G].

Example 6.2. Let ^ and r(-) be as in Example 6.1, but we assume here t(-)
to be integer-valued. This time, we make use of an example due to Krieger (see
[H&O]). Suppose that G0 is a type ///A ergodic countable group of automor-
phisms on a Lebesgue space (Y, //y), where JJ,Y is an admissible measure (see
[H&O] for the definition of "an admissible measure"), and that U is an ergodic
/^-preserving transformation on a Lebesgue space (Z, ^z). Put Q=YxZ,
m = j^y x {iz. For each g €E G0, define an automorphism g on Q by
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for (y, z) EE D, where n(g, y) is an integer determined by d(^Y
0g)fd^Y(y) =

Xn(8>y) for /^y-a.e. y E Y and g E G0. Set G - {g : g E G0} . G is a type 7//0 ergodic
countable group of transformations on (Q, m). For each yE% define Ty on Q
by

Obviously, TY commutes with g (g£G0); so Tr<EN[G] for all

Thus we are able to construct many interesting examples of groupoid actions
that possess the required property. Now we return to our original (abstract)
system (% {M(x) = MO}, {%})• We denote by RQ the graph of the equivalence
relation generated by (G, Q, m). Then Jt0 is acting on a Hilbert space L2(RQ),
constructed via Feldman and Moore's method [F&M2]. Let M = ^® M(x)d^(x)
= M(}®L~(X, fji). This acts on 3« - L2(RQ) <g> L\X, p). We denote by CD the
faithful normal state on MO determined by the characteristic function of the
diagonal set of RQ. (For this, we should choose a probability measure on Q
equivalent to m). The crossed product M x a

(S by this action is represented on a
Hilbert space 2C ®^L2(% v) - L2(#Q) ® ̂ L2C§, v).

Before we proceed, we prepare three lemmas.

Lemma 6.3. Let ^ be a principal measured groupoid as before. Let (%
{*3*(x) = &Q}, {)8y}) 6^ an action of <§, w/zere SP0 w « ^jcerf factor with separable
predual Put 9 = ̂ ?P(x)d^(x) = 9>0 ® L3C(X, ^). rften rfte center ££(9> x ^) of
r/ze crossed product is isomorphic to the algebra ?10= {/eL°°(^, /^) :/(5(y)) =
/(r(y)) v-a.e.yE^}. 7%M5, zf ̂  w ergodic, then the crossed product is a factor.

Proof. By Theorem 3.2 (iii), the center ££($> x ^ is isomorphic to 2E(9>)/1
Since 2E(^) = 2E(9>0® L36^, jM)) = C®Lac(A r, ^), ^(SP)^ coincides with the
algebra S?10. Thus ergodicity of <% implies that the crossed product is a factor.

Q.E.D.

Lemma 6.4. Let (<§, {9(x) = %}, {j8y}) 6e fl5 m Lemma 6.3. // S^ w o/
ty/7^ III, then so is the crossed product & x £%.

Proof. Note that, since SP = SP0® ^(^ M), we have that r(SP) = T(<3h).
Suppose that <3> x ft were semifinite. Then, by [Tl] or [P&T], 7(9> x ffl = R.
Due to Theorem 4.2, r(SP x ft<@) is a subset of T(<3>) = T(^\ so r(%) must be
the whole real number group R. Thus cr?E/rcf(8P0) for all re R and any faithful
normal state x on Sfy- Since % is a factor with separable predual, it follows from
[Tl] that, upon fixing some faithful normal state #, there exists a (continuous)
one-parameter unitary group {u(t)}t<=R in Sfy such that o? = Adu(t) ( fGR) .
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From [Tl] or [P&T], 2P0 must be semifinite, which is a contradiction. Q.E.D.

Lemma 6.5. Let (% {8P(jt) = 9>0}, {/3r}) be as in Lemma 6.3. //<§ is ergodic
and SP0 is a separable factor of type III l5 then so is the crossed product & x p<3.

Proof. By Lemmas 6.3 and 6.4, the crossed product 2P x ff@ is a factor
of type HI. Let % be as in the proof of Lemma 6.4, and r be a faithful
normal state on LX(X, a}. Put <ftr=#® T. From Theorem 5.11, we have that
3E((0> x 0<S) x a^R) -2£(9> x 0<l(}Rf. Note that, by our assumption, 2E(9> x a^R)
is equal to 2(% x a/R) ® L"(^, ^) = C®Lac(A r , p). Thus Z(9> x a,0R)" is
isomorphic to the algebra S?10 in Lemma 6.3, which reduces to C in this case.
Hence 2E((9> x j§) x a?ilR) - C. Therefore SP x ^ is of type nil. Q.E.D.

Lemma 6.6. Ler (<§, {^(jc) = %}, {/?y}) ^^ fl5 ^ Lemma 6.3 flgam. Suppose
that pE.Int<3$ or all

Let ^0 = L2(%) and 3K = Jf ^d^(x} = ̂ ® L\X, p). Then, by
definition, the crossed product & x $% acts on 3K ® ̂  ̂ ^2(^, AO = ^o ® ^^2(^, v).
Note that, since /3yEto(SP0)> the canonical implementation w(y) of )8y on

belongs to %• For each /G */, define M/ by

Then w^E ̂ %, where <p0 = Z® r *s tne state on ^ tnat appeared in the previous
lemma. It can be shown that

where A denotes the integrated representation of the left regular representation
of CS. Note that { f l ® s l : < z G 2 P } coincides with 9>0 ® 3E/?. Thus, due to Theorem
2.14, 2P0 ® SfcCS) is contained in S^ x ^. Hence we have (SP x /3

C§)' C 9>o
For the reverse inclusion, consider a function c(-) given by

where /G 3?/ and b G %. Then c(-) G 9^u. It is easy to check that we have

It follows that W'v ® Sft^)' C (^ x ffl'. Q.E.D.

Let us now look at Example 6.1. In [Hm], Hamachi showed that the
associated flow of (G, £2, m) in Example 6.1 is exactly the given flow {Ft}r^R.
Hence, if we take ({Ff}, Z, az) to be a trivial flow, that is, Z = {point}, then G
is a type nil transformation group, so that JL0 is a factor of type IIIi- Therefore,
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by Lemma 6.5, the crossed product M x ^@ is a factor of type III ^ provided that
T is an ergodic transformation. We can argue in a different way to conclude that
the crossed product is a factor of type I HI in the above situation. In fact, if the
flow space Z is trivial, then it is easy to see that the action Tr falls not only in
N[G] but also in [G], the full group of G. It follows that the action ay on J/L0

induced by TY is an inner action. Hence, by Lemma 6.6, the crossed product
M x £% is MO ® $l(^). Since J/L0 is of type 77/j, so is the crossed product.

We return to the original system ((S, {M(x) = J/t0}, {&>})• Our next objective
is to clarify the structure of the crossed product M x ^% by the above action. It
turns out that the crossed product can be realized as the von Neumann algebra
constructed from an equivalence relation on a measure space. For this purpose,
we introduce an equivalence relation RQXX on QxX by saying that (<y, jc) is
equivalent to (ft/, *') if x — x' in Jf and CD— T^^^CD' in O. It follows, from the
fact that TY£N[G] for all yE<§, that the notion introduced above is indeed an
equivalence relation on QxX. The groupoid RQXX has a canonical standard
measured groupoid structure as follows. For (CD, x}^QxX, a Haar system
v ( fu ' r ) is given by

f
J

where / is a positive Borel function on RQ^X and 2W«_W indicates a sum with
respect to a/ equivalent to a given ox A quasi-invariant measure on O x X is the
product measure mx^ with module <5( •)/)(- ,-) , where D(v) is the module
corresponding to the measured groupoid RQ. Namely, if we define a measure 6
on RQXX (This 0 has nothing to do with the one that appeared in §6.) by

= f f S /((a>, *), (ry-,(»',
^^xA--^ w'~w

and ^-1 by the image of 0 under the inverse map of

Recall that, as we noted just before Lemma 6.3, the crossed product MX ^
acts on L2(Ro) ® -iL2(% v). Our next step is to construct a unitary that carries
L2(RQ}®%L2(^, v) onto L2(RQxX, 9). For this, let ^L2(RQ) <8> ^L2(^, v).
Then define a function [/£ on RQXX by

Then

= 1 f S |
JQxXJ co' -co

= I i I 2 !£((<», «»').
J QJ XJ ta'~co
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Thus U is an isometry from L2(RQ} ® ^L2(<$, v) into L2(RQxX, 8). Let /E
L2(RaxX, 0). This time, we define a function Vf on RQx^ by

«'), 7) =/((«, r(y)), (7V-ia>', 5(7))).

Then we have

f f f 2 |{V/}((<», «'), y)|2rfA*(y)dji(jc)<Mc»)
•>£2->A'- ; ft/~ro

= f f f E |/((a>, r(y)), (7VW,
J QJXJ to' -co

which shows that Fis also an isometry from L2(RQxX, S) into L2(RQ)®^L2(^ v).
It is easy to see that UV=1, VU=l. Hence [/ is a unitary with 17* = V.

What we would like to do next is to show that Ad U gives a spatial isomor-
phism between the crossed product M x J& and the von Neumann algebra
W*(RQXX) constructed from the principal measured groupoid RQXX-

First we note that, by Corollary 2.5, (M x CV
CS)' is generated by oper-

ators a'(b') (freJlo) and l®p(/) (/E^/). Moreover, the operators jrr(A:)
(k£L™(Q, ra)) and v(g) (gEG) on L2(RQ) given by

are generators of Ji0- Consequently, (Jlx^)' is generated by operators of
the forms a'(rtr(k)), a ' ( v ( g ) ) and l®p(/). Similarly, Ji x ^ is engendered
by operators of the forms jre(k) ® 1 (k^L~(Q, m)), w(g) ® 1 (gEG) and
(«® A)(/) (/E33/), where Jr^(A:) and w(g) are operators generating H0 defined
by

= k(a))p(a), a)'}

Let 9J/(/?QxAr) denote the ".R^x Aversion of 3?/". In other words, 33/(^QXA-)
is the #-algebra 9?/ in L2(RQxX^ ^) constructed by the procedure described in §1
from the measured groupoid R&xx instead of CS. From now on, we often write
(£/ for this set ^/(RQXX) f°r short, if there is no danger of confusion. We denote
by L(-) (resp. R(-}) the left (resp. right) multiplication of the Tomita algebra G/,
that is,

L(f)g=f*g (

Then operators of the form L(/) (/£(£/) (resp. /?(/)) generate W*(R&XX)
(resp.
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We first assert that U(M x a<§)U* C W*(RQxX). For this, it suffices to show
that operators of the types U(n<(k) ® 1) I/*, U(w(t) ® 1) U* and U(u ® A)(A) t/*
commute with /?(/) (/E(£/). It is a tedious computation to check this fact. So
we only mention below how those operators act on L2(RQ^X, #)•

, (a/, 5(y))) = *(")*((", Kr)), ("'*

, (a/,

Next we claim that U(M x ffl'U* C W*(/?fix^)'- For this claim, we need
only to prove that operators of the forms Ua'(jir(k))U*, Ua'(v(g))U* and
f/(l®p(/))t/* commute with L(f) (/E(£/). Again, we just state what the
above operators do to vectors in L2(RQXX-> $)•

{Ua'(nr(k))U*g}((a>, r(y)), (a)', 5(7))) = /c(

, (a/,

We now summarize the result established in the above discussion.

Theorem 6.7. Under the situation we have been considering so far, the
crossed product M X ^% is spatially isomorphic to the von Neumann algebra

XX) derived from the measured equivalence relation RQXX-

We consider the following nontrivial example of an action of an ergodic
principal measured groupoid <§ of the above type.

Example 6.8. Suppose that 0A and 92 are rationally independent irrational
real numbers. Put Q = T, the set of complex numbers of radius 1. We denote by
m the normalized Haar measure for T. Then define an automorphism 5 on Q to
be the irrational rotation by 01? Sco = e2jTiBia). Let Ji0 be the Krieger factor,
which is the injective factor of type 7/l7 obtained from this ergodic transfor-
mation. Next we set (X, jj) to be the infinite direct product measure space
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built from one measure space {0, 1} with \— -r, — -r[ as its probability
t_L + A L ~T A)

distribution, where 0<A<1. We introduce an equivalence relation on X by
declaring that x = (x^={ in X is equivalent to x' = (xj)*=i'mXifXi = x! except for a
finite number of i. It is well-known that this equivalence relation on X is exactly the
one that is generated by the so-called adding machine transformation on X. It
follows that, if we denote by ^ the graph of this equivalence relation, then ^ is a
type 7//A ergodic orbi tally discrete principal measured groupoid. Hence the
module 6 of °§ takes values of integer powers of A. We put n(x, x') = logA<5(jc,
* ') G Z. Then, for any (jc, x') G<§, we define an automorphism T(r V'} on Q by

It is easy to check that S°T^X^^ = T^^X^°S for any (x, JSC')E^. Thus I^,^)
belongs to N[S], Moreover, it can be readily shown that T(ViA:') G A/[S]\[5]
unless x = x'. Accordingly, every F(v^<) (x + x ') induces an outer automorphism
or(.v,x') of J/L0. Thus we obtain a nontrivial action (<S, (M(x) = MO}, {^^')}) of
an ergodic principal measured groupoid ^.

In this paragraph, we would like to apply Theorem 6.7 to the above action
in order to analyze the type of its crossed product algebra. By Theorem 6.7, the
crossed product by this action is isomorphic to the algebra W*(RQXX)- Hence
we need to compute the Poincare flow of the equivalence relation RQXX so as to

determine the type of the factor W*(RQxX)- F°r the computation, we look at a
measure space (Ox^xE, m x / ^ x eltdu), where du is, as usual, the Lebesgue
measure on R. On this measure space, we consider an equivalence relation in
which (co, jc, u) is equivalent to (a/, x', u') if (<y, *)~(a/, x') in RQXX

 an^
u = u ' + log <5(jt, x '). We need to decompose Q x X x R into ergodic components
with respect to the above equivalence relation and examine the behavior of the
flow {/v)>(ER °n £2x XxR according to the decomposition, where Ft is given by
Ff(o), ;c, u) = (a), jc, u + f).

Let / be a measurable function on Q x ^ x R such that

(6.9) /(w, x, u)=f(T(x'^o)', x', u-log d(x, x ' ) )

for any (jc, jc ')^^ and any (co, co^G/?^. Upon taking x = xr, we get

/(w, jc, u ) = f ( a ) r , x, u)

for any (<y, ft)') G ̂ ^2. Since .R^ is ergodic, there exists a measurable function /A

on X x R such that

/O, j, U ) = f 1 ( x , u)

for almost all (&>, jc, u). Hence (6.9) is equivalent to

f i ( x , u)=fi(x', u-log 6(x, x')
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for almost all (jc, x ') and u G R. Since ^ is a type 7//A equivalence relation, there
exists a measurable map 0 from JSfx R onto [0, —log A) such that (1) <£(#, w) =
0(V, w-log (5(jt, *')) for a.e. (*, w). (2) For any function ^ on XxR with
£(*, w) = §(*', w — log 6(jc, A:')) for a.e. (jc, w), there exists a measurable
function r? on [0, -log A) such that £(*, M) = r]((t>(x, u)) for a.e. (jc, M). (3) If Ht

(resp. Gr) is a flow on ^fx R (resp. on [0, -log A)) defined by

Hf(x, u) = (x, u + t) (O, u) e ^ X R)

(resp. Grw = w 4- t mod{— log A}),

then (j)°Ht= G,°0. Hence, to the above function /1? there exists a measurable
function 77 on [0, —log A) such that /L(JC, u) = ry(0(jc, u)) for a.e. (jc, w). This
shows that, if 6 denotes a measurable map from QxXxR onto [0, —log A)
given by 6(co, x, u) = (f>(x, M), then, for any measurable function /on Qx Xx R
of the above type, there exists a measurable function 77 on [0, -log A) such that
f=r]°<p. Moreover, it is easy to see that Gt°6=6°Ft and that 0(<w, jc, M) =
0(T(x' , V ) f t / , j c f , w — log 6(^, ;c')). From Lemma 3 in [Hm], or rather, from a
slight adaptation of Lemma 3 in [Hm], it follows that the Poincare flow of R&xx
is the flow Gr on [0, —log A). Therefore, the crossed product M x ^% is a factor
of type 7//A.

Let us consider one more example, which is due to Hamachi.

Example 6.10. Let (X\i) be the infinite direct product measure space

n=l

1 £j £l
built from one measure space {0, 1, 2} with ,.

as its probability distribution, where 0<£L , £2<1 and {log £L, log £2} is a

rationally independent set. As in the previous example, we introduce an equiv-
alence relation on X by saying that x = (x$?=i is equivalent to x' = (*/)JLi if
x{ = xl for all but a finite number of /. Let ^ be the graph of this equivalence
relation. Then ^ is known to be a type III\ ergodic orbitally discrete principal
measured groupoid. It is also known that {<5(jt, *'): (x, x') £<§} coincides with a
set {£" £2" : n, m G Z}. We put G = {log <5(jt, x'): (jc, ̂ ') G ̂ j, which is a count-
able dense subgroup of R. Suppose that {FJr(EM is a ^-preserving ergodic flow
on a Lebesgue space (Z, />iz). To this flow, we associate another flow {Ft}f^R on
a measure space (O, m) = (Z x R, \JLZ x eudu) given by

F,(z, M) = (F,z, M + 0 ((z, M) e O)).

It is apparent that {Ff}f(=G is a countable group of not necessarily ergodic free
transformations of type //. Thus the injective von Neumann algebra M0 derived
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from this system is of type //. For each (*, *')£<§, define an automorphism
T(x,X') on Q by

T(x,X')(z, u) = (z, u-log 6(x, x ' ) ) .

Since T^^) commutes with Ft for all (x, x') G^ and any /EG, T(XjX>y belongs
to N[G]. We denote by o^,*') the automorphism of MO induced by T(X,X>). Thus
we get an action (^, {M(x) = J/L0}, {#(*,.*')}) of *&- By Theorem 6.7, the crossed
product M x J& is isomorphic to W*(RQxX)- Let S30 be a von Neumann sub-
algebra of L*(Q x Jf, m x ^) consisting of functions /with the following property:

(6.11) /(z, M, x)=f(Ftz, u + t-log 8(x', x), x'}

for a.e. (z, w)E Q, a.e. (*, *')•£<§ and any reG. Then, from Theorem 5.1 in
[Ha2], the center ^(W*(RQxX)) of W*(/?i2X^) is the algebra consisting of
operators of the form Mr(f) (/GSS0), where

{Mr(f)r!}((a>, x), (o>', ̂ '))=/(^

for (((», jc), (cu' jc')) ̂ RQXX and rj^L2(RQxX). We assert that 9J0 = C. Indeed,
let us take a function / satisfying (6.11). By taking f = 0, we get

/(Z, M, X)=f(z, M-log <5(%', JC), JC' ) .

Since ^ is of type ///1? there exists a measurable function f{ on Z such that
/(z, M, ̂ )=:/i(^) for a.e. (z, M, Jc). Hence (6.11) is the same as

fl(z)=fi(Flz)

for any /EG. Since {FJ is ergodic and measurable, fi is constant. Accordingly,
/is constant. This shows that W*(RQXX) is a factor.

We would like to compute the Poincare flow of the equivalence relation
RQXX- For this, suppose that g is a function on (Q x X x R, m x \JL x eudu) such
that

g(z, M, *, v)=g(F fz, w + ^-log 8(x', x), x' , v-0-

From this point on, one can follow the proof of Theorem 4 in [Hm] in order to
conclude that the Poincare flow is isomorphic to the given flow {Ff}. Hence we
have shown that M x ^% is an injective factor of type 7//0.

References

[Cl] Connes, A., Une classification des facteurs de type III, Ann, Sci. Ecole Norm. Sup., 6
(1973), 133-252.

[C2] - , Sur la thcorie non commutative de Fintegration, Lecture Notes in Math.,
Springer-Verlag, 725 (1979), 19-143.

[C3] - , On the spatial theory of von Neumann algebras, /. Functional Analysis, 35
(1980), 153-164.



CROSSED PRODUCTS BY GROUPOID ACTIONS 577

[C&T] Connes, A. and Takesaki, M., The flow of weights of factors of type III, Tohoku Math.
J., 29 (1977), 473-575.

[D] Digernes, T., Duality for weights on covariant systems and its applications, Dissertation at
UCLA (1975).

[F&M1] Feldman, J. and Moore, C., Ergodic equivalence relations, cohomology and von Neumann
algebras I, Trans. Amer. Math. Soc., 234 (1977), 289-324.

[F&M2] , Ergodic equivalence relations, cohomology and von Neumann algebras II,
Trans. Amer. Math. Soc., 234 (1977), 325-359.

[HI] Haagerup, U., The standard form of von Neumann algebras, Math. Scan., 37 (1975),
271-283.

[H2] , On the dual weight for crossed products of von Neumann algebras I, Math.
Scan., 43 (1978), 99-118.

[H&S] Haagerup, U. and St0rmer, E., Equivalence of normal states on von Neumann algebras
and the flow of weights, To appear in Adv. in Math.

[Hal] Hahn, P., Haar measure for measure groupoids, Trans. Amer. Math. Soc., 242 (1978),
1-33.

[Ha2] , The regular representations of measure groupoids, Trans. Amer. Math. Soc.,
242 (1978), 34-72.

[Hm] Hamachi, T., The normalizer group of an ergodic automorphism of type III and the
commutant of an ergodic flow, /. Functional Analysis, 40 (1981), 387—403.

[H&O] Hamachi, T. and Osikawa, M., Ergodic group of automorphisms and Krieger's theorem,
Keio Univ., Seminar on Math. Sci., No. 3 (1981).

[J&T] Jones, V.F.R. and Takesaki, M., Actions of abelian compact groups on semifinite injective
factors, Acta Math., 153 (1984), 213-258.

[K] Kastler, D., On A. Connes1 noncommutative integration theory, Comm. Math. Phys., 85
(1982), 99-120.

[Ko] Kosaki, H., Canonical lAspaces associated with arbitrary abstract von Neumann algebras,
Dissertation at UCLA (1980).

[Krl] Krieger, W., On constructing non-*-isomorphic hyperfinite factors of type III, /. Functional
Analysis, 6(1970), 97-109.

[Kr2] On ergodic flows and isomorphism of factors, Math. Ann., 223 (1976), 19-70.
[Ml] Mackey, G.W., Borel structure in groups and their duals, Trans. Amer. Math. Soc., 85

(1957), 265-311.
[M2] Ergodic theory and virtual groups. Math. Ann., 166 (1966), 187-207.

[N&T] Nakagami, Y. and Takesaki, M., Duality for crossed products of von Neumann algebras,
Lecture Notes in Math., Springer-Verlag, 731 (1979).

[P&T] Pederscn, G.K. and Takesaki, M., The Radon-Nikodym theorem for von Neumann
algebras, Acta Math., 130 (1975), 53-87.

[R] Ramsay, A., Virtual groups and group actions, Adv. in Math., 6 (1971), 253-322.
[Re] Renault, J., A groupoid approach to C -algebras. Lecture Notes in Math.. Springer-

Verlag, 791 (1980).
[SI] Sauvageot, J.L., Sur le type du produit croise d'une algebres de von Neumann par un

groupe localement compact. Bull. Soc. Math. France, 105 (1977), 349—368.
[S2] Produits tensoriels de ^-modules, Publ. Univ. P. & M. Curie, n° 23 (1980).
[S3] , Produit tensoriels de ^-modules et application, Lecture Notes in Math., Springer-

Verlag, 1132 (1983), 468-485.
[S4] , Sur le produit tensoriel relatif d'espace de Hilbert, /. Operator Theory, 9

(1983), 237-252.
[Su] Sutherland, C., The direct integral theory of weights, and the Plancherel formula, Dis-

sertation at UCLA (1973).
[S&T1] Sutherland, C. and Takesaki, M., Actions of amenable groups and groupoids on semifinite

injective von Neumann algebras, R.I.M.S. Kyoto Univ., 21 (1985), 1087-1120.



578 TAKEHIKO YAMANOUCHI

[S&T2] Sutherland, C. and Takesaki, M., Actions of discrete amenable groups on injective factors
of type ///A, A* l , Pacific J. Math., 137 (1989), 405-443.

[Tl] Takesaki, M., Tomita's theory of modular Hilbert algebras and its application, Lecture
Notes in Math., Springer-Verlag, 128 (1970).

[T2] , Duality for crossed products and the structure of von Neumann algebras of type
III, Acta Math., 131 (1973), 249-310.

[T3] , Theory of operator algebras /, Springer-Verlag 1979.
[T4] , The structure of operator algebras (in Japanese), Iwanami-shoten. 1983.
[Yl] Yamanouchi, T., Duality for actions and coactions of measured groupoids on von Neumann

algebras. Dissertation at UCLA (1990).
[Y2] Fixed point algebras of groupoid actions and coactions, in preparation.


