Publ. RIMS. Kyoto Univ.
28 (1992), 579—586

Some Remarks on Hypoelliptic Operators which
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Yoshinori MorimMoTo* and Tatsushi Morioka**

§1. Introduction

In this note we give an example of hypoelliptic operators which are not
micro-hypoelliptic. Non-micro-hypoellipticiy of the example arises from the
oscillation of the coefficient with a zero of infinite order.

Let us consider the following semi-elliptic operator with infinite degeneracy:

(1.1 L=a(x,y, D,)+g(x)b(x, y, D,) in R"=R} XR}.
Here g(x) € C* and satisfies
(A1) g(x)>0 for x+#0 and &fg(0)=0 for any B.

Here a(x, y, D,) and b(x, y, D,) are differential operators with C* coefficients
of order 2¢ and 2m. We assume that a(x, y, D,) and b(x, y, D,) are strongly
elliptic with respect to x and y, respectively, that is, for C;, C;>0

(A.2) Re a(x, y, §)=C,|§P and
(A.3) Re b(x, y, 1) =G|l

hold if | £| and || are sufficiently large. In [3] the one of authors (T.M.) proved
that the operator L is hypoelliptic, i.e.

(1.2) sing supp u =sing supp Lu for u€ed’.

This ameliorates the old work [2] (c.f. Fedii [1]) of another author (Y.M.).
Actually, in [2] the following condition was required to show (1.2) in case of
m=2:

©) { There exist constants C and o (0<o<1/{2(m—<€+mf)})
G
such that |38g(x)| = C g(x)' = for |B|=2(m— €+ me).
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In the recent paper [4] the one of authors (T.M.) also has studied the micro-
hypoellipticity of L and has given the following theorem:

Theorem A. Let z = (xq, yo; Eo, M) be a point in T*(R") (xq, o €ER™ and
Yo, Mo € R™) with |no| #0. Let L be the operator (1.1) satisfying (A.1)—(A.3).
(i) In the case where £ =m, L is micro-hypoelliptic at z, that is, z &€ WF (Lu)
implies z € WF u
(ii) In the case where € <m, L is still micro-hypoelliptic at z if g(x) satisfies the
following condition:

( { There exist constants C and v (0<t<1/{2(m—¢)})
A4
such that |38g(x)|=C g(x)"" " for |B|=2(m—¢).

We remark that Theorem A is valid in the case where g(x) vanishes finitely
at x = 0. In this case, (A.4) implies g(x) = o(|x[*"~9). If xER' and g(x) = x%*
for an integer k>0 then it follows from (A.4) that k>m — €. By Parenti-
Rodino [5], it is known that if 0 < k =< m — €, hypoelliptic operator D3¢ + x** D"
in R? is not micro-hypoelliptic at (0, 0; 0, 1) € T* (R?). The condition (A.4) is
satisfied when g(x) = y(x)* for some integer k>m — ¢ and some C™ function
w(x) with y(x)>0 for x +0. This fact can be seen by noticing that vy’ (x)*>=
Const.y(x) near the origin. On the other hand, we see that for integer k>0

(1.3) gi(x) = exp(—1/|x]|)sin** 7/ | x| + exp(—1/|x[?)
(cf. Remark 2 in [2, Section 1])

does not satisfies (A.4) if k=m— €. In fact, for |B| =2k and integer j>0 we
have

bgi(x) = O(e™), gi(x) = O(e™), |x| =1/j, as j—>=.
In order to consider the necessity of (A.4), we set
(1.4) Liy=a(x, D)) +gi(x)b(x, D,) in RLXRP,

where a and b satisfies (A.2) and (A.3), respectively (but they are independent
of y variable).

Theorem B. Let €, m and k be positive integers such that m=4{ +2 and
k=m—<€—1. If gi(x) is the function (1.3) with x ER" and if L, is the above
operator then Ly is not micro-hypoelliptic at z= (0, yo; 0, 10) € T*(RL X R?)
with 1o+ 0.

If (A.4)" denotes the condition (A.4) with 7 replaced by 7/ (0<7' <
1/{2(m — € — 1) } then Theorem B shows that (A.4)’ is necessary in general for L
to be micro-hypoelliptic. Unfortunately, in case of m =€ + 1 the theorem says
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nothing concerning the necessity of conditions like (A.4). In the next section we
shall give the proof of Theorem B influenced by [5] though our method is a little
different from the one there. To end Introduction authors wish to express their
hearty gratitude to Professor N. Iwasaki for useful discussions.

§2. Proof of Theorem B

For the sake of simplicity we shall prove Theorem B in case of y ER! (n, = 1),
yo=0 and 7,=1 since the proof in general case is similar. Throughout this
section we assume that m = € + 2. We construct a singular solution u(x, y) in the
form

@ u(x. )= % 07 expliny)u(x).
where 7;= exp{;*/4m}. We require that u;(x) € Cy satisfies
(2.2) supp u; C {|x—j~'|=j%3} = @,
(2.3) i;(0)>1/(2n"%)

and

(2.4) |i#;(E)| = Cymj,

where C; >0 is a constant independent of j. Hereafter we denote constants by
Ci(k=1, 2, ...) and c. Note that

Lue= 17" explin) {ax. D) + gux)b(x. 1)} ().

Setting fj(x) = {a(x, D.)+ ge(x)b(x, n;)}u;(x) we require that the Fourier
transform of f;(x) satisfies with C, >0 independent of j

(2.5) Ifi(&)=Can;™ on {|E|=n;2},

where N;— = (j— ). Furthermore, with C3>0 and ¢ >0 independent of j we
require

(2.6) IF,(8)|=C3<ny>¢ forall EER'.

Once we could obtain u;(x) (and fj(x)) satisfying (2.2)—(2.6) u(x, y) of the form
(2.1) would be the desired singular solution. In fact, let ¢(x) be arbitrary Cq
function such that @=1 in a neighborhood of the origin and @(0)=1. The
support of u, shrinks to x =0 when j tend to > and the sum of finite terms of the
right hand side of (2.1) belongs to C™. In considering the wave front set of u(x, y)
near the origin we may regard the Fourier transform of ¢(x)@(y)u(x, y) as
follows:
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F ol 9(x) () u(x, MI(E 1) = 217 @(n—n)u;(§)
o = U(E, ).
If j#j' we have

I, = njel = [0} = 02|} + n?|
=max (n'?, n}?

because 1} —n}2; > 1. Write

U, n;) = n;* @(0)a; (0) +,§,~ n; 4 @(n; — 1)) ,(0).

Since @(n) €Y we have |@(n)] = Cn<n>"" for any integer N and some con-
stant Cy the second term of the right hand side is majorated by 17]_'10 with a
constant factor. By means of (2.3) we have U(O0, 17,-0217,79/2/3 (j'—>») and
hence we see (0, 0; 0, 1) € WF u. On the other hand, we have

V(E n) =F .l o(x) @(y) Leul(& n) = 21, @(n—n)f,(&)

For any fixed >0, the terms with j satisfying |n> — n!?| =1 are negligible
because of (2.6). If there exists j satisfying |n'”> — 1}"?| <1 then it follows from
(2.5) that V(&, n)=0(n"") on {(&, n); |E|=n/3}. Consequently, we see (0, 0;
0, 1) & WF Lyu.

Let us look for u,(x) and f,(x) satisfying (2.2)—(2.6). We shall consider the

1
function g,(x) near x=1/j. If ai(x)=| p(l/j+ (x—1/j)0)d6 with p(t)=
/ 0

12
J

(—1/t?) cos n/t then sin m/x = @,(x)(x —1/j) near x =1/j and hence

8k(x) = () {(x =j~)** + y(x)} nmear x=j",

where B;(x) = a;(x)** exp(—1/x) and ¥,(x) = a,(x)"** exp{l/x—1/x?}. Note
that

@7 B =exp(-2)) in @ ={|x—j'|=j%2)
and for any integer g >0
(2.8) 1B (x)| = C,j%*% exp(—1/x)

=C/(log n)**7 exp(~1/x) in &

hold with constants C, and C,, independent of j. Here we used 7, = exp{j*/4m}.
Similarly, we have

(29) IV§II)(X)| < C,’;(log nj)311/2 n]f’_’m in Q/-'_
Note that
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fi(x) ={a(x, Dy) + gu(x) b(x, n;)}u;(x)
= Bi(x)b(x, n)n; “[{(x =~ ") nj*}** + y(x) nf
+ Bi(x) ' b(x, m)"'a(x, Donflu(x).
= Bi(x)b(x, n)n; fi(x).

Since (2.2) is required we may assume that $(x) and y;(x) belong to Cy and
satisfy (2.8)—(2.9) in (—, ), by multiplying the cut function in £ (equal to 1
on ). If /3’,( &, n;) denotes the Fourier transform of B;(x)b(x, n,) then we have
|B,(& n)| = C,(log n))7"*n*™ < &>"9 for any q > 0. Hence it suffices to require
fi(x) satisfies (2.5) in {|&|=n,} and (2.6) instead of f;(x). In fact,

w6 = [Be-s miae=] ‘dz;+j dt

=

If | §] = n,/2 then the first term is estimated above from Cy (log n,)™*n; M+,
The similar bound holds also for the second term because of (2.5) for fj(x)
Now we shall consider the equation

(2.10) [{(x=j~Ym* + y(x) nf + B(x) ™" b(x, )~ alx, D) mflu,(x) = fi(x).
We shall omit the suffix j for a while (by fixing j). If we write

2¢
y(x) + B(x) "' b(x, M) alx, Dy) =s§0Dics(x, )

by means of (2.7)—(2.9) and (A.3) we see that for any >0
(2.11) IDEc,(x, m)=Cqen "+ (log n)*">.
Note that the left hand side of (2.10) equals

ffexp —i{(x—j HnPt—tr} x {7%* + a(t, 1)} v(7)dTdt)2n
= F ey iy [{D¥* + a2, D)} v(1)],

where

2¢
aot, T) = Zﬂ(—tn‘”z)scs(n‘”zr+f‘l, nn*t-

and ¥(7) = u;(n "?7+;"). It follows from (2.2) that
(2.12) supp ¥(7) C {|7] = 1"?j72/3} = w,.

We choose a positive 8 < 1/2 such that 7% < n'2j~%/3 with n = n; = exp(j2/4m).

Since 1 <k =m — € — 1 it follows from (2.11) that we have for any £>0 and any
0<8<

(2.13) [8709 adt, T)| = Cey g *FD %0+ if |t < 109"
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If hj(t) = h(t) is defined by
(2.14) {D? + a(t, D)}v(t)=h(t)

then the proof of Theorem B is reduced to find some v(z), h(t) € ¥ satisfying
(2.12) and the following:

(2.15) [v(0)|>1/2 and |v(t)| =< Const.?°+"*
|h(1)| = Const.™ on |t|<n'?,
(2.16) |h|l.- = Const.n® fora c¢>0.

(Here N=N; and n=r7,). In fact, we have f;(§) = ny e~ h(Eln}?).

Let 0=6(t)=<1 be a C;((—1, 1)) function such that =1 in |t| =1/2. Set
xo(t) = 6(1/51") and x,(¢) = 6(t/10n"?). We are looking for a solution to

(2.17) {D¥+ xo(t) at, D) xu(1)} w(t) =0
First we set wy(t) = 1. If w(t) = wo(2) + wy(2) then
(2.18) {D¥+A(t, D)} wi(t) = —xoax: (=8(1))

where A(t, D))= xo(t) a(t, D,)x,(t). Consider this equation in the interval
I=(—10%"2, 10n') with the Dirichlet boundary condition

2.19 Diw(x10n'?) =0, ¢=0, 1, ..., k—1.

It follows from (2.13) that [(Au, u)| < C*~*72||u||? and || D*u|> = Cy~*||u||?. 1
G,, denotes the Green operator for this boundary value problem then

(2.20) IGufll 2y = Cr*lIfll 2y for fEL? (D).

Since ||x]l.2= O(n"*) we have ||g||,-= O(n"*"¥72*%) by means of (2.13). It
follows from (2.18) and (2.20) that ||wy||,2;) = O(n°~ ™). By (2.18) and (2.19)
we have

”wal”%ﬂ(l)"‘(A(t» Dywy, w1)=(g, w1),

so that ||Dfw|| 2= O(n*""*). If we extend w, outside of I by w, =0 then
w; € C§ and by the interpolation || DY w|| 2y = O(n~") for p=0, ..., k. In
case of k=2, it follows from the Sobolev lemma that ||w,||,. = O(n*~""*) and
w(0)=1+O(n™"). When k=1 it follows from (2.18) again that || D?wy|| ;) =
O(n"*73*¢) and hence ||, w1|| .- = O(n°~ ™). After all we see w(0) =1+ O(n ).
In view of (2.17) we have

{D¥+ xo(1) a(t, D)} xa(1) w(2) = DF(x1 = Dw (= Fi(1)).
Note that F;(¢) =0 for |¢|=3n"2. We set y,(D,) = 6(D,n°). Then
2.21) (D + xo(t) at, D)} wi(DY) xu()w(t) = i Fi = [xo @ yilxiw.
Here vy, F, satisfies y, Fi=0(n"") on |t|=n"2. Set v,(t) = y(D,)x:(t) w(?).
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Then we have
(2.22) D% v,

=0M>"", p=0,1,2, ...,
and v,(t) = O(n***'"%). Furthermore, v,(0) =1+ O(n~"?). In fact,

1= 9PN WD) = [ [ 721 = p(2)) (= DY (a5 w(s)) dsd]

= Const.f r“zdr{f|Dfxl|ds +j|D§(X1 W1)|d5}
n°2

= Const.n~ %712,

If we set g2=[xoa, Y] w then ||gaf| 2= O(n* 2 *~7™). Let w, be G,g,, that
is, a solution to

{(D¥*+A}wy=g, in I

with the Dirichlet boundary condition. By the similar way as for w, we have
l|wall L2y = O (22~ ""4). It follows from (2.21) that

{D* + xo(t) alt, D)}vi =y Fi — g2 = Y1 F1 — {D¥* + xo(t) a(t, D))} yawa + Fa,

where F,= D7*(y; — 1)w,. Set y (D)= (D, °1297") for g=2, 3, ... If
vo = Yr(D))x1(t)wa(t) then we have

(2.23) |D,va(2)
Furthermore we have

2= O(PPITETY h =0, 1, ...

{D?* + xo(2) a(t, D)} (vi + v2) = =[x & Yalxiwa + Y1 Fy + Yo By + (9, — D xp avy.

Since y, DD 1, the last term of the right hand side equals O(n~"). If we set
g=[wa wolxwa then |lgs|| = 0P * 277 Set ws=G,gs and v3=
¥3(D,)x1w3. Repeat this procedure N; times with 2V < n%~%=<2M*!  Setting

N,
v=> v, we have

g=1
(2.24) {D¥+ xo(1) a1, D)} v(2)

N, N1

= _[Xﬂ a, WN,]XI WN, + El 1quq + El (W(H—J - 1)%0 av,
q= q=

=—gn(1)+ hy(t) + ho(1).

By checking the preceding argument carefully it is not difficult to see that there
exists a Cy >0 independent of j such that

(2.25) HDIr)Vq”US CY qpo+ 1+ (e=20-2)(g-1)
for p=0,1,...,2k+2 and ¢g=1,2, ....

Since Cy << = n; for a sufficiently large j we see (2.15) by means of the Sobolev
lemma. By the similar way as for (2.25) we have



586 YosHINORI MORIMOTO AND TATSUSHI MORIOKA

gl = CIICL+ D2)gyln= CCRmo+1akrte=20-2m
for C, C,>0 independent of j. Similarly, we see that

|y Fy(0)] = CEn~ N (E720724 on o] = y'?

”(Wq+l - 1)X0 avq‘ L= Cg n—N,+(£—2o—2)q

for C;, C3>0 independent of j. Since h = —gy + hy + ki on |t| =71'2, from the
above three estimates we obtain |k (t)] =™ on |t| = 5"? if j is large enough. In
view of (2.14), it follows from (2.25) that ||k||,. =< Const.n***2)°+"4 because
|1+ D]l 2= O(*°*") and (1 + D) a(t, D,) (1 + D?)~'is L? bounded. Hence
(2.16) is fulfilled. Now the proof of Theorem B is completed.

Remark. 1In the same way it is possible to prove the non-micro-hypo-
ellipticity of the operator D, + ig,(x) DY’ with m=2k +2 (cf. (0.3) of [5]).
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