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A Note on Coherent States Related to
Weighted Shifts

By

Wtodzimierz MLAK* and Jan STOCHEL**

§1. Let 3£ be a separable complex Hilbert space with a fixed orthonormal
basis {£„}*=()• Denote by S a forward isometric shift such that Sen = en+i for
n > 0 and by D a diagonal operator determined by the equality Den = wnen for
n > 0. Assume that wn > 0 for n > 0. The operator W: = SD is called a weighted
shift (with weights wfl). Notice that W is an invertible and irreducible operator
such that 2J(W) = 2J(D)(2J(.4) stands for the domain of an operator A). Since S
is bounded and D is self-adjoint, we have

(1.1) W* = DS*.

Using (1.1) one can describe the adjoint W* of the operator W as follows

(1.2)

and

(1-3)

Thus

(1.4)

The celebrated example of a weighted shift is the quantum creation operator
a+ which acts as follows: a+en = \/n + len+i for n>Q. The basic functional
model of a+ belongs to Bargmann [1]. Let us enter into details. Denote by \JL the

Borel measure on C1 defined by d\i(z) =—e~^' dm(z), where m is the planar

Lebesgue measure. It is proved in [1] that the set of all entire functions belonging
to L2(//) forms a closed linear subspace of L2(^). We denote this subspace by
B~. The main result of [11 states that:
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(1.5) a+ is unitarily equivalent to the operator M of
multiplication by the independent variable z in B2

and

(1.6) a: = (a+)* is unitarily equivalent to the differential

operator -j- acting in B2 with 2)(-7-1 = {/E J52: -y-/E#2}.r dz \dz/ dz

Notice that the operator of multiplication by the independent variable z, defined
in L2(ju), is a normal extension of M. Thus W and consequently a+ are un-
bounded subnormal operators.

Recall that M* = j-, i.e. 2)(M*) = {/E B2: j^/E B2} and M*/(z) - ^-/(z)

for/E 2)(M*). Define for w E C1 and z E C1 the function hu(z) = ell\ It is plain

that hu E B2 and, moreover, ~rhu(z) = uhu(z) for all z E C1. Thus M*hu = uhu,

which means that for every wEC 1 , the function hu is an eigenfunction of M*
with the eigenvalue u. Hence the point spectrum of M* is equal to C1. Conse-
quently the point spectrum of the annihilation operator a coincides with C1.

The crucial point of our investigations is that the sequence {en}~=(]C.B2

defined by en(z) = -^=~ (n>0), is an orthonormal basis of B2 such that (Men)

for n > 0. Since hu(z) =
i

* un
en(z) for all z E C, one can show that for any u EC1, the series z/ 77= en con-

verges in B2 to hu. Setting wn = \/n + 1 for « >0, we can write

3C ../?

(1.7) hu

In particular we have \\hu\\
2 = e^~ for u E C1. Thus the function e '"'"/2/zw E B2 is

a normalized eigenfunction of the annihilation operator a. It is called a coherent
normalized quantum state of the electromagnetic field; such states are used in
the quantum optics (see [3] and [5]).

§2. Let W be a weighted shift with positive weights wn, i.e. Wen = wnen+i

and wn > 0 forn > 0. The equality (1.7) suggests that the proper candidate for a
coherent state related to W would be the orthogonal series

oc n

(2.1) h(z) = en+ E e,,.

In order to have a nonempty region of convergence of the series defining
we assume, following the Cauchy-Hadamard theorem, that
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(2.2) r(W) = lim inf/w(w0 - - - - • ̂ -i)1//l > 0.

Denote by 5(W) the open disc {zEC1: \z\<r(W)}. Call r(W) and S(W) the
coherence radius of W and the coherence spectrum of W, respectively.

Let z be an arbitrary element of S(W). Take a real number r0 such that
H < TO < f( W). Then there exists n0 > 0 and q such that 0 < q < 1 and

Therefore

UI2/J

(2.4)

This in turn implies that the orthogonal series defining h(z) is convergent in H.
It follows from (2.1) that

(2.5) (A(z),*o) = l

and

(2.6) (A(Z), e/z+1) = Z"+ , * > 0.
H^O ' - • • • W,,

Thus

(2.7)

One can deduce from (2.4) and (2.7) that

which shows, by (1.2), that

Consequently, by (1.3) and (2.6), we get

Arguing similarly to the above, one can show that for any zES(W), the
dimension of the kernel of zl— W* is equal to 1 (see [6] for the bounded case).
Summing up we have proved the following

Theorem 2.1. // W is a weighted shift with positive weights and r(W) >0,
then
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(2.8)

(2.9)

and

(2.10) dim Ker(z/- W*) = 1.

In the sequel we call ft(z) the coherent state of W at z ES(W).
Consider again the creation operator W=a+ , i.e. We,, = V^ + 1 £«+i f°r

AI > 0. Then one can easy check that r( W) = +^ and S(W) = Cl. Moreover, the
corresponding coherence state h(z) is expressed by the formula

(2.11)

and ah(z) = zh(z) for zEC 1 , i.e. /i(z) is an eigenfunction of the annihilation
operator a. Notice that this result has been obtained without appealing to the
Bargmann analytic model of a+ (see Section 1). However this model has inspired
all we have presented in Section 2.

3o This section deals with subnormal weighted shifts. Let W be a weighted
shift within the space H. Assume that W is a subnormal operator, i.e. there is a
superspace K of H and a normal operator M within K such that WC M (M will
be called a normal extension of W). It is easy to see that W has the following
properties

(3.1)

and

(3.2) W*Pf=PM*f, /E2)(M),

where P is the orthogonal projection of K onto H. In particular we have
\\W*en+l | < ||Af*e,I+1|| - \\Men+i\\ = \\Wen+l\\ = iv,I+1 for n>Q. But
= wn, so jv,,< wn+i for n >0. This in turn implies that

(3.3)

If W is unbounded, then, in virtue of (3.3), we have

(3.4) r(W) = +oc and S(W) = C{.

On the other hand, if W is bounded, then

(3.5) r(W) = linv_w,? =\D\ = \\W\\.

Let M be a normal extension of the weighted shift W with positive weights
HV Let E be the spectral measure of M. Denote by K^ the closed linear span of
the vectors E(o)e^, where a runs through the plane Borel sets. Since
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we get e/z E A^o for n > 0. By the spectral theorem, the part of M in KQ is
canonically isomorphic to the operator of multiplication by the independent
variable z in the space L2(^) with ju(-) = (jE(-)e0, eo)- The unitary isomorphism
is uniquely determined by the correspondence E(o)e^-^Xo (Xo stands for the
characteristic function of the set a). Denote by en(-) the image (via the canonical
isomorphism) of the vector en in L2(ja), n>Q. Since Me^=Weo = Woei and

(Afeo)(z) = z, we get e±(z} = — . Similarly, the equality Mei = wie2 implies

Z2
ze\_(z) = Wie2(z), so e2(z) = - . Applying the induction procedure, we come

~
to the conclusion

(3.6)

Thus we have described in an explicit form the orthonormal basis of the picture
B2O) of the space H in L2(». It is plain — due to We M — that (Wen(-))(z) =
zen(z) = wtlen+i(z) for n > 0, where W is the picture of W in J32(/f). Hence W is
the functional model of W. Notice that in the above we have exploited merely
the simplest form of the spectral theorem. For general theory of functional
models for unbounded cyclic operators we refer the reader to [7].

Let us assume that the subnormal weighted shift W satisfies the following
condition:

(3.7) M(C1\5(W)) = 0.

Given /EH, we define the function /:5(W)->C by /(*) = (/, M*)) for

). It follows from (2.1) and (3.6) that

(3.8) /(z)= E (/, en)en(z),
»=o

Notice that /is analytic in S(W). Since ||/1|2= 2 |(/, Ol2, one can show, using
n=0 _

(3.7), (3.8) and the Riesz-Fischer theorem that /E#2(/f). Moreover, by the
Parseval equality, we have

(3-9) f |/(z)|2^) HI/112, f^H.J s ( w )

An application of the polarization formula gives us

(3.10) ( / , g )=f /(z)f^)^(z), / ,gEH.
^(,v)

Summing up we have proved the following theorem.
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Theorem 3.1. Let W be a subnormal weighted shift with positive weights. If
[t(Cl\S( W)) = 0, then the map f-^J is a unitary isomorphism of 'H onto B2 (p).

Let us consider the Bergmann space A2. Then the operator W defined on
A2 by

is a subnormal weighted shift with weights wn = I ~ . In this particular case

S( W) = [z E C1: |z| < 1} and [t = m = the planar Lebesgue measure.

§4. Let Wbe a subnormal weighted shift with corresponding space B2(jji).
Similarly to Section 3 we assume that ̂ (Cl\S( W)) = 0. It follows from Theorem
3.1 that the map /->/ sends H onto the whole B2(n). Given zES(W), we
denote by P- the orthogonal projection of H onto the one-dimensional space
spanned by the vector /z(z). An elementary computation shows that

(4.1) P-/

x 1 7 12"

(Notice that (2.1) implies ||fc(z)||2 = 1 + E 7 - - - T2>0 for z£5(W)).
It follows from (4.1) that "=1 (W(> ' ' ' ' ' W"~l>

(4.2) (Pj, g) = (pzf, p,g) =/(z)fU) in-p, /,geH,zes(W).
I I 'H^ / I I

Using (3.10) and (4.1), we get

Js(w) Js(w)

This can be rewritten in terms of the weak integral as follows

(4.3)
Js(w)

Substituting (4.1) into (4.3) we get

(4.4) /=[ f(z)h(z)dn(z), /£//.
Js(w)

This in turn implies that

(4.5) Af=l f(z)Ah(z}d}ji(z), /E/f
Js(w)

for any bounded linear operator A within H .
Summing up we have proved the following theorem.
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Theorem 4.1. Let W be a subnormal weighted shift with positive weights.
Assume that n(C1\S(W)) = Q. Then

(4.6) /= f P- ||fc(z)||2dp(z), (weak integral},
Js(w)

where I stands for the identity operator on H. Moreover, if A is a bounded linear
operator on H, then the equality (4.5) holds.

Let us consider again the quantum creation operator a+. It is well-known
(cf. [1]) that in that case B2(u) coincides with the Bargmann space B2 and

> = — £ '"' dm(z) (m is the planar Lebesgue measure). Moreover, by

(1.7), we have ||/*(z)||2 = ̂  for zGC1 . Since S(a+) = C\ the integral formula
(4.6) turns into

(4-7) -

This is the celebrated Glauber-Klauder basic formula of quantum optics (cf.
[3])-

References

[1] Bargmann, V., On a Hilbert space of analytic functions and associated integral transform,
Comm. Pure Appl. Math., 19 (1961), 187-214.

[2] Berezin, F.A. and Shubin, M.A., Schrodinger equation, (Moscow, 1983).
[3] Klauder, J.R. and Sudarshan, E.C.G., Fundamentals of quantum optics, (New York, Amsterdam,

1968).
[4] Mlak, W., Notes on quantum circular operators, Part I, Preprint 303, Institute of Mathematics,

Polish Academy of Sciences (1984).
[5] Perina, J., Quantum statistics of linear and nonlinear optical phenomena, (Reidel P. Comp.,

Boston, Lancaster, 1984).
[6] Shields, A.L., Weighted shifts and analytic function theory, Math. Surveys, 13, American

Mathematical Society, (Providence, Rhode Island, 1974), 49-128.
[7] Stochel, J., and Szafraniec, F.H., On normal extensions of unbounded operators. III. Spectral

properties, Publ. RIMS, Kyoto Univ., 25 (1989), 105-139.
[8] Volkin, H.C., Phase operators, /. Math. Phys., 14 (1973), 1965-1976.




