A Note on Coherent States Related to Weighted Shifts

By

Włodzimierz MLAK* and Jan STOCHEL**

§1. Let \mathcal{H} be a separable complex Hilbert space with a fixed orthonormal basis $\{e_n\}_{n=0}^{\infty}$. Denote by S a forward isometric shift such that $Se_n = e_{n+1}$ for $n \ge 0$ and by D a diagonal operator determined by the equality $De_n = w_ne_n$ for $n \ge 0$. Assume that $w_n > 0$ for $n \ge 0$. The operator W := SD is called a *weighted shift (with weights w_n)*. Notice that W is an invertible and irreducible operator such that $\mathfrak{D}(W) = \mathfrak{D}(D) (\mathfrak{D}(A)$ stands for the domain of an operator A). Since S is bounded and D is self-adjoint, we have

$$(1.1) W^* = DS^*.$$

Using (1.1) one can describe the adjoint W^* of the operator W as follows

(1.2)
$$\mathfrak{D}(W^*) = \{ f \in H: \sum_{n=0}^{\infty} |(f, e_{n+1})|^2 w_n^2 < +\infty \}$$

and

(1.3)
$$W^*f = \sum_{n=0}^{\infty} (f, e_{n+1}) w_n e_n, \quad f \in \mathcal{D}(W^*).$$

Thus

(1.4)
$$W^*e_0 = 0, \ W^*e_n = w_{n-1}e_{n-1}, \qquad n > 0.$$

The celebrated example of a weighted shift is the quantum creation operator a^+ which acts as follows: $a^+e_n = \sqrt{n+1}e_{n+1}$ for $n \ge 0$. The basic functional model of a^+ belongs to Bargmann [1]. Let us enter into details. Denote by μ the Borel measure on C^1 defined by $d\mu(z) = \frac{1}{\Pi}e^{-|z|^2} dm(z)$, where *m* is the planar Lebesgue measure. It is proved in [1] that the set of all entire functions belonging to $L^2(\mu)$ forms a closed linear subspace of $L^2(\mu)$. We denote this subspace by B^2 . The main result of [1] states that:

Communicated by H. Araki, May 31, 1991.

¹⁹⁹¹ Mathematics Subject Classifications: 47B37, 47B20, 81R30

^{*} Instytut Matematyczny PAN, św. Tomasza 30, 31-027 Kraków, Poland

^{**} Instytut Matematyki UJ, Reymonta 4, 30-059 Kraków, Poland

(1.5)
$$a^+$$
 is unitarily equivalent to the operator M of multiplication by the independent variable z in B^2

and

(1.6)
$$a:=(a^+)^*$$
 is unitarily equivalent to the differential
operator $\frac{d}{dz}$ acting in B^2 with $\mathfrak{D}\left(\frac{d}{dz}\right) = \{f \in B^2: \frac{d}{dz} f \in B^2\}$

Notice that the operator of multiplication by the independent variable z, defined in $L^2(\mu)$, is a normal extension of M. Thus W and consequently a^+ are unbounded subnormal operators.

Recall that $M^* = \frac{d}{dz}$, i.e. $\mathfrak{D}(M^*) = \{f \in B^2: \frac{d}{dz} f \in B^2\}$ and $M^*f(z) = \frac{d}{dz} f(z)$ for $f \in \mathfrak{D}(M^*)$. Define for $u \in \mathbb{C}^1$ and $z \in \mathbb{C}^1$ the function $h_u(z) = e^{uz}$. It is plain that $h_u \in B^2$ and, moreover, $\frac{d}{dz}h_u(z) = uh_u(z)$ for all $z \in \mathbb{C}^1$. Thus $M^*h_u = uh_u$, which means that for every $u \in \mathbb{C}^1$, the function h_u is an eigenfunction of M^* with the eigenvalue u. Hence the point spectrum of M^* is equal to \mathbb{C}^1 . Consequently the point spectrum of the annihilation operator a coincides with \mathbb{C}^1 .

The crucial point of our investigations is that the sequence $\{e_n\}_{n=0}^{\infty} \subset B^2$ defined by $e_n(z) = \frac{z^n}{\sqrt{n!}}$ $(n \ge 0)$, is an orthonormal basis of B^2 such that (Me_n) $(z) = ze_n(z) = \sqrt{n+1} e_{n+1}(z)$ for $n \ge 0$. Since $h_u(z) = \sum_{n=0}^{\infty} \frac{u^n}{\sqrt{n!}} \cdot \frac{z^n}{\sqrt{n!}} = \sum_{n=0}^{\infty} \frac{u^n}{\sqrt{n!}}$ $e_n(z)$ for all $z \in C$, one can show that for any $u \in C^1$, the series $\sum_{n=0}^{\infty} \frac{u^n}{\sqrt{n!}} e_n$ converges in B^2 to h_u . Setting $w_n = \sqrt{n+1}$ for $n \ge 0$, we can write

(1.7)
$$h_u = e_0 + \sum_{n=1}^{\infty} \frac{u^n}{w_0 \cdot \ldots \cdot w_{n-1}} e_n, \qquad u \in \mathbb{C}^1.$$

In particular we have $||h_u||^2 = e^{|u|^2}$ for $u \in C^1$. Thus the function $e^{-|u|^2/2}h_u \in B^2$ is a normalized eigenfunction of the annihilation operator *a*. It is called a *coherent normalized* quantum state of the electromagnetic field; such states are used in the quantum optics (see [3] and [5]).

§2. Let W be a weighted shift with positive weights w_n , i.e. $We_n = w_n e_{n+1}$ and $w_n > 0$ for $n \ge 0$. The equality (1.7) suggests that the proper candidate for a coherent state related to W would be the orthogonal series

(2.1)
$$h(z) = e_0 + \sum_{n=1}^{\infty} \frac{z^n}{w_0 \cdot \ldots \cdot w_{n-1}} e_n.$$

In order to have a nonempty region of convergence of the series defining h(z), we assume, following the Cauchy-Hadamard theorem, that

588

COHERENT STATES AND WEIGHTED SHIFTS

(2.2)
$$r(W) = \lim \inf_{n \to \infty} (w_0 \cdot \ldots \cdot w_{n-1})^{1/n} > 0.$$

Denote by S(W) the open disc $\{z \in C^1: |z| < r(W)\}$. Call r(W) and S(W) the coherence radius of W and the coherence spectrum of W, respectively.

Let z be an arbitrary element of S(W). Take a real number r_0 such that $|z| < r_0 < r(W)$. Then there exists $n_0 > 0$ and q such that 0 < q < 1 and

(2.3)
$$\frac{r_0}{\left(w_0\cdot\ldots\cdot w_{n-1}\right)^{1/n}} \leq q, \qquad n \geq n_0.$$

Therefore

(2.4)
$$\frac{|z|^{2n}}{(w_0\cdot\ldots\cdot w_{n-1})^2} \le q^{2n}, \qquad n \ge n_0.$$

This in turn implies that the orthogonal series defining h(z) is convergent in H. It follows from (2.1) that

$$(2.5) (h(z), e_0) = 1$$

and

(2.6)
$$(h(z), e_{n+1}) = \frac{z^{n+1}}{w_0 \cdot \ldots \cdot w_n}, \qquad n \ge 0.$$

Thus

(2.7)
$$|(h(z), e_{n+1})|^2 w_n^2 = \frac{|z|^{2(n+1)}}{(w_0 \cdot \ldots \cdot w_{n-1})^2} \quad n \ge 1.$$

One can deduce from (2.4) and (2.7) that

$$\sum_{n=0}^{\infty} |(h(z), e_{n+1})|^2 w_n^2 < +\infty,$$

which shows, by (1.2), that

$$h(z) \in \mathfrak{D}(W^*).$$

Consequently, by (1.3) and (2.6), we get

$$W^*h(z) = ze_0 + \sum_{n=1}^{\infty} \frac{z^{n+1}}{w_0 \cdot \ldots \cdot w_{n-1}} e_n = zh(z).$$

Arguing similarly to the above, one can show that for any $z \in S(W)$, the dimension of the kernel of $zI - W^*$ is equal to 1 (see [6] for the bounded case). Summing up we have proved the following

Theorem 2.1. If W is a weighted shift with positive weights and r(W) > 0, then

Włodzimierz Mlak and Jan Stochel

(2.8)
$$h(z) \in \mathfrak{D}(W^*), \quad z \in S(W),$$

$$(2.9) W^*h(z) = zh(z), z \in S(W)$$

and

(2.10)
$$\dim \operatorname{Ker}(zI - W^*) = 1. \quad z \in S(W).$$

In the sequel we call h(z) the *coherent state* of W at $z \in S(W)$.

Consider again the creation operator $W = a^+$, i.e. $We_n = \sqrt{n+1} e_{n+1}$ for $n \ge 0$. Then one can easy check that $r(W) = +\infty$ and $S(W) = C^1$. Moreover, the corresponding coherence state h(z) is expressed by the formula

(2.11)
$$h(z) = \sum_{n=0}^{\infty} \frac{z^n}{\sqrt{n!}} e_n, \qquad z \in \mathbb{C}^1$$

and ah(z) = zh(z) for $z \in C^1$, i.e. h(z) is an eigenfunction of the annihilation operator a. Notice that this result has been obtained without appealing to the Bargmann analytic model of a^+ (see Section 1). However this model has inspired all we have presented in Section 2.

3. This section deals with subnormal weighted shifts. Let W be a weighted shift within the space H. Assume that W is a *subnormal* operator, i.e. there is a superspace K of H and a normal operator M within K such that $W \subset M$ (M will be called a *normal extension* of W). It is easy to see that W has the following properties

$$(3.1) P\mathfrak{D}(M) \subset \mathfrak{D}(W^*)$$

and

$$W^*Pf = PM^*f, \quad f \in \mathfrak{D}(M),$$

where *P* is the orthogonal projection of *K* onto *H*. In particular we have $||W^*e_{n+1}|| \le ||M^*e_{n+1}|| = ||Me_{n+1}|| = ||We_{n+1}|| = w_{n+1}$ for $n \ge 0$. But $||W^*e_{n+1}|| = w_n$, so $w_n \le w_{n+1}$ for $n \ge 0$. This in turn implies that

$$(3.3) r(W) = \lim_{n \to \infty} w_n.$$

If W is unbounded, then, in virtue of (3.3), we have

(3.4)
$$r(W) = +\infty \text{ and } S(W) = C^{1}.$$

On the other hand, if W is bounded, then

(3.5)
$$r(W) = \lim_{n \to \infty} w_n = ||D|| = ||W||.$$

Let *M* be a normal extension of the weighted shift *W* with positive weights w_n . Let *E* be the spectral measure of *M*. Denote by K_0 the closed linear span of the vectors $E(\sigma)e_0$, where σ runs through the plane Borel sets. Since

590

$$e_n = (w_0 \cdot \ldots \cdot w_{n-1})^{-1} W^n e_0 = (w_0 \cdot \ldots \cdot w_{n-1})^{-1} M^n e_0, \qquad n \ge 1$$

we get $e_n \in K_0$ for $n \ge 0$. By the spectral theorem, the part of M in K_0 is canonically isomorphic to the operator of multiplication by the independent variable z in the space $L^2(\mu)$ with $\mu(\cdot) = (E(\cdot)e_0, e_0)$. The unitary isomorphism is uniquely determined by the correspondence $E(\sigma)e_0 \rightarrow \chi_{\sigma}$ (χ_{σ} stands for the characteristic function of the set σ). Denote by $e_n(\cdot)$ the image (via the canonical isomorphism) of the vector e_n in $L^2(\mu)$, $n \ge 0$. Since $Me_0 = We_0 = w_0e_1$ and $(Me_0)(z) = z$, we get $e_1(z) = \frac{z}{w_0}$. Similarly, the equality $Me_1 = w_1e_2$ implies $ze_1(z) = w_1e_2(z)$, so $e_2(z) = \frac{z^2}{w_0w_1}$. Applying the induction procedure, we come to the conclusion

(3.6)
$$e_n(z) = \frac{z^n}{w_0 \cdot \ldots \cdot w_{n-1}}, \quad n \ge 1.$$

Thus we have described in an explicit form the orthonormal basis of the picture $B^2(\mu)$ of the space H in $L^2(\mu)$. It is plain — due to $W \subset M$ — that $(\widehat{W}e_n(\cdot))(z) = ze_n(z) = w_n e_{n+1}(z)$ for $n \ge 0$, where \widehat{W} is the picture of W in $B^2(\mu)$. Hence \widehat{W} is the functional model of W. Notice that in the above we have exploited *merely* the simplest form of the spectral theorem. For general theory of functional models for unbounded cyclic operators we refer the reader to [7].

Let us assume that the subnormal weighted shift W satisfies the following condition:

$$\mu(C^1 \setminus S(W)) = 0.$$

Given $f \in H$, we define the function $\hat{f}: S(W) \to C$ by $\hat{f}(z) = (f, h(\overline{z}))$ for $z \in S(W)$. It follows from (2.1) and (3.6) that

(3.8)
$$\widehat{f}(z) = \sum_{n=0}^{\infty} (f, e_n) e_n(z), \qquad z \in S(W), f \in H.$$

Notice that \hat{f} is analytic in S(W). Since $||f||^2 = \sum_{n=0}^{\infty} |(f, e_n)|^2$, one can show, using (3.7), (3.8) and the Riesz-Fischer theorem that $\hat{f} \in B^2(\mu)$. Moreover, by the Parseval equality, we have

(3.9)
$$\int_{s(w)} |\widehat{f}(z)|^2 d\mu(z) = ||f||^2, \quad f \in H.$$

An application of the polarization formula gives us

(3.10)
$$(f, g) = \int_{s(w)} \widehat{f}(z) \overline{\widehat{g}(z)} d\mu(z), \quad f, g \in H.$$

Summing up we have proved the following theorem.

Theorem 3.1. Let W be a subnormal weighted shift with positive weights. If $\mu(C^1 \setminus S(W)) = 0$, then the map $f \rightarrow \hat{f}$ is a unitary isomorphism of H onto $B^2(\mu)$.

Let us consider the Bergmann space A^2 . Then the operator W defined on A^2 by

$$(Wf)(z) = zf(z), \qquad |z| < 1, f \in A^2,$$

is a subnormal weighted shift with weights $w_n = \sqrt{\frac{n+1}{n+2}}$. In this particular case $S(W) = \{z \in C^1: |z| < 1\}$ and $\mu = m$ = the planar Lebesgue measure.

§4. Let W be a subnormal weighted shift with corresponding space $B^2(\mu)$. Similarly to Section 3 we assume that $\mu(C^1 \setminus S(W)) = 0$. It follows from Theorem 3.1 that the map $f \rightarrow \hat{f}$ sends H onto the whole $B^2(\mu)$. Given $z \in S(W)$, we denote by P_z the orthogonal projection of H onto the one-dimensional space spanned by the vector $h(\bar{z})$. An elementary computation shows that

(4.1)
$$P_{\overline{z}}f = \frac{f(z)}{\|h(\overline{z})\|^2}h(\overline{z}), \quad f \in H, \ z \in S(W).$$

(Notice that (2.1) implies $||h(\bar{z})||^2 = 1 + \sum_{n=1}^{\infty} \frac{|z|^{2n}}{(w_0 \cdot \ldots \cdot w_{n-1})^2} > 0$ for $z \in S(W)$). It follows from (4.1) that

(4.2)
$$(P_z f, g) = (P_z f, P_z g) = \widehat{f}(z) \overline{\widehat{g}(z)} \quad \frac{1}{\|h(\overline{z})\|^2}, \quad f, g \in H, z \in S(W).$$

Using (3.10) and (4.1), we get

$$(f, g) = \int_{s(w)}^{\cdot} \widehat{f}(z) \overline{\widehat{g}(z)} d\mu(z) = \int_{s(w)}^{\cdot} (P_z f, g) \|h(\overline{z})\|^2 d\mu(z), \qquad f, g \in H.$$

This can be rewritten in terms of the weak integral as follows

(4.3)
$$f = \int_{s(w)} P_z f \|h(\overline{z})\|^2 d\mu(z), \quad f \in H$$

Substituting (4.1) into (4.3) we get

(4.4)
$$f = \int_{s(w)} \widehat{f}(z) h(\overline{z}) d\mu(z), \quad f \in H.$$

This in turn implies that

(4.5)
$$Af = \int_{s(w)} \widehat{f}(z) Ah(\overline{z}) d\mu(z), \quad f \in H,$$

for any bounded linear operator A within H.

Summing up we have proved the following theorem.

Theorem 4.1. Let W be a subnormal weighted shift with positive weights. Assume that $\mu(C^1 \setminus S(W)) = 0$. Then

(4.6)
$$I = \int_{s(w)} P_{\overline{z}} \|h(\overline{z})\|^2 d\mu(z), \quad (weak integral),$$

where I stands for the identity operator on H. Moreover, if A is a bounded linear operator on H, then the equality (4.5) holds.

Let us consider again the quantum creation operator a^+ . It is well-known (cf. [1]) that in that case $B^2(\mu)$ coincides with the Bargmann space B^2 and $d\mu(z) = \frac{1}{\Pi} e^{-|z|^2} dm(z)$ (*m* is the planar Lebesgue measure). Moreover, by (1.7), we have $||h(z)||^2 = e^{|z|^2}$ for $z \in C^1$. Since $S(a^+) = C^1$, the integral formula (4.6) turns into

(4.7)
$$\frac{1}{\Pi} \int_C P_z dm(z) = I.$$

This is the celebrated Glauber-Klauder basic formula of quantum optics (cf. [3]).

References

- [1] Bargmann, V., On a Hilbert space of analytic functions and associated integral transform, Comm. Pure Appl. Math., 19 (1961), 187–214.
- [2] Berezin, F.A. and Shubin, M.A., Schrödinger equation, (Moscow, 1983).
- [3] Klauder, J.R. and Sudarshan, E.C.G., *Fundamentals of quantum optics*, (New York, Amsterdam, 1968).
- [4] Mlak, W., Notes on quantum circular operators, Part I, Preprint 303, Institute of Mathematics, Polish Academy of Sciences (1984).
- [5] Perina, J., Quantum statistics of linear and nonlinear optical phenomena, (Reidel P. Comp., Boston, Lancaster, 1984).
- [6] Shields, A.L., Weighted shifts and analytic function theory, Math. Surveys. 13, American Mathematical Society, (Providence, Rhode Island, 1974), 49-128.
- [7] Stochel, J., and Szafraniec, F.H., On normal extensions of unbounded operators. III. Spectral properties, Publ. RIMS, Kyoto Univ., 25 (1989), 105–139.
- [8] Volkin, H.C., Phase operators, J. Math. Phys., 14 (1973), 1965-1976.