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Ito's Formula for Non-Smooth Functions
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Robert AEBI*

Abstract

Let us consider an application of forward local C'^-semimartingale flows of C'-diffeomorphisms.
First a change of variable formula is derived and the existence of all moments of the appearing
Jacobian is shown. Then as a consequence, Ito's formula holds for continuous functions which first
and second order derivatives exist only in the sense of distributions.

§1. Introduction

Ito's formula, the mean-value theorem in stochastic calculus, is established
in this paper for continuous functions having first and second order derivatives
in the sense of distributions, evaluated along non-degenerate local Holder-
continuous space-time semi-martingales which are local diffeomorphisms w.r.t. a
spatial parameter. Our result will be obtained by means of the theory of stochastic
flows developed in Kunita [3], In order to have a one-to-one correspondence
between stochastic flows and (Ito's) stochastic differential equations, the latters
have to be formulated in terms of continuous C- valued semimartingales.

Let us consider the investigated problem in the most familiar situation.
Given a probability space (Q, 9, (SOo^^r* P) provided with the 1-dimensional
standard Brownian motion (5r)0<r<r, where 0<T<^. Then Ito's stochastic
differential equation

= * + f a ( ^ . ( x ) ) d B s + I' fi(&(x))ds (1)
Jo jo

has a unique solution £,(*)> 0 < £ < 7, for any jtE /?, if the coefficients a and /3
are Lipschitz-continuous functions on R of linear growth. Moreover, ^r is a
continuous function of the spatial parameter xE.R for any fE[0, T], P-a.s.

In order to apply Ito's formula to a function F on R evaluated along the
solution £„ 0<r<r , of (1), it conventionally has to be assumed that
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C2(R). Then

F( &) - F(*) = f ' F' ( £) a( I.) rfB, + f ' F ( £) 0( £)<fa + \ f F"( &) a2( £)ds (2)
J0 J0

 Z JO

for 0 < r < F, F-a.s. for any
If the first and second order derivatives DFGL2(A, R) and D2FG

LX(A, R), A the Lebesque measure, of a continuous function F are given in the
sense of distributions, i.e.

f DF(x}y(x}dx=- I F(x)v'(x)dx
JR JR

for any test function y which'is smooth and has compact support, then our
version of Ito's formula holds analogously to (2) in the case of a non-degenerate
process (&)0<r<r, but now only for A® F-almost all (jc, CD) e J? x Q.

The proof is an approximation procedure in terms of a mollifier sequence,
i.e. JEF-*F uniformly on compact sets, (JEF)'—> DF in L2

OC(A, R) and (J£F)"-^
D2Fin L}OC(X, R) as £\0. The key to make use of these integrability properties
is a change of variable formula: For any FELX(A, R)

dt\ dzF(z} det d&}(z)JR

holds F-a.s. and it is in L!(F), where d-^/Cz) denotes the Jacobian of the
inverse of the flow ^r, 0<5-<r< T. We notice that this formula 'decomposes'
the function F and the process £r, i.e. its associated flow %SJ. For the definition
of a stochastic flow see the first section. There is a strong analogy to a flow
obtained as the solution of a system of ordinary differential equations (dynamical
system). But in the probabilistic case, the transport takes place along the solution
of a stochastic differential equation, i.e. the paths have non-vanishing quadratic
variation and are consequently nowhere differentiate. Nevertheless, the theory
of stochastic flows reveals that under smoothness assumptions on the coefficients
a and /J, the solution £„ 0<f < F, of (1) depends smoothly on the initial value
*EJ? i.e. the spatial parameter. The composition F(^f(x)), 0<r<F , is well
defined as a stochastic process if £„ 0 < t < F, is non-degenerate which is satisfied
for an elliptic a. The change of variable formula is valid if a as well as /3 are
bounded and their derivatives a'', /3' are bounded and Holder-continuous. By
the flow property, the Jacobian of the inverse of the stochastic flow is the same
as the inverse of the Jacobian of the stochastic flow. Since the latter is a solution
of an Ito's stochastic differential equation, all its moments exist and are uniformly
bounded on compact sets of starting points.

The present approach is built up on the stochastic flow framework suggested
by Kunita [3]. The underlying non-degenerate stochastic process with spatial
parameter is a forward local C1)f-valued space-time semimartingale flow of
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C^-diffeomorphisms, where the required regularity properties are expressed in
terms of its joint quadratic variation process and its drift process, respectively.
The first and second order derivatives in the sense of distributions of a con-
tinuous space-time function F are only assumed to satisfy local integrability
conditions, this because classical differentiability is a local property. Therefore,
all our constructions are local, described by starting point dependent stopping
times.

§2. A Change of Variable Formula

Let (Q, 3% (%)fl<r<b, P) be a probability space, where — ̂ <a<b<^.
Consider a continuous ^-dimensional non-degenerate C-semimartingale

/O, t) = M(x, i) + B(x, 0, (3)

a<t<b, x£iRd, i.e. /(., t)(co) is continuous on Rd for any £E[#, b] and P-a.s.
Moreover, M(JC, f), 0 < r < b , is a continuous localmartingale and B(x, t),
a<t<b, is a continuous process of bounded variation, for any value x^Rd of
the spatial parameter.

Following Kunita [3]'s §3, there exist a continuous increasing process At and
a family of predictable processes a(x, _y, /), Jt, y^Rd, such that the joint
quadratic variation of /(*, t) can be expressed as

> 0. M(y, 0) = a(x, y, u)dAU9

Consequently, the continuous bounded variation process B(x, t}, a < r < 6 , is
considered to be given as

B(x, t)= b(x, u)dAu,
Ja

by a family of predictable processes b(t, x),

Assumption (A). a(x, y, t), b(x, t) and - — — a(x, y, t), —b(x, t), 1 </,
ax I dy j dX[

j < d, are uniformly in CD E Q bounded on compact subsets of (a, b) x Rd where
yL

a(x, y, t) satisfies a uniform ellipticity condition. Moreover, — — — a(x, y, t) and
g dXidyj

-T— b(x, t), !</, j^d, are locally <5-Holder continuous w.r.t. (x, y) and x,
dX[

respectively, for a (5E(0, 1] with random Holder coefficients in Ll(A).

Then, by Kunita [3]'s §4.7, Ito's stochastic differential equation

(4)

defines on every compact set Kd (a, b) x Rd a unique P-a.s. continuous forward
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C^-semimartingale flow of local C^diffeomorphisms fjs,r(x), (s, x) E K, s<t<
!<£*), for e<6, where T&X) = inf{t>s:(t, &,,(*)) $ ^} -^ for anY (*> *)E

(a, b)xRd. This means:

i) ^(jt), $<f < !(£*), is a continuous semimartingale.
ii) t ~ S i f : { x : ( s , x) Eint(A'), t<r^X)}-*Rd is once ^-Holder continuously dif-

ferentiable for any £E(s, 6],
iii) £,,(*) = £n,r (&,«(*)) on {* •" (*» ̂ ) ^ ^, ^^ T(lr)} for s < u < t, known as

the (local) flow property.
iy) %Sts(x) is ^e identity for all 5 E (a, 6) with (5, x) GE ^.
v) i'r : {*: (5, jc) Eint(X), ^< r£,}}^ {£if(j:) : (5, ac) Eint(/0, ^< ^>} is a

C^diffeomorphism for any ?E(5, fe].

All the properties i)-v) depending on w^Q hold F-a.s. Cf Kunita [3]'s §,4.

Lemma (a change of variable formula). Let (A) be assumed and FE
L}oc((a, b) xRd) arbitrary. Then, for any compact KC(a, b) xRd,

dx r V(r, ^t(x}}dt= f dt\ dzF(t, z)l[^.j(0 det d&}(z) (5)J5 4 jRd ( s - - ) J

F-a.5. and it is in L1(F),

reL-)=T£,} with jc=g,7f
1(z)

-§s7/(^) denotes the Jacobian of the inverse of the flow ^SJ(x).

Proof. The stochastic process F(t, ̂ r(jc)), s<t<b, is well defined in the
sense of Kunita [3]'s §1.2, since the 1-dimensional marginal distributions of any
1-point motion of ^s ,,(*), s < f < b, are absolutely continuous w.r.t. the Lebesgue
measure A. Let a compact set #C (0, 6) x J^ be fixed. Then FE Ll({z : (t, z) E
K}) for A-almost all tE.(a, b) and by the local C^-diffeomorphic property of the
flow r

J{.v:(s,r)<E/

= I dzF(t, z)l[s,T$.,](0 det cL^/W (6)

holds for A-almost all f E (0, fe) and F-a.s., where f^^-) in terms of §?,,(
defined. Since ?5,r(jf) is differentiable in jc, the flow property yields

on {/< T(£r)}, F-a.s. The compact set
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is P-a.s. homeomorphic to

Ds = {(f , x) : (*, x) e X, 5 < f < r£,}}

and therefore, by the space-time continuity of the Jacobian of the stochastic flow

max Idet S-gr/(z)|= max Idet dxt-s M]'1 <oc, p.a.s.
(r,,-)e/?v '

Now it may be concluded that

\bdt\ dx\F(t,%s
Js jR<i

< max |det a^OOT1!" f |F(f, z ) |d fdz<*>, p_a.s.
(r,.v)GD, ' JK •>

Then Fubini's theorem yields the first part of the assertion, from which the
second part follows, if

K _j(o |det a,|-/

is proved, where this time Fubini's theorem w.r.t. P has been applied.
It is sufficient to show that

SUp P[||(5r^rAr f t l,Wr1 |n<30 for 1 < T < *>. (7)
{(r,v):(5,.r)e/C,5<r<6)

(5 r^s, f(jc))~ J = f/(A:, f) satisfies on K, by means of Kunita [3]'s theorem 3.3.3,

f///(jc, w)^/7(^MW, du)

,
/=! m=idXjdym

P-a.s. for !</, ;<rf , which forms together with (4), the defining equation for
%s,t(x), a system of d2 + d Ito's stochastic differential equations. Under the
assumption (A) Kunita [3]'s theorem 3.4.6, adapted to our local situation, can
be applied to this system. Consequently, its solutions have finite moments of any
order, depending continuously on the starting point; therefore (7) holds.

§3. A Version of Ito's Formula

This is a consequence of the change of variable formula (5). Let D be an
open subset of (a, b)xRd. A function Fe C(D, R} is assumed to possess finite

for l< i , ;< r f
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where Ds = -=- and D/ = -^— , l<*<d, are to be understood in the sense of
OS uXf

distributions with respect to the space of test functions C™omp(D) = {y: y has a
compact support contained in D and its derivatives of any order exist and are
continuous.}.

Under the same assumption (A) as for the change of variable formula (5), a
continuous C-semimartingale /(*, t) like (3) and the stochastic flow %SJ(x},
being the solution of Ito's stochastic differential equation (4) driven by /(*, t},
are considered. Then

Theorem (a version of Ito's formula).

F(t A r(5,,)? £,,A Vi|(*)) - F(5, x) (8)

&M, du)

^ i,7=l

/or re [5, 6), K®P-a.s. where

r(StX) = M{u E [5, b) : (M, |5,M(jc)) $ D}

and s^(a, b).

Corollary. // the set D is assumed to be compact then both sides of Itd's
formula (8) integrated w.r.t. y(x} dx on Rd for any bounded measurable function
q) are equal P-a.s. and they are in L1(

Proof. There exists an increasing sequence (D(m))m(=N of open sets with
compact closure D(m) contained in D such that

D= U D(m\ (9)
m^N

Denote by r^} = inf (u E [s, b) : (u, ^,M(^)) $ D(m)} the corresponding increas-
ing sequence of stopping times with limm_>ac r^^ = r(5 ?r ), F-a.s. The mollifier
theory, cf Friedman [1] Chap. X, provides for every D(m), raEAf, a sequence
(/Jm))f>() of smoothing operators such that

uniformly on D(m\

,

and

l J £ = i J - ^ i j n

as f \0. Following Kunita [3]'s theorem 4.7.2, Ito's formula for smooth functions

evaluated along stochastic flows may be applied locally on D(m):
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s, x) (10)

for fe[5, 6), P-a.s.

In this proof, ^4r = /is assumed. The general case follows by change of time
scale, which is routine, cf Kunita [3]'s §3.2. First the relation (10) is considered
as £\0 and then as m— >°°. For the stochastic integral appearing in (10)

f
jR<

z, z, M

holds by the change of variable formula (5), where

?(m) — ~(m) ,X7:tu v _ & - l / 7 \ pQCr(s,<:) ~ r(5,.r) Wlth x- §5,w(z), r-a.s.

By the definition of stochastic integrals in terms of L2-isomorphisms

L2(A<S>P)-lim

for /E [5, b) follows. Then Chebyshev's inequality and the Borel-Cantelli lemma
yield a subsequence (^i,,,),^^ f°r which this convergence holds A®P-almost
surely for every 1 < / < rf. The three bounded variation terms on the RHS of (10)
are treated similarly. Their L*(A ® F)-convergence follows by means of the
change of variable formula (5). In case of the third term this means

f

< sup_ (\ji(z, z, «)|P[lMry(M) |det

as £\ 0 for any 1 < /, ; < d.
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With the same method as used to extract (eitn)n&f, a subsequence (£2,«)«<E;vC
(£i,«)/ze:N can be found along which the convergence on the RHS of (10) for
re [5, b) takes place A® P-almost surely. This follows for the LHS of (10) from
the uniform convergence of /Jm)F to F on D(m). Consequently, having (10)
which holds P-a.s. for all x£Rd, (8) considered on D(m) holds A® P-a.s. Since
limm-^,xT(™x) = T(.y,.r), P-a.s. and F is assumed to be continuous on D, (8) finally
follows by (9), noticing that the set of exceptional (x, CD) is contained in a
countable union of A <8> P-zero sets.

Remark. Krylov [2] develops a version of Ito's formula for continuous
functions F with generalized derivatives. Given a bounded state space Q, he
assumes that FE Z/(Q) where p has to be greater or equal to the dimension of
Q. Moreover, the coefficients of the underlying diffusion process are relate^ to
each other. Then Krylov's version of Ito's formula holds for all starting points
and it is proved by geometrical arguments as well as substantial results from the
theory of parabolic differential equations.
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