
Publ. RIMS, Kyoto Univ.
28 (1992), 603-614

Some Descriptive-Set-Theoretical Problems
in Complexity Theory

By

Hisao TANAKA*

Abstract

We bring some descriptive-set- theoretical problems into complexity theory. We here deal with
the imiformization problem and the separation problem. It is shown that 1) there exists an oracle A
such that for some set SEP [A] the uniformizator Us is not in NP[A], 2) there is an oracle A such
that Sep (NP[^4]) does not hold and hence so does not Unif (coNP[A]), and 3) there is an oracle A
such that Sep(NEXT [A]) does not hold and hence so does not Unif(coNEXT [A]).

Introduction

The uniformization problem and the separation problem are central subjects
in descriptive set theory. We bring these problems into complexity theory. Let
SC2" x S" be given, and suppose that a subset U of S satisfies the following
condition:

Then, we say "{/ uniformizes 5", and call U an uniformizator for S. U is the
graph of a partial function defined on the domain { x : ~ 3 y ((x , y)eS)} of S.
The problem is how to get U from S. This means the following: Let S be a set in
a complexity class. Then, in what complexity class can we find an uniformizator
for 5? (In descriptive set theory, one of the most famous results on this subject
is the Novikov-Kondo-Addison Uniformization Theorem: Every Tl[set S can be
uniformized by a H{ set. (Here, in a typical case ScNNxNN. See [Sh 67].))
We shall show in this paper that there is an oracle A such that for some
5EP[A] its typical uniformizator Us (defined below) is not in NP[^4]. Further,
it is shown that there is an oracle A such that Unif(coNP[^4]) does not hold.
(The notations used here will be explained in the following sections.)

The separation principle is as follows: Let C be a complexity class. Sep(C)
asserts that for any disjoint X, Y E C there is a set Z E C n coC such that XC Z
and ZH Y=0. Then, the separation principle for C:Sep(C) holds.

Communicated by S. Takasu, September 2, 1991.
1991 Mathematics Subject Classifications: 03E15, 03D15, 68Q15

* College of Engineering, Hosei University, Koganei, Tokyo 184

604 HISAO TANAKA

(A typical example in descriptive set theory is Sep(Z}). Of course, in the latter
theory, subsets of NN are considered.) In recursion theory, we have -iSep(Zi)
under considering subsets of N ([Kl 52; p.311]). In this paper, we shall show
that there is an oracle A such that -iSep(NP[/4]). This implies the above
mentioned result: -iUnif(coNP[^]). The latter holds for the class coNEXT[^4]
with some another oracle A.

Also, we shall present some problems concerning our subjects.

§1. Preliminaries

We use the standard notions and notations for complexity theory. Let
2 = {0, 1} be the alphabet and let 2* be the set of all finite strings with the
empty string A. We denote strings by u, v, H>, jc, y, . . . , and sets of strings by,^4,
B, ..., X, y, ... We use the following canonical linear ordering (denoted by <)
of all strings:

A, 0, 1, 00, 01, 10, 11, 000, 001, . ..

For a string jc, |*| denotes the length of x. Then, |jc| ̂ n implies x < 0"+1. n is a
pairing function on 2""" which is one-to-one, onto, and computable in polynomial
time:

jr(jrn(z), JTI(Z)) = Z for any zEZ*,

where JTO and n\ are the inverse functions of n which are also polynomial time
computable. We abbreviate (jc, y) for ji(x, y). So, the sets S and U used in the
introduction may be considered as subsets of 2".

It is assumed that the reader is familiar with the complexity classes P, NP,
DEXT, NEXT, and PSPACE, and their relativized classes such as P[A], etc. For
more information about properties of these classes, see Balcazar-Diaz-Gabarro's
textbooks [BDG 88] and [BDG 90]. For a class C, let coC={X: -lA'eC},
where -i X = 2^ - X.

The other notions and notations used in this paper will be explained in the
following sections. For more information about descriptive-set-theoretical
notions, see [Mo 80].

§2. The Uniformization Problem

We treat with complexity classes of sets of strings such as P, P[A], etc. Let
C and K be such classes.

Definition. Unif (C; K) expresses the statement asserting that every set in C
can be uniformized by a set in K, namely:

For every 5 E C there is a set U in K which satisfies the following condition

DESCRIPTIVE SET THEORY IN COMPLEXITY 605

(1) UCS, and (2) 3y((x, y) eS)^>3 l y ((x , y) £ 17).

So, we have

(3) 3y((x, y) eS)<=>3 \y((x, y) e U)<*3y((x, y) e U)-

Further, let Unif(C) mean Unif(C; C). D

We interchangeably use a predicate S(*, y) and its corresponding set
S={(x,y):S(x,y)}.

Proposition 2.1. // C w closed under the operations of conjunction, com-
plementation, and the bounded quantifier of the form Vz <y, r/zen Unif (C) holds.

Proof. Let S G C. Define the set I/, as follows:

(4) Us(x, y)oS(*, y) A Vz (z<y^ -«S(*, z)).

Clearly, Us uniformizes S. By the assumption, Us is in C. D

For later usage we call Us the bottom curve of S. Now, let DEXT be the class
of sets which are accepted by deterministic 27//I time bounded Turing machines,
where 2lm means 2cn for some constant numbers c (see [BDG 88]). Then

Corollary 2.2. Unif (DEXT) holds.

Proof. DEXT is closed under the three operations stated in Proposition
2.1, since the number #{z :z<y} =2Lv|+1. D

Since z <y implies |z| = |y|, we have

(4') Us(x,y)&S(x,y)AVzl\z\£\y\^(z<y^^S(X,z))l

So, if NP-coNP [P = NP], then Unif(NP) [resp. Unif(P)] holds. Hence, by
[BGS 75] we obtain

Proposition 2.3. There is a recursive oracle A such that Unif(NP[^4]),
Unif(coNP[v4]), and Unif (P [4]) hold. D

A partial function /:Z*^2^ is polynomial time computable if its domain
(denoted by Dom(/)) is in P and if there is a polynomial time bounded Turing
machine M such that f (x) is computed by M for every x E. Dom(/). An unifor-
mizator of a set S is the graph of a partial function. Then,

Problem 1. Can every set in P be uniformized by a polynomial time com-
putable partial function?

606 HISAO TANAKA

This problem is open for us, yet. However, if we impose restrictions on P,
then it has an affirmative answer:

Proposition 2.4. Let logP = {Q:Q(x, y)O\y\ = c -log \x\ A S(x, y) for
some c > 0 and SEP}. Then, every Q E logP can be uniformized by a poly-
nomial time computable partial function.

Proof. Since #{y : \y\ Sc-log |jc|} ̂ 2\x\c, the domain {x:3y Q(x, y)} is
in P, and the least y (with respect to <) such that Q(x, y) holds can be found in
polynomial time of jc|. So, the bottom curve UQ is a polynomial time computable
partial function. D

On the contrary above, we have:

Proposition 2.5, There is a recursive oracle A such that some set S in P[A]
cannot be uniformized by any partial function computable in polynomial time
relative to A.

Proof. Take a recursive A such that K(A) is not in P [A] , where K(A) =
{{/, jc, 0"): some computation of NP? accepts x in ^ n steps} ([BGS 75]).
Here NP~ is the z-th nondeterministic polynomial time bounded oracle Turing
machine, where the index i denotes the code of this machine and further it is
identified with some natural number. Since K(A) E NP[^4], there is a polynomial
p(n) and a predicate REP[A] such that

Take S(x, y)€> \y\ ̂ p(\x\) A R(x, y). Clearly S is in P[A\. Since the domain of
S is K(A) and since K(A) is not in P [A] , S cannot be uniformized by any partial
function computable in polynomial time relative to A. D

In contrast with this proposition, the following problem seems to be rather
difficult to solve:

Problem 20 Is there any oracle A such that Unif (P[v4]) does not holdl

In the proof of Proposition 2.5, it may be possible that the graph of some
partial function which uniformizes S is in P[A]. In the next section, we shall
show a theorem concerning this problem.

Now, by what set can a set in P be uniformized? The following gives an
answer for it:

Proposition 2.6. Unif (P; coNP) holds.

DESCRIPTIVE SET THEORY IN COMPLEXITY 607

Proof. Let SEP. Then, by (4') we have £/5GcoNP. D

However it remains open to know whether every set in P can be uniformized
by a set in P:

Problem 1' (A weak form of Problem 1). Does Unif (P) hold?

Now, since PSPACE is closed under nondeterministic computation ([Sa 70]),
by (4') we have

Proposition 2,1. Unif (PSPACE) holds. D

§3. A Partial Answer for Problem 2

There is an oracle A such that for some SGNP[/1] the bottom curve Us is
not in NP[A|: Take an oracle A such that NP[A|-coNP[A| is not empty ([BGS
75]), and let £ENP[yl]-coNP[>4]. Now, define S by

S(jr, y) O (x E E A y = 0) v y = 1.

Then, the bottom curve Us is not in NP[A], For, suppose US£ENP[A]. Since
xE. -^EO (x, 1} E [75, E would be in coNP[A], a contradiction. (This proof is
based on a conversation with H. Enderton about a similar subject.) Now, how
about an SEP[A]? We have

Theorem 3.1. There is a recursive oracle A and a set S E P[A] such that the
bottom curve Us of S is not in NP[A].

Proof. We modify a proof in [BGS 75]. For any XC2\ let

L(X) = {<*, y) : 3z(z<y A <*, z)

We will define an oracle A by stages such that

(5)

Let A(s) be the set of strings put into A before stage s, and let ^4(0) = 0. We
also define natural number ns at each stage s. Let n0 = ®. Further, let f (n) =
|{1", 0/;+1) |. We may assume that f (n) is a linear function. (By taking a special
pairing function, we have (1", 0"+1) = 12/I+1.)

Stage 5^0. Let n be the least number n such that n > ns and p s (f (n)) < 2",
where ps(n) is the polynomial that is the time bound function of the 5-th
nondeterministic polynomial time bounded oracle Turing machine NP^. First,
let B(s) be the set obtained from A(s) by adding (1", 0"+1). Then, run the 5-th
machine NP?^ on (1", O'7^1). If it accepts, then take an accepting computation

608 HISAO TANAKA

and add to B(s) a string of the form {!", u) to make A(s 4- 1), where u is the
least string of length n such that {!", u) is not queried during the computation.
(Such a string exists.) Namely, A(s + 1) = B(s) U {{!", w)}. If it rejects, then
nothing to do and let A(s + 1) = B(s). Let ns+{ = 2". The strings added to A at
stage s do not affect any computation performed at any earlier stage <s. [For,
consider the stage 5 — 1 , and let ns = 2m. Then m > ns-^ and ps-i(£(m)) < 2m =
ns<n. On the other hand, if \u\ = n, then |{1", On+i)\>n. So, ps_1(€(m))<
|<1",0'<+1>|.]

As usual, define A as the union of all A(sy$. Then, clearly A is a recursive
set. For any 5, we have the following equivalences:

NP? accepts <1", On+l)<^NP^ accepts {!", 0/I+1)

"+1 A <1", u) G^)0{1", 0/z+1) EL(,4)

So, we have (5): L(A) $ coNP[^].
Now consider the bottom curve UA of A:

UA(x9 y)<*(x, y) £A A \/z(z<y^> -I«JT, z)

L(A) is the set of all points (jc, y)'s which are above the curve UA. Let R be
the set of all points (jc, y)'s which are below or on the curve UA. That is,

; z A j c , z E 4 .

However, if {j^, z) E f/^ then |z| ^ |jc| + 1. Therefore, we have

(6) <jc, y) EJ?o3z[|z| ̂ |^| + 1 A (y^z A (jc, z) E ^)].

Now, suppose that ^ were in NP[A|. Then by (6), R would also be in NP|y4].
On the other hand, the domain D = {x:3y((x, y) E^)} is in P[A]. (For,
given jc, first check if x is of the form 1". If so, query <1 /7, 0"+1) to A. If the
answer is yes, then x E D. This process is done in time of polynomial of |jc|.) So,
the cylinder D x 2" is also in P[A]. Since L(A) = D x 2" - R, L(A) would be in
coNP[yl]. This contradicts (5). Hence, UA can not be in NP[A|. So, taking
5 = ^4 our theorem is proved, since always A E.P[A], D

In this theorem, the uniformizator concerned is a particular one, and S may
possibly be uniformized by a set in P[A|. In fact, the S(=A) used in the proof
of this theorem can be uniformized by a set in P[A], Our wish (Problem 2) is to
have A and S such that any uniformizator of 5 is not in P|̂ 4] (or not in NP[A)).

§4o The Separation

The separation principle is closely related to the uniformization problem.

DESCRIPTIVE SET THEORY IN COMPLEXITY 609

Let C be a complexity class of sets of strings. The Separation Principle for C
"Sep(C) holds" was already defined in the Introduction. It is well-known ([Mo
80]) that under some very mild condition

(7) Unif(C) implies Sep(coC).

So, by showing that -iSep(coC[v4]) for some oracle A, we can conclude that
there is an oracle A such that Unif(C[v4]) does not hold. Now clearly, if C is
closed under the operation of complementation, then Sep(C) hold. So, the
principle becomes our subject of discussion for such classes that are not closed
under complementation.

Now, let C and E be complexity classes such that E C C, and let B and C be
disjoint sets in C. B and C are ^-separable if there is a set R E E such that BCR
and j R H C = 0. Otherwise, we say that B and C are E-insepamble. Then, by
using a proof-method in [BGS 75], we obtain

Theorem 4.1. There is a recursive oracle A such that NP[^4] has two disjoint
sets which are P[A]-inseparable.

Proof. As before, let A(s) be the set of strings put into A before stage s
and let ^4(0) = 0. We define a natural number ns, and let n0 = 0.

Stage s i^O. Let m be the least number such that m>ns and ps(m) < 2m~1,
where ps(n) is the polynomial time bound function of the s-th deterministic
polynomial time bounded oracle Turing machine P~. Run P^(5) on Om. If it
rejects [accepts] the input, then add to A the least string of the form Oy [resp.
ly] of length m not queried in the computation in order to make A(s + l). Such
a string Oy or ly exists. Let ns+i = 2m~L.

Now, let A be the union of all sets yl(s)'s. Clearly, A is a recursive set. The
above computation at stage s remains unchanged when oracle A is used instead
of A(s). Let Kv(A) = {x:3y(Qy<EA A |0y| = |*|)}, and K^A) = {x: 3y(ly G
A A \ly\ = |*|)}. Clearly, K^(A) and K{(A) are disjoint and both are in NP[A].
Now, suppose that there were a set 7?EP[yl] such that K^(A)CR and R n
Ki(A) = 0. Identifying a Turing machine with the set accepted by it, let R = P^.
Then, at stage 5, letting m be the m described during defining A(s + 1), we have

P? rejects Om => 3y (Oy e A A \0y\ = m) => Om e K0(A)

f accepts Om, and

P accepts

z> Om G -i # =^> P^ rejects Om.

This is a contradiction. So, there is no such R. Hence, K^(A) and K±(A) are
P[yl]-inseparable. D

610 HISAO TANAKA

This theorem corresponds to the classical theorem asserting that there are
two recursively inseparable recursively enumerable disjoint sets of natural num-
bers ([Kl 52, p. 311]). And this theorem does not directly imply -tSep(NP[^4]),
because K()(A) and KA(A) may possibly be separated by a set R which is in
NP[v4] n coNP[;4] but not in P[A]. However, modifying the proof of Theorem 6
in [BGS 75], we can obtain a recursive oracle A such that P[A] = NP[^4]n
eoNP[^4]CNP[,4] (here, C denotes the proper inclusion) and such that KQ(A)
and K\(A) are P[A]-inseparable. (In the proof of Theorem 6 in [BGS 75], we
let the requirement (/, /) be satisfied if the following condition has been
assured (after [BGS 75] here we use E instead of A): For some string jc, both the
computations of Pf(n) and Pf on x are the same, and [x ̂ Pf =>*EXo(£)] &
[jcEPf ^x^Ki(E)] holds. Here, K^ and KI are ours defined above. At stage
/z, to satisfy the requirement {/, /}, run Pf(/z) on input (F('°. If it rejects.the
input, then, as in our proof above, add to E the least string of the form Oy of
length e(n) not queried in the computation; otherwise add to E such a string ly.
The remainder is almost the same as in [BGS 75]. For detailed account, see the
proof of Theorem 4.4 below.) So, these two disjoint sets are (NP[>4] H coNP [>!])-
inseparable. Thus we have:

Theorem 4e20 There is a recursive oracle A such that Sep(NP[^4]) does not
hold. D

By combining this with (7), we have the following theorem:

Theorem 4<3o There is a recursive oracle A such that Unif (coNP[^4]) does
not hold. D

Now we shall show

Theorem 4,4. There is a recursive oracle A such that Sep(NEXT[A|) does
not hold.

Proof. Let L0(A) = {x : 3y[QyGA A \0y\ = 2W]} and L^A) = {x :
A A \ly\ = 2'v|]}. We construct the following recursive oracle A:

(8) [A] = [A] H coNEXT [A] , and

(9) LoCA) and L{(A) are disjoint and are DEXT[A]-inseparable, and hence

These implies the negation of Sep(NEXT[^4]). To construct such an A, we use
the method developed in the proof of Theorem 6 in [BGS 75], Take a recursive
oracle B such that P[£] = NP[fl], then OEXT[5] - NEXT[5] holds also ([Bo
74]). Without loss of generality we may assume that B does not contain any

DESCRIPTIVE SET THEORY IN COMPLEXITY 611

string of even length. We define number-theoretic functions d(n) and e(n) as
follows:

d(0) = 2, e(Q) = 22, d(n + 1) = 2e(n\ and e(n + 1) = 2d(ll+l\

Let DEf [NE~] be the z-th deterministic [resp. nondeterministic] 27/" time
bounded oracle Turing machine. Here, the index / denotes the code of the
machine and it is identified with a natural number, and further let 2C|" be the i-
th machine's time bound function, where c/ is a constant number. Let A(n) be
the set of strings added to A before stage n, and let A(0) = B. We consider some
requirements R(i, ;") depending on indicies i and j.

R(i, i) is satisfied at stage n if at stage n there is a string x such that both
computations of DEf^ and DEf on x are the same and the condition

(10) (x $ DE^xE. L(}(A}} A (jc G DE^xE LL(A))

is ensured. /?(/, &), where / =£ /c, is satisfied at stage n if at stage n the condition

(11) 3;c [neither /VEf nor NE* accepts x]

is ensured. (Then, letting S = NEf and r= NE$, -*S + T. So, for such R(j\ k)
we do not have to do anything.)

An unsatisfied requirement R(i, i) is vulnerable at stage n if the following
condition holds:

(12) 2Cld(n) < 2e(n}-{ (<d(n + 1) < e(n + 1)).

An unsatisfied requirement R(j, k), where ; + k, is vulnerable at stage n if there
is a string x such that

(13) e(n-l)<\x\^e(n)^max{2c'lxl, 2a|x|) <e(n + 1), and

(14) neither NEf(n} nor N£^(/z) accepts jr.

If (/ , /) < {fc, m), then we say that /?(/, ;") has higher priority than R(k, rri).
Stage n ^0. We satisfy the unsatisfied requirement of highest priority which

is vulnerable at stage n. If there is no such requirement, then we skip this stage
and let A(n + l} = A(n).

Case 1) Such requirement is R(j\ k), where j + k. We do nothing, and so
A(n + l) = A(n). Then, by its vulnerability, there is a string x such that neither
NEf nor NE^ accepts x.

Case 2) Such requirement is R(i, i). Run DE?(n} on Orf(/l). If it rejects
[accepts] the input, then add to A(n) the least string of the form Oy [resp. ly] of
length e(n) not queried in the computation in order to make A(n + 1). By its
vulnerability, there exists such a string.

Claim 1. Every R(i, i) is eventually satisfied. Otherwise, let R(i, i) be the

612 HISAO TANAKA

least unsatisfied requirement. Since there are only finitely many requirements of
higher priority, there is a stage n at which /?(/', i) is the vulnerable requirement
of highest priority. Then, at such least stage R(i, i) would have been satisfied.

It readily follows from Claim 1 that L0(A) and L^(A) are DEXT[,4]-
inseparable and hence DEXT[>1] + NEXT [4].

Claim 2. If S, -iSENEXT[4], then SEDEXT[4].

Proof. There are indecies j and k such that S = NEf and -*S
Clearly, R(j\ k) is never satisfied. There is an m such that

(15) Vx[\x\^e(m)^3=ln(\x\^e(n)^max{2cM, 2aW})], and

(16) if there are some requirements of higher priority than /?(/, k) which are
ever satisfied, then they all were satisfied before stage m.

Now, let x be an arbitrary input. If |*|̂ e(m), then we decide by a finite table if
jcES. Otherwise, compute the least n such that e(n)i=|*|. This can be done
within 0(|*|) time. For all strings u of length e(() for (^n - 1, we can deter-
mine whether u E A in time 2o('-r|), because the number of such M'S is less than
22'1*1, since e(n - 1) < \x .

Case (i) e(n) >max{2C;'-r', 2CA*'}. Then, the computation of machines j
[resp. k] on jc with oracle A(n) is the same as with oracle A. Since we can know
the elements of A(ri) — B in 2O('*') time, we can construct the following oracle
Turing machine NE$$: NEfy'f simulates NEf(n) with the same time bound but
queries no strings of length e(s) for any s < n. Then the computation of NEfffl
on x coincides with the one of NEfffi. Hence

(17) xeS€>NE?(n} accepts *O <i(n) , *, O2'''1') E#E(B),

where KE(B) = {{i, *, 0"}: A/Ef accepts * in ^H steps}. Then, KE(B) can be
accepted by an oracle Turing machine with oracle B in linear time. The code
i(ri) can be obtained from the fixed code j by some minor change and by adding
a finite table of length 20(W). So, by,(17), whether x E S can be nondeterministi-
cally computed in time 20(W) relatively to B. Since NEXT[5] = DEXT[5], this
can be done deterministically with the same time bound.

Case (ii) Otherwise. Since \x\^e(m), by (15) we have:

(18) e(n - 1) < |*| ̂ e(n) ^ max {2c'|jr!, 2C'M} < e(n + 1).

So, if neither NEf^ nor NEf^ accepts *, then /?(/, k) becomes vulnerable at
stage n. Moreover, by (16) it then has the highest priority, and hence it is
satisfied at this stage. However, we know that this /?(;', k) is never satisfied, a
contradiction. So, either of them must accept x. Further, as in Case (i), we can
know which machine accepts * in time 2O(I*'). Suppose NEf^ does. A may
contain a string not in A(n). Since P[5] = NP[5] by our choice and since

DESCRIPTIVE SET THEORY IN COMPLEXITY 613

A(ri) — B has been computed in time 2O('*'), we can deterministically find an
accepting computation of NEf^ on x in time 20('*') relatively to B (and hence
to A), by using the following Lemma:

Lemma (A 2/m-version of Lemma 2 in [BGS 75]). Let B be an oracle such
that P[J5] = NP[#]. Then, for each nondeterministic oracle Turing machine
NE^ there exists a deterministic oracle Turing machine DE^ such that if NEf
accepts x then DEf on x produces an accepting computation of NEf as an
output.

[Outline of the proof. We here borrow all notations such as INIT, Ik etc.
(with 2C'W instead of Pi(\x\)) from [BGS 75] without explanation. Then, INIT
(S)EP[SJ. So, INIT (5) is accepted by a deterministic hn[n*] time bounded
oracle Turing machine with oracle B for some integer €. Now, suppose NEf
accepts x. Let /0 be the initial instantaneous description (ID) of NEf on x.
Then, (i, jc, 02<|M, /0>GINIT(S). Suppose <i, *, 02</M, 70, /i, . . . , 4-i> £
INIT(S), where fc, |/0|, . . ., |4_i| <2C'W. There are only finitely many (deter-
mined by the code /) possible next /D's Ik. For each such Ik, whether {/, jc,
02/ , /n, . . . , /A.-I, /A.)EINIT(£) can be deterministically decided in time
about (2Cl'-r')3^ = 20('-Y'). So, we can deterministically find an accepting compu-
tation /0, /!, . . ., lm (where m<2c ' |x |) of Af£f on x in time 20(|x|) relatively
to B.]

In this accepting computation, if a string H> of length e(n) is queried to
A(n), then ask if w <EA. (Recall that the number of w's is ^ 20(|r|).) Subcase 1):
no such string w is in A. This computation coincides with a computation of NEf
on *. So, NEf also accepts *: jc£5. Hence, we can deterministically decide
whether ;cE5 in 2O('V ') time relatively to A. Subcase 2): Otherwise. Then,
NEf^ on jc queries a string w of length e(n) which belongs to A. Since there is
at most only one string of length e(n) in A, by the above method A(n + 1) -
A(n) can be computed deterministically in time 20(|YI} and hence so can
A(n + 1) — J5. By (18), we can also deterministically decide in time 20('*') which
of the machines accepts *, NEf("+l) or NEf(ll+l\ Again by (18) we have:

accepts j c « N j E " accepts x

or x^S^NEjf accepts jc<^>A^£:yt
4("+1) accepts x.

Either right hand side can be computed from an accepting computation which
can be obtained deterministically in time 2O(I*I) by using the method of Case (i)
(which uses a finite table and KE(B)). Consequently, whether xES can be
decided deterministically in time 2O('rl) relatively to A.

Thus, we have SeDEXT[A|. Since recursiveness of A is clear, this com-
pletes the proof of Theorem 4.4. D

By this theorem with (7), we have

614 HISAO TANAKA

Theorem 4.5. There is a recursive oracle A such that Unif(coNEXT[v4])
does not hold.

§5. Other Problems

There is another descriptive-set-theoretical principle called the reduction
principle. Let C be a complexity class of sets of strings, and let

Red(C)oFor any X,YE.C there exist XL, Y{ GC such that
XtCX, Y{ C r, Xl U Y! =XU y, and A\ fl FI = 0.

Then, the reduction principle for C is that Red(C) holds. Under very mild
condition, we have

(7') Unif(C) implies Red(C), and Red(C) implies Sep(coC).

We know no information on the reduction principle for familiar complexity
classes except for a few things. For examples,

30 Does Red(NP) hold!

Problem 4 Does Red (NEXT) hold!

Acknowledgments,, Most of this work was done while the author was on
leave and stayed at the Department of Mathematics, University of California,
Santa Barbara. The author would like to thank Professor Ronald V. Book and
the Department of Mathematics for their kind hospitality. Also, the author
thanks the anonymous referee for his comments.

References

[BGS 75] Baker, T., Gill, J., and Solovay, R., Relativizations of the P= ? NP question, SI AM J.
Comput., 4 (1975), 431-442.

[BDG 88] Balcazar, J.L., Diaz, J., and Gabarro, J., Structural Complexity I, Springer-Verlag,
Berlin etc., 1988.

[BDG 90] , Structural Complexity II, Springer-Verlag, Berlin etc., 1990.

[Bo 74] Book. R.V., Comparing complexity classes, /. Comput. System Sc/., 9 (1974), 213-229.
[Kl 52] Kleene, S.C., Introduction to Metamathematics, North-Holland Publ. Co., Amsterdam

- etc., 1952.
[Mo 80] Moschovakis, Y.N., Descriptive Set Theory, North-Holland Publ. Co., Amsterdam etc.,

1980.
[Ro 67] Rogers, H.Jr., Theory of Recursive Functions and Effective-Computability, McGraw-Hill

Book Co., New York etc., 1967.
[Sa 70] Savitch, W.J., Relationships between nondeterministic and deterministic tape com-

plexities, J. Comput. Syst. 5d., 4 (1970), 177-192.
[Sh 67] Shoenfield, J.R., Mathematical Logic, Addison-Wesley Publ. Co, Reading Massachusetts

etc., 1967.

Note added in proof: V.G. Kanovei gives a counter example for Problem 1 (in a private
communication).

