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§§„ Introduction

A topologlcai space E Is called a generalized Whitehead space (a GW-space,
for short) If every generalized Whilehead product on E is trivial. As Is clearly
seen, this notion is a stronger notion of a Whitehead space. Thus a GW-space is
a simple space.

The following three are well known:

(0.1). E is a GW-space if and only if the loop addition of QE is homotopy
commutative, i.e., /,i° T — \JL where \JL is the loop addition and T: X X Y— > Y X X is
a switching map.

(0.2). E is a GW-space if and only if, for a space W, the homotopy set [1W,
E] = [ W, QE] is naturally an abelian group with respect to W.

(03). E is a GW-space if and only if for given maps f: £X—>E and g: <SY— » E
there is an laxiaV map H: £X X IY-> E with axes (/, g).

Here we must designate a loop structure (a classifying space) of a loop
space, when we say something about the homotopy commutativity, because
there exists a space with two different loop structures: One is homotopy com-
mutative but the other is not.

As is well known, the loop addition of the loop space of an H-space is
always homotopy commutative. Thus an H-space Is a GW-space by (0.1). In
other words, the notion of a GW-space is a weaker notion of an H-space. For a
suspended space, however, the two notions are equivalent. In particular, S" is a
GW-space (at 2) If and only If /? = 1, 3 or 7, by [Adi]. Kachi has studied In [K]
GW-spaces with two or three cells (other than the base point 0-cell). He showed
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that there are no GW-spaces with two cells unless the space is contractible and
restricted the possible type of a GW-space which is a total space of a spherical
bundle over a sphere.

In this paper, we consider a three cell CW complex E whose cells are in
dimensions 0, q, n and m with 0 < q < n < ra, for example, the total space of a
spherical bundle (or fibration) over a sphere which is studied in [K]. We call
such a complex a complex of type (q, n, m). The purpose of this paper is to show

Theorem 1. If a complex E of type (q, n, m) is a GW-space (at 2), then E
has the homotopy type of either a sphere of dimension 1, 3 or 7, or a Poincare
complex of type (q, n, q + ri) where {q, n} C {1, 3, 7} or (q, n) = (1, 2), (2, 4),
(3, 4), (3, 5) or (3, 7). In the latter case, E has the homotopy type (at 2) of one of
the following spaces (See [H-R] and [Z] for further details on Eka}).

S « X S " for{q, / i}C{l , 3, 7),

L\p,t}for(q, /i) = (l, 2),

CP(3) /orfo, n) = (2, 4),

S7 for(q,n) = (3,4),

SU(3) for(q9n) = ( 3 , 5 ) ,

Ekco for (q,n) = (3, 7)

where p^l, and € is a unit of a group ring Zjr/(l + r+ ... + r^"1), n =
(T\Tp = l)=Z/pZ and k^2 mod 4.

Remark. (1) Since x2(S
l L^e2) = Zjr/(l + r-h . . . + rp~L) (;r =

jii(S
1UPi e2) = Z/pZr), € determines a 3-dimensional (general) lens space

L3(p, €) = S1 UA,i e
2U^e3 . L3(p, €) is an H-space if and only if p = 1 or 2. In

each case, L3(/?, €) is homotopy equivalent to S3 or RP3, respectively. A
standard lens space L3(p, T) is a GW-space (see Appendix). Moreover it is a
Gottlieb space ([I-Y]).

(2) CP(3) is a well-known example which is a Whitehead space but not an
H-space. Moreover it is a GW-space (see Appendix) but not a Gottlieb space.

(3) The manifold Ek(0 is determined by k E Z/12Z. In particular, E$ = S3 x
S7 and E±Q} = Sp(2). It is known that Ek(0 is an H-space if and only if k ^ 2 mod
4.

(4) A T-space in the sense of Aguade [Ag] is a GW-space and also a
Gottlieb space. But we do not know the converse.

Let us propose the following

Conjecture 1. Every connected finite complex GW-space is a Poincare
complex.
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Conjecture 2. The rational cohomology of a connected finite complex GW-
space is a tensor product of monogenic polynomial algebrae truncated at height
greater than 2 and exterior algebrae on odd dimensional generators.

Conjecture 3. // E is a connected finite GW-space such that H\E\ Z) has
no even dimensional generators, then E is an H-space.

This paper is organized as follows. In §1, we study a space whose mod 2
cohomology is a truncated polynomial algebra of height 3 on two generators. In
§2, we study a GW-space whose rational cohomology is a polynomial algebra on
one generator truncated at height 4. In §§3—5, we study a GW-space whose
integral cohomology is an exterior algebra on two generators. In the last section,
§6, we prove the main theorem.

Throughout the paper, G stands for QE whose loop addition is denoted by
fjL. The abbreviations H\X) and K\X) will be used for H\X\ Z(2)) and K*(X\
Z(2>), respectively. //* and K* denote the augmentation ideals. PH*(X, R) is the
submodule of primitive elements and QH\X\ R) is the quotient module of
indecomposables for a coefficient ring R. R{a, b, c, . . .} means that it is an
J?-module with generators a, 6, c, ...

The first and second authors thank the Department of Mathematics of the
University of Aberdeen for its hospitality. The authors thank Hideyuki Kachi
and Yutaka Hemmi for suggestions on removing a technical condition in an
earlier version of this paper and for discussions which helped them to get their
ideas in order. The first author thanks the Professor Mimura and Hisami Iwase
for translating and typing the first draft of the manuscript. This work was
completed during the first and second authors' stay in Aberdeen.

§1. A Stable GW-Space

Suppose that there is a space X satisfying

(1.1) H\X\ Z/2Z) = Zf2W[vq+i, v,I+1] with q<n

where the right hand side is the polynomial algebra truncated at height 3 with 2
generators vq+i and vw+1 of dimension q + l and n + l, respectively.

Hence A = H\X; Z/2Z) is a truncated polynomial algebra over the mod 2
Steenrod algebra sJ(2). Then from Theorem 2.1 of [Thl] it follows that q = 2r-l
and n = T + 2s - I (r - 1 > s > 0) or n = 2r - 1 (t > r). Again from Theorem 1.4
of [Thl] it follows that

(1.2) QAi+i C Im Sq> fl Ker Sqj if (' ~ ^ = 1 mod 2

where QA* indicates the quotient module of indecomposables.
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Furthermore If one replaces P2E with our X in the argument given In §4 of
[Th2] and the result [Th2, 4.5] due to Browder with (1.2) in the above which
does not suppose the existence of an H-structure, one can obtain

(1.3) q = 1, 3, 7 or 15 and if q = 15 then X has 2-torsion.

If X has 2-torsion in its homology, then n Is even and n = q + 1 and hence
v/;+1 = Sqlvq+l. In particular, if q = 15, then n = l6 and Sql v16 = v17.

If X has no 2- torsion in its homology, then one can define John Hubbuck's
operations as follows: We have

KJ (X) =

Hence there is a ring Isomorphism /: H* (X) -» K* ( X] given by

Jfa) = w,, for i = (9 + l)/2 and (n + l)/2.

Now the Adams operation i// decomposes through Hubbuck operations
R j ( k ) (see [Hu] for details) for an element xn £H"(X), as follows:

/-V'(*«) = lj,0 fr *#*)(*»)

where Rj(k)(xn) Increases dimension by h. The multiplicativity of Adams
operations Is expressed by using Hubbuck operations In the following Cartan
formula:

Rhj(k}(v • V) = ^i+j=hR
lj(k)(v) • Rij(k}(v!}.

Set Rh = i/*J(3) and Ph = R$(2) so that the reduction mod 2 of Ph Is ^2/2.
The relation ty3 ip2 = ijj2 ijj3 of Adams operations Is expressed by using the

Hubbuck operations as follows:

(1.4) (3" - 1)P" + ̂ ^"-tyR'P"-' = 2=1 22iP"-'Rj.

Furthermore, the relation ty2 (x n) = x^ mod 2 Is Interpreted as

Pn+J(xn)^Q mod2 /+1 a^
(L5) Pn(Xn) =xi mod 2 inH\X).

Note that the above formula is Independent of the choice of the splitting /.
Following (1.3), we check the cases q = 15, 7, 3 and 1, one by one.
Consider the case q = 15. By (1.3) one has n = 16 and SqL v16 = v17. By (1.2)

one has v17 E Im Sg8, since (V) = 1 mod 2, but It contradicts H9(X', Z/2Z) = 0.
Thus q + 15.

Consider the case q = 1 and n = 1 4- 25 with 5 < 2. If 5 = 0, then Sg1 v8 = v9.
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By (1.2) v9 G Im Sq4, since (V) = 1 mod 2, but it contradicts //5(^; Z/2Z) = 0.
If 5 = 1, then n = 9 and VIQ E Im Sg4, since (6

4*) = 1 mod 2; but it contradicts
H6(X\ Z/2Z) - 0. Thus s = 2 and then n = ll and v12 G Im S<?4, since (V) = 1
mod 2. We have

zgj[v4, v6],

since the homology of ^ is free of 2 torsion.
Thus p°M = Rodd = Q and p2-4_y6 mod 2 xhen it follows from (1.4) that

R2^2P2 mod 4 and 2P6 R2 = P2 P6 + 2R4 P4 mod 8. Hence by (1.5) we obtain

2v| = 2P6(v6) = 2P6F2(v4) = P6R2(v4) = ̂ 4P4(v4) mod 4.

Also from (1.5) it follows that P4(v4) = Av| mod 4 for some odd integer A.
Hence by the equation R2 = 2P2 mod 4 with the Cartan formula, one obtains

0 ̂  2v| ̂  A^4(vl) = 2Av4^4(v4) mod 4.

It is a contradiction, since the right hand side does not contribute 2v|.
Thus n + 1 + 25 with s<2.
Consider the case (7 = 7 and n = 2r - 1 with f > 3. If t = 3, then (^, ri) = (7, 7).

If t = 4, then n = 15. We have

Z$[v4, v8],

Thus podd = p2-odd = Qa Then by (! 4) one obtains that

(1.6) 2F8 = P4P4 mod 4 i«

By (1.5), one has that

P8(v8) = v| mod 2,

P4(v4) = v| mod 2,

and hence

for some a, /3 and AEZ (2), where X= 1 mod 2.
Then from (1.6), it follows that

2v| EE 2P8(v8) = P4P4(v8) EE ̂ P4(v4 v8) mod 4

= orP4(v4) v8 == 2a/3v8 mod 4.

Thus or)8= 1 mod 2. By using (1.5), however, it follows from (1.6) that
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0 = 2F8(v4) s P4F4(v4) = F4(Avf + 2£v8) mod 4

= 2Av4P4(v4) + 2l3P4(vs) = 2j3F4(v8) = 2o^v4 v8 mod 4,

which contradicts a/3=l mod 2. Hence r^4. If r>5, we have

//*(*; Z/2Z) = Z/2[3][v4, ivj.

Then from the main result of [Adi], it follows that

Ji=0

modulo the total indeterminacy which is in the image of Sq1 with 2f > i > 0. Now
the formula gives a contradiction. In fact, the left hand side gives 5^2 'v2/^0
mod 2 while the right hand side and the total indeterminacy are trivial, since

H2'+L-2'(X) = 0 fori^t-1.

It is a contradiction.
Thus (q, n) = (7, 7), provided that q = 7.
Consider the case q = 3 and n = 3 + 2s with s < 1. If s = 0, then n = 4 and

Sq1 v4 = v5. We have v5 e Im Sq2 by (1.2), since (3
2

1) = 1 mod 2. This contradicts
H2(X\ Z/2Z) = 0. Hence 5 = 1 and then n = 5 and (g, n) = (3, 5). Moreover we
have v6Elm Sq2 by (1.2), since ( 4 2 X ) = 1 mod 2.

Consider the case q = 3 and n = 2' - 1 with t > 2. If / = 2, then (g, n) = (3, 3).
If f = 3, then (q, n) = (3, 7). If £>4, then we will be led to a contradiction as in
the case when q = 1 and n = 2r — 1 with t>5.

Thus (q, n) = (3, 3), (3, 5) or (3, 7), provided that <? = 3.
Consider the case g = 1 and n = 1 + 25 with 5 < 0. We have 5 = 0 and hence

(q, n) = (1, 2). Moreover by (1.3), Sqlv2 = v3.
Consider the case q = 1 and n = 2f — 1 with t>\. If £= 1, then (<?, n) = (1, 1).

If f = 2, then (q, ») = (!, 3). If / = 3, then (4, /i) = (1, 7). If t > 4, then we will be
led to a contradiction as in the case when q = 1 and n = 2r — 1 with t > 5.

Thus (9, n) = (1, 1), (1, 2), (1, 3) or (1, 7), provided that q = l.
Therefore we have shown

Proposition 1070 If there is a space X such that

with q<n, then {q, n} C {1, 3, 7} or (q, n) = (1, 2) or (3, 5). Moreover if
(q, n) = (1, 2), r/zen Sg1 v2 = v3; *f (tf, w) = (3, 5), ?/zen 5^2v4 = v6.

To apply this, we introduce the following notion.

Definition L8. Let E be a complex of type (q, n, m). E is said to be stable if
n<2q.
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We have

Corollary 1.9. Let E be a Poincare complex of type (q, n, q + ri). If E is a
stable GW-space (at 2), then {<?, n] C {1, 3, 7} or (q, n) = (3, 4) or (3, 5). In case
(q, n) = (3, 4), E has the homotopy type of S7 (at 2).

Proof. Let a be the attaching map of the n-cell of E and let us write
E = Sq \Ja e" U eq+n. By the hypothesis, q> 1 or a=0. Let Q be the subspace
Sq Ua e

n of E. Then, from the hypothesis, it follows that Q is desuspendable and
the mod 2 cohomology of E is an exterior algebra except the case when n = q + 1
and a= kiq, k odd.

(Case 1: The mod 2 cohomology of E is an exterior algebra). There exists an
axial map /r. Q x Q— » £ with axes (/, ;) where ;' is the inclusion Q—^E. Let Q(2)
be the mapping cone of the Hopf construction of \JL. From a direct computation
using [Th3], we obtain that the mod 2 cohomology of Q(2) is the polynomial
algebra truncated at height 3 on the generators in dimensions q + 1 and n + 1.
Hence by Proposition 1.7 we obtain that {q, n} C {1, 3, 7} or (q, n) = (3, 5).

(Case 2: n = g + l and a=kiq, k odd). E has the homotopy type of a
(2q 4- l)-sphere at 2. Hence by Adams' theorem [Adi], q = 1 or 3. Thus (q, n) =
(3, 4) and E has the homotopy type at 2 of S7.

In case (g, n) = (3, 4) with an (integral) GW-space structure on E, we get
moreover that k— ±1. Assume that there is an odd prime p such that k = Q
mod p. Then the mod p cohomology of E is again an exterior algebra. Hence a
similar construction of Q(2) can be performed and one obtains that there exists
an element of dimension 5 in its mod p cohomology whose square is non-zero. It
is a contradiction, since a square of any odd dimensional element of mod p
cohomology must be 0 when p odd. Thus k = ±1 and E has the homotopy type
of S7. This implies the corollary.

§2. A GW-Space whose Cohomology is a Truncated Polynomial Algebra

Let E be a Poincare complex of type (q, 2q, 3q) such that H^(E\ Q) =

Q[x<iV(xq)- So we have

E = S«UCYe2cf(Je3^ a<E Ji2q-i(S
q}.

In this section, we will show

Proposition 2.1. //, further, E is a GW-space (at 2), then q = 2 and

The remainder of this section is devoted to proving the proposition.
By the assumption on the rational cohomology ring of E, q is even >2.
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Since E is a Poincare complex, we have the following isomorphism of algebrae.

H E; Z2

where x2 = ax2q and xqx2q = x3q with 0 + a E Z(2>.
Since E is a GW-space, the Whitehead product of the inclusion /: Sq-^E

vanishes, and hence i^iq, iq] = 0 where iq^jzq(S
q) is the class of the identity.

Let us denote by /: F->Sq the homotopy fibre of /'. Then there is a map /:
S2q~l->F such that i ° f — [ i q , iq}. One obtains

F~2S
2q~{ U (higher dimensional cells)

so that i\s*i-i = a. One may compress /to the (2q — l)-dimensional skeleton
S2q~l of F, one has [iq, iq] = a°f, where /=A^-i: S2*-1-^2*"1 with A(EZ:

Then it follows that [^, t^] = a°f= Xa. Taking the Hopf invariants of the both
hand sides, one has 2 = X H ( a ) , whence a = H(a) = ±1 or ±2.

If H(a) = ±1, then q = 2, 4 or 8 by [Adi] and we obtain that [iq, iq] is
divisible by 2. According to [To], this holds only when q = 2 and then we have

= Z(2)[x2]/(x2). Thus the following lemma implies Proposition 2.1:

Lemma 2.2, H (a) = ±1 and hence q = 2, 4 or 8.

The remainder of this section is devoted to prove the lemma.
Suppose H(a) = ±2 so that a = ±2, a= ±[iq, iq] and 2a= 0. We will show

that this assumption leads us to a contradiction. Now the 2g-skeleton of G has
the following cell decomposition:

Thus putting Q = Z(G[2^), we have

where ^ is in Ji2q-i(S
q v S2*7"1).

Let / denotes the composite map of the canonical inclusion Q-^'EG and the
evaluation Xv: 2G = ZQE-^E. To proceed, we need to show the following

Proposition 2.3. a corresponds to (a, ±2i2q^±) under the isomorphism
ify-AS* v S2"-1) = ̂ -.(S") © jfy
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Proof. By calculating the cohomology Serre spectral sequence associated
with the path fibration G—*PE-^>E, one obtains

Hq~l+j(G) = 0, for 1 <y < q - 1,

Hence the composite map p2° a is homotopic to ±2i2q-i, where pr indicates
the projection to the Mh factor. Moreover € induces the following commutative
diagram for some integer A:

S2" -1

52,-l

Here both the q — 1 and the 2g — 1 dimensional generators in H*(G) are trans-
gressive and therefore € induces a surjection of cohomology groups in dimensions
< 2g. Hence A = 1 and pi ° a is homotopic to a.

This implies Proposition 2.3.

By Proposition 2.3 one obtains that /*: Hj(E\ ZI2Z)-*HJ'(Q; Z/2Z) is an
isomorphism for j = q and 2q. So one may assume that /* jc;- = y; for ; = q and 2g,
and that

= Zl2Z{yq, y2q-

Let us recall that Q is a suspended space and £ is a GW-space. Hence by (0.3)
there exists an axial map

with axes (/, /). So the Hopf construction of ^ gives rise to a map

so that

® y2q + ̂ y2q <8> yq.

One can see that ZQ satisfies

By combining Proposition 2.3 with Za= 0, one obtains that Za corresponds
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to (0, ±2^) under the isomorphism n2q(S
q+l v S2q} = n2q(S

q^) 0 Jt2q(S
2q).

Hence we obtain

where M2q = S2q~l U±2t e2*7. Thus we obtain

v M2* A S* v

which contains Z(M2g A M2q). We denote by H(fi) the restriction_of //(//) to the
subcomplex Z(M2q A M2^) and by Q(2) the mapping cone of H(/JL). Then we
have an exact sequence associated with it:

---- >H4~\I(M2q A M2*); Z/2Z)4>flf*(G(2); ZI2Z)-*H\ZE' Z/2Z)-> • • •

For dimensional reasons, the sequence splits and we have

\ Z/2Z) =

Im 5 =H\Z(M2q A M2^); Z/2Z)

Then from [Th3] it follows that

and hence 0^ Sq2q+lv2q+^ Let us recall the Adem relation

= Sq2q+l . . .

for q even. For; with 1 </ < ^/2, we have deg Sqj v2q+l = 2q + j + 1< 3q + 1< 4^.
Thus we obtain, for dimensional reasons,

V "2,7+1 = 0 for l</<^/2.

Hence 5^+1 v2,/+1 ¥= 0. The Adem relation Sqq+l = SqlSqq (q even) implies that
Sqc*v2q+i + 0 and therefore Sqqv2q+l = v3q+i. Hence Sqlv3q+l + 0 where
deg Sql v3q+l = 3q + 2<4q. Thus 3q + 2 = 4q and hence ^ = 2.

Even when q = 2, one has

and hence

which is a contradiction. This implies that Zor^O. Thus H(a) = ±l and hence
<7 = 2, 4 or 8.
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This implies Lemma 2.2 and it completes the proof of Proposition 2.1.

§3. A GW-Space whose Cohomology is an Exterior Algebra

Throughout the section let E be a (non-stable) Poincare complex of type
(q, n, q + n). Let us assume that E is a GW-space at 2 (or at p for p odd) such
that

H\E\ R) = A(JC,, *„), \<q<n

where the coefficient ring R is Z(2) (or Zip, respectively).
We adopt the abbreviation H*(E) for H*(E\ R) if it does not cause a

confusion.
If q = 1 and R = Z(2), then the universal covering space E of E has the

homotopy type (at 2) of 5", which inherits the GW-space structure. Let us recall
that a sphere is a GW-space (at 2) if and only if it is an H-space. Hence n = 3
or 7.

We will prove that both q and n are odd integers, when q > 1.
Let q > 1. First we show

Proposition 3.1. q is odd.

Consider the cohomology Serre spectral sequence with R coefficient as-
sociated with the path fibration G^-> PE^ E. Since the element xq E Hq(E) is in
the image of the transgression, we have 0 =f= a xq^Hq~i(G) =R, where a:
H*(E)-^//+-1(G) is the cohomology suspension. So uq-i = a"xq is transgres-
sive, and hence is primitive. Thus the element 2?uq-i ^Hq(ZG} is extendable
to the projective plane P2G and the extension is given by the image of xq under
the induced map of the composite map

A2: P2G-*PXG^E

since a"xq is represented by a loop map whose delooping is given by xq. Hence
we obtain

x2 = Q in H\P2G),

where the element x2 is given by x2= ±62^(uq-i ® ̂ _x) and <52 is the con-
necting homomorphism of Mayer-Vietoris exact sequence given in [Th2]. So it
follows from the triviality of x2 that uq-± ® ^q-i is in the image of Ji = // —

Pi-Pi'-

if = v-pl -P2'.H4 (G)->H*(G) ® H\G}.

So by (0.1) we obtain that the element w^-i® uq_i is T"-invariant where T is
the switching map. If q is even, then T^(uq-l®uq^^) = —uq^l®uq^l. Hence
uq-i®uq-^ is not T^-invariant, since it is a generator of H2^~l^(G/\G) =

which has no 2-torsion. Thus q has to be odd and this
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implies the proposition.
Next we show

Proposition 3.2, n is odd.

Suppose that n is even. Then n — l (>q — 1) is odd and is not divisible by
q — l, because q — 1 is known to be even. Let us recall the following exact
sequence for bicommutative biassociative Hopf algebra over Zip the prime field
of characteristic p:

Q-+P(ZlpZ(£pH\G'9 Z/pZ)))->PJf*(G; ZlpZ)->QH\G\ Z/pZ).

Then by the Serre spectral sequence associated with the fibration G=QE->
PE-^E, it follows that un-i = a xn generates Hn~1(G) = R and hence is primi-
tive indecomposable. As in the proof of (3.1), the element Z? un-i is extendable
over P2G. Denoting the extended element by *„, we have

xl = Q in H\P2G),

since xn = ^(xn).
It means that the element un_^ ® un-i is in the image of ft . On the other

hand, un^®un-^ generates the direct summand Hn~l(G) ® Hn~i(G) = R in
H2n~2(G/\G), which cannot be in the image of Ji . It implies that w / z _i®
«„_! $ Im jf m It is a contradiction. This implies that n is odd and this implies the
proposition.

Thus we have shown

Proposition 3.3. (1) Let q = l<n and R = Z(2). // E is a GW-space at 2,
then n = 3orl. (2) Let l<q<n and a ring R be Z(2) (or ZIpZ for p odd). If E
is a GW-space at 2 (or at p, respectively} with H* (E; R) = A (xq, *„), then both q
and n are odd.

In the remainder of this section, assuming q>l and R = Z^2), we study
further on the dimensions q and n using the cohomology structure of G. We
remark that q + 1 < n, since q and n are odd.

Now we choose an inclusion map /: Sq— » E such that f xq is a generator of
Hq(Sq) = Z(2)- Recall that we do not assume the existence of a fibration Sq^ ->
E-»S". Let Fbe the homotopy fibre of/ . Thus F-*Sq->E and QSq^G-*F
are Serre fibrations. Then by the Serre spectral sequence associated with F— >
Sq-^E one sees

which is concentrated in even dimensions. Hence the Serre spectral sequence
associated with the fibration QSq^G^F collapses and we obtain
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(3.4) H\G) = H\QSq} ® H\QS") as modules.

In particular

(3.4') H\G} = H\QSq} for *<n-l .

Here a system of ring generators of H^(QSq) is given by

(3.5) uq-i = YiUq-i, Y2uq-i, - . . , YjUq-i, - . . ,

where j > 1 and uq^i = a" xq.

One obtains from (3.4) the following extension of bicommutative biassocia-
tive Hopf algebrae:

The following is a commutative diagram of exact sequences:

0

n; ZI2Z)->QH\QSn'9 Z/2Z)

v v
(3.6) Q-*P(ZI2Z(£2H\G\ Z/2Z)))-> PH*(G\ ZI2Z) -> QH\G\ ZI2Z)

\ Z/2Z)

0

where PH\QSn\ ZI2Z) = ZI2Zun-li (and PH\QSq; Z/2Z) = Z/2Zfi<7_1, resp.)
in which the element w r_ji is the modulo 2 reduction of w f _ x for £ = (7 and rc.

Proposition 3.7. The first non-trivial relation in the algebra structure of
7/*(G) can occur in dimension n - 1 when n — l = 2(q — 1). The possible relation
is

Proof. It follows from (3.4') and (3.5) that uq-i is primitive and hence
G\ Z/2Z) is generated by un-i and w^. By (3.5), the first non-trivial

relation in the algebra structure can occur in dimension n — I only when n — l =
2j(q — 1) for some integer / > 0. Then the possible relation is



628 NORIO IWASE, AKIRA KONO AND MAMORU MIMURA

Since uq^ is the only primitive element in H\QSq\ Z/2Z), we obtain that /
must be 1. This implies the proposition.

We show the following

Theorem 3.8* (i) q = 3 mod 4,
(ii) If n = l mod 4, then xn = Sq2xq and (q, n) = (3, 5),
where xt is the modulo 2 reduction of xt for t = q and n.

The remainder of this section is devoted to proving this theorem. First in the
general situation, we will construct a space and compute its cohomology ring.
The cell structure of the n-skeleton of G is as follows:

Thus putting Q = I(G[n]), we have

(
r"-i]U-iJ
V S/(«
/= !

The module QH^(E) is mapped injectively into H^(Q) by the homomorphism
induced from the composite map €: Q->E of the canonical inclusion QCSG
and the evaluation fa IGCPXG^E.

In fact, as was already seen, PH^(G) = Z(2){w^-i, wn-i} with w/ transgres-
sive, and C gives rise to the cohomology suspension. Thus we obtain

which is a direct summand of H*(ZQ). Hence we have

D,

where D is the module generated by elements riuq-i with i>2. Since Q is a
suspension space, there exists an axial map

with axes (€, €). So the Hopf construction of \JL gives rise to a map

H(u):

We denote by Q(2) the mapping cone of H(u), and then we have a cofibre
sequence

(3.9) ZE-

The elements xcr xn G H*(E) are primitive with respect to \JL in the sense of
Thomas [Th 3], since Hodd(Q A Q) =0. Hence we have
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]f(Xi) = ° for i = cl and n>

j f ( X q X n ) = fXq <8> €**„ - fxn ® t**q-

So the image of /* induced by the inclusion /: SE—*Q(2) are given by

Also the image and the kernel of the homomorphism d induced from the
collapsing map Q(2)->ZQ A SQ = Z*(G[n] A G[n]) is given by

Ker 5s
( " ' Im 6 = 6(Z*)*Z(2){ui <8> M/, /, / = ? - 1 orn - 1} 0 S2

where S2^ 5(D ® H\SQ)) 0 6(H\SQ) ® D). Therefore by (3.9), we obtain
the following short exact sequence:

Thus denoting by v /+1 the extension of 2?Xi over Q(2), z = ^ and n, we
obtain the following ring isomorphisms by virtue of [Th3]:

Z [ v , + 1 , vll+ J 0 S2,

//4(G(2))-S2 = 0,

where v,-+1 • vy+1 = ^(l4)" (u^L <S> My_i).
We remark that these results are independent of the choice of vg+1 and v,,+1.

Proposition 3. 12. (1) Q(2) has no torsion and hence Sq1H\Q(2);Z/2Z) = 0.
(2) ^(2)(Z/2Z{<Vi, v,I+i})CZ/2Zl3J[v,+1, vB+1]-e(52® Z/2Z), wAere vr

is ?/ze modulo 2 reduction of v, for t = q + l and n + 1.
(3) 6(6 ® Z/2Z) = (6 <8> Z/2Z) 0/or any B&si(2), where 6: H' (Z2Q A G)->

The following two propositions imply Theorem 3.8.

Proposition 3.138 If n = l mod 4, f/^n Jc« = 5^2^ and (q, ri) = (3, 5).

Proof. By (3.11), H\Q(2}\ Z/2Z) has a direct summand Z/2Z[3][v^+1,
v / I+J, where vf is the modulo 2 reduction of v, for f = ^ + 1 and n + 1. If n =
4k + 1 for some /c > 1, we have

Since Sq4k+2 = Sq2 Sq4k + Sq1 Sq4k Sq1 , one obtains that v;
2

z+1elm S^2, since
Sql = 0 on H*(Q(2)\ Z/2Z). Then it follows that v2

+1 = d^^w,,..! ® u,^) E.
Sq2 Im (5, where ut is the modulo 2 reduction of wr, t = q + l and « + l, for
dimensional reasons. Hence one obtains that «„_! ® un-i elm 5"^2 in
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H*(G[n] A G[/l]; Z/2Z) modulo the kernel of 6® Z/2Z.
By (3.10), we have Z/2Z{wn_i ® un-i] n Ker 5 = 0, which implies that

un-i®un-iEilm Sq2. Thus we obtain that w^Glm Sq2 in //*(G[/l]; Z/2Z).
There are two cases: un-i is indecomposable or not.
If un-i is decomposable, one obtains un-i = u2-i by Proposition 3.7, and

hence w^Elm Sq2. Then for dimensional reasons, then u2-.L = Sq2uq-i and
hence q-l = 2. This implies that (q, n) = (3, 5) and fiw_i = Sq2uq-^ and hence

If «[„_! is indecomposable, then there exists a non-negative integer r>0
such that Sq2Y2>uq-i = ull-i with 2<2 r(g-l). Comparing the dimensions of
both hand sides, one obtains 2 + 2r(q - 1) = n - 1 = 4m, whence one has r = 0,
since q - 1 is even by Proposition 3.3 (2). This implies that Sq2uq-± = un-\ + 0
and hence n = q + 2 > 4 and Q~2S

g\J e". Then the mod 2 cohomology of Q(2)
satisfies the condition given in §1. Hence from Corollary 1.9 it follows that
(q, n) = (q, q + 2) have to be (3, 5) which contradicts 2 < 2r(q - 1).

This implies the proposition.

Proposition 3.14. q = 3 mod 4.

Proof. We consider //*(g(2); Z/2Z) which is given in the proof of the
above proposition. We have v2

+ 1^0 in #*(g(2); Z/2Z).
Assume that q = 1 mod 4. Then one has v>2

+1 E Im Sq2. Also deg v2
+1 - 2 =

2q = 2 mod 4. If « = 1 mod 4, then g = 3 ̂  1 mod 4, which is a contradiction. So
rc = 3 mod 4, whence 2g^rc + l. Thus, one has that v2

+lE.Sq2 Im 6. By a
similar argument to that given in the proof of Proposition 3.13, we obtain that
fi^-! ® Vie Im Sq2 in //*(GW A GM; Z/2Z). This implies that fi^ ® ̂  =
Sq2ilfl-L in //*(G^), since G^ is (^ — 2) connected. Then by comparing dimen-
sions, we have 2(q - 1) = (n - 1) + 2 and hence n = 2q~3<2q. Hence from
Corollary 1.9 it follows that (q, n) = (q, 2q - 3) have to be (3, 5) which contra-
dicts q = l mod 4. This implies the proposition.

§4. Non Stable GW-Spaces

^ Let E be a GW-space Poincare complex of type (q, n, q + ri) such that
//*(£; Z/2Z)= A(J^, *„) with l<q<n. E has the homotopy type of S^U,,
e"U«^"+^ where *E jr,,.,^) and fiE jr^^-i^US").

Definition 4.1. £ - S* Ua e
n U^ e^+" w j«d to be non-stable if 2q < n. /«

words, a is not in the stable range.

By Proposition 3.3 (2), we have that both q and n are odd integers. So
2q<n, if E is non-stable.
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We will show

Theorem 4.2. If the above E is a non-stable GW-space, then (q, n) is one of
the following: (1, 3), (1, 7), (3, 7), (3, 11) or (7, 15).

The remainder of this section is devoted to proving Theorem 4.2.
Let ;': Sq^E be the inclusion of the bottom sphere Sq. Consider the map

{;', ;}: Sq v Sq^>E. We have that the Whitehead product [;, /] is homotopic to
zero, as E is a GW-space. Hence the map {/, /} is extendable over Sq x Sq^>E.
By the assumption that 2q<n, the image of \JL is compressible into Sq so that Sq

is an H-space, whence q = 1, 3 or 7 by Adams' theorem [Adi].
[The case q = 1] The universal covering space E of E is easily seen to be

a GW-space having the same homotopy type as S", which then becomes an
H-space. Again by the theorem of [Adi], n = 1, 3 or 7. Omitting the case n = 1,
we have (q, n) = (1, 3) or (1, 7).

[The case q = 3 or 7] Put £ = 1 or 3 according as q = 3 or 7, i.e. £ = (q — l)/2.
If n = I mod 4, we obtain, by Theorem 3.8, that (q, n) = (3, 5), which contradicts
n>2q. Hence n = 3 mod 4. If the element un-i = a xn in PHn~1(E\ Z/2Z) is
decomposable in H\G\ Z/2Z), then by the commutativity of 3.6 it is in the
image of £2: PH4 (G\ ZI2Z}-*PHA (G\ Z/2Z). It is impossible by the fact that
n — 1 = 2 mod 4. Thus un^.l is indecomposable in //*(G; Z/2Z).

Proposition 4.3. // Sq2 =/= 0 on H\G\ Z/2Z), then n = 2i+2s+3 for some

Proof. Put uq-l = axq and un-l = axn. Let a)^H\G; Z/2Z) be an
element of the lowest dimension such that Sq2coi=0. Then Sq2a) is primitive,
and so Sq2a)=uq^l or un^. It follows from Hq~3(G\ Z/2Z) = 0, that Sq2w =
w»_1. Thus co is a generator of lower dimension than n — 1, whence one can
express it as a) = y^+i^-q-i for some i > 0 (, since y± uq_l = uq^l is not mapped to
w /z_! by Sq2}. Comparing the dimensions we have 2i+l(q-l} + 2 = n-l, and so
n = 2 / + 1£+3 for some i>0.

This implies the proposition.

Proposition 4.4. // Sq2 = 0on H\G\ Z/2Z), then Sq2' H\G\ Z/2Z) - 0 for
any z'>0.

Proof. Suppose Sq1 = . . . - Sq21'1 = 0 and Sq2' + 0 on H\G\ Z/2Z). By
assumption we have ; >2. As in the proof of Proposition 4.3, one can conclude
that

Sq2JY2^Uq-i = Un-i forsome />0,
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since jiuq-i = uq^± is not mapped to un-i by any squaring operation from the
fact that 2(q -l}<n~l. Comparing the dimensions one has 2i+1(q - 1) + 2y =
n — 1; it gives n — 1 = 0 mod 4, since j > 2 and q — 1 = 0 mod 2. This contradicts
n = 3 mod 4.

This implies the proposition.

Corollary 4.5. // un^ E Im Sq2' in H\G\ Z/2Z), then j=l.

We will discuss the two cases, whether Sq2 acts trivially or not, by using the
methods given in §3.

Theorem 4.6. // Sq2 = 0 oh H\G; Z/2Z), then (q, n) = (3, 7).

Proof. It follows from Proposition 4.4 that every mod 2 Steenrod operation
acts trivially on //*(G; Z/2Z). Let (2(2) be as in §3, then we have

/T(G(2); Z(2))^zgJK+1, vB+1]®52,

To proceed, we need the following proposition, which is an immediate
consequence of (3.10), (3.11), Proposition 3.12 and Proposition 4.4:

Proposition 4.7. // v^+1Elm SqT in the algebra H*(Q(2)\ Z(2)) for some
t>Qand if Sq2 = 0 on H\G\ Z/2Z), thent>n + \.

Now we will examine the decomposition of Sq2"+ (k > 0) through secondary
operations on the space X=Q(2), which is the main result in [Adi]. If n + 1 is
not a power of 2, then by the Adem relation one has

0 * v2
+i = Sq'l+i(vn+{) = E aibi(vn+& 0 < deg a, < n + 1,/

which contradicts Proposition 4.7.
When n = 2k+4 - 1, k > 0, there holds

0^v2+ 1 = 5^+1(v,!+1) = 2a,7^(v»+i)' 0<de8 a,j<n + l
ij

modulo aijkQ
2n+2~l(i, ;, *:)(Q(2)\ Z/2Z) where 0 < /(i, ;, k) = deg aijk < n + 1.

Thus the element v^+1 belongs to the image of a certain Steenrod operation a
with 0<deg a<n + l. This also contradicts Proposition 4.7. So, if n + 1 = 2*,
then k = 0, 1, 2 or 3.

The equation 2q = 4s+l<n = 2k-1 implies that n = 7 if q = 3 and that n
does not exist if q = 7.

This completes the proof of Theorem 4.6.
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Theorem 4.8. // Sq2 * 0 on H\G\ Z/2Z), then (q, n) = (3, 7), (3, 11) or
(7, 15).

Proof. It follows from Proposition 4.3 that n = 2/+2 • s + 3 for some i > 0.
If i = 0, then (q, n) = (3, 7) or (7, 15).
We assume i>l . Then n + 1 = 2'+2 • £ + 4 = 4 mod 8. So by the Adem

relation we have

Sq4Sq2'+2-£ = Sqn+i + Sq2'+2'£+2Sq2

= Sqn+l + Sq2+2'+2'£Sq2

Again by (3.10), (3.11) and Proposition 3.12, we obtain

Sq2vn+l G d&YH'&S* A QSq) c d^Yrf (G A G),

since deg Sg2v/z+1 = 2 + deg v/z+1 = 4 + deg w,z_! (=4 + 2'+2- £+ 2). Thus the
following conditions are necessary for Sq2+2' ~'£Sq2vn+i to contribute to v2

+1 =
d(2?Y (un-i <8> M,,-I): There are elements u^ and w/9 of degree ii and /25 respec-
tively, such that

/i ® a/9) = u,,-! <8> un-i + independent terms

modulo decomposables, where the summation ranges over the pairs (zl5 /2) with
/! + /2 - deg 5<72 v/z+1 - 4 = deg Mn_A - 2 + 2/+2 • e. Therefore Sq2+2'+2'£(uii ® flj =
w2 ® w2, which contradicts the indecomposability of w;i_i. Thus Sq2+2' ~'£Sq2vn+i

does not contribute to v^+1, and hence Sq4Sq2'+~'£vn+i has to do contribute,
since 5g1v/z+1 = 0 for dimensional reasons. Here we have

Sq2' "£v / I+1Elm 5.

So the following two cases can be considered:

(1) Sq2'+~'£vn+l = 624(y2llw<7_i ® y2'2
w^-i) + other terms

5(74(y2,1^_i ® y2'2^-i) = "ii-i ® "/*-i + other terms,

(2) Sq2' ~'£v / l+1 = 624(y2>1w^_1 ® w /z-i) + other terms

5^472'iM^-i = un-\ + other terms.

But the case (2) does not occur by Proposition 4.3. So the only possibility is in
(1). For dimensional reasons we obtain

(a) Sq2>+2'£ vn+l = 524(y2(1^-i ® Y2'^q-i) + other terms.

(b) Sq2(Y2'lUq-i) = Un-i + other terms.

Comparing the dimensions we obtain ii = i from (b). We also have y2,x uq_{ E
H*(QSq) C H4 (G), as deg y2 .M^_j < n — 1. Hence the element y2'

uq-i does not
belong to the image of any squaring operations on //*(G; Z/2Z).
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Now we divide the arguments into the two cases, 8=1 and 8=3.
[The case 8 = 3] The Adem relation

i+2

implies that y^uq-\ ® Y2iUq-i €=• $q at for some 0 < £< / + 2. On the other hand,
one can deduce from at(vfl+1) Elm(5 that 72*^-.! ® y2.M<7-iElm5^2 in
//" (G A G; Z/2Z) for some f, which contradicts the fact that y2>

uq-i *s not in the
image of any squaring operations.

[The case e= 1] If / = 1, then (q, n) = (3, 11).
Suppose i>2. By [Adi] Sq2' ~ is decomposable through secondary oper-

ations, that is, the following holds:

V+2(v«+i) = I, «//<P//(vn+1), 0<deg au<2i+2

modulo the total indeterminacy aijkQ
2^+4~l(i^k)(Q(2)i Z/2Z), 0</(i, /, *) =

deg aijk < 2l+2. This leads us to a contradiction similarly to the case when 8=3.
This completes the proof of Theorem 4.8. Thus we obtain Theorem 4.2.

§5. The Non-Existence of Types (3, 11) and (7, 15)

Proposition 5.1. (q, n) * (3, 11).

Proof. If (q, n) = (3, 11), then E^S3^*11^*14 where a<EEjzw(S*) =
Z/15. So £-2(S

3 v S11) U^ e14. Since Q - S3 v S11 is desuspendable, the White-
head product [i, i] of the inclusion i: Q—»E vanishes by assumption. So the map
{/, /}: Q v Q—+E is extendable over Q x Q. We denote the extension by ^:
QxQ-*E. If we put 0(2) = C//(A|), the cofibre of the Hopf construction of //,
then Q(2) satisfies the condition of §1. It gives a contradiction, and so (q, ri) +
(3, 11). This implies the proposition.

Proposition 5.2. (q, n) =/= (7, 15).

Proof. Suppose (q, n) = (7, 15) so that E-2S
7 \Ja e

i5 U e22. Then we have

The 15-skeleton of G is given by

Now we put Q = .T(G[151); then

e =2 (5
7 v 5°) U e15, where 3?e nl4(S

7 v S13) = ^r14(5
7) © w14(S

13).
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The generators of H^(E) (and K\E)) are mapped monomorphically to H*(Q)
(and K^(Q}, resp.) by the induced homomorphism of the composite map €:
Q C ZG C P°°G - E. In fact, as was already seen, PH\G) = Z(2){w6, w4} with u-L

transgressive, and C gives rise to the cohomology suspension. Thus we obtain

, v14, v16},

Then the Adams operation yk in A"1 (I?<2) is given by

ipk w4 = k4

(5.3)

Since Q is a suspended space and since E is a GW-space, there exists an axial
map

with axes (€, €). We denote by Q(2) the mapping cone of the Hopf construction
//(//) of the map \JL so that we have a cofibre sequence

(5.4) ZE

The elements jc7, jc15E//+(£') are primitive with respect to ^ in the sense of
Thomas as Hn(Q A Q) = Hi5(Q A Q) = 0. Hence we have

JU*(JK;/) = 0 for i = 7, 15,

So the image of/* induced by the inclusion /: ZE->Q(2) is given by

Im /* =

Also the image of 6 induced by the collapsing map Q(2)-*ZQ A ZQ is
given by

Im <5^Z2{<5(v8(8)v8), 6(v8® v16) - 6(v16® v8), 5(v16® v16)} ©52

where S2 = Z(2){<5(v8 ® VM), 6(vl4 ® v8), 5(v14 ® v14), <5(v14 ® v16), 5(vi6 ® v14)}.
Therefore by (5.4) we obtain the following short exact sequence:

Thus, denoting by v4 and v8 the extensions over 2(2) of Z*x7 and
respectively, we obtain the following ring isomorphisms by virtue of [Th3]

• Im6 = 0, 52 C Im<5.
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We remark that these results are Independent of the choice of v4 and v8.
Similarly one obtains

(5.6)

(2(2)) • r (g(2))) C K\Q(2)) - r (0(2)),

Im 6K = Z(2){6K(w4 ® w4),6
K(w4 ® w8)=S*(w8 ® w4),5*(H>8 ® H>8)} 0 S?,

where the elements w>4 and vi>8 are the extensions over Q(2) of 2* £7 and
respectively.

Furthermore, by (5.3) one obtains

Proposition 5.7,

+ k9b(k) 6K(w8 ® w4)

modulo higher CW filtration > 14.

Now (5.5) and (5.6) imply that K*(Q(2)) and H*(Q(2)) are isomorphic as
rings. So we define a ring isomorphism /: H*(Q(2))-^> K^(Q(2)) by the following

7(v/) = M>/ for z = 4 0nd 8
(5.8)

/((5(v2/ ® v2y)) = a(wf- ® Wj) for i, ;-4,7 or 8.

By virtue of these relations we introduce Hubbuck operations following [Hu].
Then one obtains the following by using (1.5) as in the case (q, n) = (7, 15) in
§1:

P8(v8) = y| mod 2

(59) P4(v8) = av4v8

F4(v4) = v| mod 2

where A, or, /?e Z(2) and A= 1 mod 2. (Note that J depends on the choice of VP/
and hence, so do the exact values of P* and R'. But these relations do not
depend on the choice of /.)

Next, we will derive a contradiction from the relations of these Hubbuck
operations. The relations

Hl(Q(2}} = 0 for i = 10, 12, 14, 18, 20, 26
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and Proposition 5.7 imply the following

D i /,-; \ z> 1 / ii \ n E> i /1~» \ 7? i / ii \ n
K v^8/ ~~ -* v^8/ ~~ {*•> * \y^J ~ ** v^4/ ~~ ^'

R2(v8) = P2(v8) = 0, P2(v4) = R2(v4) = 0,

(5.10) P3(v4) = R3(v4) = Q,

P5(v8)-0, P5(v4) = 0,

Further, by (1.4) together with v2(3
3 - 1) = 1 (by ignoring the odd multiple) one

has

2P3(v8) + 2fl1P2(v8) + 22fl2P1(v8) + 23P3(v8) - 22P2R1(vs) + 24P1P2(v8) mod 26

and hence by (5.10) one obtains the following

(5.11) 2P3(v8) + 23#3(v8) = 0 mod 26.

In particular

(5.11') P3(v8)^0 mod 22.

Also, (1.4) implies

4

(24P4 + E 2//?/P4-<)(v4) = 22P3R1(v4) + 24P2R2(v4) mod 26

1=1

and hence one obtains the following

(5.12) P4(v4) + #4(v4)^0 mod22.

Moreover one obtains

Proposition 5.13.

P6(vg) = 23jR6(v8) mod 24.

Proof. The equation (1.4) implies

6

23P6(v8) + S 2l'RiP6'i(v8) = 22P5Ri(v8) + 24P4^2(v8) + 26P3#3(vs) mod 27

/=!

Recall that P4(v8) eZ(2){v4v8}, where we have

) = R2(v4)vs + ̂ (v^KHvs) + v4JR
2(v8) - 0

and hence /?2P4(v8) = 0. So by (5.10) and (5.11) the congruence equation above
reduces to

23P6(v8) + 25R3R3(v8) + 26R6(v8) = 26P3R3(vs) mod 27

where R3(v8) eZ(2){5(v8(8) vi4), 5(v14®v8)}. Hence by (5.10) we have
R3R3(v8) = P3R3(v$) =Q. Thus the congruence equation above reduces to
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F6(v8) + 23R6(vs) = 0 mod 24.

This implies the proposition.

Proposition 5.14.

= /?4F4v8 mod 4.

Proof. The equation (1.4) implies

2F7(v8) + S 2l'/?/P7-|'(v8) - 22P6Ri(vz) + 24F5^2(v8) mod
1=1

6

So by using (5.10), (5.11') and Proposition 5.13 one obtains

2F7(v8) + 24R1R6(v8) + 23/?3F4(v8) =0 mod 26,

where F4(v8) E Z(2){v4 v8 - <5(v8 ® v16)} C flf*(G(2)) • H\Q(2))9 and hence

^3F4(v8)EZ(2){/?3(v4v-8)}.

By (5.10) and the Cartan formula we have

with #3(v8) G52. So by (5.5) we have J?3F4(v8) -0. Therefore we obtain

(5.15) 2F7(v8) + 24Rl R6(v8) = 0 mod 26.

Also the equation (1.4) implies

5

(5.16) 25F8(v8)+ 2 2/^"F8-/(v8)^22F7/?1(^) + 24F6^2(v8) mod 26

/=!

Then by (5.10), (5.11'), Proposition 5.13 and (5.15), one obtains

(5.17) 25F8(v8) + 24RlRlR6(v8) + 25R2R6(v8) + 24^4F4(v8) - 0 mod 26.

From (1.4) it follows that

2P1 + 2/?1 = 22/?1, mod23

and hence Fl = ±/?x mod 22. Also from (1.4), one has

23P2 + 2RlPi + 22R2^22PiRl + 24R2 mod 23.

Then it follows that

RLRL = 2R2 mod22.

Hence

RiRlR6(v8) + 2R2R6(vs) = 0 mod 22.
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Substituting this into (5.17) one obtains

25P8(v8) + 24tf4P4(v8) = 0 mod 26.

By dividing by 24, we obtain Proposition 5.14.

Proposition 5.18. Let /3 be as in (5.9). // j8 ̂  0 mod 2, #4P4(v4) = 0 mod 4.

Proof. The equation (1.4) implies

25P8(v4) + ^ 2/#/P8-/(v4) - 22P7Ri(v4) + 24P6R2(v4) mod 26.
1=1

So by (1.5) and (5.10) one obtains

(5.19) 22#1P7(v4) + 24/?4P4(v4) = 0 mod26.

Furthermore (1.4) implies

5

2P7(v4) + S 2/#'"P7-/(v4) = 22P6R1(v4) + 24P5^2(v4) mod 26.
/=i

So by (5.10) one obtains

(5.20) 2P7(v4) + 23#3P4(v4) = 0 mod 26.

Recall from (5.9) that

So by (5.10) one has

Suppose /3^0 mod 2. By (1.5), one has P7(v4) = 0 mod 24 and hence by
(5.20) one obtains

(5.21) 23#3P4(v4)^0 mod25,

so 24/?7?3(v8)EEEO mod 25. Thus

(5.22) #3(v8)^0 mod 2.

Then it follows from (5.11) that

P3(v8) = 22^3(v8) = 0 mod 23.

So by rechoosing the ring isomorphism / appropriately (or more precisely,
rechoosing the extension H>8 = J(v8) appropriately) one obtains the following
lemma (due to [Hu]).

Lemma 5.23. One can choose a ring isomorphism J which satisfies P3(v8) = 0,
mod 2.
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Proof. If P3(v8) * 0, we can choose vn e H22(Q(2)) so that P3(v8) = 23 vu.
The element w>8 = vP8 + VM>H with v = -^-^, where wn = /(vn), Is an extension of
-T*£i5. Then from/, we define a new ring isomorphism/7: H4'(Q(2}) — >K*(Q(2}}
by setting

Then one obtains the following formula modulo higher filtration > 11:

V^(/(v8)) = 28/(v8) + 28/(vn) mod («gfa?r filtration > 11)

^2(/(vn)) EEE 2n/(vn) mod (higher filtration > 11)

^2(/'(v8))^^2(/(v-8) + v/(v11))

= VV(v8)) + v^2(/(vn))
= 28/(v8) + 287(vn) 4- 211 v/(vn) mod (Aig/ier filtration > 11)

= 28(/(v8) + (23 v + l)/(vn)) mod (higher filtration > 11)

= 28/'(v8).

Thus F3'(v8) = 0. (Note that the operation P/' with respect to /' is different
from P3 = Pj with respect to /). The operations Pj> and /?}• satisfy all the
formulae given above for the ones with respect to general '/'. So, we may
assume that our ring isomorphism / satisfies Pj = 0. This implies the lemma.

Hence from (5.11), (5.21) and (5.20) it follows that

^3(v8) ^0 mod23,

R3P4(v4) ^0 mod24,

2F7(v4) =0 mod26.

Substituting them into (5.19) one obtains

v4)^0 mod26.

That is, if )8^0 mod 2, then R4P4(v4)=Q mod 4. This completes the proof of
Proposition 5.18.

Now these two propositions, Propositions 5.14 and 5.18, will give us a
contradiction in the following manner:

By Proposition 5.14, we have the following equation

(5.24) 0 ̂  2 v| = #4P4(v8) = R4(av4v8) = aR4(v4) v8 + ^v4^
4(v8) mod 4

by (5.10) and the Cartan formula, where R4(v8) G Im 6 and hence v4R
4(vs) = 0

by (5.5). Furthermore, using (5.10) together with (1.4), one obtains the following
relation:

24P4(v4) + 24£4(v4) = 0 mod 26,
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which implies

(5.25) #4(v4) = -P4(v4) = -Av| - 2£v8 mod 4.

Hence from (5.24) it follows that

Q^2v%=-2a/3vl mod 4.

Then it follows that

(5.26) a/3= I mod 2; in particular, /3= I mod 2.

Since /3^0 mod 2, Proposition 5.18 implies

(5.27) 0 = jR4P4(v4) = R4(kv\ + 2/3 v8) = 2Av4/?4(v4) + 2/3#4(v8) mod 4

by (5.10) and the Cartan formula. Here, by (5.25), we have

) = 0 mod 4.

Also by (1.4) using (5.10) and Lemma 5.23 we have

24F4(v8) + 24jR4(v8) = 0 mod 26

and hence

R4(vs) = ~P4(vs) = ~ <*v4v8 mod 4.

Substituting them into (5.27) we obtain

0 = R4P\v4) = -2al3v4v8 mod 4,

which contradicts (5.26).
Thus we have shown that there exists no Poincare complex with GW-space

structure whose cohomology ring is an exterior algebra of type (7, 15). This
completes the proof of Proposition 5.2.

§6. Proof of the Main Theorem

In this section, we always assume that E is a complex of type (q, n, m). Let
us assume that E has a cell structure Sq\^(xe

n^em with ore nn-\_(Sq), p£
jtm-1(S

£JUae
n). At first, we look at cohomological structure of E.

Proposition 6.1. Let E be a GW-space at TL where TL is a set of primes. If
a = 0 at H, then E^Sr with t odd or Sq X Sn with q and n odd. If further 2 E17,
we have t<E {1, 3, 7} and {q, n} C {1, 3, 7}.

Proof. We will prove here the integral case. The localised version can be
obtained by a quite similar manner and is left to the reader.

Since *=0, E- (Sq v Sn) U^ em. We denote by iV Sq-*E and i2: S
n^E
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the canonical inclusions. Since a sphere is desuspendable, by (0.3), there is an
axial map v: Sq x Sn-*E with axes (/1? z'2) by the assumption. We remark here
that the attaching map of the top cell of Sq x 5" is given by the Whitehead
product [/!, /2].

Since E has cells only in dimensions Q,q,n and m, there are three possibilities
on its cohomology: //*(£; Z) = Z 0 Z 0 Z, Z0 Z/rZ (for some r > 1) or Z. In
the last case, m has to be q + 1 (n + 1, resp.). Then H*(E\ Z) is isomorphic to
H*(Sn\ Z) (H*(Sq\ Z), resp.) which is given by z'2 (z"i, resp.). Since E is simple,
£ has the homotopy type of 5" (S*7, resp.).

Let us recall that a sphere is a GW-space (at 2) if and only if it is S1, S3 or S7

by [Adi]. Thus n (q, resp.) = 1, 3 or 7.
In the other cases, i± and 'i2 induce non-trivial homomorphisms of coho-

mologies for some coefficient ring ZIpZ, p a prime. Then v4" is a surjection,
since the generators in H^(Sq x Sn\ Z/pZ) are in its image. Thus we obtain that
Hq+n(E\ Z/pZ)^0, and hence m = q + n>n. If H\E\ Z) = Z0Z/rZ, then
the action of some higher order Bockstein operation is not trivial on //*(£;
ZIpZ) for some prime p, but is trivial on H*(Sq x S"; Z/pZ) for any p. It is a
contradiction and we have //*(£; Z) = Z 0 Z 0 Z. Hence v" is an isomorphism.
Since E is simple, E has the homotopy type of Sq x 5", which is a Poincare
complex and a GW-space. Also the mod 2 Steenrod algebra acts trivially on
//*(£; Z/2Z). Then by the argument given in the proof of Corollary 1.9, one has
{?, /i}C{l, 3, 7}.

This implies the proposition.

Proposition 6*2. Let n>q>l and p a prime. If Hj(E\ ZIpZ} are non-zero
for j = q and n, then E is a Poincare complex of type (q, n, q + n),

Proof. Let Q be the following suspended subspace of ZQE and /: Q— > E
be the composite map QCIGCP^G^E:

Q = Q["-I] u f c I(QE)[ri~l\

Then by the Serre spectral sequence for the fibration G-*PE-*E, one obtains,
similarly to the proof of Proposition 3.3 (2), that cfxq and a*xn are non-zero
primitive generators in dimensions q — 1 and n — 1 in H*(G\ ZIpZ}. Since /
induces the cohomology suspension, T is an isomorphism in dimensions q and n.

Since Q and S*7 are suspended spaces, there exists an axial map IA: Q x Sq-^> E
with axes (/, /|s,,). Then \JL induces a homomorphism \JL\ //*(£;
H\QxSq\ ZlpZ) = H\Q\ ZlpZ}®H\Sq\ ZIpZ}. We have
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for some yn^^Hn-q(Q\ Z/pZ).

Then we obtain that p(xnxq) = f(x,d®f(xq) + f(xq)yn-q®f(xq) =
f(xn)®l*(xq)l=Q, since Q is suspended. Thus xnxq=£Q and hence Hq+n (E\
Z/pZ) + 0. This implies that m = q + n>n+l and we obtain

E^S«Uae
llUfte

q+fl.

Moreover we obtain that

Hj(E\ ZfrZ) = Z/rZ{Xj} for j = q, q + 1 and 2q + 1,

H«(E\ Z) = Q, Hll(E- Z) = Z/rZ, Hq+n(E\ Z) = Z,

if n = q + 1 and a= nq with r+±\ nor 0, and that

HJ(E; Z) = Z{Xj} for j = q, n and q + n,

otherwise.
Let us turn our attention to the top cells of Q x Sq and E. We have shown

(6.3). In the case a=nq with r+±l nor 0, \JL is an isomorphism of mod r
cohomology in dimension q + n. In other cases, by comparing integral coho-
mologies by \i similarly to the above, we obtain that tf is an isomorphism of
integral cohomology in dimension q + n.

This implies that E has an (orientation) class in dimension q + n which
induces a Poincare duality. Thus E is a Poincare complex of type (q, n, q + n).

This implies the proposition.

We can now state the key lemma to our main theorem, which is first known
to H. Kachi for simply connected case.

Lemma 6.4. If E is a GW-space (at 2), then it has the homotopy type (at 2)
of either a sphere of dimension 1, 3 or 7, or a 3-cell Poincare complex of type (q,
n, q + n) of exactly q + n dimension.

Proof. We show here the proof of the integral case, since the localised case
at 2 is obtained by just localising the argument of the integral case.

Let q = 1. When n = 1 or n > 2, it clearly holds that a is trivial.
If a is trivial, it follows from Proposition 6.1 that E has a homotopy type of

either S"1 or a product of S1 and 5" with wE{l , 3, 7} which is a Poincare
complex of type (1, n, 1 + n).
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If n = 2 and a= ±t l 7 then E=^Sm with m>2, which must be a GW-space,
and hence m £ {3, 7}.

If n = 2, a = pil and p + ±1 nor 0, then Ki(E) = Z/pZ. Then S1 Uae
2CE is

nothing but L2(/?), the 2-skeleton of the standard lens space L3(p), and is not
simple (nor nilpotent): Let JT= (T\TP = 1} =jil(L

2(p)) = jil(E} = Z/pZ. The
universal covering space of L2(p) has the homotopy type of a wedge sum of
(p — 1) copies of 2-spheres:

(6.5)

The action of a generator re n on ji2(L
2(p)) is given as follows:

P-I
(6.6)

where orp=-Xj=1 a,-.

If m = 2, a similar argument given in the above yields that E is not simple. It
contradicts the assumption that E is a GW-space. Thus m>2 and we have the
following exact sequence:

(6.7) %(£, L2(p))^x2(L
2(p))^jr2(E)-^0.

Since E is simple, r acts trivially on n2(E}. Then it follows that Ji2(E) is a
quotient group of jr2(L

2(p))/jt=Z/pZ. Thus JT3(£, L2(p)) + 0, and hence m = 3.
Then it follows that H+(£; Z) = H\L*(p}\ Z) as modules.
Let us consider the Serre spectral sequence associated with the fibration

E->E-^B(Z/pZ), where E-^E denotes the universal covering. Since E is
simple, so is the fibration and H2(E\ Z) = Ji2(E} is finite. A routine computation
on the E2 term of the Serre spectral sequence shows that the only non-trivial
differentiaHs d4, which yields that H^(E; Z) = H*(S3, Z) as algebrae.

Since E is simply connected, E is a homotopy 3-sphere. Hence the boundary
homomorphism d: %(£, L2(p)}-> ji2(L

2(p)} is surjective by (6.7) and preserves
the actions of rG n on jr3(E, L2(p)):

p
jt3(E, L2(p}}= 2 Z/3i = Zji, !•#• = /?/+!, for i<p,

i=l

where /3p+1 = fii which corresponds to the 3-cell of E. Thus fl= d/3i is a unit in
jr2(L

2(/?)). We remark that the direct summand generated by 2 =1 A 'm ^(E,
L2(p)) is the kernel of 3, since there is no element in n2(L

2(p}} other than 0 to
be stable under the action of r by (6.6).

Again by the Serre spectral sequence mod p associated with the fibration
E-*E-»B(Z/pZ), it follows that H\E\ Z/pZ) = H\L3(p)'J ZIpZ) as algebrae.
This implies that E is a Poincare complex of type (1, 2, 3).
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Conversely, let € be a unit in jr2(L
2(/?)), which is also a unit in 7t2(L

2(p))/jt =
Z/pZ. Let L3(/?, €) be the space given by attaching a 3-cell by € on L2(p). Then
its cohomology ring modp is isomorphic to H*(L3(p)', ZIpZ), since the universal
covering space is a homotopy 3-sphere. Thus it is a Poincare complex of type (1,
2,3).

Let q be odd >1. Unless n = q + 1, or has a finite order.
If or is trivial, it follows from Proposition 6.1 that E has the homotopy type

of a ^-sphere (q E {3, 7}, since q is odd >1) or Sq x 5" ({<?, n} C {3, 7}).
If n = q, then a is trivial and E has the homotopy type of either Sq or

SqxSq, <?e{3, 7}.
If n = q + 1 and a= ±iq, then £ has the homotopy type of m-sphere with

If n = q + 1 and oc — piq with p + ±1 nor 0, then HJ'(E, Z/pZ) are non-zero
when j = q and n. Then by Proposition 6.2, we obtain that E is a Poincare
complex of type (q, n, q + n).

If n > q + 1 and <#=/= 0, then a has a finite order >1. Hence by Proposition
6.1, we obtain that E has the rational homotopy type of a sphere Sq or the
product of spheres Sq x Sn. In the former case, we have m = n + 1 and the
homomorphism Jin(S

q U en)-> jzn(S
n) induced from the collapsion to the n-cell

sends 13 to an integer = 0 mod p where p is the order of a. Thus HJ'(E\ Z/pZ) is
non-zero when j = n (and ; = q). Then by Proposition 6.2, we obtain that E is a
Poincare complex of type (q, n, q + n).

Let q be even >0. Unless n = q + 1 or 2q, a has a finite order.
If or is trivial, it follows from Proposition 6.1 that E has the homotopy type

of a q + 1-sphere and n = m = q + 1 e {3, 7}, since g, is even.
If n = q, then or is trivial and hence n = q + 1. It is a contradiction.
If n = q + 1 and a= ± i1? then £" has the homotopy type of an m-sphere with

<7 + l<ra<E{3, 7}.
If n = g + 1 and a = pi^ p + ±1 nor 0, then by Proposition 6.2 we obtain

that E is a Poincare complex of type (q, n, q + ri).
If q + 1< n + 2q or a has a finite order, then £ has the rational homotopy

type of either an odd sphere or a product of two odd spheres. It is impossible.
lfn = 2q and a has an infinite order, then E has the rational homotopy type

of J2(S
q) U/3 em, where we denote by Jt(X) the James' (r-fold) reduced product

space of X.
Let us recall that Jtt(J2(S

q)) ® Q = 0, unless r = 9 or 3g - 1. Thus /3 has a
finite order, unless t = q or 3q — I.

Let us assume that /J has a finite order and hence E has the rational
homotopy type of J2(S

Q) v 5m. We can choose maps k: Sq-^E and i2: Sm-^E
which are rationally the canonical inclusions. Since a sphere is desuspendable,
by (0.3), there is rationally an axial map ^: 5^ x Sm-*E with axes (/i, z'2) by the
assumption.
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By the definition, we have that ii and r'2 induce non-trivial homomorphisms
of rational cohomologies. Hence \i induces a surjection, since the generators in
H\Sq x 5"; Q) are in its image. This implies that the product of generators in
dimensions q and m is non-zero in Hq+m(E\ Q}, but it is impossible. Thus /3 is
rationally non-trivial. Since m>2q, it follows that m = 3q and /? is rationally
non-trivial, E has the rational homotopy type of J^S1*). Hence by Proposition
6.2, we obtain that E is a Poincare complex of type (q, 2q, 3q).

This completes the proof of the lemma.

Using the above, we show the proof of the main theorem.
We may assume by Lemma 6.4 that E is actually a 3-cell Poincare complex

of type (q, n, q + ri) of exactly q + n dimension, except the spheres S1, S3 and S7

(at 2).
[The case q = l.] By the proof of Lemma 6.4, E has the homotopy type of

either a product of spheres S1 x Sn with n E {1, 3, 7} or a (general) lens space
L3(p, €).

[The case n = q>l.] Then E has a cell structure (Sq v Sq) U^ e2q. Thus by
Proposition 6.1, one obtains that £ has the homotopy type of Sq x Sq and q is in
{3, 7}.

[The case n = q + l>2.} Then E has a cell structure S*7 Lj^ eq+l (Je2q+l

where piqE.nq(S
q) = Z. By Corollary 1.9, we have that (q, n) = (3, 4) and

E^S7 (at 2).
[The case 2q > n > q + 1 > 2.] Then E has the cell structure Sq \Ja e

n \Jft e
n+q.

By assumption, n<2q and a is a suspended element, that is, Q = SqUae
n is

desuspendable. There is a map ^: Q x Q— >E since £" is a stable GW-space. By
Corollary 1.9, one can construct a space 2(2) satisfying

From Proposition 1.7 and Corollary 1.9, it follows that (q, n) = (3, 5) and
Sq2v4 = v6. Thus H\E' ZI2Z)=H*(SU(3)\ Z/2Z) as algebrae over the mod 2
Steenrod algebra. This implies that the 5-skeleton of E has the homotopy type of
SCP2. Thus /3 lies in Ji7(SCP2) = Z, whose generator is given by the attaching
map of the 8-cell of SU(3). Since E is a Poincare complex, /3 has to be a
generator and hence E has the homotopy type of 517(3).

[The case n = 2g>2.] Then E has a cell structure Sq '(Ja e2q 'U^ e3q ', g>2.
Thus H^(E\ Z) = Z{jc^, Jt2<p J^3^} with jc3^ = Jc^jc2<7. If A:^ = 0, one has H*(E\ Z) =
A(JC^, JC2^) which contradicts Proposition 3.3 (2). Thus x2i=Q and hence H*(E\
Q) = Q[xq]l(xq}. Then from Proposition 2.1, we obtain that (q, n) = (2, 4) and

H\E- Z) = H\CP3', Z).

Thus the 4-skeleton of E has the homotopy type of CP2. Hence the attaching
map of the top cell lies in jt5(CP2) = Z, whose generator is the attaching map of
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the 6-cell of CP3. Since E is a Poincare complex, /3 must be a generator in
jr5(CP2). This implies that E has the homotopy type of CP3.

[The case n>2q>2.] Then E has the homotopy type of SqUae"Ueq+fl

with ore jr,I_1(5
<7). Since x^ = 0, one has H*(E\ Z) = A(JC<?, xn) where both q and

n are odd by Proposition 3.3 (2). Then from Theorem 4.2 and Propositions 5.1
and 5.2 it follows that (q, ri) = (3, 7). Hence we obtain

with the trivial action of the mod 2 Steenrod algebra. Since (g, n) = (3, 7), the
attaching element a of the 7-cell in E is of the form a= kat^ where co is the
Blakers-Massey element in Jr6(5

3) = Z/12Z. We have that k is odd or k = 0 mod
4. In fact, if A = 2 mod 4, or is desuspendable at 2 and so is the space Q = (S3 Ua

e7)(2)-
Then one can construct a space Q(2) from which one can deduce a contra-

diction to the result of Sigrist-Suter [S-S] (since the result in [S-S] is essentially a
result localised at 2).

If A is odd or A = 0 mod 4, the pull-back Eka) by ki7 from the principal
bundle 5p(2)->57 is known to be an H-space and thus it is a GW-space (see
[H-R] and [Z]).

In case k = 0 mod 12, the 6-skeleton of E has the homotopy type of S3 v S1.
Thus E has the same homotopy type with S3 x S7 and hence with Eka).

In case k = 4 or 8 mod 12, the 6-skeleton of E has the homotopy type of
S3 v S7 at 2 and of S3 Uw e7 at odd primes.

Thus JTg(Q) is isomorphic with Z[(,3, i7] 0 (2 torsion) and E has the homo-
topy type of S3 x S7 at 2, and hence the attaching map of the top cell of E is the
same as that of Eka) at 2. At odd primes, Jt9(E) is isomorphic to jr9(Sp(2)) = 0.
Let us consider the homotopy fibre F-+Q of the inclusion Q->Eka}. By using
the Serre spectral sequence associated with the above (homotopy) fibration, we
deduce that Ji9(F) = Z at odd primes. Since Ek(0 has the rational homotopy type
of the product of odd spheres, ftw(Eka}) is finite and hence JT9(j2) is isomorphic
to Z at odd primes. Thus %((?) is isomorphic with Z 0 (2 torsion) in which a
generator of the free part is given by the attaching map of the 10-cell of Eka},
and the attaching map of the top cell of E is in the free part. On the other hand,
/? has to be a generator, since E is a Poincare complex. Thus E~Eka}.

In case k odd, a similar argument as above shows that ^(Q) is isomorphic
to jr9(S

3 U^ e7) = Z and the generator is given by the attaching map of the 10-cell
of Eka). Thus E — Eka}-> since E is a Poincare complex.

This completes the proof of the main theorem.
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Appendix

Let E and B be connected CW complexes and consider a fibration

(A.I) F^E^>B

with fibre F a (not necessarily connected) CW complex. It gives rise to the
following two fibrations:

(A.2)

(A.3)

Now suppose that i is null homotopic. It follows from (A.2) that q has a
right inverse s: F-* QB. So the homotopy exact sequence of (A.3) splits and we
obtain

n,(QB} = Jt,(QE) 0 n,(F),

where the above isomorphism is induced by the map h = ̂ o(Qjt x s): QE x F— >
QB with \i the loop addition of QB. Thus h is a homotopy equivalence, since
QB and QE have the homotopy type of a CW complex. Hence we obtain

(A.4) h: QExF^QB

Thus the following hold for any space W:

[W, QB] as groups,

[W, QB] = [W, QE] x [W, F] as sets.

Here let us introduce a notion of a GW-action. A GW-action of E along n\
E-+B is a map

(A.6) v: ZQE x

with axes ZQE-*E-^B and ZQB-*B, where the map ZQB^B is the evalu-
ating map.

Then we have

Theorem A.7. // i is null-homotopic in (A.I) and if B admits a GW-action
of E along n (see (A.6)), then the following four statements hold:

(i) E is a GW -space and F is an H -space.
(ii) // B is a GW-space, then F is a homotopy commutative H-space.
(Hi) B is a GW-space if and only if the Samelson product (s, s) is trivial for

a right inverse s of q.
(iv) // there is an H-map s which is a right inverse of q and if F is homotopy

commutative, then B is a GW-space and (A.4) is an H -equivalence.
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Proof, (i) By [O, Theorem 2.7], the image of Qn* of (A. 5) is contained in
the center of [W, QE] = [2W, E] for any W, since a map from a suspension
space to a space X can be decomposed through the evaluating map ZQX-^> X.
Furthermore Qjt± is a monomorphism by (A. 5), and hence [W, QE\ is an
abelian group for any W, which implies that E is a GW-space by (0.2). Since F is
a retract of a loop space QB, it is an H-space.

(ii) Let us define the multiplication H of F by putting H = q° [A°(sX s),
where we denote by \JL the loop addition of QB. As ^ is homotopy commutative,
so is /L

(iii) Suppose that B is a GW-space. Since 2F is a suspension space, the
Whitehead product [ad(s), ad(5-)] is trivial for the adjoint map ad(s): 2F-+B of
5. Recall that [ad(s), ad(s)] = ±ad(s, 5), where ad(s, s) denotes the adjoint of
the Samelson product of s. Thus we obtain ad (s, s) = *.

Conversely, suppose that ad (s, s) = *. For simplicity we write ^(jt, y)=x-y.
Then by the homotopy associativity of ju, we obtain the following homotopy:

h(x9 y) - h(x, y) = (Qjr(x) • s(y)) - (Qn(x) - s(y))

The image of Qjt+ is contained in the center as is seen in (i), and so we obtain

s(y) - Qjt(x) - QJI(X) - s ( y ) .

Also from the homotopy commutativity of QE and F, it then follows that

(A 8) k(X' y} ' k(^ y"} " (Qn(x}

^(QjT(x)

Recalling that the loop map QJI is an H-map, one has

QJT(X) - Qn(x} - Qn(x - x)

where we use the same symbol ' - ' to denote the loop additions of QB and QE.
Let us recall that QE is homotopy commutative by (i), and hence

Qjt(x - x) — QJT(X • x).

Thus we obtain

Qn(x) • QJI(X) - QJT(X) • QJT(X).

The hypothesis (5, 5} = * implies that s(y) -s(y) ^(y)"1 - s ( y ) ~ l — *. Hence it
follows that

s ( y ) ' s ( y ) ^ s ( y ) - s ( y ) .

Summing up we get
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h(x9 y) • h(x, y) - (Qjt(x) - Qjt(x)) • (s(y) • s(y))

^h(x, y)-h(x, y),

that is,

fj,°(hxh)^i*°T°(hxh).

Since h is a homotopy equivalence in (A.4), it then follows that

that is, QB is homotopy commutative. Thus B is a GW-space.
(iv) Let s:F^QB be an H-map which is a right inverse of q. Then the

H-deviation HD(s) of s satisfies HD(s) — *, where the H-deviation HD(s) :
F A F— » QB is given by

where + denotes the multiplication of F. It follows that

WD(s)(y^x) = s ( y ) - s ( x ) - s ( y + xr1.

Since F is homotopy commutative, we have s(x + y) ^s(y + x). Thus we have

(yAx)-l^s(x)'s(y)'s(x

= s ( x ) - S ( y ) - s ( X

= (5, s)(xAy).

This implies that (s, s) ^*, and hence B is a GW-space by (iii). Further, by
(A. 8) we have

^(h x h)((x, y), (*, y)~h(x, y) - h(x9 y)

which, by using the H-structure of maps s and QJZ, changes up to homotopy into
the following:

— Qjt(x-x) - s ( y + y)

= h(x-x, y + y).

This implies that h is an H-map and hence QB is H-equivalent to QE X F. This
completes the proof of the theorem.

Corollary A.9. (i) The standard lens space L(p) = S3/(Z/pZ) is a GW-
space for all p>\.

(ii) CP3 = S1ITi is a GW-space.

Proof, (i) Put F= ZIpZ, E = S3 and B = L(p). They satisfy the conditions
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of Theorem A.7. So it suffices to show that s: F^ QE is an H-map. The H-
deviation of s is in the set [F A F, QE] = [F*F,E] = [ v<X, S3] = ®^(S3) - 0.
Hence HD(s) — *, that is, s is an H-map. From (iv) of Theorem A.7, it follows
that B = L(p) is a GW-space.

(ii) Put F=Tl,E = S7 and B = CP3. They satisfy the conditions of Theorem
A.7, since CP3 is a Whitehead space and ZQCP3 has the homotopy type of a
wedge sum of spheres. The H-deviation of s: F-^QE is in the set [F A F,
QE] = Jr3(5

7) = 0, whence s is an H-map. From (iv) of Theorem A.7, it follows
that B = CP3 is a GW-space. This implies the corollary.

Remark. It is well-known that QS2 has the same homotopy type of QS3 x
T1 and the latter space is homotopy commutative. If we put F= T1, E = S3 and
B = S2, they satisfy the conditions of Theorem A.7, but a splitting s: T1-* QS2

cannot be an H-map. In fact, its H-deviation is the adjoint of the Hopf map rj:
53-^52, and S2 is not a GW-space. Thus the space QS2 has two completely
different loop structure: One is homotopy commutative and the other is not.
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