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Noether's Inequality for Non-complete
Algebraic Surfaces of General Type, II

By

De-Qi ZHANG*

Abstract

Let V be a nonsingular projective surface of Kodaira dimension K(V) > 0. Let D be a
reduced, effective, nonzero divisor on V with only simple normal crossings. In the present article,
a pair (F, D) is said to be a minimal logarithmic surface of general type, if, by definition, Kv + D
is a numerically effective divisor of self intersection number (Kv + D)2 > 0 and if Kv + D has
positive intersection with every exceptional curve of the first kind on V. Here Kv is the canonical
divisor of V. In the case, on the one hand, Sakai [8; Theorem 7.6] proved a Miyaoka — Yau type
inequality (cf ) := (Kv + D)2 < 3c2 := 3c2(F) — 3e(D). On the other hand, we can easily obtain

1 8
(cf) > — c2 -- by making use of [8; Theorem 5.5]. In the present article, we shall prove that

(cf ) > -c2 — 2 provided that the rational map &\Ky+D\ defined by the complete linear system

\KV + D| has a surface as the image of V. Moreover, if the equality holds, then the logarithmic

geometric genus pg := h°(V, Kv + D) = -(cf ) + 2 = 3, D is an elliptic curve and V is the canonical

resolution in the sense of Horikawa associated with a double covering h: Y -> P2. In addition,
the branch locus B of h is a reduced curve of degree eight and the singular locus Sing B
consists of points of multiplicity < 3 except for at most one "simple quadruple point".

Introduction

This is a succession of the previous paper [9]. We work over an alge-
braically closed field fe of characteristic zero. Let V be a nonsingular projective
surface defined over fe. If V is a minimal surface of general type, we have the
following inequality due to M. Noether:

This inequality, together with the Noether formula 12%((9V) = c±(V)2 + c2(V\
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Implies the following inequality:

The first (resp. second) Inequality Is called, In the present article, the first (resp.
second) Noether Inequality. A surface V is said to lie on the first (resp. second)
Noether line if the first (resp. second) Noether inequality becomes an equality.
The surfaces lying on Noether lines were studied by Horikawa [4] and [5].

In [9], we extended the first Noether Inequality to the case of a minimal
logarithmic surface of general type (see the Definition below). In the present
article, we shall give a second Noether inequality for logarithmic surfaces of
general type and classify those surfaces lying on the first or second Noether
line. It Is not, however, straightforward to derive a second Noether inequality
from the first one as In the complete case, since we can not make avail of
a formula corresponding to the Noether formula.

Let V be a nonsingular projective surface and let D be a reduced, effective
divisor on V with only simple normal crossings. Such a pair (V, D) is called
a logarithmic surface (log surface, for short). We denote by Kv the canonical
divisor of V.

A log surface (F, D) is of general type If the logarithmic Kodalra
dimension K(V — D) := K(¥, Kv + D) = 2. A log surface (F, D) of general type
Is minimal If Kv + D is numerically effective (nef, for short) and If Kv + D
has positive Intersection with every (— l)-curve on F (I.e., there are no redun-
dant (— l)-curves on (F, D) in the sense of Sakai [11]).

In the case where ic(F — D) > 0 and where Kv + D has positive Intersec-
tion with every ( — l)-curve on F, the divisor Kv + D is nef if and only If D
Is semi-stable In the sense of Sakai [8]. In the case Kv + D is nef, Kv -f D
is of general type if and only if (Kv 4- D)2 > 0. Semi-stable curves on surfaces
were studied by [8]. The definition of minimal log surface of general type
given In [9] is more general and include the case where D is a Q-divisor.

Set pg := dim H°(V, Kv + D), (c2) := (Kv + D)2 and c2 := c2(V) - e(D\ where
e(D) Is the Euler number of D. The following Theorem TZ is a part of [9;
Theorem 2.10]. The cases where Kv + D Is ample and where Kv + D is numeri-
cally effective and big were treated by Fujita [2] and Sakai [8], respectively.

Theorem TZ0 Let (F, D) be a log surface of general type such that Kv + D
is nef, pg>3 and \KV + D\ is not composed with a pencil Write \KV -f D\ =
\C\ 4- G, where \C\ and G are respectively the movable part and the fixed
part. Then, replacing C by a general member of \C\ if necessary, we have the
following assertions:
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(2) Suppose the Kodaira dimension K(¥) > 0. Then pg < -(c\) + 2. //

the equality holds then we have:
(2-1) Es\Kv + D\ = j, hence C ~ Kv + D,

(2-2) ^(C2) + 1 < g(C) = pa(C) < (C2) + 1,

(2-3) 1 + pg(V) < hl(V, C) + x(0v) = h°(V, -D) + g(Q + 1 - l-(C2) and

(2-4) the morphism 0\c\: V^>PN (N := pg — 1) is either a birational mor-
phism onto a surface of degree 2(N — 1), or a morphism of degree two onto a
normal rational surface W of degree N — I.

Concerning Theorem TZ, (2), we consider in §1 a log surface (F, D) of
general type satisfying the following condition:

- _ 1 -2
2 v

For such a pair (F, D), let C be a general member of \KV + D\9 let
W:= <&\C\(V) and let TJ: W -» W be a minimal resolution. Denote by J> the
rational map r\~l o 0\c\: F-» PF. Let h: Y-* W be the normalization of W in

the function field k(V) of F. If g(C) = -(C2) + 1 or (C2) + 1, the structure of

the log surface (F, D) is explicitly described in Lemmas 1.3 and 1.4. We
summarize in the following Theorem A a part of the results in Lemmas 1.4
and 1.2 which is to be used later.

Theorem A. Let (F, D) be a log surface of general type satisfying the
above condition (*). Assume that g(C) = (C2) + 1. Then the following asser-
tions hold.

(1) 0 is a morphism.
(2) 0|C) contracts D to points.
(3) // D is not contracted to points by @ then W is a cone of degree

N -I in PN.
(4) Suppose D is contracted to points by &. Let B be the branch locus

of 0. Then B ~ 2F where F := H — Kw for a general member H of \ri*0^(\)\9

and h: Y ->W is the double covering defined by a relation G(B) = (9(F)®2.

From §2, we assume always that (F, D) is a minimal log surface of general
type. Then F is a minimal resolution of Y in the case of Theorem A, (4)
(cf. Lemma 1.4). In §2, we consider the process of canonical resolution Y*
of Y in the sense of Horikawa [4; p.48] and employ the notations Bi9 Ei9
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mi9 Pi used in the process and set before Definition 2.1. By making use of
Horikawa's computation [4; Lemma 6] of invariants %(@Y*) and C^r*) m terms
of singularities of B, we prove:

Theorem B8 Let (V9 D) be a minimal log surface of general type treated
in Theorem A, (4). Assume D =£ 0 and Hl(V, Kv -\- D) = 0. Then the following
assertions hold. (See Lemma 2.8 for the details.)

(1) We have q(V) = 0, pg = pg(V) + 1, and (K2
V) > (Kj.) = 2(pg - 3) > 0.

Moreover, mb = 4, 5 for some b and mt = 2, 3 whenever i =/ b.

(2) Suppose V = 7*. Then Pb is a simple quadruple point of Bb (see
Definition 2.4). All possible "singularity types of Bb at Pb" and the corresponding
configurations of D( = T) are given in the Table 1 attached at the end of
Proposition 2.5. In particular, (D2) = — 2.

To be precise, by "the singularity type of Bb at Fb" in Theorem B, (2),
we mean the singularity type of Eb+1 + Bb+1 near the intersection of Eb±1 and
Bb+1. D is classified to the types J2, /3>3, /4,2*» ^3,3,2* and ^3,2°, 3, 2*- Each
type of Tor equivalently each type of Eb+1+Bb+i in the Table 1 is realizable
(cf. Proposition 2.6 and its Remark).

After these preparations, we shall look for an inequality which is to be
called a second Noether inequality in the case of log surfaces. Sakai [8;
Theorem 5.5] is crucial in the proof of the following Theorem C.

Theorem Ce Let (V, D) be a minimal log surface of general type. Assume
that K(¥) > 0 and D / 0. Write D = ]T"=1 Dt with irreducible components Dfs
and set r:=^i<j(Di9Dj). Then we have

(Kv, 4KV + 3D) > 0 and Pg>^c2-
 l-(cl) .

Theorem C, together with an inequality pg < (cf) + 2 (cf. [2; Corollary
1.10] and [8; Theorems 6.1 and 6.5]), implies the following:

Corollary* With the same hypotheses as in Theorem C3 we have:

The above result, together with the inequality (c\) < 3c2 proved by Sakai
[8; Theorem 7.6], gives an effective restriction on the region of non-complete
algebraic surfaces V — D of general type to exist.

In order to find an inequality of the form (c\) > yc2 + 8 as above with
two rational numbers 7 ( > 0) and d, it is not sufficient to assume only Kv + D
is nef and big and it is necessary to assume (F, D) is minimal as defined above.
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Indeed, suppose that there are rational numbers y (>0) and 6 such that
the inequality (c\ ) > yc2 + <5 holds for every log surface (V, D) with property
that Kv 4- D is nef and big. Let a: W ^> V be the blowing-up of m distinct
nonsingular points xl9 . . . , xm of D and let B = o'(D) be the proper transform of
D. Then Kw + B ~ d*(KF + D) and (K^ + B)2 = (Kv + D)2. Hence Kw + B
is nef and big. Note that c2(W) = c2(V) + m and e(B) = e(D). Then we must
have (Kv + D)2 = (Kw + B)2 > y(c2(PF) - e(B)) + 6 = y(c2(V) - e(D)) + S + ym.
This leads to a contradiction by taking m-»+oo. Therefore, we have to
assume that Kv + D has positive intersection with every (— l)-curve on V.

More precisely, we prove:

Theorem D0 With the same hypotheses as in Theorem C, assume further
that pg > 3 and \KV + D| is not composed with a pencil. Then the following
two assertions hold.

(1) (c2)>ic2-2.

< •« _ r
(2) Suppose (c2) < -c2 — 1. Tnen (c2) = -c2 — 2 H -- - — for some ae

-(c? ) + - with a > 9 or pg = -(

(3) // the second case in (2) with a < 1 1 tafces place, then either

{6, 7, . . . , 14}, and we have either pg = -(c? ) + - with a > 9 or pg = -(cf ) H- 2.

(3-1) p, = 3, (c2) = 2, a = 6 + ^(D), (K2) = 0 and K(V) = 1 , or

(3-2) p, = 3, (c2) = 2, a = 7 + ^(D), (K2
V) = 1 and ic(7) = 2 .

Remark. More properties of the log surface (V9 D) fitting the first case
(resp. second case) of (2) are given in Lemma 3.6 (resp. 3.7). A log surface
(F, D) fitting the case (3-1) (resp. (3-2)) is a log surface treated in Theorem B
where 7* = V (resp. 7* is the blowing-up of the minimal surface V with a
nonsingular point of D as the center) and we refer to Proposition 2.6 and its
Remark for the existence of such log surfaces.

We shall fix the following terminology and notations. Let F be a non-
singular projective surface. If £ is a nonsingular rational curve on F with
(E2) = — n, we call E a (-n)-curve. A divisor H on F is called numerically
effective (nef, for short) if (H, R) > 0 for every curve R. A nef divisor H is
called big if (If2) > 0.

Kv\ canonical divisor of F
K(V)\ Kodaira dimension of F
h\V9 H) := dim H'(F, H) = dim H1 (F, 0V(H))
q(V):=timHl(V,<Dy) the irregularity of F
pg(V) := dim H°(V, Kv) the geometric genus of F
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pg(V) := dim H°(F, Kv + D)
Ci(V): the i-th chern class of V
(c\) := (Kv + D)2

e(D): Euler number of a reduced, effective divisor D
c2 '= c2(V) - e(D)
0fp(l): the sheaf of hyperplane sections if W is embedded into a projective

space in some known way
pa(A): arithmetic genus of an irreducible curve A
g(A): geometric genus of an irreducible curve A
\H\ or |G(H) | : complete linear system defined by H
<P,H|: rational map F-»Pdim|H| defined by |H|
fx(H): direct image by a morphism / with finite degree
f*(H): total transform by a morphism /
f'(H): proper transform by a birational morphism /
H1 ~ H2: linear equivalence
H1 = H2: numerical equivalence
27n, Mn: Hirzebruch surface of degree n > 0 and a minimal section Mn on

Zn satisfying (Mn
2) = -n.

The author would like to thank Professor M. Miyanishi for constant
encouragement during the preparation of the article and thank Professor S.
Tsunoda for valuable discussion. He would also like to thank the referee for
valuable suggestions that make the article more readable.

§ 1. The Case where pg = =(cl) + 2

In the present section, we shall consider log surfaces (F, D) of general
type satisfying the condition (cf. Theorem TZ in the Introduction):

(*) Kv + D is nef, K(V) >0,pg = ̂ (c2) + 2 and *|C|: V -> P* (N := pg - 1)

is a morphism of degree two onto a normal, rational surface W of degree
N — 1, where C is a general member of \KV + D\.

Actually, the above surfaces W were completely classified (cf. Nagata [7;
Theorem?]). Note that (c2) = (C2) = 2(N - 1). Let ^: W -> f^ be a minimal
resolution. We put rj = id if FF is nonsingular. Let H be a general member
of |flV(l)| and set H = i/*H. Then C ~ #,£|(H). Suppose W^P2. Then
FF = 2re, a Hirzebruch surface of degree e. We let TC: Ze -»P1 be a P^fibration
and L a general fiber of n. If W is nonsingular then 0 < N - e — 3 = 0

(mod 2) and H - Me + ^(JV + e - l)L.
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Suppose W is singular. Then e = N — 1 > 2 and rj is just the contraction
of the minimal section MN^ of EN-I. Moreover, H ~ MN^ + (N — 1)L. We
set L := rj(L). Then L is a line of P^ contained in the cone W and we have
H_~(JV-1)L. We have also Cl(W) = Z[L], Pic(W) = Z[H] and (H2} =
(H2) = N - 1.

Let us begin with the following:

Lemma 1.1. Assume the above condition (*) and assume further that W
is singular. Let h: Y-> W be the normalization of W in the function field k(V)
of V. Set a = 4(1 + (C2) - g(C))/(C2). Then the following assertions hold.

(1) 0 < a < 2 .
(2) We have 0(Ky)®2(N~l) ^h^Gw(l)®(N-l)(2-^\ Hence Y has only Q-

Gorenstein singularities. Moreover, Ky is ample if a < 2, i.e., if g(C) >

Proof. (1) follows from the result -(C2) 4- 1 < g(C) < (C2) + 1 (cf. Theo-

rem TZ, (2)).
(2)_ Since W is singular, W = £N.l9 Cl(W) = Z[L], Pic(PF) = Z[H]

and (H2) = N - 1. Set cp = @lc]. We can prove that <p*(p*(N - l)Kv =
2(N — l)Kv + 0 with an integral exceptional divisor 0 of (p. Then we have

(H, (p*Kv) = -(C, (p*cp*Kv) = (C, Kv) = (2 - a)(C2)/2 = (2 - a)(JV - 1). Hence

(p+(N - l)Kv ~(N- 1)(2 - a)H and 2(N - l)Kv + 0 - (AT - 1)(2 - <x)C. Let
^: F -> y be a birational morphism satisfying h o g = q>. Then 0 is also an
exceptional divisor of g and we have 2(N — l)Ky ~ (N — 1)(2 — ̂ ^^(C) ~
(JV- l)(2-a)Ji*(H)£|/z*%(l)®(jV-1)(2-a)|. Then the rest of assertion (2) fol-
lows if one notes that H is an ample Cartier divisor and h is a finite morphism.

Let 0 be the rational map rj'1 o 0|c|: V-+W. If ^ is not a morphism
then W is singular. More precisely, we have:

Lemma 1.2. Assume the above condition (*) and assume further that 0:
V -* W is not a morphism. Then the following assertions hold.

(1) We have pg = -(C2) + 2 = 4 and g(C) = 4. Hence W = Z2 and W is

a quadric cone in P3.
(2) There is a nonsingular curve A of genus two such that C ~ 2A.

Proof. The idea in [5; Lemma 1.5] is used in the proof and we omit
the proof.
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Let u: S -> T be a morphism of degree two between nonsingular projective
surfaces. Write Ks ~ u*(KT) + Ru with the ramification divisor Ru. Denote
by Bu the branch locus u+(Ru) of u. Then Bu is a reduced divisor. Let
M1:S->S1 be a composite of blowing-downs of (—l)-curves, which are excep-
tional curves of u5 such that the morphism u2: S1 -» T induced by u has no
(—l)-curves as exceptional curves. The ramification divisor RU2 (resp. the
branch locus BU2) of u2 is equal to u^RJ (resp. Bu). Moreover, u%(BU2) — 2RU2

is an effective exceptional divisor of u2 (cf. [4; Lemma 3]).
Assume the condition (*) at the beginning of § 1 and assume further that

the rational map @ = YI~I o 0|C|: V-> W is a morphism. Lemma 1.2 shows

that this is the case provided g(C) = -(C2) + 1 or g(Q = (C2) + 1. These cases

will be elucidated in Lemmas 1.3 and 1.4, respectively. Let r. K-> X be a
composite of blowing-downs of ( —l)-curves which are contracted by 0, such
that the morphism f:X-+W induced by @ has no (—l)-curves contractible
by /. So, /QT = J». Write Kx ~ f*(Kw) 4-R with the ramification divisor
R. Denote by B the branch locus f+(R). Then B is a reduced divisor and
f*(B) — 2R is an effective exceptional divisor of /.

Let H be a general member of |?f %(1)|. Then C - **(fl). Set C =
iJC). Then C ~ /*(#) and C = i*(C). Set 5 = iJD). Since C ~ KF + D,
we have C - Kx + 5. Hence R - C - D - f*(Kw), B ~ 2H - f+(D) - 2KW

and /*(B) - 2JJ - 2D - /%(5). _ _
Let h:Y-+W (resp. S: Y-»IF) be the normalization of W (resp. W) in

the function field k(V) and let 0: X -> F be a birational morphism such that
ho g = f. There is also a birational morphism rjy: Y -» Y such that horfy =
v\ o h.

Lemma L3, Assume the condition (*) at the beginning of § 1 ami #(C) =

-(C2) + 1. Let JT be a nonsingular minimal model of V. Then the following

assertions hold.
(1) We have 2KX> ~ 0 and X' is a minimal resolution of Y.
(2) Suppose X is a minimal surface. Then X is a K3-surface and h: Y -*W

is the double covering defined by a relation @(B) ^ G)( — Kw)®2.
(3) Suppose X is not a minimal surface. Then W is singular and there

exists only one (—l)-curve on X.

Proof. We refer to the proof of Lemma 1.4 below.

Lemma 1.4. Assume the condition (*) at the beginning of §1 and that
g(C) = (C2) + 1 or equivalently that D is contracted by the morphism 4>|C|.

(1) Suppose 0^(D) + 0. Then W is singular, W = Z^ and #„(/>) = MN^
or 2MN_1. Moreover, we have (9(2Ky) ^ 5*%(2).
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(2) Suppose &*(D) = 0. Then the following assertions hold.
(2-1) Let B be the branch locus of &\ V -* W. Then B ~ 2F where F =

H — Kw, f*F ~ R 4- D and h:Y-+Wis the double covering defined by a rela-
tion 0(B) £ @(F)®2.

(2-2) g: X -» Y is a minimal resolution.
(2-3) We have (9(KY) ^ h*rj*(9w(l). Hence (9(KY) £ £*%(!) and g*(KY) ~

KX + D.

Proof. The condition g(C) = (C2) + 1 is equivalent to (C, D) = 0. The
latter condition is equivalent to a condition that D is contracted by <P|C, = r\ o &.
We have also (C, D) = (C, D) = 0. Hence D is contracted by rj o / because

(1) Assume 0JD) = /JJ5) ^ 0. Then W is singular and /*(£) is a multi-
ple of the minimal section MN^ of W. Since D is a reduced divisor and since
deg/= 2, we see that f#(D) = MN_i or 2M]V_1. Then, as in Lemma 1.1, we
can prove that Qfcfa^Ky) ~ 2KV + 0, <2>,q*(KK) e |%(2)| and 2XFe |E*%(2)|.

(2) Assume /JD) = 0. Then B ~ 2(H - Kw) and /*(H - X^) - R H- D.
Thus, we can apply [4; Lemma 4]. Let h: Y-> W be the double covering
defined by a relation (9(B) ^ 0(ff - Kw}®2. Then f is normal and X is the
minimal resolution of Y. Hence Y ^ Y. We identify 7 (resp. h) with 7 (resp.
h). (2-1) and (2-2) are proved.

Note that KY - h*(Kw + (H- Kw)) e |fcV%(_l)l and 0*(Ky) - gf*ft*(H) =
f*(H) ~C ~ Kx + D. Since ^ o h is factorized by H, we have 0(KY) ^ h*0w(l).
This proves (2-3).

We end this section by proving Theorem A in the Introduction. Suppose
D is not contracted to points by 0. Then W is a singular surface. So, W is
a cone of degree N — 1 in P^ (see the argument at the beginning of § 1). Theo-
rem A, (3) is then proved. The assertions (1), (2) and (4) of Theorem A are
proved in Lemmas 1.2 and 1.4.

§2. Canonical Resolutions

In the present section, we shall consider those double coverings which
appeared in Theorem A, (4). We shall fix the following notations.

Let W be a surface of degree N — 1 in PN, which is not contained in any
hyperplane. Then W is normal and rational. Let r\\W-+W be a minimal
resolution. Let H be a general member of |?7*$^(1)|.

Suppose W ^ P2. Then W = Ze and we let n: W-+P1 be a P^fibration
and L a general fiber. We know that either W is a cone and H ~ Me + eL

with e = N - 1, or Y\ = id and H - Me + -(N 4- e - 1)L with 0<N-e-3 =

0 (mod 2).
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Set F := H — Kw. Let B be a reduced, effective divisor such that B ~ 2F.
Set B0 := B, F0 := F and W0 := W. Suppose P0 is a singular point of B with
multiplicity m0. Let o^: W1 -> W0 be the blowing-up of the point F0 and
set E! := ff^(P0l B^ := afB0 - 2[m0/2]E1 and F1 := afF0 - \_mQl2~\E^ Here
[m0/2] is the largest integer satisfying m0/2 > [m0/2]. Then we have again
B! ~ 2FX. If P! is a singular point of B1 with multiplicity m1? we let er2: FF2 ->
Wi be the blowing-up of Pl and set E2 := ff^(P\\ B2 '•= °"f5i - 2[m1/2]£2

and F2 := erfFj — [m1/2]£2. Continue this process. Then at the n-th step for
some n > 0, we obtain Bn and Fn such that Bn ~ 2Fn and Bn is nonsingular. (JBn

is not necessarily irreducible.) Set B := Bn and F := Fn.
Let ^: Yi-tWi (0<i<n) be a double covering defined by the relation

®(Bi) = (^(Fi)®2 and a nonzero global section corresponding to Bt. Then we
have a birational morphism oy. YJ -» Y^-! satisfying -y^! o cj. = cr^ o y.. Set 7 :=
F0, 7* := Fn5 W* = Wn, y := 7o? y := yn, a := a,...^: W* -* PF and ff := &,...&»:
7* -> F. Since 5 is nonsingular, F* is nonsingular and a is a resolution
which is not necessarily minimal. According to Horikawa [4; p. 48], we make
the following:

Definition 2.1. a: F* -> F is called the canonical resolution of F associated
with the double covering y: Y-*W.

In the following Lemmas 2.2 and 2.3 and Propositions 2.5 and 2.6, we
shall use the above assumptions and notations: F = H — Kw, B ^ 2F, etc.

Lemma 28Z Set T := y*(I?=o(l>i/2] - l)(^+2...aJ*Em). Then we
have:

([m,./2] - I)2 , (X2.) = 2(H2) + (T2) = 2(N - 1) + (T2) and

1-"z
2 i = Q

(2) We have h°(Y*9 KY* + T) = N + 1 = (Ky* + T)2 + 2. Tlie morphism

®\KY.+T\ ls fl composite of the morphism r\ o a o y and the closed embedding
W->PN. By the abuse of notation, we shall write &\KY.+T\ — n ° & ° J-

(3) KY* + T is nef and big. T is contracted by the morphism a o y:
Y*^W and hence (KY. + T, T) = 0.

Proof. By the abuse of notation, we denote by the same letter Et the total
transform on W* of the (-l)-curve Et. Then T = f(Z?= o([m£/2] - l)£i+1),
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and (Ei9Ej) = 0 (resp. -1) if i^j (resp. if i = j). Hence (T2) =
— 2^?=o ([.mi/Z] — I)2. By the construction of the canonical resolution, we
have:

i=0

-"£ K-/2]£i+1,

K^* - a*Kw + £ E£ and Ky* -
i=l

Noting that F = H — Kw with H e \rj*@w(l)\, we deduce easily the first asser-
tion in (1).

Applying [4; Lemma 6], we obtain (K2*) = 2(KW + F)2 - 2£?=o ([m,/2] -

I)2 and x((9Y*) = i(F, K^ + F) + 2*(flW) - l£i=o [m£/2]([m,/2] - 1). Then the,

last two assertions in (1) follow from the fact that F = H — Kw and the
following:

Claim (1). (F, H) = 2N and (H2) = N - 1.

Since W has degree N - 1 in PN, we have (H2) = AT - 1. If N = 2, then
W = W = P2 and the Claim (1) is clear. _

Suppose AT > 3 and W is nonsingular. Then W = W = Ze, H ~ Me +

^(JV + e - 1)L and Kw ~-2Me-(e + 2)L. Hence (F, H) = (H2) - (Kw, H) =

IN. _
Suppose W is singular. Then W = ZN^ and H - MN_^ + (N - 1)L. We

have also (F, H) = 2N. The Claim (1) is proved.
Note that (cr*H - F, cr*H) = (H2) - (F, H) = -N - 1 < 0. Hence

H°(W*, a*H - F) = 0. Note also that y+0Y. ^ (9W* ® G(-F). Using the pro-
jection formula, we then obtain H0(7*,7*a*H) ^ H°(^*, d*H) ^ H°(fy, %(!)).
Therefore, h°(y*, KY* + 7) = h°(»T, %(!)) and <fvr.+ r, = 0,^^, o rj o ff o y . We
can also easily show that ^\ow(^\ is a closed embedding of W into PN. Then
(2) follows because the fact (H2) = N — 1 implies the second equality in (2).

Since H is nef and big, so is KY* + T. Note that ff#y*T =
2^E?^([m,/2]-l)Fm=0. Hence ^r.+rrr = 0 and (Ky, + T, T) = 0.
The assertion (3) is proved.

We shall give a sufficient condition for 7c(7*) > 0.

Lemma 2.3. Assume that mb = 4 or 5 for some b > 0, and mt = 2 or 3
/or euerj; i / h. Then T = 7*(cr&+2 • • •

 (T«)*^&+i aw^ ^e following assertions hold.



690 DE-QI ZHANG

(1) (T2) = -2 and (K2*)
(2) pg(Y*) = N, q(Y*) = 0, K(Y*) > 1 and H^(Y*9 KY* + T) = 0.
(3) Suppose K(Y*)=1. Then N = 2, W = W = P2 and y: 7^P2 is a

double covering ramified over a curve B of degree eight. Moreover, 7* is a
minimal surface and hence a minimal resolution of Y.

Proof. (1) follows from Lemma 2.2. By the projection formula and by
the fact that pg(W*) = 0 and F = H - Kw, we have:

H°(7*, KY*) ^ H°(W*, Kw. + F) + H°(W*9 Kw*)

= HO(W*9<r*H-(<rb+2...<rH)*Eb+l)

Since Ifo ...ab)*H\ is base point free, we have pg(Y*) = h°(Wb, (GI ...<rb)*H) -
1 = h°(W9 0w(l)) - 1 = N (see the proof of Lemma 2.2). By Lemma 2.2, we
have x(0y*) = N + 1. Hence q(Y*) = 0. Since pg(Y*) = N>29 we have
ic(y*) > 1. The assertion (3) follows from the result (Kj.) = 2(N - 2) > 0.

In order to finish the proof of (2), it remains to verify Hl(Y*, KY* + T) = 0.
Let ,4 be a general member of \KY* + T\. By Lemma 2.2, (2), 0lAl is a mor-
phism onto a surface. Hence A is a nonsingular irreducible curve with g(A) =

I + -(A, A + Ky*) = 1 + (A2) because (A9 T) = 0 by Lemma 2.2, (3). Note that

h°(Y*9 A) = N+i = 2 + ^(A2) by Lemma 2.2. Using the fact q(Y*) = 0 and

considering the cohomologies of the following exact sequence

(2.3) 0 -> &Y* -+ (9Y*(A) -> GA(A) -> 0 ,

we can obtain ft°(7*, A) = 1 + h°(A9 AIA) and the following:

hl(Y*9 A) + X(0Y*) = h°(Y*, KY. -A) + g(A) + 1 - l-(A2) .

Since h°(Y*9 KY* - A) = fc°(F*, - T) = 0 and since x(0y*) = 1 + pg(Y*) = 2 +

-(A2), we obtain H\Y*9 A) = 0. This proves (2).

Definition 2.4 Let T be a reduced, effective divisor on a nonsingular
surface W and let P be a singular point of T with multiplicity four. Let
<r.W'-*W be the blowing-up of the point P and set E := a~1(P). Then P
is said to be a simple quadruple point of T if the following two conditions
are satisfied.

(1) Each point Q of E n o'(T) is a smooth or double point of a'(T).
(2) If geEna'CF) is a double point of tj'(T), then either at least one

tangent of a'(T) at Q is different from that of E or the point Q of a'(T) is
an ordinary cusp with E as its tangent.
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We shall consider when pairs (7*, T) treated in Lemma 2.3 satisfy the
hypotheses of Theorem A. In view of Lemma 2.2, it is equivalent to asking
when T is a reduced, effective divisor with only simple normal crossings. A
sufficient condition will be found in the following Proposition 2.5. More
precisely, we shall give a relationship between the configuration of T and that
of Bb near a quadruple point.

Proposition 285. Assume that mb = 4 or 5 for some b > 0 and mt = 2 or
3 for every i ^ b. Set T := y*(0b+2...crj*£fe+1. Then we have:

(1) T is a reduced divisor if and only if Pb is a simple quadruple point
of Bb. If this is the case, then Bb+1 = Gb+lBb and T is connected.

(2) Suppose R is reduced. Then all possible configurations of Eb+1 + Bb+1

near the intersection points Eb+l n Bb+1 and the corresponding configurations of
T are given in the Table 1 below.

In particular, T has only simple normal crossings if and only if T is one

of the types I2, /3>3, /4>2t, /a,3,2* and ^3,2^3,2d- V ^s ls ^e case> ^en T is
an elliptic curve or a loop of nonsingular rational curves.

We shall use the following notations in the Table 1. Set F:=
y*(crb+2...an)'Eb+l and A := T — F. We give a decomposition into irreducible
components: F = £|=1 Fi9 A = £J=1 4r Then s = 1 or 2, and A is void or
consists of one or two chains of ( —2)-curves. More precisely, one of the
following five cases occurs:

Case (2-1). T = F, T is an irreducible curve with pa(T) = I and (T2) =
— 2, and T is one of the types /2, /2 and /2.

Case (2-2). T = F, T consists of exactly two (— 3)-curves F1 and F2 with
(7~i, F2) = 2, and T is one of the types J3 3 and J3)3.

Case (2-3). F is a ( —4)-curve, A is a chain and T is one of the types

/4,2<, /4.2 (*=1) and /;i22 (t = 2).
Case (2-4). F is a chain with two (— 3)-curves, A is a chain and T is one

of the types /3 > 3 > 2 t and I3j3j2 (t = I).
Case (2-5). F consists of two disjoint ( —3)-curves, A consists of two dis-

joint chains and T is of type /3 ,2c> 3 > 2d with t = c + d.
In the Table 1, though Bb+1 is drawn as if it is reducible, it might be irreduc-

ible. The intersections of irreducible components of T and the intersection of
Eb+l with Bb+1 are easily obtained by the above description, the configurations
in the Table 1 and the fact that (KY* +T,T) = 0, (T2) = -2 and (Eb+l9 Bb+1) =
4. A component of Eb+1 + Bb+l9 marked by a symbol * on it, is the (— l)-curve
£b+1. By a bracketed number (a), between two local irreducible components
of Eb+1 + Bb+1 at a point P, we mean that two local components meet each
other with order of contact a at the point P. By a pair (2, a) of integers,
which is written over a cusp Q of a component of Bb+l9 we mean that the cusp Q
is of type (2, a). Self intersection numbers of components of T are also given.
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Table 1

No E b + 1 + B b + 1 Type of T

_

r , . ^ ^ \ 1 3 . 3
/ rX-3

-2

r

-*- i;

-2
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Table 1

No Type of T

-*-

(a)

-4

-2

(t = 2a-1 > 1)

— *-

-2
(2, a)

-4 (t = a - 1 > 2)

-3 T -2

(a) (t = 2 a -1> 1)
-I 1-

-3 r

10

(2, a)
-% _„«_

-3 T -2

(t = a - 1 > 2)

-I 1--3 r

-2
/-

U.2

-I4

r
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Table 1

No E b + 1 + B b + 1 Type of T

\/
(2,3) / -4'r

-*-

-2/A A\ -2

12
(af

-2

-2

-3

-3

_2

A r ' -2

(c = 2 o c - l > l )

-*-

(a)

(2,P) -2

-2

-3

-3

_2

3.2c,3,2d

-2

(c = 2 a - l > l )
(d = P - 1 > 2)

•*'
14

-2

-3

-3

-2(2, a) (2,p) L_. j _ ^ - . T
— I3,2c,3,2d

(c = a -1 > 2)
(d = P -1 > 2)

-2 A r ' -2"

15 —*- (3) Ii.3.2

"^^^ r
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Proof of Proposition 2.5. By Lemma 2.3, (1) and by Lemma 2.2, (3), we
see that (T2) = -2 and (KY* + T, 7J) = 0 for every component 7J of T. Note
that T is reduced if and only if (cr&+2 . . . a"n)*Eb+i is reduced and contains no com-
ponents of B. If mb = 5, then Bfc+1 = crb*+1B& - 2[mb/2]£b+1 = ab+1Bb + JBb+1,
5 > (<7b+2 . . . <Jn)'B6+1 > (dfc+2 . • • vJEb+i and (a&+2 . . . (7n)*£5+1 > (<75+2 • • • (rJEb+l .
This implies that T is not reduced. So, in order to prove Proposition 2.5,
we may (and shall) assume mb = 4. Then Bb+l = vb+1Bb, (Eb+i, Bb+l) = 4 and
(<rb+2...(7M)'£b+1 is not contained in B by the definition.

Claim (1). (crb+2...<7n)*£b+1 has no common components with B if and
only if each point of Eb+1 n5b+1 is a smooth or double point of Bb+1.

Suppose Q e Eb+1 n Bb+1 is a singular point of Bb+1 with multiplicity > 3.
Changing the order of blowing-ups a-s (i > b + 2) if necessary, we may assume
that Q = Pb+1. Then the multiplicity of Bb+l at Pb+1 is equal to mb+l by the de-
finition of mjs. Hence mb+1 = 3 by the assumptions. Then Bb+2 = ffb+2Bb+1 +
Eb+2, where Eb+2 = crb^2(Pb+l) < cr£+2Eb+i. So, B > (<rb+3 . . . an)'Eb+2 and
(<7b+2...crn)*£b+1 > (c7b+3...(jn)'£b+2, which implies that there is a common com-
ponent in B and (ab+2...on)*Eb+i.

Suppose Pb+l E Eb+l r\Bb+l is a double point of Bb+1. Then B6+2 is equal
to Gb+2Bb+1 and does not contain the (— l)-curve Eb+2 = ^&~+2(Fb+1). Moreover,
each point of Eb+2nBb+2 is a smooth or double point of Bb+2.

The Claim (1) follows easily from the above arguments. By making use
of the Claim (1), we can prove Proposition 2.5.

Remark. Actually, after changing the order of blowing-ups G-S in the
process of the canonical resolution if necessary, we may assume that either
b = 0, m0 = 4 and m{ = 2, 3 (i > 1), or b = 1, P0 = cr^FJ, m0 = 3, mx = 4 and
m. = 2, 3 (i > 2).

If the second case above occurs, then E2 + B2( = E2 + <r2£i +
given in one of the rows No. 2, No. 4, No. 5, No. 6, No. 7, No. 10 and No.
11 in the Table 1.

The following Proposition 2.6 concerns the existence of surfaces treated
in Theorem D, (3), which is stated in the Introduction. We retain the hypoth-
eses and notations before Definition 2.1. We assume furthermore that N = 2
and W=W = P2. In this case, Fe|0p2(4)|, B is a reduced curve of degree
eight in P2, y: Y-»P2 is a double covering defined by a relation G(B) ^ 0(F)®2,
and G: 7* -» Y is the canonical resolution associated with the double cover-
ing y.

Proposition 2.6. Assume that N = 2, W = W = P2, mb = 4 /or some b > 0
mt = 2 or 3 for every i ^ b and assume Pb is a simple quadruple point of
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Bb. Assume further that T = y*(ab+2...an)*Eb+1 has simple normal crossings
and e(T) < 7. Then either (7*, T) fits the Case (3-1) of Theorem D, or 7*
contains only one (—incurve E and (X, 5(T)) fits the Case (3-2) of Theorem B
where 8: Y*-> X is the blowing-down of E to a nonsingular point of S(T).

Proof. By Lemma 2.2, the pair (7*, T) satisfies that pg = -(Xy. + T)2 +

2 = 3, KY* + T is a nef and big divisor and &\KY.+T\: Y* -»P2 is a surjective mor-
phism of degree two. Moreover, c2(7*) = 12#(0y*) - (K$*) = 12(1 - 0 + 2) -
0 (cf. Lemma 2.3).

If K(Y*) = 1, then 7* is a minimal surface (cf. Lemma 2.3) and hence
(7*, T) is a minimal log surface of general type. Thus, (7*, T) satisfies all
the hypotheses in Theorem D and fits the case (3-1) there. Indeed, we have

(c?) = £C2 - 2 + ^- where oc = 6 + e(T).

Suppose ?c(7*) ^ 1. Then K(¥*) = 2 (cf. Lemma 2.3). Let S: Y* ^ X be
a birational morphism onto a nonsingular minimal model. Then we have:

(2.6) 1 < (5*K\) < (d*Kx, KY*+T)-l< (KY* + T)2 - 1 = 1

because KY* + T is 1-connected and KY* + T — 8*KX > T > 0. Thus, every
inequality in (2.6) becomes an equality. So, (Kx) = 1 and d is the blowing-
down of a single ( —l)-curve E on 7* because (Kjft) = 0. Moreover, 0 =
(KY* +T- d*Kx, KY* + T) = (E, KY* + T) (cf. Lemma 2.2, (3)). Hence (£, T) =
1 and Q:= 8(E) is a nonsingular point of 8(T) (cf. Table 1). Furthermore,
d*(Kx + 5(7*)) - Kr* + T and ̂ ,^+r| - ®lKx+d(T)l o <5. Thus, (X, 5(7*)) satisfies
all the hypotheses in Theorem D and fits the Case (3-2) there. Indeed, we have

c2(X)( = c2(Y*) -1) = 35 and (c2) = l-c2 - 2 + ̂  where a = 7 + *(5(7*)).

Remark. (1) For every 1 < n < 15, we can actually construct a pair
(7*, T) (or equivalently a reduced curve B of degree eight in P2) such that
T is given in w-th row of the Table 1.

(2) The second case in Proposition 2.6 occurs if and only if the second
case in the Remark to Proposition 2.5 occurs. If this is the case, then E := y(E)
is the proper transform on W of the ( —2)-curve o'2El on W2. Hence E is also
a ( —2)-curve and contained in the branch locus B of the double covering
fm Y* -> W*.

We shall apply the above arguments on (7*, T) to the log surfaces in
Theorem A. For these surfaces, the morphism &\KV+D\ is a composite of a
morphism 0: F-» W and the resolution y.W-tW. We shall assume further-
more that $^D = 0 and (F, D) is a minimal log surface of general type. Then,
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with notations of Lemma 1.4, V = X and g: V-+Y is a minimal resolution.
We shall also use the notations set before Definition 2.1. Let a: Y* -> 7 be
the canonical resolution of Y associated with the double covering y:=h:Y->
W9 the latter being defined in Theorem A. Then there is a birational morphism
d: 7* -> V satisfying $od = aoy = yoa.

Lemma 2.7. Let (V, D) be a minimal log surface of general type satisfying
the hypotheses of Theorem A and the condition $^.D = 0. With the above
notations and the notations in Lemma 2.2, we have S*D = Rd + T, where Rd is
the ramification divisor of d. In particular, D = d^T and (T2) < (D2) < 0.

Proof. Note that Kv + D - <£*H with If e \rf*G)w(l)\. Hence 5*(KV + D) ~
y*a*H - KY* + T ~ <5*KF + ^ + T (cf. Lemma 2.2). So, 5*D ~ K, + T.
Thus, two divisors are equal because D and hence <5*D have negative definite
intersection matrix by the condition 0^D = 0.

We end this section with the following result which will imply Theorem
B in the Introduction.

Lemma 2.8. Assume the hypotheses of Theorem B. Then we have:
(1) We have q(V) = 0, pg = pg(V) + 1 and (K2) > (K2*) = 2(pg - 3) > 0.

Moreover, we have mb = 4 or 5 for some b > 0 and mi = 2 or 3 for every i ^ b.
(2) Suppose V = 7*, i.e., d = id and D = T. Then Pb is a simple quadruple

point of Bb. Moreover, the divisor D has one of the types I2, 13>33 I4,2*? ^3,3,2*
and /3,2<%3,2d given in the Table 1 of Proposition 2.5. In particular, (D2) = — 2.

Proof. Let C be a general member of |J£F + D|. Then we have
0(C) = (C2)+1. By Theorem TZ, we have 1 + pg(V) < hl(V, Kv + D) +

l(Gv) = h°(V,-D) + g(C)+l-^(C2) = 2 + ^(C2) = pg. The condition

Hl(V,Kv + D) = Q implies that q(V) = 0 and 1 + pg(V) = x(0v) = pg. We
shall apply Lemma 2.2. In the present case, we have N = pg — 1. Then

we obtain z(<9v) = x(&Y*) = pg + 1 - ^=o [m,/2]([m,/2] - 1). Hence

Z"=o [mi/2]([mi/2] - 1) = 2. So? mb = 4 or 5 for some b > 0 and mt = 2 or 3
for every z ̂  b. Since F is a minimal resolution of Y9 we have (K2,) > (K2*) =
2(pg - 3) > 0 by Lemma 2.3, (1).

Suppose V = Y*. Then D = T and T is a reduced, effective divisor with
only simple normal crossings. Then (2) follows from Proposition 2.5.

Remark. If K(V) = 1, then V = 7*, pg = 3 and V is a minimal surface.
Indeed, K(V) = 1 implies that (K2,) < 0 and hence (K2,) = (Xj.) = 2(p^ - 3) = 0
by the proof above. Then follows the assertion.
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1
§3. The Inequality (cf ) > -c2 - 2

In the present section, we shall consider minimal log surfaces (F, D) of
general type. Sakai [8; Theorem 7.6] proved:

Theorem 3-L Let (F, D) be a minimal log surface of general type. Then
the inequality (cf ) < 3c2 holds true.

We are going to find an inequality of the form (cf ) > yc2 + 8 for two
rational numbers y (>0) and 5. This, together with the inequality in Theorem
3.1, gives an effective restriction on the region of log surfaces (F, D) of general
type to exist.

In the proof of Theorem C, we shall use the following notations. Let
e(— 1) be the largest reduced, effective divisor whose support is a union of con-
nected components of D satisfying either one of the following two conditions:

(1) A{ is an elliptic curve with (Af) = — 1.
(2) A{ is a loop of nonsingular rational curves A^s with (A^) = — 3 and
= -2 for every j > 2.

Now we can prove Theorem C by making use of Sakai [8; Theorem
5.5]. Note that (cj) - (Kj) = (D, 2KV + D). Note also that c2 - c2(V) =
-e(D) = r - £?=1 e(Di) = r + £?=1 (2g(Di) -2) = (D, Kv + D) - r. The assump-
tion that D + 0 implies that H2(F, Kv + D) ̂  H°(V, -D) = 0. Then, by the
Riemann-Roch theorem, we have:

pg = V(V9 KV + D) + i(D, Kv + D) + ̂ {(Kv) + c2(V)}

= hl(V, KV + D) + {(K2
V) + c2 + r + 5(D, Kv + D)}

= c2 - -(c\) + V(V, Kv + D) + {r + 8(A Kv + D) + (Kv, 4KV + 3D)}.

In order to finish the proof of Theorem C, we have only to show that
(KV9 4KV + 3D) > 0. Sakai [8; Theorem 5.5] proved that \4Ky + 3D| ^ ^ and
Bs\4Kv + 3D | c Supp e(- 1). Writing \4KV + 3D| = |L4| + G45 where L4| and
G4 are respectively the movable part and the fixed part, we have Supp G4 ^
e(— 1). By the definition of e(— 1), we have (KV9 E) = 0 or 1 for every com-
ponent E of s(-l). Thus, we obtain (Kv, G4) > 0 and (KV9 4KV + 3D) =
(Kv, L4) + (KV9 G4) > 0 because K(V) > 0 by the assumption. Theorem C is
proved.

We now consider the case where \KV H- D| is not composed with a pencil.
Our goal is Theorem D. We shall use the following notations.
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Write \KV + D\ = \C\ + G with the movable part \C\ and the fixed part
G. We choose C to be a sufficiently general member of |C|. If x^ is a base
point of |C|, let m1 be the multiplicity of the curve C at xx and let fa-V^-tV
be the blowing-up of the point xx. If x2 is a base point of |/i'(C)|, let m2

be the multiplicity of the curve //(C) at x2 and let /2: V2 -> Vl be the blowing-
up of the point x2. Continue this process. Then at the b-th step for some
b > 0, the linear system |/'(C)| is base point free. Here we set V = Vb and
f = f1...fb:V'-*V. Then pg = h°(V',f(Q) and (/'(C))2 = (C2) - £?-im?.
Since general members of |/'(C)| are nonsingular, the geometric genus 0(C) is
equal to pa(f'C). Note that ^/'(pf- P" -^P^ (N := pg — 1) is a morphism onto
a surface W.

In Lemmas 3.6 and 3.7 below, we shall use the following analogue of
Beauville [1; Lemma 5.5] and its Remark and Corollary.

Proposition 3.4 Let (V, D) be a log surface of general type such that
Kv + D is nef and $>\KV+D\ is a rational map onto a surface W in PN

(N := pg - 1). Let H be a general hyperplane of W and set h = h°(H9 ®H(H)\
h = h°(f'C, Orc(fC)\ g = g(H) (the geometric genus) and d = deg W = (H2).
Then pg < h + 1 < h + 1 and d-deg 0]Ky+Dl = (f'C)2 < (C2) < (Kv + D)2.

Suppose furthermore pg > -(7 + d-deg &\Ky+D\). Then one of the following

cases occurs.
(1) deg @\KV+D\ = 2 and W is birational to a ruled surface.

(2) deg ®\KV+D\ = 1, d = g-l>5 and pg = h + 1 = h + 1 = -(7 + d).

Moreover, @f,c(2f'C) is isomorphic to the canonical line bundle of f'C.

(3) deg ®lKv+D\ = 1, g < d < 2g - 2 and h < -d + 1.

(4) deg &\KV+D\ = 1, d>2g — 1 and h = d + 1 — g. Moreover, K(V) = — oo.

Proof. Set Z:=/'(C). With the above notations, <£|z|: F ->P* (N =
Pg—l) is a morphism onto a surface W. Hence d-deg &\z\ = (Z)2 < (C2) <
(C, Kv + D) < (Kv + D)2. Considering the following exact sequence:

we obtain pg = h°(V, Z) = h°(W, H) < 1 + h. Let cp be the restriction map of
the morphism &\z\ to a general member /'(C) of |/'(C)|. Then H = (p(Z) is
a general member of |H|. Note that <p*(9H(H) ^ ^Z(Z) and hence h < h.

Assume further pg > -(7 + d • deg <P!Z|). Hence 3pg — l>d- deg <P|Z! >

(pg — 2) deg <P|Z| because d > N — 1. So, deg 0\z\ = 1 or 2. In the case



700 DE-QI ZHANG

deg 0|Z) = 2, we assert that W Is birational to a ruled surface. Indeed, if the
assertion is false, then d = deg W > 2(N — 1) (cf. Beauville [1; Lemma 1.4])
and hence 3pg — 1 > 4(pg — 2). This is a contradiction.

We now consider the case where deg <&\z\ = 1. Then <p: f ' ( C ) -> H Is a bi-
rational morphism. So, we have g(C) = g(H) = g, (Z)2 = (H2) = d and g(Z) —
1 — deg Z|Z = g — 1 — d. We have the following three cases.

Case I < d < g — 1. We shall show that the Case (2) occurs. Applying
1 1 _

Beauville [1, Lemma 5.1], we obtain h < -(4 + deg Z(z) = -(4 + d). So, pg <
J5 3

h + 1 <h -h 1 < -(7 + d). By the assumption, we must have pg = h+l = h +

1 and h = -(4 H- d). By Beauville [1; Remark 5.2], we obtain d = g — 1 and

Note that 0)H| and hence #|0H(H)| gives rise to an isomorphism of H onto
its image. So, if h = 2 then H ^ P1 and d = 1. This contradicts the equality

h = -(4 + d). Therefore, we must have h > 3 and d > 5. Thus, all the asser-

tions in the Case (2) are verified.
Case g < d < 2g — 2. Applying the Clifford index theorem (cf. Martens

[6; §2.31]), we have h<-d+L Hence the Case (3) occurs.

Case d > 2g — 1, i.e., (Kv>9 Z) < — 1 in view of the genus formula. Then
K(V) = — oo. Applying the Riemann-Roch theorem, we obtain h = d + 1 — g.
Hence the Case (4) occurs.

Remark. (1) Suppose deg &\KV+D\ = 1. Then we have 2(g — I — d) =
2(pa(Z) - 1 - (Z)2) = (Z, Kv, -Z) = (Z, f*Kv + I?=1 Et - f*C + £?=i m^) =
(C, KF - C) + £?=i m,(m, + 1) > (C, ^F - C). Here £, := (fi+1 . . ./^/r1 W is
the total transform on F' of the (-l)-curve /"H^i) on *!•

(2) If the Case (3) or (4) occurs, then g — 1— d < — 1 and hence
(C, Kv - C) < -2. Indeed, in the Case (4), we have g-l-d< Min {g - 2, -0}.

Corollary 3.5. Let (F, D) be a log surface of general type such that Kv H- D

is n*/, ic(F) > 0, dim ®lKy+Dl(V) = 2, pg =
 l-(c2) + 2 and (D, Kr + D) = 0. Tten

^IXK+DI ™ a morphism of degree two onto a normal, rational surface of degree
N-l (N:=pg-l) in P*.

Proof. In view of Theorem TZ in the Introduction, we have only to show

that deg *|KK+D| = 2. Note that pg = -(cf) + 2 > -(7 + c2) > -(7 + d-deg ̂ F+D|).

So, the hypotheses of Proposition 3.4 are satisfied. Hence the Case (1), (2),
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(3) or (4) in Proposition 3.4 occurs. Since C ~ Kv + D and (C, Kv - C) =
(Kv + D, -D) = 0, the Case (3) or (4) is impossible by the Remark, (2) above.

If the Case (2) occurs, then we have -(c?) + 2 = pg = -(7 + d) < -(7 + c\). So,
La D J

(c2) = 2, pg = 3 and &\KV+D\: F-»P2 is a birational morphism. This contradicts
the assumption K(¥) > 0. Thus, the Case (1) occurs and deg &\KV+D\ = 2.

Theorem D in the Introduction will consist of the subsequent two lemmas.

We consider first the case where pg = -(e2) + -. Set N = pg — 1.

Lemma 3.6, Assume the same hypotheses as in Theorem D and assume

that pg<-(cl) + -. Assume further that pg = —-c2 — 7(^1) + 7^ w^ an *nte~
2* 2, JL A ^ 1 ̂

ger jS< 11. Then the following three assertions hold.

(1) H1(V,KV + D) = 0, (K2) = -(P - e(D) + 3D2) and every connected

component of D is an elliptic curve or a loop of P1?s.

(2) P>p-e(D)>

(3) Suppose pg = -(cl) + -. Then D is connected and C, replaced by a

general member of \C\ if necessary, is a nonsingular irreducible curve. Moreover,
one of the following cases takes place:

(3a) Bs|C| = ^, G = D = e(— 1) and V is a minimal surface of general type

satisfying q(V) = 1 and pg(V) = -(Ky) + 2. Moreover, $>\KV\ is a morphism of

degree two onto a normal, rational surface of degree N — 1 in PN.
(3b) We have q(V) = 0, pg = pg(V) + 1 and Es\Kv + D\ = (f>. Moreover,

either pg = 3 and &\KV+D\: V-+P2 is a morphism of degree 3, or pg = 4 and
$\KV+D\ JS a birational morphism onto a quintic surface in P3.

(3c) G = 0, q(V) = Q, pg = pg(V) + 1 and \C\ contains a base point P.
Moreover, let f: V -> V be the blowing-up of the point P then \f'(C)\ is base
point free. Finally, ®\f(C)\ is a morphism of degree two onto a normal, rational
surface of degree N — I in PN.

Proof. Replace C by a general member of |C|. Then C is a reduced,
irreducible curve because we have dim &\C\(V) = 2 by the assumption in Theo-

rem D. Write pg = —c2 (c\) H with an integer jS < 11. By the proof

of Theorem C, we have Hl(V,Kv + D) = Q and ft = r + 8(D, Kv + D) +

(Kv, 4KV + 3D) > r + 8(D, Kv + D) > 8(D, Kv + D) > 0. Note that -(D, KV + D) =
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l((9(Kv 4- D)) - x(flV) E Z. So, we must have

(D, Kv + D) = 0, £ = r + (KF, 4KF + 3D).

Then follow (1) and (cf) = -(/? - e(D) — D2) because r = e(D) in our case.

Suppose Bs|3J£F + 2D\ is not contained in Supp e(—1). Then (c2) = 1 or

2 by Sakai [8; Theorem 5.5]. This leads to pg < ~{c\) + - < 3, which con-

tradicts the hypothesis. Therefore, \3KV + 2D\ ± $ and Bs|3Kr + 2D\ e
Supp e( —1). As in Theorem C, we can prove that (KF, 3JCF + 2D) > 0. So,
3 1
-(/? - r + 3D2) > 2(D2) and hence $ - r > -~(D2). On the other hand, we

have pg<-(p-r- D2) + - and hence -(D2) > 8 (pg - -} - (0 - r). Then
8 2 \ 2/

the assertion (2) follows.

We assume furthermore that pg = -(c2) + - and shall verify the assertion

(3). We use the same notations as those before Proposition 3.4 and set Z :=
/'(C). Note that 0\z\: 7'->PN is a morphism onto a surface W.

Set L := Z,z. Then 0 < deg L < 2gf(Z) - 2 because fc(7') > 0. Hence the
Clifford index c(L) := deg L + 2(1 - h°(Z, L)) > 0 (cf. Martens [6; §2.31]).

Namely, /i°(Z, Z|z) < -(Z2) + 1. Consider the cohomologies of the following

exact sequence:

(3.6) 0 -» Gv,-+ 0V,(Z) -* 0Z(Z) -> 0 .

^ I = P9 < 1 + h°(Z,Zlz) < 2 + l-(Z2) < 2 + 1(We obtain -(c2) + - = p, < 1 + /*°(Z,Z|Z) < 2 + -(Z2) < 2 + -(C2) <

2 + ^F + ^)2- Hence /i°(K, C) = pg = 1 + fc°(Z, Z,z) and one of the follow-

ing three cases occurs. In order to prove the assertion (3), we shall consider
these cases separately.

Case (1) (Kv + D)2 - 1 = (C2) = (Z2) and fe°(Z, Z,z) = 1 + ^(Z2).

We shall show that the Case (3a) occurs. The condition (C2) = (Z2) implies
that Bs|C| = ^ and V = V. In particular, general members of |C| are non-
singular. The condition 1 = (Kv + D)2 - (C2) = (C, G) + (G, Kv + D) implies
that G ^ 0, (C, G) = 1 and (G, Kv + D) = 0 because JCF + D = C + G is a
nef and big divisor and is hence 1-connected. Note also that (G2) =
(G, Kv + D — C) = —1. Hence G is a reduced divisor and a connected



NOETHER'S INEQUALITY FOR SURFACES 703

component of e(— 1) (cf. [8; Lemma 4.12]). In particular, G is a connected
component of D.

We claim that hl(V, C) = h°(V, Kv - C) = 1. Indeed, considering the co-
homologies of the following exact sequence:

0 -» 0(Q -» (9(KV + D) -» ®G(KV + D) -> 0 ,

we obtain that H*(V, C) ̂  H°(G, ®G(KV + D)) and H°(V, Kv - C) ̂  H2(F, C) ̂
H^G.^Xy + D)) because fc°(F, C) = fc°(F, KF + D) = p,, ff^K,^ + D) = 0
and H2(F, KK + D) s H°(V, -D) = 0. Note that the dualizing sheaf COG of G
is isomorphic to ®G and note that 0G(KF + D) = ®G(KV + G) ̂  COG. Then the
claim follows.

On the other hand, we have Kv — C ~ G — D < 0. Hence we must have
D = G and C ~ KF. Then q(V) = 1. This fits the Case (3a). Indeed, since

pg(V) = -(Ky) + 2 >-(7 + K'y) in the case pg(F) > 4 and since V is not a

rational surface, ^|KK|: F-»PN is a morphism of degree two onto a normal,
rational surface of degree JV — 1 in P* (cf. Beauville [1; Theorem 5.5]).

Case (2) (Kv + D)2 = (C2) = (Z2) and h°(Z, Zjz) = \- + ^(Z2). We shall

show that the Case (3b) occurs. As in the previous Case (1), we can prove
that (C, G) = 0, G = 0, C - Kv + D, Bs|C| = (/>, V = V and that general mem-

bers of |C| are nonsingular curves with genus g(C) = I + -(C, C + Kv) = 1 +

(C2). Considering the cohomologies of the exact sequence (3.6), we obtain:

1 + pg(V) < V(V, C) + x(0v) = h°(V, KV-C) + g(C) - (C2) + h°(C, C|c)

Since HX(K Kv + D) = 0, we must have q(7) = 0 and pg = 1 + pg(V).

Claim (1). D is connected.

Considering the cohomologies of the following exact sequence:

0 -> 0(KV) -> ̂ (KF + D) -> ̂ D(KK + D) -> 0 ,

we obtain an exact sequence

0 -> H°(V, Kv) -> H°(V, Ky + D)^ H°(D, (Kv + D\D) -> 0

because g(F) = 0. Note that (9D(KV + D) is isomorphic to the dualizing sheaf
of D, which is trivial. Hence we have fe°(D, 0D) = pg-pg(V)=L So, D is
connected.
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To show that the Case (3b) occurs, it remains to verify the last assertion
in the Case (3b). Note that deg ®lKv+Dl = (Kv + D)2/deg W = (2pg - 3)/deg W
which is an odd integer. If pg = 3, then deg &\KV+D\ = 3-

Suppose pg > 4. Then we have pg = -(cf) + ->-(? + cf) = -(7 4- deg W-
JL &* D 3

deg #|KK+D|). Hence the hypotheses of Proposition 3.4 are satisfied. So,
deg ^|KF+D| = 1 and the Case (2), (3) or (4) in Proposition 3.4 occurs. Since
(C, Kv- C) = (Ky + D, -D) = 0, only the Case (2) in Proposition 3.4 is possi-

ble by the Remark, (2) to Proposition 3.4. Hence we have -(c2) + - = pg =

-(7 + deg W) = ^(7 + cf). This implies (cf) = 5 and p0 = 4.

Case (3) (Kv + D)2 = (C2) = (Z2) + 1 and h°(Z, Z|z) = 1 + ^(Z2). As in

the previous case, we can show that the Case (3c) occurs.

In the following lemma, we shall consider the case where pg = -(cf) + 2.

Set N:=pg- 1.

Lemma 3.7. Assume the same hypotheses as in Theorem D. Assume further

that pg = -(cf) + 2 = — c2 — T(CI) + T^ far an integer a < 11. Then we have:

(1) pg = 3, D is an elliptic curve or a loop of Pl9s, the hypotheses of
Theorem B are satisfied and V is a minimal surface. Hence we have a birational
morphism d: 7* -> V (cf. Lemma 2.7).

(2) One of the following two cases occurs.
(2a) K(V) = 1, V= 7*, (D2) = -2 and a = 6 + e(D) > 6.
(2b) K(V) = 2, (K2) = 1, (D2) = -1, a = 7 4- e(D) > 7, 5 is tfe blowing-

down of a unique ( — \}-curve on 7* to a nonsingular point of D and T = <5'(D).

Proof. By Theorem TZ in the Introduction, \KV + D\ is base point free
and every general member C of \KV + D\ is a nonsingular irreducible curve of
genus >2. As in Lemma 3.6, we can prove that Hl(V, C) = 0, (D, Kv + D) =

0, a = e(D) + (Kv, 4KV + 3D) > e(D) > 0, (K2) = l(a - e(D) + 3D2) and (cf) =

-(a - e(D) - D2). Note also that g(C) = 1 + (C2). By Corollary 3.5, <P|C|: F -
1
4(

P^ is a morphism of degree two onto a normal, rational surface W of degree
N — 1. Then the hypotheses of Theorem A are satisfied. In particular, <P,C|
is the composite morphism of a morphism 0: V -* W and the minimal resolu-
tion ij:W-+W. Thus, to finish the proof of the assertion (1), we have only
to verify that pg = 3, V is a minimal surface and the claim below. Indeed,
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as in Lemma 2.8, Theorem TZ implies that q(V) = 0 and pg = pg(V) + 1. So,
we can prove that D is connected as in Claim (1) of Lemma 3.6.

Claim. D is contractible by $.

Suppose, on the contrary, that $^D + 0. Then W is a cone in PN and
W = £N-i (cf. Theorem A). In particular, pg = N + 1 > 4. Since deg &\c\ = 2
and since D is an elliptic curve or a loop of Pl5s, we have 0^D = 2MN-1

with the minimal section MN_^ of EN~i because the condition (D, Kv + D) = 0
implies that rj^0^D = 0\C\*D = 0-

In the case where D is an elliptic curve, we have <&*MN-i = D + 0 with
an effective, integral, exceptional divisor 0 of 0.

In the case where D is a loop of Pl9s, we write D = ^?=1 Di9 where
DI$ are irreducible components and (Di9 Di+1) = (/)„, DJ = 1 (1 < i < n — 1). If
0^Dq = 2MN-1 for some q, then <i>(D — Dq) is a single point P and P is a
singular point of &(Dq). This contradicts that MN^^ is nonsingular. So, we
may assume that d^UM = 3>^(DP) = MN^ and &*(D - D1 — Dp) = 0 for some
p > 1. Then there is an effective, integral, ^-exceptional divisor 0 and there
are nonnegative integers 5{ such that dl = 6p = 1, 0*MN^ = £"=1 d^ + 0 and
D and 0 have no common components.

In both cases, note that 0 is also contracted by ^C|, i.e., (<9, Kv + D) = 0.
Note also that 0 has negative intersection matrix and contains no (— l)-curves
because (V, D) is minimal. Hence 0 consists of ( — 2)-curves and is disjoint from
D. Thus we have 0 = (0, 0*MN^) = (<92). Hence 0 = 0, and 0*MN_^ = D or
£"=1 <5fD; in the case where D is an elliptic curve or a loop of PlJs, respectively.

We assert that ^MN^ = D in both cases. Suppose this assertion is veri-

fied. Then we have (D2) = -2(N - 1) = -2(pg - 2) = -i(a - e(D) - D2) and

a > a - e(D) = -3(D2) = 6(pg - 2) > 12. This contradicts the hypothesis. So,
the claim is true.

It remains to show that 5t = 1 for every i when D is a loop. By the
minimality of (V, D) and by (Di9Kv + D) = Q, we have at:=-(D?)>2 for
every i. The fact 0 = ($*MN.l9 Dt) = (£?=i dtDi9 Dt) (i / 1, p) implies that $ > 1
because D is connected and S1=8p=l>09 and implies that 63( = a282 ~
d1>262-d1)>629 ..., 5P^6P^^'">S29 ^ > ( 5 n > 4 - i > " - > V i - So'
5f =1 for 1 < i < n. This proves the claim.

By virtue of the above claim, the hypotheses of Theorem B are satisfied.

Hence we have i(a - e(D) + 3D2) = (K2) > (K2*) = 2(pg - 3). So, 11 > a >

a - e(D) > 8(pg - 3) - 3(D2) > 3 + %(pg - 3). If pg > 4, then we must have
pg = 4, (D2) = -1 and (K2) = (K2*), i.e., V = 7*. This contradicts the result
(D2) = -2 in Theorem B. Therefore, pg = 3. If K(¥) = 1, then Lemma 3.7
follows from Lemma 2.8 and its Remark.
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Suppose K(V) =£ 1. Then K(¥) = 2 because pg(V) = 2 (cf. Theorem B). Let
T: V-+X be a birational morphism onto a nonsingular minimal model. By
Lemma 2.2 and Theorem B, (1), (Ky* + T)2 = 2 and (Xy*) = 0. By the proof
in Proposition 2.6, we have (Kf) = 1 and i o 6 is the blowing-down of a single
(— l)-curve £ on F* to a nonsingular point Q of t^T = r^D (cf. Lemma 2.7).
So, F = JT or 7*. Since (7, D) is minimal and since (£, J£y* + T) = 0 (cf.
Proposition 2.6), we have V = X. Note that (T2) = -2 (cf. Lemma 2.3). So,
(F, D) fits the Case (2b) (cf. Lemma 2.7) and Lemma 3.7 is proved.

Now we can prove Theorem D in the Introduction. Suppose pg < -(c\) +

1. Then pg > —-c2 — T(CI) + T by Lemma 3.6. Hence (cf) > -c2 — 1. So, to

prove Theorem D, we may assume that pg > -(cf) + -. Note also that

pg < -(cl) + 2 (cf. Theorem TZ). Suppose p3 = -(cf) + -. Then, by Lemma

i -a /r

3.6, we have pg = —-c2 — -(cj) -I——— with an integer a > 9. Hence

(cl) = -c2 — 2 H . Suppose p^ = -(cf) + 2. Then, by Lemma 3.7, we

have pg = —-c2 — -(cf) + — with an integer a > 6. Hence (c?) = -c2 —

2 H —. The assertions in (3-1) and (3-2) then follow from Lemma

3.7. Theorem D is thus proved.
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