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Abstract

We define *-Hopf algebras Fun(SLq(N, C;elt..., eN)), Fun(Oq(N, C; e1,..., %)) and Fun(Spq(n, C;
el5 ..., e2n)) as the real complexifications of *-Hopf algebras Fun(SUq(N; e l 5 . . . , e^)), Fun(Oq(N;
e l 5 . . . ,%)) and Fun(Spq(n; sl9..., e2n)) of [RTF] (for q > 0). Such construction can be done for
each coquasitriangular (CQT) *-Hopf algebra A. The obtained object ACR is also a CQT *-Hopf
algebra. We describe the theory of corepresentations of ACR in terms of such a theory for A.

§ 0. Introduction

Quantum groups have recently attracted the attention of many physicists
and mathematicians due to their remarkable properties. Some of these proper-
ties are similar to those of usual groups, while another properties, reflecting
noncommutativity of the corresponding algebras, are suitable only in the 'quan-
tum9 case. The theory is developed in two approaches. One of them ([Dr],
[J]) mainly deals with quantum universal enveloping algebras, while the second
([W1]-[W3], [Dr], [RTF]) investigates algebras of functions on quantum
groups. In the present paper we follow the second approach. Noncommuta-
tive algebras which we consider here are usually *-Hopf algebras (sometimes
we consider C*-structure on them, which makes the underlying objects topolog-
ical quantum groups), so we mainly deal with 'quantum algebraic real groups'.

Simple examples of such objects are the quantum SUq(2) groups (they are
described in [Wl], where the topological formulation is also given). Omitting
the *-structure in the corresponding algebras we obtain the algebras of holo-
morphic polynomials on the complex quantum SLq(2) groups. But the problem
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of finding all polynomials on real quantum groups SL^(2, C) (and commu-
tation relations between them) is not trivial. Its solution is given (for q e
(-1, !)\{0})in [PW] (cf. also [CSSW]). The *-algebra of SL,(2, C) contains
holomorphic polynomials and antiholomorphic polynomials. Commutation re-
lations between them are also provided. It became "folk" knowledge (cf. [Pu])
that the matrix which gives them is in fact (proportional to) the R-matrix
corresponding to SUq(2) (cf. Remark 7 of Section 3).

A natural problem arises: can we find real structures on all complex
quantum groups SLq(N), Oq(N) (denoted in [RTF] by SOq(N)) and Spq(n)9

which were presented in [RTF]? Is there any general construction, which,
when applied to real quantum SUq(2) groups, yields quantum SLq(2, C) groups?

An interesting solution of the last problem was given in [Ko]. It is
assumed there that we have a *-Hopf algebra A = (A, *, ̂ , K, e) with

a) unitary corepresentation u such that its matrix elements generate A
as an algebra

b) selfadjoint matrix R intertwining the second tensor power of u with
itself.

Then T. H. Koornwinder constructs a *-Hopf algebra B as free product of
Hopf algebra A and the conjugate Hopf algebra AJ" with some relations (cf
remark 2 after Thm 3.3). In the case where A is the algebra of polynomials
on SUq(2)9 B is (for some choice of R) the algebra of polynomials on real
quantum group SLq(2, C), q e (— 1,1)\{0}. Unfortunately, this procedure doesn't
control the 'size9 of B (choice of R is not unique).

The aim of the present paper is to solve our problem in a way which
would give full information about the obtained object, expressed in terms
of the initial quantum group. The main result is presented in Section 3.
There we define the real complexification ACR of *-Hopf algebra A as a vector
space A <g) Aj with *-Hopf structure given in terms of a given functional 3t
on A® A. More precisely, ACK is a *-Hopf algebra and we have an embedding
G c= GCR of corresponding quantum groups, but under the assumption that
the pair (A, Sf) is a coquasitriangular (CQT) *-Hopf algebra. In a special
case our construction and construction of [Ko] coincide (see remark 2 after
Thm 3.3).

CQT Hopf algebras were investigated in [Ha], [LT] (cf. also earlier papers
[Lyu], [Dr]). CQT Hopf algebras can be viewed as 'almost commutative'
Hopf algebras. In Section 1 of this paper we define a CQT #-Hopf algebra
as a CQT Hopf algebra (A, dt) with compatible ^-structure. Next we present
the relation between such objects and corresponding hermitian braidings, which
are families of J£-matrices (cf. [Lyu], [LT] in the case without *). Using it,
we can prove Theorem 1.4, which allows us to provide examples of CQT
*-Hopf algebras. For a given algebra defined by generators and relations
(which express the existence of intertwiners between tensor powers of the
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fundamental matrix of generators) we formulate purely arithmetic conditions
under which such algebras can be endowed with (CQT)(*-)Hopf or C*-
algebraic structure. Among conditions, the braid equation and compatibility
of its solution with relations defining the algebra play the fundamental role.
The proof uses methods which were presented (in the case of SUq(N)) in [W3]
and [W4].

In Section 2 we prove that the *-Hopf algebras Fun(SUq(N; el9..., BN)),
Fun(Oq(Ni e l 9 . . . , SN)) and Fun(Spq(rr9 s l 5 . . . , e2ll)) of [RTF] (q > 0; for SLq with
odd AT, Oq with even N and Spq we can also put q < 0) have a natural CQT
*-Hopf algebra structure related to the corresponding solutions of braid equa-
tion (similar results, without *, were given in [Dr], [Ha]; nevertheless we
provide an alternative proof which uses Thm 1.4 and shows that existence of
all considered structures follows immediately from the form of assumed rela-
tions). Moreover, if s1 = • • • = SN = 1, we describe topological structures on
the underlying quantum groups; in the case of SUq we have then topological
quantum groups SqU(N) of [W3].

In Section 3 we describe real complexifications of the above examples
obtaining real quantum groups SLq(N, C; e x , . . . , %), Oq(N, C'9sl9...9 eN),
Spq(n9 C;e1 ? . . . , e2n) (for q = I they don't depend on the choice of e1? . . . ,%;
in this case we obtain defining relations of SL(N, C), O(N, C) and 8p(n, C)). In
our examples all corepresentations of the initial Hopf algebra A are completely
reducible. In each such situation ACK has the same property. Moreover,
irreducible corepresentations WM of ACK are numbered by pairs (ya, uft) of
irreducible corepresentations of A (if one identifies objects, which are equiva-
lent). Dimensions of wa'^, the objects conjugate to them and multiplicities in
decompositions of tensor products of w*'^ are expressed in terms of the similar
data for A. In this way we describe representation theory of quantum group
GCK (or, in other words, the theory of 'real representations of the complexifica-
tion of G'), where G, GCR are underlying objects of A, ACR.

Furthermore, for each CQT *-Hopf algebra (A, St\ ACR can be also en-
dowed with a canonical CQT *-Hopf algebra structure. Thus we obtain an
infinite chain of CQT *-Hopf algebras. Notice that *-structure plays an im-
portant role in that construction. In the Appendix we provide basic notions
and facts concerning (*-)Hopf algebras.

According to [PW], there is a link between Fun(SUq(2))CR and double
group of SUq(2), q e (0, 1). It occurs that a similar situation takes place for
any CQT *-Hopf algebra such that all its corepresentations are completely
reducible (in fact we got the definition of ACR using that link). We are going
to present this material in a separate publication [P].

Throughout the paper we use the following notation. W denotes the
dual vector space of a vector space W. If a: W -> V is a linear mapping of
vector spaces then a': V -> W denotes the dual mapping of a. If a': V -» W



712 PlOTR PODLES

and f?\X' -*> Y' are dual linear mappings then we define their extended tensor
product by formula

a' ® p' = (a (x) jgy : (V ® X)' -+(W® Y)' (0.1)

(note that a', /?' determine a, /? uniquely). The same definition works also
for antilinear dual mappings. (If a:FF-»F is antilinear then the antilinear
dual mapping of a, a': V -» W, is given by [a'(f/)](w) = f/(a(w))5 r\ e F', w e W).

If F, W are vector spaces, then s = svw: F ® F F - > l ^ ( x ) F i s a linear map
such that

s(x <g> y) = y ® x , (0.2)

x e F, j; e W.
Let 4 be a vector space and v, w matrices with entries in A\veMm(A\

w e Mn(A\ m, neM. Then we define v (x) w e Mmn(,4 ® ^4) by

(v ® w)0.tW = % ® wj7 , (0.3)

i, fc = 1, ..., wi; 7, / = 1, ..., n. If ^4 is an algebra then we have also the
tensor product v © w e MTOII(y4):

i, k = 1, ..., m; j, I = 1, ..., n. We set i?®1 = v © ••• © v (I times, if 4 has
unity 1 then t;00 = (1)). Moreover, let A be a *-algebra. Then matrix i?
conjugate to v is defined by

Vtj = vy*9 i, ; = !, . • • ? w . (0.5)

We have

v © w = s^ (w © 0)5^ . (0.6)

We denote v*ij = vji*, f, 7 = !, ..., m. If S:.X-»y is a linear mapping of
vector spaces then formula

[5®»]0- = 5(t;0.)5 (0.7)

i, 7 = 1, ..., m, i; = (uy)™^! e MJX), defines a linear mapping S®w:MmpQ->
M j n w e l M .

Let \// e (Cfc)®r, r > 2. Then by using the canonical basis in Cfc denoted
by els ..., ek we obtain

k

^...^eC. We define arrays ^" = (^2...U?2 ..... ̂ i> ^+ = (^...wft,....^!.
i = 1, ..., Ic. If ^~ (^+, resp.), i = 1, ..., fc, are linearly independent, then we
say that ^ is left (right, resp.) nondegenerate (see [W3]). If both properties
are satisfied, we say that \j/ is nondegenerate. In that context we identify a
linear mapping L e Lin(C, (Ck)®r) with L(l) 6 (Cfc)®r.

We always include 0 into the set N of natural numbers.
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§1. CoquasitrlaeguSar *-Hopf Algebras

In this Section we introduce and investigate the notion of coquasitriangular
(CQT) *-Hopf algebra. In the following we use definitions and facts given
in the Appendix.

1.1 (cf. [Dr], [Ha], [LT]). We say that (A, 31) is a CQT*-Hopf
algebra if

1) A is a *-Hopf algebra
2) $ is an element of the algebra A2' = (A® A)' such that

$ is invertible , (1.1)

M13M239 (1.2)

M13&129 (1.3)

aA(a) = @-A(a)'@-1 , aeA', (1.4)

~ o ^ o * 2 = <^ (1.5)

(~ denotes complex conjugation in C).

Omitting condition (1.4) we obtain the definition of *-Hopf algebra A
with compatible hermitian element ^. Omitting the ^-structure and (1.5) we
get the definition of CQT Hopf algebra and Hopf algebra with compatible
element 0t (if we also omit (1.4)).

Remark 1. Quasitriangular Hopf algebras were introduced in [Dr], while
CQT Hopf algebras were investigated in [Ha], [LT] (neither paper uses *).

Remark 2. We can also consider a wider class of objects, with (1.5)
replaced by ~ o ^ ? o * 2 = A-^ for some X in the center of A2. For clarity
of exposition we put A = 1.

Remark 3. For the general *-Hopf algebra A there is no ^ satisfying
the conditions of the above Definition. If such & exists, it is not unique, in
general

Remark 4. According to (1.4) A is commutative iff ^ = 1 is admissible
(A is 'cocommutative' in this case). Therefore CQT *-Hopf algebras can be
also called quasicommutative *-Hopf algebras (due to (1.4) & describes 6non-
commutativity' of A).

The notion of CQT *-Hopf algebra is related with the following

Definition 1.2 (cf. [Lyu], [LT]). Let A be a *-Hopf algebra. We say
that a family {Rvw}v,weReP A *s a hermitian braiding of A iff

Rvw E Lin(Cdimv (x) Cdimw, Cdimw ® Cd i m w) , (1.6)
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(id ® S)RVW = RV'W(S ® id) if Se Mor(v, vf), (1.7)

(S ® id)R™ = R™'(id ® S) if S e Mor(w, w'), (1.8)

Rvw is invertible , (1.9)

(Rvw ® id)(id ® JT'W) = Rv®v'>w , (1.10)

(id ® K™')^™ ® id) = Rv>w®w>, (1.11)

JRUW 6 Mor(v ® w, w ® i?), (1.12)

sR™s = Rwv, (1.13)

v, w, i/, w ' E j R e p A (see (0.2)). Omitting the ^-structure and condition (1.13)
we get the definition of a Hopf algebra with braiding. Omitting condition (1.12)
we obtain the definition of a *-Hopf algebra with compatible hermitian fam-
ily. Omitting the ^-structure and both conditions we have a Hopf algebra with
compatible family.

Remark 5. Inserting S = Rvw e Mor(v ® w, w ® v) into (1.7) and using
(1.10) we obtain the braid relation

(id ® RVW)(RVZ ® id)(id ® Rwz) = (Rwz ® id)(id ® RVZ)(R™ ® id) (1.14)

Remark 6. We will also investigate the condition

Riv = id, (1.15)

where v e Rep A and 1 = (/) is the trivial corepresentation.
The relation between the above two notions is given by

Proposition 13 (cf. [Lyu], [LT], [Ma]).
1) Let A be a Hopf algebra and $E(A® A)'. For each v, w E Rep A we define

(Rvw)ij,ki = @(vjk ® w t t), j, k = 1,..., dim v , ij = 1, ..., dim w . (1.16)

Then {Rvw}v,weRepA satisfies (1.6)-(1.8). Let L be a sufficient set of corepresen-
tations of A. Then

a) » satisfies (1.2)-(1.3) iff {R™}v,weL satisfies (l.lO)-(l.ll)
b) The following are equivalent

i) $t is a compatible element
ii) {R™}v,weL satisfies (1.9)-(1.11)
iii) [R™}V.W€L satisfies (1.15), (LlO)-(l.ll)
Each of the above conditions implies

*-1(»«®w/t) = (H™)tf.1
H> (1.17)

Rvl = id, (1.18)
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(*rw)«.1« = (R"°w)juk, (1-19)

(RvwC)u\i = (Rvw)ki,u, (1-20)
nvc\vc nvw /I 01\KjUfc — *HM./' v1-^1;

v, w E Kep A, i, / = 1, ..., dim v; j, k = 1, ..., dim w.
c) (A, ̂ ) is a CQT Hopf algebra iff {Rvw}v,weL satisfies (1.9)-(1.12)
d) Moreover, suppose that A is a *-Hopf algebra. Then

i) (A, $) is a *-Hopf algebra with compatible hermitian element iff
{Rvw}v,weL satisfies (1.9)-(1.11) and (1.13)
ii) (A^ @) is a CQT*-Hopf algebra iff {R™}v,weL satisfies (1.9)- (1.13)

2) Let A be a CR Hopf algebra and L be a sufficient set of corepresenta-
tions of A.

a) Suppose that each of two families {Rvw}v,weRepA> {S™}v,weRePA satisfies
(1.6)-(1.8). If Rvw = S™ for v, WEL then R™ = Svw for v, w e Rep A.

b) Assume that the family {Rvw}v,weL satisfies (1.6)-(1.8). Then there
exists a unique $ E (A ® A)' such that (1.16) holds for v, w E L.

In particular, for CR (*-) Ifopf algebras, CQT (*-) Hopf algebra structures
(compatible (hermitian) elements, resp.) are in one to one correspondence (given
by (1.16)) with (hermitian) braidings (compatible (hermitian) families, resp.).

Proof.
1) Equation (1.16) implies (1.6)-(1.8).

a) Applying both sides of (1.2) to vit ® Vjk (x) wmn, we see that (1.2) is
equivalent to (1.10) for v, v', weL . Similarly (1.3) is equivalent to (1.11) for
v, w, w' e L.

b) Due to a), we may assume that in each case (l.lO)-(l.ll) hold for
all v, v', w, w' e Rep A. Assume i). We set (Rvw)ij,kl = $~l(vu ® wjk), i, I = 1,
..., dim v, j, k = 1, ..., dim w, v, w e Rep A. Then the equality $~l • ^ =
^•^~1 = IA2. applied to i?£I ® wjk yields R™ = (R™)-1. So (1.17) and ii) hold.
If ii) holds then setting v = v' = I, w e L in (1.10) and using (1.9) we get (1.15)
for v e L and iii) is satisfied. Assume iii). Then due to (1.16) $(I ®x) = e(x),
xeA, and (1.15) holds for all v E Rep A. Set Dgfl = Ev

ltij = dip i, j = 1, ...,
dim v, v E Rep A. We have

Dv 6 Mor(l, v®vc), (1.22)

Ev E Mor(vc ® v, 1),

(id ® EV)(DV ® id) = id , (1.23)

(Ev ® id)(id ® Dv) = id . (1.24)

For v, w E Rep A we put
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B = (Ew ® id ® id)(id ® Rvw ® id) (id ® id ®

C = (id ® id ® Ey)(zd ® J^Cw ® M/HD" ® id ®

Then using (1.10), (1.22), (1.7) for S = Dv, (1.15) and (1.23), we obtain JTWC = id.
Therefore (Rvw)~l = C, which gives (1.19). Setting w' = 1 in (1.11) and using
invertibility of R™, we get (1.18). In virtue of (1.11), (1.22), (1.8) for S = Dw,
(1.18) and (1.24) one has R™CB = id. Hence (R^)'1 = B and (1.20) follows.
Comparing (1.19) (with w replaced by wc) and (1.20), we get (1.21). Put 3f =
@(K ® id). Then

® wfcl) = (Rvcw)kjjl = (R™)£tj

(we used (1.19)). Therefore &•&' = ffi'-ffi = 1A^ (we check it on i>y® ww), #
is invertible and then i) follows.

c) According to b), in each case M is invertible and (Rvw)~l exist, v9

w e L. Applying both sides of (1.4) to vu ® w7-fc we get that (1.4) is a translation
of

CD t?k«) = ^([.R^v ® w)^^)'1 ]7iiW) , aeA',

which is equivalent to (1.12).
d) i) Applying both sides of (1.5) to wjk ® vn we get that (1.5) is equiva-

lent to (1.13) for v, w e L.
ii) follows from i) and c).

2) a) Let v9 w e Rep A. Then due to Prop. A. 3

/,= £ ama;; /„= £ M; (1-25)
mefl ne£

for some am e Afor(/m, i?), a^ 6 Mor(y, /m), few e Mor(/;, w), Vn e Mor(w, /;), Im, /; e
L, meD, ne£, where D, E are finite sets. Using (1.7)-(1.8) we get

Rvw = I R™(ama'm ® bnb'n) = I fe ® O*^K ® W
m,n m,n

= £ (^ ® am)S'-'"(a; ® ̂ ) = X ^w(«m< ® W) = S™ .
m,n m,n

b) Furthermore, suppose z, t E Rep A and

/,= Zv;, /,= ZVi (L26)
peF ^feG

for some cp e Mor(kpy z\ c'p E Mor(z, kp\ dq e Mor(k'q, t\ d'q E Mor(t, k'q), kp, k'q E
L, p E F, qEG, where F, G are finite sets. We set

, (1.27)
m,n

*&> = Z (d, ® ^)J?^H



COMPLEX QUANTUM GROUPS 717

Assume S e Mor(v, z), TeMor(w9t). Then using (1.27), d-Tbn e Mor(l'n, k-),
c;Sam e Mor(lm, kt), (1.25), (1.26), c[cp E Mor(kp, k£), djd, e Mor(fe;, kj) and (1.28),
we obtain

= ^Rk'kj(c'icpc'pS®d'jdqd'qT)
p,q

= E (djd, ® cicp)R
k"k'"(c'p ® d'q)(S ® T)

p,q

= (%®ci)R%d)(S®T).

Multiplying both sides from the left by dj ® ct and summing over i, j, one gets

) = R«d)(S®T) (1.29)

Specializing v = z, w = t, S = id, T = id, we see that .R^ doesn't depend on
the choice of am, a^, bM5 6;, /m, /;, D, E. Put JTW = £$> (for i;, w 6 L, Rww

are same as before). Then (1.6) holds and (1.29) implies (1.7)-(1.8).
We define #e(4®4)' by (1.16) with v, we/ (cf. Prop. A.2). Let

{S^K.weKepA be the family corresponding to ^ by (1.16). Obviously, R™ =
S™ for v, w e / , hence by a) Rvw = Svw for all v, w e Rep A. In particular,
(1.16) holds for v, weL and the desired element ^ exists. Notice that (1.16)
(y, w e L) describes ^ on a set linearly generating A® A. Therefore the desired
element ^ is unique. D

The following result allows us to construct (*-)Hopf algebras, CQT (*-)Hopf
algebras and compact matrix quantum groups. In the case of quantum SU(N)
groups, it is essentially contained in [W3], [W4].

Theorem 1.4. Let H = CN (with canonical Hilbert space structure), N > 1.
We put Hk = H (x) • • • (x) H (k times), keM. Suppose there are Cm e Lin(HSrn, Hr™),
sm, r m e N , m=l, ..., F, Pe lU

We define A as the algebra with unity I, generated by utj, i, j = 1, ..., N,
satisfying relations

Cmus- = ur-Cm, m=l, ..., P, (1.30)

where ul = u © • • • © u (I times), u° = (I), u = (tty)Jj=1 e MN(A) (in (1.30) we treat
Cm as matrices).

Set C0 = idH. Tensor products of any number of elements Cm, m = 0, 1,
. . . , P, are called elementary monomials. Products of any number of elementary
monomials (if their composition makes sense) are called monomials. We define
M(uk, u1) as the linear span of monomials belonging to Lin(Hk, H1), k, I e N. Let
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B = B*e GL(H). For any C e Lin(H\ Hl) we set

C = (B®kr1C*(B®1) e Lin(H\ Hk) .

Obviously C = C.
1) Assume there exist left nondegenerate E e M(w°5 u

a) and right nondegenerate
E' E M(ub, w°)* (for some a, b > 2). Then there is a unique Hopf algebra struc-
ture A on A which makes u a corepresentation.
2) Assume

there exists a nondegenerate EeM(u°,ua) (for some a > 2) , (1.31)

CmeM(u'-9u**), m=l ..., P. (1.32)

Then there is a unique *-Hopf algebra structure A on A such that

u is a corepresentation of A , (1.33)

w* = Bu~lB~l . (1.34)

3) Assume (1.31)-(1.32) for B = id. Let S e Lin(H\ Hl). Then

Suk = ulS <s> SeM(u\ul). (1.35)

4) Assume (1.3 !)-(!. 32) for B = id. Then there exists maximal C*-seminorm
|| • || on the *-algebra A (cf. 2)). It occurs that \\ • || is a norm. Let A be the
C* -algebra obtained by the completion of A with respect to the norm \\-\\.
Obviously, A is the universal C*-algebra with unity generated by u^ i, j =
1, ..., N9 satisfying (1.30) and u*u = uu* = 1. Moreover, (A9u) is a compact
matrix quantum group ('pseudogroup') in the sense of [W2]. In particular, A
(cf. 2)) is CR.
5) Assume (1.31)-(1.32) for B = id. Let R e Lin(H2, H2). We define
R(km e Lin(Hk ® Hl, Hl ® Hk) as follows:

idfjk , k = 0, 15 2, . . . 5

= (R ® idHk)(idH ® K(kM1)) , k = 1, 2, . . . ,

= (idtn ® ^(k)(i))(^(fcxo ® idH) , fc, / = 1, 2, . . . ,

Assume the following compatibility relations:

(idH ® Cm)J^(Sm)(1) = R(rm)(1)(Cm ® ida) , (1.36)

(Cm ® idH)R(1}(Sm) = R(1}(rm)(idH ® CJ , (1.37)

m = 1, ..., P. Then there exists on A a unique structure (A, 9f) of Hopf algebra
with compatible element <%9 satisfying (1.33) and

RUU = R, (1.38)
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where {Rvw}v,weRepA is the compatible family corresponding to 3%. Moreover,
if ReM(u2,u2) then (A,«) is a CQT Hopf algebra.
6) Assume (1.31)-(1.32) and let ReM(u2,u2) satisfy (1.36)-(1.37). //
moreover

K* = (B ® B)R(B~1 ® JT1), (1.39)

C^GM(ur-,us-), m = l , ..., P (1.40)

(/or B = id, (1.40) coincides with (1.32)), then there is a unique CQT *-Hopf alge-
bra structure (A,»} on A in which (1.33)-(1.34), (1.38) hold, where {Rvw}v,weRepA

is the hermitian braiding corresponding to $. Moreover, A is CR.

Remark 7. If ReM(u2,u2) then by (1.36)-(1.37) R satisfies the braid
relation

(R ® id) (id ®R)(R® id) = (id ®R)(R® id) (id ® R).

Proof of Theorem 1.4. We sum over repeated indices (Einstein's conven-
tion). Let wtj = uik ® ukj, i, j =1, ..., N. Then the matrix w = (wfj)fj=1 (lNxN,
resp.) also satisfies (1.30) and there exists a unital homomorphism (/>: A -> A ® A
(e:A-+C, resp.) such that (/>(utj) = uik ® ukj(e(u^ = dip resp.), i, j = 1, ..., N.
Consequently, (A.1)-(A.2) hold.
1) Since E is left nondegenerate, there exists W: H -»Ha~ l such that
£«2...iaW{2...ia,k = <$ik, i, k=l, ..., N. Multiplying equality u°E = Eu°, i.e.

uvui2J2'-uiJa
EjJ2...Ja = Eii2-ia

I> i,i2,...,ia=l,...,N, (1.41)

by Wi2 . . . i f l ,fc and summing over f2, ..., ia, we get that w is right-invertible. Simi-
larly, using E', one proves that u is left-invertible. Thus u~l exists.

Let us notice that (w5)"1 = (w"1)0'5 where ®' denotes tensor product with
respect to the algebra Aop with opposite multiplication. Then (1.30) implies

CJu-1)®''- = (iT1)®''-^ , m = I, ..., P , (1.42)

and hence (w"1)^- satisfy (1.30) in Aop. Consequently, there is a linear antimulti-
plicative unital mapping K: A -> A such that K(utj) = (w"1)^-, i, j = I, ..., N. We
obtain (A.3) for x = w^ and hence for all x. Thus the desired A exists.
Uniqueness follows from the uniqueness of <f>.
2) According to (1.32), relations (1.30) imply

Cnu'" = u*»Cm, m=l, ..., P. (1.43)

Define M(uk, ul) as the sets of combinations of products of tensor products
of C0 = idH, C15 ..., CP. By (1.32),

Cm = Cm E M(us-, u'-), m=l, ..., P.

Therefore (1.43) imply (1.30) and both sets of relations are equivalent.
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E E M(ii°, ua) is left nondegenerate, while (B®a)E = E* E M(ua, u°)* is right
nondegenerate. Thus by 1) it suffices to prove the existence of ^-structure
which satisfies (1.34) (equation (1.34) determines the mapping * uniquely on
the generators).

Let z = (iT1)7 (the matrix transposedjo iT1), v = (B~l)TzBT. Then (1.42)
yields z®'s-C^ = C^z®'1"" and t;°'s-Cm = Cmv®'r™. Therefore vip i, j = 1, ...,
N, satisfy, in the conjugate algebra Aj, (1.43) and thus also (1.30). So there
exists an antilinear antimultiplicative unital mapping *: A-* A such that u^* =
vij9 i, j = 1, „ . . , N. Hence u* = VT = Bu~lB~l and (1.34) holds. Consequently,

M** = (B-l)(u*YlB = B~lBuB~lB = u

and * is an involution. Moreover u = (B~1)TucBT is a corepresentation and
hence ^* = (* ® *)^ (it holds on wy, i, j = 1, ..., N).
3) 4) We use the terminology and results of [W3]. We essentially repeat
the reasoning of [W3], which leads to quantum SU(N) groups.

Let W={ul:leN}. Set Hui = H\ uk-ul = uk ® u1 ( = uk+l), k, / e N , / = n .
Then W = (W, {Hw}weW, {M(v, w)}VtWeW, •,/) is a concrete monoidal W*-cate-
gory with distinguished object. Let Z = (Z, {HW}W6Z? [M(v, w)}u>weZ9 -,/) be
the completion of W. By the argument of [W3, pages 60-61] we conclude
that / has a complex conjugation in Z. Let C be the universal C*-algebra
with unity generated by uip i9 j = 1, ..., N, such that u = («#)£/«! i§ unitary
and satisfies (1.30). Then G = (B, u) is universal Z-admissible pair, G is a
compact matrix pseudogroup and for any S E Lin(Hk, Hl)

Suk = ulS o SeM(uk,ul) (1.44)

(use [W3, Thm 1.3 and Prop. 2.7.2]). Let j/ be the *-subalgebra considered
in the proof of [W3, Thm 1.3] in the case of category Z. Then the maximal
C*-seminorm on j/ exists. Moreover this seminorm is a norm and C coincides
with completion of si in that norm. According to [W3, page 59], si is the
dense *-subalgebra (with unity) of C, generated by utj. Let us notice that ^4
is the universal *-algebra with unity generated by uijy f, j = 1, ..., JV, satisfying
(1.30) and

u*u = uu* = !MN(A} , (1.45)

while j/ is a unital *-algebra generated by utj satisfying (1.30) and (1.45).
Therefore we have a unital *-epimorphism p: A -> si such that p(u^) = utj. In
order to prove 3)4) it remains to check that p is faithful (then we can identify
A with j/, u with M, A with C and (1.44) gives (1.35)). To this end we need

Definition 1.5 (cf. [W3], page 40). Let R = (R, {Rr}reR, {Mor(r, s)}r>S6j?,
•,/) be a concrete monoidal W*-category with distinguished object. We say
that M = (B, {vr}reR) is an a-model of R if B is a *-algebra with unity I and
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vr are unitary elements of B(Hr) (x) B, r e R, such that

vrs = vr © vs,

vr(t ®I) = (t® I)vs,

for any r, s e R and t e Mor(s, r).

Lemma 1.6 (cf. [W3, Prop. 2.7.5, Prop. 3.1.4, Prop. 3.3]). Let R, M be
as in Def. 1.5.
1) Let S be the completion of R. Then M has a unique extension to an
a-model N of S.
2) Assume that R is complete, f exists and {/,/} generates R. Let (B,u)
be the universal R-admissible pair, (B, (ur}reR) the corresponding model and £/
be the unital *-algebra generated by all utj. Then there exists a unital *-
homomorphism cpM: jtf -> B such that (id ® (pM)uf = vr> r 6 £•

Proof. The same as in [W3].

We return to the proof of Thm. 1.4. Clearly M = (A, (w}W6fF) is an
a-model of W. Thus by Lemma 1.6 there exists a unital *-homomorphism
cpM: j/ -> 4 such that <pM(fi0-) = MO-, z, j = 1, ..., AT. Thus cpMp = id, pcpM = id
and both p, <pM are *-isomorphisms. Therefore 3) 4) follow.
5) By 4), A is CR. Since utj generate A as an algebra with unity, hence
L = {uk}keN is sufficient (cf. the Appendix). But (1.38) implies Ruk"1 = R(km

and therefore (cf. Prop. 1.3.2. b) uniqueness of ^ follows.
Now we will prove the existence of ^. Due to (1.35)-(1.37), Ruk"1 = R(km,

k, IE N, satisfy (1.6)-(1.8). Therefore, by Prop. 1.3.2. b) there exists 9te(A ® A)',
whose corresponding family {^uw}t;,W6i?ei,A satisfies Rvw = Rvw, v, weL . In
particular Ruu = K(1)(1) = R. It is straightforward that {Rcw}WiWeL satisfy (1.10)-
(1.11) and (1.15). Then Prop. 1.3.1. b) implies that ^ is a compatible element.
Moreover, if R e M(u2, u2) then by (1.35) R e Mor(u2, u2) and #"k"1 = R(km e
Mor(uk ® ul, ul © uk). Using Prop. 1.3.1. b) and c), (A, 3f) is a CQT Hopf
algebra.
6) Due to (1.40), equation (1.32) is satisfied also for B = id. Uniqueness
of (CQT)(*-)Hopf algebra structures on A follows from 1) 2) 5). By 2) 5) there
exist the desired *-Hopf algebra and CQT Hopf algebra structures on A which
give the same (by uniqueness) Hopf algebra structure A. By Prop. 1.3.1 it
remains to check (1.13) for v, weL .

Denote v = BuB~l. Then u = vc and using (1.21)

sR™s = sRvCvCs = (Rvv)* .

But B E Mor(u, v), hence Rvv = (B® B)RUU(B~1 (x) B'1). Thus using (1.39),

sR**s = (B-1 (x) B~1)(RUU)^B ®B) = Ruu
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and (1.13) holds for v = w = u. Hence, taking into account (l.lO)-(l.ll), equa-
tion (1.13) holds for all v, weL . D

§ 2, Examples

In this Section we prove that 'algebraic quantum groups' SUq(N; e1? . . . , %),
Oq(N; el9 . . . , eN) and Spq(n:)el9 . . . , s2n) defined in [RTF] correspond (for q > 0)
to CQT *-Hopf algebras. Thus we illustrate the theory presented in the previ-
ous Section.

Remark 1. Similar results (but without * and in more general context)
were given in [Dr]9 [Ha]. Nevertheless we present here an alternative proof,
which illustrates Thm. 1.4.

In the following, for fixed N e N, we set H = CN, Hk = H®\ k = 0, 1, . . . .

Example 2.1 (cf. [W3], [RTF]). Let N = n + 1 for the series An, n = 1,
2, . . . . We define A as the algebra with unity generated by u^, i, j = 1, . . . ,
N, satisfying

(2.1)

E*u®N = u®°E* , (2.2)

R(u <D if) = (u ® u)R , (2.3)

where E e Lin(C, H®N) and R e Lin(H®2, H®2) are given by

O /or &,..., iN}£{l,..., AT}
for {il9. ..9iN} = {!,..., pf] 9

R =
N N

*Z I « > < H | + I \Ji><V\ + (<I- (2.5)

u = (Uij)?j=1, M°° = (1), q > 0 (for N odd, we also admit q < 0).

Remark 2.
u ^~l/#o yil-"i/N_—l /i £\11 — i/ I\q — q Uyy \£.\j)

where Rq is given in Section 1.3 of [RTF] and aw in (4.13) of [W3] (we set
H = q). Moreover, due to [W3],

/AT- 2 \

aw = idH2 — I Y[ (q2 + q4 + '"q2k)~l ) ( id H 2 ® E*)(£ ® idH2)

and therefore (2.3) is a consequence of (2.1)-(2.2).

Example 2.2 ([RTF]). Let N = 2n -f 1 for the series Bn, N = 2n for the
series Cn and Dn. We define A as the algebra with unity /, generated by uij9
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i, ; = 1, ..., N, satisfying

(2.7)

© 11) = w®°C* , (2.8)

R(u ® 11) = (u © U)R , (2.9)

where C e Lm(C, H®2) and # e Lin(H®2, H®2) are given by

C = Z 0 , < r p l | t f ' > , (2.10)
i=l

K = q £ | i i><H| + £ liiXiil + £ |70<(/| + q'1 I IH'X^I
i=l i=l ij=l i=l
i^i' i = i' jVi.i' W

+ (« - a'1) Z ly'Xyl - (« - 9'1) £ ^-"^

i' = N + l-i, f = N + I - j, 0; = 1, i = 1, ..., N, for the series Bn and Dn,
0. = 1; i = 1, ..., JV/2, 0; = -1, i = N/2 +1, ..., N, for the series Cn and

n--,n--,. . . ,-,0, -2""' ~n+ 1/2 J for Bn

(n ,n- l , . . . , l , - l , . . . , -n) /or C/' (112)

(n- l ,n-2 , . . . , l ,0 ,0 , -1 -n + 1) for Dn

u = (wy)5=1, u®° = (/), q e R\{0} (q > 0 /or Bn).

Remark 3.
1? = Rq (2.13)

where jR€ is given in Section 1.4 of [RTF].

Proposition 23- Consider situation from Examples 2.1-2.2. Let B =
diag(sly..., eN), ef = 1, i = 1, ..., AT. /n £/ze case o/ series Bn9 Cn, Dn we assume
er = 6,., f = 1, ..., N, ef = 1 /or i = f. T/zen there exists a unique CQT*-Hopf
algebra structure (A, &) on A such that

a) u is a corepresentation
b) u*Bu = B, uBu* = B
c) Ruu = R

where {Rvw}v,WGRep A is the hermitian braiding corresponding to $. Moreover
A is CR.

Proof. B = B*E GL(H). We shall check the assumptions of Thm. 1.4.6.
First notice that E (cf. [W3, page 63]) and C are nondegenerate. Next,

R* = R, (2.14)
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hence (1.40) follows. Moreover (B®N)E = s^.. 8NE, (B ® B)C = C,

(B®B)R = R(B®B) (2.15)

and also (1.32) holds. Combining (2.14) with (2.15), we get (1.39). By con-
struction R e M(u2, u2). It remains to prove (1.36)-(1.37).

In the case of An we need
(R ® idH)(idH ® R)(R ® idH) = (idH ® R)(R ® idH)(idH ® R), (2.16)

idH ®E = R(N)(1}(E ® idH), (2.17)

E ® idH = R(1}(N}(idH ® E), (2.18)

(idH®E*)R(N)(1) = E*®idH, (2.19)

(E* ® idH)R(im = idH ® E* . (2.20)

By (2.6), equation (2.16) follows from (4.16) of [W3] (and also from [RTF]).
Moreover, (4.34)-(4.35) of [W3] imply (2.18)-(2.19). Next, multiplying the last
equation on page 69 of [W3] from left by (id®E*) and using (4.32)-(4.33) of
[W3] we get (2.20). Its hermitian conjugation gives (2.17).

In the cases of Bn, Cn and Dn we need (2.16),

id ® C = (R ® id)(id ® R)(C ® id), (2.21)

C ® id = (id ®R)(R® id)(id ® C), (2.22)

id ® C* = (C* ® id)(id ® R)(R ® id), (2.23)

C* ® id = (id ® C*)(R ® id)(id ® R). (2.24)

Due to (2.13) and [RTF], (2.16) holds. Next, we shall prove (2.21)-(2.22). Ac-
cording to [RTF], R - R'1 = (q - q~l)(I - K), where

K = 6CC* , (2.25)

9=1 for Bn and Dn9 9 = —1 for Cn. Hence, using [Re], we get

(id ®R)(R® id)(id ®K) = (K® id)(id ® K),

(R ® id)(id ®R)(K® id) = (id ®K)(K® id).

Using that, (2.25), (C* ® id)(id ®C) = 9-id, (id ®C*)(C® id) = 9-id and surjec-
tivity of C* we get (2.21)-(2.22). Their hermitian conjugations give (2.23)-
(2.24).

Now using Thm. 1.4.6 we obtain the desired result. Q

Remark 4. Except An with N odd, we can replace R by ( — R) and Prop.
2.3 still holds (by the same proof).
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Remark 5. Let us consider An and admit all q e R\{0} and all N values
of q~~1/N in the expression for R. Then Prop. 2.3 still holds, but with the
wider definition of CQT *-Hopf algebra, which was presented in Remark 2
after Def. 1.1 (braiding is now hermitian in some wider sense).

Remark 6. 1. Let q e (R\{0} (q > 0 for Bn). In the case of An consider
relations

u®NE = Eu®° , (2.26)

u*u = uu* = 1 . (2.27)

Let j/0 be the *-algebra with unity generated by (2.26)-(2.27) and C(SqU(N))
be the unital C*-algebra generated by (2.26)-(2.27) (see [W3]). We claim that
j/o is equal to A. First assume (2.26)-(2.27). Then (2.1)-(2.2) hold. By re-
mark 2 after Ex.2.1 we also get (2.3). Conversely, assume (2.1)-(2.3). Then
(2.26) is satisfied and putting B = id we obtain a *-structure on A, in which
(2.27) holds. Therefore we can identify A with j/0 and (see [Ro]) with
Fun(SLq(N)) of [RTF]. Moreover, by Thm. 1.4.4 (its assumptions have already
been checked) the natural *-homomorphism p from A (with * defined by
(2.27)) into the unital C*-algebra A, generated by (2.1)-(2.3) and (2.27) is
faithful (this is not generally true for an arbitrary set of relations). Similarly
as before, we can identify A with C(SqU(N)). Thus

A ^ ^0 * ^SqU(N) ^ Fun(SLq(N)), (2.28)

where the last but one object is the dense unital *-subalgebra of C(SqU(N))9

generated by all utj.
2. Therefore the *-Hopf algebra structure on A (q e R\{0}, q > 0 for Bn)

is the same as in [RTF] (for An, s1 = s2 = ••• = £N = 1, also the same as in
[W3]). It is called Fun(SUq(N;ei9...,sN)) for An, F u n ( O q ( N ; e l 9 . . . 9 e N ) ) for
Bn and Dn, Fun(Spq(n; e 1 ? . . . , e2ll)) for Cn (in [RTF] the symbol S0q instead of
Oq is used; Fun(Spq(n; el9..., e2n)) are not explicitly defined there). Let us
notice that, according to Thm. 1.4.4, for el = •-• = SN = 1 each of these *-Hopf
algebras can be completed in maximal C*-seminorm giving a compact matrix
quantum group G = (A, u\ where A is the unital C*-algebra generated by u{j

satisfying (2.1)-(2.3)L(2.27) (then we have A = C(SqU(N)); see [W3]) or (2.7)-
(2.9), (2.27) (then A = C(Oq(N)) or A = C(Spq(n))). Similar compact matrix
quantum groups (for Bn9 Cn9 Dn) were described in [Ro].

Remark 7. Let Y be the set of Young diagrams consisting of at most
N rows (we identify Young diagrams which can be obtained from one another
by adding or subtracting a number of full columns consisting of N boxes).
Then due to Thm. 1.5 of [W3], there exist wa, a 6 F, such that {u<x}xeY is the set
of all nonequivalent irreducible corepresentations of A=Fun(SUq(Ni el9...,
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ge(0, 1] (A as a Hopf algebra doesn't depend on el9 ..., SN). We have
uD = u. Moreover, dim ya and multiplicities of u" in ya/ © na", a, a', a" e 7,
are the same as for SU(N).

Remark 8. By virtue of [RTF], (2.6) and (2.13) we obtain IT1 =
SHHR(^~I)SHH^ where Jtfaf1) is given by (2.5) or (2.11) with q replaced by q~l.
Therefore using B E Mor(uc

9u)9 (1.7) and (1.19) we get

(«*%.« = Wj(RuCu)ij,ki = ek*jR£tj = BtBjRb-^jt. (2.29)

This formula will be used in Section 3.

§3, Meal Complexificatlons of Quantum Groups

In this Section we describe a procedure which, when applied to any
CQT *-Hopf algebra (A, 3i\ produces an object (B, &>} of the same kind. If
A is commutative and £? = 1, this procedure can be decomposed into com-
plexification and then realification. Thus we call (B, £f) the real complexifica-
tion of (A, &). Its properties are described by Theorems 3.1 and 3.3, which are
the main result of the present paper. In the case of (A, 3R) from Examples 2.1-
2.2, B corresponds to quantum groups SLq(N, C; s l 5 . . . , %), Oq(N9 C; e 1 ? . . . , %),
Spq(n, C; fil9..., e2n). For q=l9 the dependence on el9 ..., SN disappears and
we get relations, which are fulfilled for the classical groups SL(N, C), 0(N9 C),
Sp(n, C).

Let A = (A9 *, ̂ , K, e) be a *-Hopf algebra. Omitting *-structure we obtain
a Hopf algebra H = Ac = (H9 <j>9 ?c, e) called the complexification of A (as alge-
bras H = A). According to the Appendix we have moreover the conjugate
Hopf algebra IF = (HS

9 (/>J
9 K\ ej) (K~I = *?c* exists). Put W = H ® Hs. As we

will see (Thm. 3.1 for » = 1)

W = (W, (j'1 ® j)s9 (id ® s ® id)(<t> ® $j\ K ® K\ e ® ej)

(cf. (0.2)) is a *-Hopf algebra. If A is commutative then there exists a unique
homomorphism of *-Hopf algebras T: W -»A such that T(X ® /) = x, x e ^4 = H.
Thus t defines a canonical 'embedding' of the quantum group corresponding
to A into the quantum group of W. We call W the realification of H and
write W = HK (W doesn't depend on the ^-structure of A). But for a non-
commutative A9 such an 'embedding' doesn't exist (otherwise, for x, y e A9

x* = T((X ® /)*) = t(l ® xj'), x*y = T(/ ® xj)-c(y ® /) = t(y ® /)T(! ® xj') = yx*).
Nevertheless, if A has CQT *-Hopf algebra structure, then using it we can
'twist' the definition of W in such a way that the obtained quantum group
will contain the quantum group of A. It occurs that this construction depends
not only on H but also on the ^-structure of A. Thus we have a procedure,
which for commutative A (and ^ = 1) can be decomposed into the com-
plexification and then the realification. It is called the real complexification
and is described as follows.
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Theorem 3.1,
1) Assume that (A, $) is a *-Hopf algebra with compatible hermitian element.
Let A = (A, *, </>, ic, e), I = IA, H = A, H = (H, (/>, ic, 4 HJ" = (Hj, <?K KJ, ej) be the
Hopf algebra conjugate to the Hopf algebra H, j: H -> H7 fee t/ie corresponding
antilinear bijection,

i = id:H^A, (3.1)

j' = * o i o j - 1 : H - / - > A (3.2)

are canonical isomorphisms of Hopf algebras),

(j)2 = (id ® SAA ® id)(<j> ®(/)): A® A = A2-+ A2® A2,

C = sAA(@~l ® idA2 ® ®)(idA2 ® (t>2)(^2: A2^A2, (3.3)

p = (r1 ® i'-1)^' ® i): Hj®H-»H®Hj , (3.4)

B = H ® Hj as a vector space , (3.5)

® P ® ^HJ): B®B-*B, (3.6)

;)SM/ B -> 5 , (3.7)

HJ)(4 ® ̂ j): B->B®B, (3.8)

£ = e ® ej: B -> C , (3.9)

K = p^" ® K)SHHJ\ B-+B. (3.10)

T/ien mB endows B with the structure of an algebra with unity

IB = I®Ij. (3.11)

Moreover, B = (B, *B9 0, E, K) is a *-Hopf algebra.
We define a homomorphism of Hopf algebras \j/:A-+B by

ils(i(x)) = x®Ij, x<=H. (3.12)

Let {wa}aej be the set of all corepresentations of A. We put M a ' ^ = w a ® M ^ ,
a, jSeJ. Set

<n = ^(O , m, n = 1, . . . , dim wa, a 6 J . (3.13)

wa, a G J, ar^ corepresentations of B. Moreover

Sw" = wpS if S e Mor(u\ up) , (3.14)

w
a^ = w a © w ^ , (3.15)

^a(w^ © wa) = (wa © wf)RP* , (3.16)

where a, /? e J an^ {^°^}a,06j
 ES ^e compatible hermitian family corresponding

to & (we sometimes identify u* with a).
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Denote w0^ = w* © wp. Then

s;/(w^)sa/*5 (3.17)

© w^ = D^W-*'»)Dw , (318)

Let {t/a}ae/ be the set of all nonequivalent irreducible corepresentations of
A. Then

*••', a, Pel, (3.19)

are nonequivalent, irreducible corepresentations of B.
2) Moreover, if A is CR, then B is also CR and (3.19) gives all nonequi-

valent, irreducible corepresentations of B. Let

Then

a, & y, <5 e 1.

Corollary 3.2. Wfcfc £/ie assumptions of Thm. 3.1.1
1) B can be identified with the universal *-algebra generated by the symbols
a' (a E A) satisfying F = I,

a' + b' = (a + by , (3.22)

A - a ' = ( A - a y , (3.23)

a'-b' = (a-b)r, (3.24)

where A e C5 a, b e A, a, jS e J,

(^°% = ("&)' 9 i> J = 1> • • •» dim Ma (3.26)

and t/ze identification is given by

a1 = ^(a), aeA. (3.27)

2) Let (u*0)ij9 i, j = 1, ..., dim ux°, generate A as an algebra (for some a0 e J).
Set u = wa°. Then B can be identified with the universal *-algebra generated
by the symbols a' (a e A) satisfying (3.22)-(3.24), /' = / and

Ruumf © ii') = («' © (S?)Rm , (3.28)

where the identification is given by (3.27) and u', u' are defined by (3.26).
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3) Let N, P e N\{0}, H = CN, sm, rm e N, Cm e Lin(H®s™, H®p«), m = 1, . . . , P,
and X fee £/ie universal algebra with unity generated by uij9 i, 7 = 1, ..., JV,
satisfying

Cmu®s~ = u®r-Cm , m = 1, . . . , P . (3.29)

Assume that u is a corepresentation of A. Then B can be identified with the
universal *-algebra with unity /, generated by wij9 i, 7 = 1, . . . , AT, satisfying

Cmw®s~ = w®^Cm , m = 1, . . . , P , (3.30)

R*u(w © w) = (w © w)R™ , (3.31)

wit/z identification wtj = ^(M^), i, 7 = 1, • -., W.
4) Suppose that A is CR. T/zen B is tne universal *-algebra generated

by vv-J, f, 7=1 , ..., dim wa, a e J, satisfying (3.14)-(3.16) and w° = (IB) (where

«° = (/A))-

Theorem 33. Let (A, ̂ ) 5e CgT *-Hopf algebra. Assume the notation
of Thm. 3.1.1. Then

R*v e Mor(wa © w', w^ © wa) , a, j8 e J . (3.32)

There exists a unique homomorphism of *-Hopf algebras i\B^>A such that
t\l/ = idA, i.e.

T(X ® Is) = i(x) , x e H . (3.33)

Wfe define

y = [(^"1)4i^i'3^24'^2'3']^4(J ® V ® i ® i') e (B ® B)' (3.34)

linear functional in the square bracket has the value $~1(x4 ® xx)^(xi ®

Then

^ = m. (3.35)

Furthermore (1,^) is a CQT *-Hopf algebra, denoted by (A,^)CR (CR is one
symbol) and called the real complexification of (A, $).

Remark 1. With the assumptions of Thm. 3.3 we have the following
chain of CQT Hopf algebras

(A, 3t) (A, ^)CK (A, ^)CR CR - • • (3.36)

and the following chain of *-Hopf algebras
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Remark 2. In his unpublished notes [Ko] T. H. Koornwinder considers
any *-Hopf algebra A with a unitary corepresentation u e MN(A) such that utj

generate A as algebra. Then he introduces B in the same way as in Corollary
3.2.2 but instead of Ruu he deals with a hermitian matrix R e MN2(A). Then
he proves that B is a *-Hopf algebra (with 0(a') = <j>(a)'®'9 which corresponds
to (3.8)) and (for R e Mor(u © M, u © u)) the existence of the homomorphism
of *-Hopf algebras r. B -» A such that i(a') = a, a E A,

Remark 3. Let UF be a unitary corepresentation of a CQT *-Hopf algebra
(A, 0i\ Put T = WF, f = w7, R = sFF(RFFr1- Then relations (1.18)_ of [RTF]
(provided in another context) hold in B (note that R = sFF(£FF)~1, £ =

In order to prove Thm. 3.1 we shall need

Lemma 3.4.
C®id(v ® w) = (HT^w ® i?)J?pw , (3.38)

0, w e Rep A (cf. (0.3), (0.7)),

C(m ® id) = (W ® m)(C ® id) (id ® C) , (3.39)

C(id ® m) = (m ® id) (id ® C)(C ® id) , (3.40)

C(J ® x) = x ® / , x e 4 , (3.41)

C(x ® /) = / ® x , x e A , (3.42)

*2C = C*2? (3.43)

(3.44)

(3.45)

(m denotes multiplication in A).

Proof. We use Einstein's convention. Let w, y, w e .Rep A. One has

&(t> ® w)yiW = (i; ® w)yfmB ® (i; ® w)mn>fc/ (3.46)

= (t? ® w)£j-jmil ® (v ® w)mn>^ ® (i; ® w)MfW .

Using (0.7), (1.16)-(1.17), one gets (3.38). Setting v = I (w = 1, resp.) in (3.38)
and using (1.15) ((1.18), resp.), we get (3.41) ((3.42), resp.). Using (3.38), (1.10)
and (3.38) twice, we obtain

= C®id((u © u) ® w)

(id ® m)®id{[id ® (Rvw)~^ [(.R^)-1® id](w ® u ® v) tRuw® id] [id

[(id ® m)(C ® id)(id ® C)]®w(w ® v ® w)
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and (3.39) follows. Similarly, using (3.38), (1.11) and (3.38) twice, we get (3.40).
Moreover, applying ^2

 to (3.38) and using (3.46), (3.38), one has

)yiW = (Rvw)^ab(™ ® v)abtmn ® (w ® v)mn,rs(R™)rs,kl

= C(v ® w)ytM ® C(v ® w)MtW

= (C ® Q^(i7 ® wfow

and so (3.45) is satisfied. Furthermore

and so (3.44) follows. In virtue of (3.38), (1.13) and (3.38)

C *2 (i; ® w)UiW = C(w ® v)jijk = (R™ftnm(v ® w)nm,qp(R

and so (3.43) holds. D

Since f, T are Hopf algebra isomorphisms, Lemma 3.4 yields

Corollary 3.5.

p®id(vj ® w) = (R™rl(w ® ^•/)^"w , v, weRepH, (3.47)

p(mHJ ® idH) = (idH ® mHJ)(p ® idHJ)(idHJ ® p) , (3.48)

p(idHJ ® mH) = (mH ® idHJ)(idH ® p)(p ® WH) , (3.49)

p(P ® x) = x ® Ij , x e H , (3.50)

p(x^®/) = /®x J ' , x e / f , (3.51)

(r1 ® i)sHHJpsHHJ = p(j ® j"1) , (3.52)

(e ® ej)p = ej®e, (3.53)

(idH ® SHHJ ® idHJ)(j ® ^J')p = (p ® p)(idHJ ® sHJH ® idH)^7" ® <t>) - (3.54)

Proo/ o/ Theorem 3.1. Denote id = idH, m = mH, idj = idHJ, mj = mHJ.
1) By virtue of (3.48), the associativity of m, m,- and (3.49), we get

= (m ® mj)(m ® p^- ® id) ® idj) (id ® p ® idj ® id ® id;-)

= (m ® mj)(m ® id ® m7. ® idj) (id ® id ® p ® idj ® idj)(id ® p ® p
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= (m (x) mj)(id ® (m ® idj)(id ® p)(p ® id) ® m^id ® id,- ® id ® p ® id-)

= (m ® m,')(id ® p ® id,-) (id ® id,- ® (m ® mj)(id ® p ® id,-))

= ?%(idB ® ms)

and so S is an algebra. Moreover, by virtue of (3.50)-(3.51)

mB(I ® Ij ® x ® yj) = (m ® m^) (1 ® x ® Ij ® jj) = x ® y7' ,

mB(x ® y ® / ® Ij) = (m ® m,-)(x ® / ® yj ® F) = x ® yj ,

hence (3.11) follows. Obviously *B is an antilinear involution such that

*B(X ® yJ) = y ® *J ? x, y e H (3.55)

Next, let x, y, z, te H and let am, fem, m = 1, . . . , E, be elements of H such that

Applying (3.52) to z®y j
? we get

p(zj ® y) = (j-1 ® j)sHHJp(yj ®z) =

Therefore

mB(*B ® *B)sBB(x ®yj®z® tj)

= (m ® m^) (id ® p ® id,-)(t ® zj ®

= (m ® m,-) X f ® fcm ® aj
m ® xj' = ^ tb

.) [x ® p(jj' ® z) ®

and it follows that (B, *B) is a *-algebra with unity.
Now we shall investigate properties of linear mappings 0, E9 K. Ob-

viously 0, E are unital. Let v9 w, z, £el*ej?H. Notice that yj'5 wj, z7', t^'e
Hep HJ. Therefore using (0.3), (3.8) and (0.3), we get

*(" ® w V«« = I (» ® w Vw ® (y ® wJ'^,cd , (3.56)
k,l

E(v®^)ab,cd = dMdbd (3.57)

One easily checks that (A.1)-(A.2) hold on (t; ® vvj)ab>c<(. Since elements of
this form span 5, (A.1)-(A.2) are satisfied. Moreover, using (3.56), (3.10), (3.49),
(3.51), (3.57) and (3.11),
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mB(K ® idB)0(vac ® Wj>d) = £ mB(K ® idB)(i;flfe ® w£ ® i?kc ® w/d)
k,l

= Y, (id ® Wj) [(m ® id;) (id ® p)(p ® id) ® id,-]

= £ (id ® m,.)(p ® ty) ((wV ® dacl
z

(id ® IFI,)^/ ® (w');;1 ® v^)

and hence mB(X ® idB)<P(x) = E(x)IB for all x e B. Similarly, using (3.56),
(3.10), (3.48), (3.50), (3.57) and (3.11), one gets mB(idB® K)0(x) = E(x)IB, xeB.
Due to (3.50)-(3.51) and (3.6),

(x ® lj)(l ®y) = (*®y), (3.58)

(x ® Ij)(x' ® Ij) = (xxf ® Ij) , (3.59)

(/ ® y)(I ® /) = (/ ® yy') , (3.60)

(/®jO(x®/') = p (y®x) , (3.61)

x, x' E H, y, yf E Hj. We have also

y) = &(x ® y) , (3.62)

Is) = 0(xx' ® /J) , (3.63)

y') = <^(/ ® ̂ ') , (3.64)

^(1 ® y)0(x ® P) = <P[p(y ® x)] . (3.65)

Namely, if (/>(x) = %mam®bm, (/>j(y) = ^ncn ® dm, then using (3.8), (3.58) and
(3.8), one gets (3.62). Similarly, by virtue of (3.8), (3.59) (or (3.60)), multiplicativ-
ity of $ (or (/>j) and (3.8), one checks (3.63)-(3.64). Furthermore, using (3.8),
(3.61), (3.54) and (3.8),

j) = E (/ ® cj ® (/ ® dj
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so (3.65) is fulfilled. Let

(3.66)
p

By virtue of (3.62), (3.65), (3.66), (3.62), (3.63)-(3.64) and (3.62),

' ® y') = 0(x ®

p

Similarly, using (3.58), (3.61), (3.66), (3.58), (3.59)-(3.60) and (3.58), one has

®y') = ^xfp® 9Py' • (3.67)

Therefore 0 is a homomorphism. Moreover, in virtue of (3.67), (3.9), (3.66),
(3.53) and (3.9),

® y)(xr ® y')-] = X Wp ® gpy')

P

= e(x)t(e®ej)p(y®x')lej(y')

= e ( x ) i ( e j ® e ) ( y ® x f E e j ( y f )

= E(x ® y)E(x' ® y') .

Let v, w e J^ep H. Due to (3.55), (3.56), (3.55) and (3.56),

0 *B (V ® Wj)abfCd = 0(W ® Vj)ba,dc = X (W ® Vj)bajk ® (W

and hence B is a *-Hopf algebra.
According to (3.59), (3.8) and (3.9), the mapping H3x-»x®Ij€B is a

homomorphism of Hopf algebras. Hence \I/:A-+B is also a homomorphism
of Hopf algebras (but due to (3.55), ij/*A / *B^ for A + CJ). Consequently,
wa e Rep A (a e J) yields wa e Rep B. Moreover,
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and so

w* © ^ = wa ® (u'X • (3-68)

Let 5 6 Mor(u*, up\ a, j3 e J. Applying ^®''d to the relations Swa = w*S, wa^ =
wa©i^, we obtain (3.14)-(3.15). Next, by virtue of (3.61), (3.47) and (3.68),

K © w°vm,, = ̂ (iiLf^K) = (' 8 («

= Z (Khi^w'o^u^...,,
a,b,c,d

and so (3.16) follows. Eq. (3.17) is a consequence of (0.6). According to (3.16),

(idx ® a'" ® i^)(wa © ̂  © w? ®^) = (wa © wy © w^ ©

while due to (0.6),

(ida ® i^y ® s^)(wa ® wv © w^ ® wd) = (wa © wy © wd © w^)(^a 8 idy 8 5^).

Therefore (3.18) holds.
Since the elements (A.6) are linearly independent, then (see (3.68))

(wa © wp)kl>mn, fe, m = 1, ..., dim wa; /, w = 1, ..., dim uft , a, jS 6 I,

are also linearly independent. Therefore the last statement of Thm. 3.1.1 is
true.
2) If A is CR, then the elements (A.6) form a basis in A. Thus using (3.68),
matrix elements of (3.19) give a basis in B. Using Prop. A.2, we get the first
statement of Thm. 3.1.2.

Assume (3.20). Then by (3.13),

wa © w^ ~ 0 m^wp , a, j8 g / .
pel

Combining that with (3.18), we obtain

5^ = wa © w7 © w* © w^ - 0 m£yw
p ©

\pe/ / \te/

a, j8, 7, ^ e /, and (3.21) follows. D

Proof of Corollary 3.2. 1) Let B' be the universal *-algebra under con-
sideration. Since ^ is a homomorphism and (3.16) holds, then \l/(a\ aeA,
satisfy relations (3.22)-(3.25). Therefore there exists a *-homomorphism 0:
B'-+B such that 0(a') = \//(a). Due to (3.25)

(ijPV*(ii*V — (RP*\~* (u* VdjP V*RPa
(Uik) (Uji) — (K )ij,ab(Uac) (Ubd) ^cd,kl
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and thus

each element of B' is a combination of a(af2...a'mb^ ...b^ , (3.69)

al9 . .., am, bl9 ..., bn € A, m, n e fU Let {ek}keK be a linear basis in X. Then
by (3.69) and (3.22)-(3.24), elements e'kel*9 kJeK, generate ff. But 0(er

kei*) =
ek®(ei)j f°rm a basis in B and therefore 6 is a *-isomorphism which gives
the desired identification.
2) We define B' and *-homomorphism 9 as in 1). Put vtj = wfj-* (they also
generate A as algebra). Then any element of B' is a combination of products
of elements u'{j and t;^*, i, 7, fc, 1=1, . . . , dim u. Using (3.28) we can assume
that in each such product all u-j are to the left of all v'M*. The rest of the
proof is the same as in 1).
3) Let B' be the universal *-algebra under consideration and let B0 be the
subalgebra of B' generated by all w£J and /. According to (3.31), B' = B0B$.
Since (3.30) has the same form as (3.29), then there exists a unital homo-
morphism of algebras 1: A-* B0 such that l(utj) = wij9 i, j = 1, ..., N.

Applying \j/ to (3.29) and using (3.16) for u01 = up = u, we get that the
matrix w' = \l/(uijffj=1 satisfies relations (3.30)-(3.31). Therefore there exists a
unital *-homomorphism 9:B'-+B such that 0(wy) = ^(MO-), i, j = 1, ..., N.
Thus

9 o I = ^ (3.70)

(it holds on M^). Hence, if {ek}keK is a linear basis in A, then {l(ek)}keK is
a linear basis in B0 (l(A) = B0) and l(ek)l(em)*, fc, me K, generate F. But
using (3.70),

form a basis in B. Therefore 9 is a *-isomorphism, which identifies wtj with
^(UyX I, J = l , - . . , N.

4) Let 5' be the universal *-algebra generated by zfj9 i, j = 1, ..., dim wa,
a e J, satisfying (3.14)-(3.16) and z° = (/). But (3.14)-(3.16) and w° = (1) hold
in B, thus there exists a *-homomorphism 0: B' -» B such that 0(z--) = w^, f,
7 = 1,. . . , dim ua, OLE J. Let x e B'. Then x is a combination of products of
zfj and zfi*, i, 7 = 1, ..., dim i^a, fc, / = 1, ..., dim w^, a9 jSe J. Due to (3.16)
one can assume that all zfj are on the left of all zjf*. Next, according to
(3.15), each product can be written as z^n(Zpq)* for some y, 6 e J. Decomposing
uy, i/ into irreducible corepresentations and using (3.14), we obtain correspond-
ing decompositions of zy, z8. Therefore we can assume that (in the expression
for x) y, 8e L Hence z^(z^f , m, n = 1, ..., dim u\ p, q = 1, ..., dim u\ y,
del, linearly generate B'. But

y 8 * = y 8 * = y'8— —
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which, due to Thm. 3.1.2 and Prop. A.2, form a linear basis in B. We
conclude that 6 is a *-isomorphism, so we can identify B' with B and zg with

Hfr D

Proo/ o/ Theorem 3.3. Since (A, #) is a CQT *-Hopf algebra, then

R*t(u* © M') = (M* © u")^ , (3.71)

a, jgeJ. Applying ^®''d, we get

l*a/?(wa © w*) = (w* © wa)Ra/? (3.72)

and so (3.32) follows. Moreover, (3.71) implies that equations (3.22)-(3.25),
with a' replaced by a, a eA , are satisfied. Therefore, by Corollary 3.2.1 there
exists a *-homomorphism i\ B -+ A such that

tOHa)) = a . (3.73)

Hence (3.33) holds and T is unital. Using (3.73) for a equal to u?-, i, j =
1, . . . , dim u", a e J, we get r(wy) = M?-. Consequently,

(T (g) T)<Z>< = £ (T ® T)(W£ ® Mft) = Z «£ ® «w = ^*S = ^K) •
/c /c

Moreover, ei(wfj) = e(w-J-) = 5£j- = £(w-J). Since wg, i, j = 1, ..., dim wa, a e J,
generate 5 as *-algebra and T, 0, ^, £, e are *-homomorphisms, then T is a
homomorphism of *-Hopf algebras. Since x (x) JJ, xe H, generate the *-algebra
B, then uniqueness of T follows.

According to (3.1)-(3.2) and (3.68),

(i ® '"K//L = ulm ® J?IB , a, /J E J .

Therefore, for a, /?, 7, (5 e J,

= I [(*)Jl«l'3«24'«2'3']
a,b,c,d

X fu01 ^vN i^^ ^v\ 11^ fi?\ 11^ 6?\ »/a (^ ii@ Gs\ 11? ^vN 17^ \(uka 09 w Ib Q9 upc Q9 w qd Q9 wam <®u bn(&ucri®u dsj

_ \^ /o^a\— 1 pay D05 O/3y
~ Z^ v11 )qk,adI^pa,mc1^dl,bsI^cb,nr •>

a,b,c,d

and so

idd) , (3.74)

where {Sv'w}VtWeRepE is the family corresponding to £f by (1.16).
In particular Sa'0;y'° = Kay (where w° = (I)). Thus by (3.13),

w&°) = sfi^i^0 = ̂ fjz = «(iij| ® 4) ,
a, ]8 e J, and (3.35) holds.
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By (3.68), L = {wa'^}a^ej is a sufficient set of corepresentations of B.
Thus in order to prove that (B, £f) is CQT *-Hopf algebra, it suffices (see
Prop. 1.3.1. b) d)) to check (1.15), (1.10)-(1.13) for v, w, vr, w'eL. We will
denote these equations (in case of SVIW, v9 weL) by (1.15)', (1.10)'-(1.13)'.

Putting a = ft = 0 in (3.74) and using ̂ 15), (US^we obtain (1.15)'. Ap-
plying *5 to (3.72) and using (0.6), we get sK*s e Mor(v^ © w*, w* © w*). Thus,
by (1.13), we obtain

© w5, w5 © w) . (3.75)

Combining this with (3.16) and (3.32), one has

© ^ © W
y © W1, Wy © W* © W* © VV^)

and therefore (1.12)' holds.
According to (3.74),

Using (0.6), (1.7) and (l.lO)-(l.ll), we obtain

Cwa©wiI'

= (id

where in the last step we omitted identity operators acting in various spaces.
But due to (3.16),

ida ® R^' ® idy e Mor(wa © w* © wa' © vv^7, wa © wa' © w^ © w*7) .

Using that, (1.7) and braid relations (see (1.14))

we get

and so (1.10)' holds. In a similar manner one proves (1.11)'.
Let s(x ® y ® z ® t) = t ® z ® y ® x. By virtue of (1.7) for syd t
~^, w^), (1.8) for sa/? e Mor(w^, w^'a), (3.74), (1.13) and (3.74), we get
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= s(idp

Thus (1.13)' is fulfilled and by the previous remark it ends the proof of
Theorem. D

We denote

Fun(SLq(N9 C; el9 . . . , %)) = Fun(SUq(N', el5 . . . , e»))CK ,

Fwn(0,(JV, C; el5 . . . , BN)) = Fun(Oq(N; fil , . . . , %))CK ,

Fun(Spq(n, C; el9 . . . , e2ll)) = Fun(Spq(n; el5 . . . , e2n))CR -

The description of these CQT *-Hopf algebras is given by Theorem 3.1, Corol-
lary 3.2 and Theorem 3.3. In particular, combining Corollary 3.2.3 with (2.29),
we get

Proposition 3.6.
1) Fun(SLq(N, C; el9 ..., £N)) is the universal *-algebra with unity generated
by w0-, i, 7 = 1, . . . , N, satisfying

®°, E(q)*w®N = w®°£(^)* , R(q)(w ® w) = (w ©

K'(«)(w ® w) = (w (D w)R'(g) > (3.76)

are gfiuen bj; (2.4)-(2.5) and w = (w0-)^-=1, g > 0 (/or N odd we admit
also q < 0).
2) Fun(Oq(N, C; el5 . . . , %)) and Fun(Spq(n, C; el3 . . . , e2J) are tne universal
*-algebras with unity generated by wtj, i, j = 1, . . . , N, satisfying

(w © w)C(q) = C(q)w®° , Cfa)*(w © w) = w®°C(^)* ,

Kfe)(w © w) = (w © w)Kfa) , «'fa)(w © w) = (w © w)R'(q) ,

w/zere

1)^ J7 , i, 7, /c, / = 1, . . . , N ,

Cfa), K(g) are giuen foj; (2.10)-(2.11) and w = (w^.=1, q E R\{0} (q > 0 /or BJ.
3) In both cases w = ^®id(u), i®id(w) = u, where u is given in Ex. 2.1 or
Ex. 2.2.
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Remark 4. For q=l9 R'ijfki = Rijtki = Sa5jk9 i, j, fc, 1=1, ..., JV, thus
dependence on sl9 ..., SN vanishes and we get relations, which are satisfied
for the classical groups SL(N9 C), O(N9 C) (taken in a suitable form) and
Sp(n, C).

Remark 5. An explicit form of (3.76) is given by

ww*w0- = wyww* , i^k, j ^19 (3.77)

flw*/H- = WyWfc/ + (1 - g2) X fiifi/w«w*i* , i ̂  fc , (3.78)
Kj

u = tfw</w»* > 7 ̂  fe , (3.79)

lj = wtf + - 3 fi*fi7W*w» ' '
k<j

i, j, fc, I = 1, . . . , N. Let 8i = 82 = • • • = £N = 1. Then after applying T, (3.77)-
(3.80) coincide with (4) of [Br].

Remark 6. Combining Thm. 3.1 with Remark 7 of Sec. 2, we get the
representation theory of Fun(SLq(N, C; el9 . . . , %)), g e (0, 1].

7. Consider A = Fun(SUq(2; 1, 1)) = Fun(SUq(2))9 q e (0, 1). There
exists an invertible Q e Mor(y? u). Then (see (2.29)) K'fa) = R"u = (id®Q~l)R(Q®id)
and (3.76) is equivalent to K(w © w) = (w ® w)R (where w = Qwg"1), which
coincides with (1.5) of [PW] (q9 R, w are, in notation of [PW], /i, ^1/2A, w).
Therefore Fun(SLq(2, C; 1, 1)) can be identified with the ^-algebra of SLq(2, C)
given by relations (1.9)-(1.25) of [PW] (in the present paper we assumed q > 0
in the case of A^). The CQT *-Hopf algebra structure on that object is given
by Thm. 3.3 (it would be interesting to compare it with the structure presented
in Appendix of [Ta 2]). Let us consider the representation T = wc ® w of
Fun(SLq(2, C; 1, 1)). After some calculations one finds the corresponding R-
matrix

STr = (id ®R® id)(R ® R)(id ® R~l ® id) .

The same matrix (up to a scalar multiple) was provided by eq. 11.38 of [CSSW].

Remark 8. Some notions similar to those of this Section, but on the
dual level, were investigated in [RS]. Using some element R E B ® A, the
authors define the twisted product Hopf algebra A ®R B of two Hopf algebras
A and B. They notice that A ®R A is (under some condition) quasitriangular,
with universal .R-matrix given by relation (2.26) of [RS], which is similar to
(3.34) (cf. also Remark 7 and [Sch]). The paper [RS] doesn't use the conjugate
Hopf algebras.
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Remark 9. S. L. Woronowicz noticed already in 1990 (the abstract of
the lecture 'Non-compact quantum groups', ICM-1990) that 'In principle (at
least on the *-Hopf algebra level) there exists the third one parameter deforma-
tion of the Lorentz group that can be obtained by applying the double group
construction to quantum Sl/(l, 1) group.'

A. Appendix

Here we recall the basic notions and facts concerning (*-)Hopf algebras
(cf. e.g. [Abe], [Swe], [W2], [Dr], [Ta 1], [So]).

Definition A.l. We say that A = (A, (f>, K, e) is a Hopf algebra if A is an
algebra over C with unity /, (j>\ A -+ A (x) A and e: A -» C are unital homo-
morphisms, K: A -» A is a linear mapping and

(</> ® id)</> = (id ® (/>)(/>, (A.1)

(e (x) id)4 = (id ® e)(j> = id , (A.2)

m(K ® id)$(x) = m(id ® K)$(X) = e(x)I , (A.3)

where m: A ® A -> A denotes the multiplication map.

It is known that e and K are unique for given A, $. Next, for any Hopf
algebra, K is a unital antihomomorphism such that

SAA(K ® K)</> = (j)K , eK = e (A.4)

(cf. (0.2)). Moreover, if a linear mapping K^.A-^A satisfies (A.3) with m
replaced by m o SAA, then KI = K~I.

We say that v = (vtj)fj=l E MK(A) is a corepresentation of a Hopf algebra
A if

K

</>vij = E vik ® vkj ,

z, 7 = 1, 2, ..., K, KG N. We write dim v = K. Using (A.3) for x = vijy we
get that v is invertible (as a matrix) and (v'1)^ = K(vtj), i, j = 1, . . . , dim v. Let

(v
c).. = K(Vj.) 9 t9 j = \9 . . . 9 dim v . (A.5)

Due to (A.4), vc is a corepresentation, called contragradient to v. One-dimen-
sional corepresentation 1 = (/) is called trivial.

We say that SeMLxK(C) intertwines corepresentations v = (vtj)f; j=1 and
w = (wmJm,«=i ^ $v = ™S. Then we write S e Mor(v, w). If Mor(v, w) c
^Lxx(C) = Lin(CK, CL) contains an injective (invertible, resp.) element then v



742 PIOTR POOLED

is called a subcorepresentation of (equivalent to, resp.) w. We write v ~ w if
v and w are equivalent. Direct sums and tensor products (0.4) of corepresenta-
tions (treated as matrices) are corepresentations.

A corepresentation v is called irreducible if dim v > 0 and v has no sub-
corepresentations w such that 0 < dim w < dim v. We say that a corepresenta-
tion is completely reducible (CR) if it is equivalent to a direct sum of irreducible
ones.

Let / be the set of all nonequivalent irreducible corepresentations of
A. Then

are linearly independent (use the argument in the proof of Prop. 4.7 of [W2]).
On the other hand, matrix elements of corepresentations linearly generate
A. Therefore, if A is CR (i.e., all corepresentations of A are CR) then the
elements (A.6) form a linear basis in A. Moreover, we have

Proposition A.2 (cf. Prop. 4.1 of [W5]). The elements (A.6) form a linear
basis in AoA is CR

Proof. '<=' has been already shown.
=>: Let v e Rep A. Then the matrix elements of v are linear combina-

tions of the matrix elements of wa, a e J0, where /0 is a finite subset of 1.
Therefore the mapping cp: © Mda(C) -» Md(C) (da = dim wa, d = dim v) given by

a elo

9 \ © P*"(u')\ = p®» , peA, (A.7)
L*ei0 J

is well defined. One easily checks that cp is a unital homomorphism of alge-
/ \ / \ _,

bras (cf. algebra structure of A below). Hence 9 © xa I = Q © xi(s) 1 Q
\aelo

for some finite set 5, mapping i: S -» J0 and bijective linear map Q: © Cdi(s)

Cd. Comparing that with (A.7), we get v = Q\ @ui(s) Q"1. D
\S6S /

Let Rep A be the set of all corepresentations of A. We say that a subset
L c Rep A is sufficient if the matrix elements of the corepresentations belonging
to L linearly generate A.

Let L c= Rep A. We say that v e L if v e Rep A and there exist a finite
set D and lm e L, am E Mor(lm, v), bm e Mor(v, lm) (m e D) such that

idv = X ambm (A.8)
meD

(cf. [W3]). Clearly L = L and L contains all direct sums and equivalent
corepresentations of corepresentations belonging to L.
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Proposition A.3. Let A. be a CR H opf algebra and L c Rep A be sufficient.
Then L = Rep A.

Proof. Decomposing elements of L into irreducible components we obtain
a set /' of irreducible corepresentations such that /' c L and matrix elements
of all w e / ' linearly generate A. Thus /' = /, / c L. Let i? e Rep A. Then
z; is equivalent to a direct sum of elements of / and v e L = L. Q

For a given Hopf algebra A we can define several Hopf algebras related
to it.
1) Tensor power AB = (An9 </>n, Kn, en) (n = 1, 2, ...) is constructed as follows:
An = A ® • • • ® A (n times), Kn = K ® • • - ® K (n times), en = e ® • • • ® e (n
times),

A,(*i®"'®*,,) = Z fli!®'"®*!,,®^®-"®^,
ii,...,in

where x1? ..., xn e >4 and a4l, ..., ain, bti, ..., 5^ are elements of A such that
<t>(xk) = Z ai'k ® ^'k> ^ = 1, • • • ' w (finite sums). It is straightforward that AM is

ifc
a Hopf algebra.
2) Let A = (A, fa K, e) be a Hopf algebra with bijective K, Aj be the conjugate
algebra of A, j: A-+ Aj the corresponding unital antilinear antiisomorphism
(if a e A then we denote aj = j(a)\ (/>j = (j ® j)<t>j~l, KJ = JKT1/"1, ej = ~ej~l

( * is the complex conjugation in C). Then A-7 = (Aj, $j, KJ, ej) is a Hopf
algebra and is called the conjugate Hopf algebra of A ([Ko]).
3) Let us notice that A' (the dual vector space of A) is in a natural
way an algebra with unity (1A, = e, x • y = (x ® y)^ x, y e A'). Set A = mr,
S = K', s = q' (where r\\ C -» A is a linear mapping such that r\(l) = I), a = SAA'.
In general A' = (A'9 A, S, e) is not a Hopf algebra (ImA c(A® A)' g A' ® A'
for dim ^4 = oo). Nevertheless, A' satisfies all conditions of Definition A.I with
(x) replaced by (g) (see (0.1); instead of m we use M = </>' (M\A,9A, is the multipli-
cation in A')m

9 A, s are homomorphisms in the following sense:

AM = (M® M)(id ®a® id)(A ® A) , e ® e = eM ;

id (g) a (g) id = (id (x) s^^ ® id)7)-
In particular, we can consider An', n = 1, 2, — In that context we use

the following notation. Let L e A2' = (A ® A)'. Then L12, L13, L23 e ^43' are
defined by L12(x ® ^ ® z) = L(x ® y)e(z), L13(x ® y ® z) = L(x ® z)e(y), L23(x ®
y ® z) = e(x)L(y ® z), x, y, z e A.

Definition A.4. We say that (A, *, (f>9 K, e) is a *-Hopf algebra if (A, fa K, e)
is a Hopf algebra, (A, *) is a *-algebra and (/>* = (* ® *)^.

In that situation e is a *-homomorphism (e = * o e o * also satisfies (A.2),
hence £ = e) while ? c o * o K ; o * = id (£ = # O K ; O * satisfies (A. 3) with m re-
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placed by mo SAA). Moreover, conjugations of corepresentations (see (0.5)) are
corepresentations.

If A is a *-Hopf algebra, then An is also ((x1 ® • • • ® xj*n = x* ® • • • ® xf,
xl9 ..., xneA). Moreover, A' is in this case a *-algebra and (in an 'extended'
sense: A*A, = (*A. ® *A>)A) *-Hopf algebra (we have two choices: *A>(x) =
~ o x o K; o * or *A>(x) = ~ o x o * o ?c, xe A').

Let A = (A, <f>A9 KA9 eA) and B = (B, $& KB, eB) be Hopf algebras. A unital
homomorphism of algebras if/: A-*B is called a homomorphism of Hopf alge-
bras A and B if <j>B\l/ = (\j/ (x) \I/)$A9 eB\jj = eA. Then KB\JJ = I//KA (it can be
checked on matrix elements of corepresentations). Moreover, if *A and *B

endow A and B with the structure of *-Hopf algebras and *B\I/ = \j/*A9 then
i// is called a homomorphism of *-Hopf algebras A and B.
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