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Abstract

We shall provide a large class of extremal positive maps in M3(C) which are neither 2-positive
nor 2-copositive and study the algebraic structure of the set of all positive linear maps in M3(C).

§ 1. Introduction

Let Mn(C) be the n x n matrix algebras and P(Mn) be the set of all
positive linear maps in Mn(C). One of the basic problems about the structure
of the set P(Mn) is whether the set P(Mn) can be decomposed as the algebraic
sum of simplier classes in P(Mn). Tow convex classes were candidates, that
is, the class of completely positive maps and the class of completely copositive
maps. With these classes the program was successful at least for M2(C) [13].
That this is not the case for higher dimensional algebras was shown by Choi
[3] at first by an example of indecomposable maps in M3(C). Recently, Kye
[6], Tanahasi and Tomiyama [12], and the author [8, 9] have studied strong
positive indecomposable maps in Mn(C) such that they can not be decomposed
into a sum of a 2-positive map and a 2-copositive map. Another approach
to the set P(Mn) is to study extremal points in P(Mn). In [11], St0rmer
investigated the extremal unital positive maps in C*-algebras and completely
characterized the class of extremal unital positive maps in M2(C). This is,
however, no algebraic formula which enables one to construct general extremal
positive maps, even in M3(C). It is, therefore, of interest to tackle the class
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of extremal atomic maps, that is, extremal positive maps which are neither
2-positive nor 2-copositive.

In the present note, we shall provide a large class of extremal atomic
maps in M3(C) and try to determine the algebraic structure of the set P(M3).

For nonnegative real numbers, cl9 c2, c3 with ct x c2 x c3 = 1, we define
the linear map 6?[2; c1? c29 c3] in M3(C) by

0[29cl9c29c3]([xiJ']) =

for each [>u] e M3(C). Then, in [6] we know that <$[2; cl5 c2, c3] is atomic
map and in particular 9\2\ 1, 1,1] is extremal [5].

Our main result is following:

Theorem, For nonnegative real numbers c1? c2, c3 with cv x c2 x c3 = 1,
0[2; cl3 c2, c3] are extremal

This is the affirmative answer to the question described in [6].
To prove Theorem, we use Choi and Lam's method [5]. For (/> E P(Mn)

we have an hermitian biquadratic form B# on the set of complex variable
A = ( A l f . . . , AJ, 11 = (M!,. . . , ft) of C«, defined by B,(A, /i) = (#ji*ji)A*|A*). If
^ is decomposable, there exist bilinear forms 0p(A, /x) = £ A jA^ and dual
bilinear forms /ip(A, ju) = £ y'jA^ such that B^ = J] (^0fp + fcpfcp), where ^.
and yfj e C. The converse is also true. Considering the set of real variable
x = (xl9..., xn)9 y = (yl9..., yn) of R", the study of decomposability is related
with Hilbert's classical problem of whether a positive semi-definite real forms
(= psd forms) must be the sum of all sequare of other (real) polynomials. Let
Pn,m be the set of all psd in n variable of degree m. A form F € Pn,m is said
to be extremal if F = F1 + F2, Fte Pw>m, should imply Ft = A^F, where Af is
nonnegative real number with At 4- A2 = 1. If we write fi(Pw,m) to denote the
set of all extremal forms in Pw m, an elementary result in the theory of convex
bodies shows that e(PMjm) spans Pw>m. We stress that if ^ 6 P(Mn) maps MM(R)
into itself, B^ e £(P2n,4) implies that (j> is extremal in P(Mn). Therefore, to get
Theorem, it suffices to prove B0[2; cl5 c2, c3] ee(P6j4).

We show in §2 B0[2; cl9 c2, c3] e e(P6§4).
In §3, we study the algebraic structure of the set P(M3).

§2» Extremal Biquadratic Forms

Let Pn>m be the set all psd forms in n variables of degree m and e(Pn>m)
be the set of all extremal psd forms in Pn>m. For nonnegative real number
cl9 c29 c3 with c1 x c2 x c3 = 1, we define a biquadratic form B&[2; cl9 c2, c3]
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by

^ ^
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X2X3 X3

+ xlyl - 2(x1x2y1j;2 H- X1x3y1y3 + X2x3y2y3)

where [x1,x2,x3]5 [^i,y2,y3] eR3 and t means the transpose map in M3(C).
Although we know B0[2; cl5 c2, c3] is psd [6], we give the proof of it for the
completeness.

Lemma 2.1 ([3], [5]). £0[2; cl9 c2, c3] is psd.

Proo/. By the arithmetic-geometric inequality and cl x c2 x c3 = 1, we
have

Using this, we get
/

*3

c2x\y2
2

X2x3y2y3)

We put x^! = a, x2y2 = fc, x3j;3 = c, then we have only to show

a2 + b2 + c2 - 2(ab + be + ac) + 3(abc)2'3 > 0

for a, fc, c > 0. By symmetry, we may assume that c is smallest. Using the
arithmetic-geometric inequality again, we have

a2 + b2 + c2 - 2(ab + bc + ac) + 3(afcc)2/3 > a2 + b2 -

= (a- b)2 + 4cv^ - 2(a + fe)c

= (a _ 6)2 _ 2c(7a - jb)2

= (^a~ V^)2[(v^ + Vb)2 ~ 2c]

>o. a
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For the proof of the extremality of Be[2;cl9c29c3']9 according to the
Choi and Lam's program we construct a psd form 6[c1,c2,c3] in P4>4. To
get Q[cl9c29c3']9 we plug in;

x w z

= x2y2 4- c1y
2z2 + c2x2z2 + c3w4 — 4xyzw

= Q[cl9c29c3'](x9y9z9w).

Note that their extremality of B0[2; 1, 1, 1] and g[l, 1, 1] were proved by
Choi and Lam [5].

Let 9(0 be the set of real zero of 6[c1? c29 c3] which may be the viewed
as a projective set on P3. We see easily, then, that 9(0 consists of the
following 7 points; (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and

It is easily to see that 6[cl5c2,c3] are not a sum of squares of polino-
mials. Moreover, we have the following result;

Proposition 2.2. Q[cl9 c2? c3] e e(P4j4).

Proof. Let K e P4j4 and Q[cl9 c2, c3] > J£ > 0. To begin with, there are
35 possible monominal terms in K. It is obvious that K cannot contain x4,
y4, and z4. Since K and Q[cl9 c29 c3] — K are psd, we know K cannot contain
x3y, x3z, x3w, y3x, .y3z, j3w, z3x, z3y, z3w, x2w2, j;2w2, and z2w2. Thus

K(09 y9 0, w) = ayw3 + j8w4 > 0 .

This gives a = 0. Therefore, we can eliminate xw3, yw3, and zw3 from K.
Hence, there are 17 possible monominal terms in K and K can be written
as follows;

K(x9 y, z, w) = x2(p1y
2 + p2yz + p3yw + p4z

2 + p5zw)

+ x(p6y
2z + p7/w + p8j;z

2 + p9yw2 + p1Qyzw + PnZ2w + p i2zw2)

pl6yzw2 + p17w4 .

To try to eliminate more monominal terms from K, we use Reznic's idea
[10]. Let P(xl9 ..., xj = Y, ai*yi be real form with degree 2m, where at ^ 0
and y£

9s are distinct n- tuples on Rn. The cage of P9 C(P\ is the convex hull
of the yf's, viewed as vectors in W lying in the hyperplane Mt + ••• + MB = 2m.
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Reznic showed that if both of / and g are psd forms, then C(f + g) 3 C(f)
[10, Theorem 1]. Using this result,

^ C(K) .

From this observation, K can be written as follows,

K(x, y, z, w) = q±x2y2 + q2x
2yz + q3x

2z2 + q4xy2z + q5xyz2 + q6xyw2

q7xyzw + qsxzw2 + q9y
2z2

Since K is psd, all partial derivations of K vanish on 9(0. From a partial
derivation of K with respect to w, we get

= 0,

C3

= 0,

C3 C3

= o,

f*l->/<i.dw l v

= 0,

/T\
i , 2 9 l 9 l - ] = - 2 6 — 7 1 2 - s -

OW \ V C3/ V C3 V C3

3
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so we obtain

{06 = 08 = 010 = 0

/ ( fi\ n
07V^ + 44ll /H =0'v W'3/

Similarly, from the other partial derivations of K we obtain

(2)
-203^1+07^ = 0,

(3) 2<?1c1.,/c2 + q1 J^- + 2q9^/C2 = 0 ,

(4) 2^3^! + c

From (3) x ^/c^ — (4), we get g3 = c2ql9 thus from (2),

(5) q, = -4q,.

From (1), (3), and (5), we get q9 = c1q1 and q^ = c3qlf

Therefore, we obtain K(x, y, z, w) = 01Q[c1, c2, c3](x, 3;, z, w) and the proof
is completed. D

Remark. In [3], Choi and Lam gave another explicit example of non-
square psd extremal ternary quatric form S(x9 y, z), that is,

S(x, y, z) = xV + /z2 + z4*2 - 3x2j;2z2 .

As in the case of Q[c l5c2,c3] we expect the extremality of S[cl9c2, c3];

S[c1? c2, c3](x, y, z) = cxx y

where cl5 c2, and c3 are nonnegative real numbers with c1 x c2 x c3 = 1. We
know, however, that S[c1? c2, c3] is not extremal in P3j6 except for c1 = c2 =
c3 = 1 from [10, Theorem 2]. D

Suppose F ( 1 2 3 I is a biquadratic form such that

Since

IX W Z i
; cls c2, c3] ( 1 = x2y2 + c^V + c2x2z2 + c3w4 - 4xyzw ,
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/ w z x\ 22 22 4 2 22; cl9 c2, c3] ( ^ J = x2y2 + cxx2z2 + c2w4 + c3j;
2z2 - 4xj;zw ,

w y z

from the previous proposition we get

w z\ „__ _, /x w z
F

\.y z w/ \}> z w

Fr x
\w y

By compairing the coefficient of x2y2, y2z2, and z2x2, we get ^ = /12 = /13. As
in the same argument in [5, Theorem 4.4], we obtain the main result in this
section.

Theorem 2.3,

D f). ,, „ f* ~\ c. c(T> \UQ\jL^ 1/^5 ̂ 2, C^3J t: t^-i g 4^ .

§1 The Algebraic Structure of P(M3)

Let P(MM) be the set of all positive linear maps in Mn(C). For each
k = 1, 2, ..., a map (p e P(Mn) is said to be fe-positive (respectively, fc-copositive)
if the ^-multiplicity map <p(fc) (respectively, the fe-comultiplicity map

9(k)', [af>J-] e

(respectively, (pc(k); [af>J-] e .

is positive. If (p is fc-positive for every fc, then q> is said to be completely
positive. It is, however, known that every n-positive map in Mn(C) is com-
pletely positive and the class of completely positive maps is equal to

Completely copositive maps are defined in a similar way and the saturation
of copositivity in MB(C) also occur. In particular, the class of completely
copositive maps is equal to
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where t means the transpose map in MB(C). A map cp e P(Mn) Is said to be
decomposable if <p can be a sum of a completely positive map and a completely
copositive map. As a new candidate for the previous basic problem, Tanahasi
and Tomiyama [12] have introduced the following concept;

Definition. A map cp e P(Mn) is said to be atomic if cp can not be decom-
posed into a sum of a 2-positive map and a 2-copositive map.

Note that the class of atomic maps is not a positive cone [8].
A map cp e P(Mn) is said to be extremal if q> = q>1 4- cp2, (Pi e P(Mn), should

imply ft = AM, where A1? A2 are nonnegative real numbers, ^ + A2 = 1-
Since ©[2; cl9 c2, c3](M3(R)) c M3(R), from Theorem 2.3 and [6, Theorem

3.2] we obtain the main result;

Theorem 3.1. For negative number cl5 c2, c3 witli cx x c2 x c3 = 1,
0[2; c1? e2, c3] are extremal atomic maps.

For the completeness, we give the elementary proof of the atomic property
of 0[2;c l3c2,c3].

Proof. At first, we give a proof of the positivity of 0\_2\ cl9 c2, c3] as in
the argument of [4, Appendix B].

Since J30[2; cl5 c2, c3] is a psd form by Lemma 2.1, for every rank one
positive semidefinite complex matrix [ojo,-],

A! 0 0
0 T2 0
0 0 ~L |a3a2| |a3|

A! 0 0
0 A2 0
0 0 A,

turns out to be positive semidefinite too, where A£(i = 1, 2, 3) are complex
numbers of modulus 1 with a—A^aJ. Hence by linearity, 6^[2;c1,c2,
for every positive semidefinite complex matrix X.

Let { = [0, 1, 1, 1, 1, 0] E R6 and x = ?£. We have, then,

where rj = [0, 1, 1, 1, 0, — 1] E R6. Hence we know $[2; c1? c2, c3] is not 2-
positive.

Let {^i,j}i<i,j<n be canonical matrix units for M3(C). It is easily seen

and 0[2; ct, c2, c3] is not 2-copositive.
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Since d?[2; cl9 c2, c3] is extremal, 0[2; cl9 c2, c3] is atomic. D

Thanks to the previous Theorem, to clear the structure of the set P(M3)
it is important to analysis the existence of extremal 2-positive maps which is
not 3-positive, that is, completely positive. In [2], Choi gave examples of
(n — l)-positive maps (pn E P(Mn) (n > 3) which are not n-positive;

where trace(-) means the canonical trace in Mn(C). According to Ando's note,
<pn is purely (n — l)-positive; If \j/1 is (n — l)-positive and \j/2 ^-positive in P(Mn)
satisfying cpn = if/^ + \l/2, then \l/2 = 0. In particular, <p3 is a decomposable
map [1]. But using the concept of atom, we get the another aspect of cpn.
Indeed,

q>H(X) = (n- l)s(X) + e(SXS*) -X + i^2(X)

where s is a canonical projection of MW(C) to the diagonal part, S is the
rotation matrix in MB(C) such that S = [(5U+1]. From [9, Theorem], \l/l is
atomic and obviously ij/2 is completely positive.

On the other hand, in the study of contractive projections on C*-algebras

we know an arbitrary - -positive contractive projection in P(Mn) automati-

cally becomes a completely positive map [7, Theorem 3.1], where [ ] means
Gaussian symbol. Therefore, we can pose the following problem;

Problem 3o2. Let n>3. Is an arbitrary extremal (n — l)-positive map in
P(Mn) completely positive!

If this problem is true, we can completely determine the algebraic structure
of P(M3), that is,

Problem 3.3. For any cp e P(M3), can (p be written as a positive linear
sum of decomposable maps and atomic maps!
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