Publ. RIMS, Kyoto Univ. 28 (1992), 747–756

A Class of Extremal Positive Maps in 3×3 Matrix Algebras

Dedicated to Professor Jun Tomiyama on the sixtieth anniversary of his birthday

By

Hiroyuki Osaka*

Abstract

We shall provide a large class of extremal positive maps in $M_3(\mathbb{C})$ which are neither 2-positive nor 2-copositive and study the algebraic structure of the set of all positive linear maps in $M_3(\mathbb{C})$.

§1. Introduction

Let $M_n(\mathbb{C})$ be the $n \times n$ matrix algebras and $P(M_n)$ be the set of all positive linear maps in $M_n(\mathbf{C})$. One of the basic problems about the structure of the set $P(M_n)$ is whether the set $P(M_n)$ can be decomposed as the algebraic sum of simplier classes in $P(M_n)$. Tow convex classes were candidates, that is, the class of completely positive maps and the class of completely copositive maps. With these classes the program was successful at least for $M_2(\mathbb{C})$ [13]. That this is not the case for higher dimensional algebras was shown by Choi [3] at first by an example of indecomposable maps in $M_3(\mathbb{C})$. Recently, Kye [6], Tanahasi and Tomiyama [12], and the author [8, 9] have studied strong positive indecomposable maps in $M_n(\mathbf{C})$ such that they can not be decomposed into a sum of a 2-positive map and a 2-copositive map. Another approach to the set $P(M_n)$ is to study extremal points in $P(M_n)$. In [11], Størmer investigated the extremal unital positive maps in C^* -algebras and completely characterized the class of extremal unital positive maps in $M_2(\mathbb{C})$. This is, however, no algebraic formula which enables one to construct general extremal positive maps, even in $M_3(\mathbb{C})$. It is, therefore, of interest to tackle the class

Communicated by H. Araki, June 21, 1991.

¹⁹⁹¹ Mathematics Subject Classification: 46L05

^{*} Department of Mathematics, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji-shi, Tokyo 192-03, Japan.

of extremal atomic maps, that is, extremal positive maps which are neither 2-positive nor 2-copositive.

In the present note, we shall provide a large class of extremal atomic maps in $M_3(\mathbb{C})$ and try to determine the algebraic structure of the set $P(M_3)$.

For nonnegative real numbers, c_1 , c_2 , c_3 with $c_1 \times c_2 \times c_3 = 1$, we define the linear map $\Theta[2; c_1, c_2, c_3]$ in $M_3(\mathbb{C})$ by

$$\Theta[2; c_1, c_2, c_3]([x_{i,j}]) = \begin{pmatrix} x_{1,1} + c_1 x_{3,3} & -x_{1,2} & -x_{1,3} \\ -x_{2,1} & x_{2,2} + c_2 x_{1,1} & -x_{2,3} \\ -x_{3,1} & -x_{3,2} & x_{3,3} + c_3 x_{2,2} \end{pmatrix}$$

for each $[x_{i,j}] \in M_3(\mathbb{C})$. Then, in [6] we know that $\Theta[2; c_1, c_2, c_3]$ is atomic map and in particular $\Theta[2; 1, 1, 1]$ is extremal [5].

Our main result is following:

Theorem. For nonnegative real numbers c_1 , c_2 , c_3 with $c_1 \times c_2 \times c_3 = 1$, $\Theta[2; c_1, c_2, c_3]$ are extremal.

This is the affirmative answer to the question described in [6].

To prove Theorem, we use Choi and Lam's method [5]. For $\phi \in P(M_n)$ we have an hermitian biquadratic form B_{ϕ} on the set of complex variable $\lambda = (\lambda_1, \dots, \lambda_n), \ \mu = (\mu_1, \dots, \mu_n)$ of \mathbb{C}^n , defined by $B_{\phi}(\lambda, \mu) = (\phi(\mu^* \mu) \lambda^* | \lambda^*)$. If ϕ is decomposable, there exist bilinear forms $g_p(\lambda, \mu) = \sum \beta_{i,j}^p \lambda_i \mu_j$ and dual bilinear forms $h_p(\lambda, \mu) = \sum \gamma_{i,j}^p \overline{\lambda_i} \mu_j$ such that $B_{\phi} = \sum (\overline{g_p} g_p + \overline{h_p} h_p)$, where $\beta_{i,j}^p$ and $\gamma_{i,j}^{p} \in \mathbb{C}$. The converse is also true. Considering the set of real variable $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n)$ of \mathbb{R}^n , the study of decomposability is related with Hilbert's classical problem of whether a positive semi-definite real forms (=psd forms) must be the sum of all sequare of other (real) polynomials. Let $P_{n,m}$ be the set of all psd in *n* variable of degree *m*. A form $F \in P_{n,m}$ is said to be extremal if $F = F_1 + F_2$, $F_i \in P_{n,m}$, should imply $F_i = \lambda_i F$, where λ_i is nonnegative real number with $\lambda_1 + \lambda_2 = 1$. If we write $\varepsilon(P_{n,m})$ to denote the set of all extremal forms in $P_{n,m}$, an elementary result in the theory of convex bodies shows that $\varepsilon(P_{n,m})$ spans $P_{n,m}$. We stress that if $\phi \in P(M_n)$ maps $M_n(\mathbb{R})$ into itself, $B_{\phi} \in \varepsilon(P_{2n,4})$ implies that ϕ is extremal in $P(M_n)$. Therefore, to get Theorem, it suffices to prove $B_{\theta}[2; c_1, c_2, c_3] \in \varepsilon(P_{6,4})$.

We show in §2 $B_{\Theta}[2; c_1, c_2, c_3] \in \varepsilon(P_{6,4})$.

In §3, we study the algebraic structure of the set $P(M_3)$.

§2. Extremal Biquadratic Forms

Let $P_{n,m}$ be the set all psd forms in *n* variables of degree *m* and $\varepsilon(P_{n,m})$ be the set of all extremal psd forms in $P_{n,m}$. For nonnegative real number c_1, c_2, c_3 with $c_1 \times c_2 \times c_3 = 1$, we define a biquadratic form $B_{\Theta}[2; c_1, c_2, c_3]$

by

$$B_{\theta}[2; c_{1}, c_{2}, c_{3}] \begin{pmatrix} x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \end{pmatrix}$$

= $[y_{1}, y_{2}, y_{3}] \Theta[2; c_{1}, c_{2}, c_{3}] \begin{pmatrix} x_{1}^{2} & x_{1}x_{2} & x_{1}x_{3} \\ x_{1}x_{2} & x_{2}^{2} & x_{2}x_{3} \\ x_{1}x_{3} & x_{2}x_{3} & x_{3}^{2} \end{pmatrix} [y_{1}, y_{2}, y_{3}]^{t}$
= $x_{1}^{2}y_{1}^{2} + x_{2}^{2}y_{2}^{2} + x_{3}^{2}y_{3}^{2} - 2(x_{1}x_{2}y_{1}y_{2} + x_{1}x_{3}y_{1}y_{3} + x_{2}x_{3}y_{2}y_{3})$
+ $c_{1}x_{3}^{2}y_{1}^{2} + c_{2}x_{1}^{2}y_{2}^{2} + c_{3}x_{2}^{2}y_{3}^{2},$

where $[x_1, x_2, x_3]$, $[y_1, y_2, y_3] \in \mathbb{R}^3$ and t means the transpose map in $M_3(\mathbb{C})$. Although we know $B_{\theta}[2; c_1, c_2, c_3]$ is psd [6], we give the proof of it for the completeness.

Lemma 2.1 ([3], [5]). $B_{\theta}[2; c_1, c_2, c_3]$ is psd.

Proof. By the arithmetic-geometric inequality and $c_1 \times c_2 \times c_3 = 1$, we have

$$c_1 x_3^2 y_1^2 + c_2 x_1^2 y_2^2 + c_3 x_2^2 y_3^2 \ge 3(x_1 y_1 x_2 y_2 x_3 y_3)^{2/3}$$

Using this, we get

$$B_{\theta}[2; c_{1}, c_{2}, c_{3}] \begin{pmatrix} x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \end{pmatrix}$$

$$= x_{1}^{2}y_{1}^{2} + x_{2}^{2}y_{2}^{2} + x_{3}^{2}y_{3}^{2} - 2(x_{1}x_{2}y_{1}y_{2} + x_{1}x_{3}y_{1}y_{3} + x_{2}x_{3}y_{2}y_{3})$$

$$+ c_{1}x_{3}^{2}y_{1}^{2} + c_{2}x_{1}^{2}y_{2}^{2} + c_{3}x_{2}^{2}y_{3}^{2}$$

$$\geq x_{1}^{2}y_{1}^{2} + x_{2}^{2}y_{2}^{2} + x_{3}^{2}y_{3}^{2} - 2(x_{1}x_{2}y_{1}y_{2} + x_{1}x_{3}y_{1}y_{3} + x_{2}x_{3}y_{2}y_{3})$$

$$+ 3(x_{1}y_{1}x_{2}y_{2}x_{3}y_{3})^{2/3}.$$

We put $x_1y_1 = a$, $x_2y_2 = b$, $x_3y_3 = c$, then we have only to show

$$a^{2} + b^{2} + c^{2} - 2(ab + bc + ac) + 3(abc)^{2/3} \ge 0$$

for a, b, $c \ge 0$. By symmetry, we may assume that c is smallest. Using the arithmetic-geometric inequality again, we have

$$\begin{aligned} a^{2} + b^{2} + c^{2} - 2(ab + bc + ac) + 3(abc)^{2/3} &\geq a^{2} + b^{2} - 2(ab + bc + ac) + 4c\sqrt{ab} \\ &= (a - b)^{2} + 4c\sqrt{ab} - 2(a + b)c \\ &= (a - b)^{2} - 2c(\sqrt{a} - \sqrt{b})^{2} \\ &= (\sqrt{a} - \sqrt{b})^{2} [(\sqrt{a} + \sqrt{b})^{2} - 2c] \\ &\geq 0. \end{aligned}$$

For the proof of the extremality of $B_{\theta}[2; c_1, c_2, c_3]$, according to the Choi and Lam's program we construct a psd form $Q[c_1, c_2, c_3]$ in $P_{4,4}$. To get $Q[c_1, c_2, c_3]$, we plug in;

$$B_{\theta}[2; c_1, c_2, c_3] \begin{pmatrix} x & w & z \\ y & z & w \end{pmatrix}$$

= $x^2 y^2 + c_1 y^2 z^2 + c_2 x^2 z^2 + c_3 w^4 - 4xyzw$
= $Q[c_1, c_2, c_3](x, y, z, w)$.

Note that their extremality of $B_{\theta}[2; 1, 1, 1]$ and Q[1, 1, 1] were proved by Choi and Lam [5].

Let $\mathfrak{I}(Q)$ be the set of real zero of $Q[c_1, c_2, c_3]$ which may be the viewed as a projective set on \mathbb{P}^3 . We see easily, then, that $\mathfrak{I}(Q)$ consists of the following 7 points; (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and

$$\left(\sqrt{c_1}, \sqrt{c_2}, 1, \sqrt{\frac{1}{c_3}}\right), \quad \left(-\sqrt{c_1}, \sqrt{c_2}, -1, \sqrt{\frac{1}{c_3}}\right), \quad \left(\sqrt{c_1}, -\sqrt{c_2}, -1, \sqrt{\frac{1}{c_3}}\right), \\ \left(-\sqrt{c_1}, -\sqrt{c_2}, 1, \sqrt{\frac{1}{c_3}}\right).$$

It is easily to see that $Q[c_1, c_2, c_3]$ are not a sum of squares of polinomials. Moreover, we have the following result;

Proposition 2.2. $Q[c_1, c_2, c_3] \in \epsilon(P_{4,4}).$

Proof. Let $K \in P_{4,4}$ and $Q[c_1, c_2, c_3] \ge K \ge 0$. To begin with, there are 35 possible monominal terms in K. It is obvious that K cannot contain x^4 , y^4 , and z^4 . Since K and $Q[c_1, c_2, c_3] - K$ are psd, we know K cannot contain x^3y , x^3z , x^3w , y^3x , y^3z , y^3w , z^3x , z^3y , z^3w , x^2w^2 , y^2w^2 , and z^2w^2 . Thus

$$K(0, y, 0, w) = \alpha y w^3 + \beta w^4 \ge 0$$

This gives $\alpha = 0$. Therefore, we can eliminate xw^3 , yw^3 , and zw^3 from K. Hence, there are 17 possible monominal terms in K and K can be written as follows;

$$K(x, y, z, w) = x^{2}(p_{1}y^{2} + p_{2}yz + p_{3}yw + p_{4}z^{2} + p_{5}zw)$$

+ $x(p_{6}y^{2}z + p_{7}y^{2}w + p_{8}yz^{2} + p_{9}yw^{2} + p_{10}yzw + p_{11}z^{2}w + p_{12}zw^{2})$
+ $p_{13}y^{2}z^{2} + p_{14}y^{2}zw + p_{15}yz^{2}w + p_{16}yzw^{2} + p_{17}w^{4}.$

To try to eliminate more monominal terms from K, we use Reznic's idea [10]. Let $P(x_1, ..., x_n) = \sum a_i x^{\gamma_i}$ be real form with degree 2m, where $a_i \neq 0$ and γ_i 's are distinct *n*-tuples on \mathbb{R}^n . The cage of P, C(P), is the convex hull of the γ_i 's, viewed as vectors in \mathbb{R}^n lying in the hyperplane $u_1 + \cdots + u_n = 2m$.

Reznic showed that if both of f and g are psd forms, then $C(f+g) \supseteq C(f)$ [10, Theorem 1]. Using this result,

$$C(Q) = \{(2\alpha_1 + 2\alpha_3 + \alpha_5, 2\alpha_1 + 2\alpha_2 + \alpha_5, 2\alpha_2 + 2\alpha_3 + \alpha_5, \alpha_5 + 4\alpha_4); a_i \ge 0, \sum \alpha_i \le 1\}$$

$$\supseteq C(K).$$

From this observation, K can be written as follows,

$$K(x, y, z, w) = q_1 x^2 y^2 + q_2 x^2 yz + q_3 x^2 z^2 + q_4 x y^2 z + q_5 x y z^2 + q_6 x y w^2$$
$$+ q_7 x y z w + q_8 x z w^2 + q_9 y^2 z^2 + q_{10} y z w^2 + q_{11} w^4.$$

Since K is psd, all partial derivations of K vanish on $\ni(Q)$. From a partial derivation of K with respect to w, we get

$$\begin{split} \frac{\partial}{\partial w} K\left(\sqrt{c_1}, \sqrt{c_2}, 1, \sqrt{\frac{1}{c_3}}\right) &= 2q_6 \sqrt{\frac{c_1 c_2}{c_3}} + q_7 \sqrt{c_1 c_2} + 2q_8 \sqrt{\frac{c_1}{c_3}} \\ &+ 2q_{10} \sqrt{\frac{c_2}{c_3}} + 4q_{11} \left(\sqrt{\frac{1}{c_3}}\right)^3 \\ &= 0 , \\ \frac{\partial}{\partial w} K\left(-\sqrt{c_1}, \sqrt{c_2}, -1, \sqrt{\frac{1}{c_3}}\right) &= -2q_6 \sqrt{\frac{c_1 c_2}{c_3}} + q_7 \sqrt{c_1 c_2} + 2q_8 \sqrt{\frac{c_1}{c_3}} \\ &- 2q_{10} \sqrt{\frac{c_2}{c_3}} + 4q_{11} \left(\sqrt{\frac{1}{c_3}}\right)^3 \end{split}$$

$$= 0,$$

$$\begin{aligned} \frac{\partial}{\partial w} K\left(\sqrt{c_1}, -\sqrt{c_2}, -1, \sqrt{\frac{1}{c_3}}\right) &= -2q_6 \sqrt{\frac{c_1 c_2}{c_3}} + q_7 \sqrt{c_1 c_2} - 2q_8 \sqrt{\frac{c_1}{c_3}} \\ &+ 2q_{10} \sqrt{\frac{c_2}{c_3}} + 4q_{11} \left(\sqrt{\frac{1}{c_3}}\right)^3 \\ &= 0, \end{aligned}$$

$$\frac{\partial}{\partial w} K\left(-\sqrt{c_1}, -\sqrt{c_2}, 1, \sqrt{\frac{1}{c_3}}\right) = 2q_6 \sqrt{\frac{c_1 c_2}{c_3}} + q_7 \sqrt{c_1 c_2} - 2q_8 \sqrt{\frac{c_1}{c_3}} - 2q_{10} \sqrt{\frac{c_2}{c_3}} + 4q_{11} \left(\sqrt{\frac{1}{c_3}}\right)^3 = 0,$$

so we obtain

(1)
$$\begin{cases} q_6 = q_8 = q_{10} = 0\\ q_7 \sqrt{c_1 c_2} + 4q_{11} \left(\sqrt{\frac{1}{c_3}}\right)^3 = 0 \end{cases}$$

Similarly, from the other partial derivations of K we obtain

(2)
$$\begin{cases} q_2 = q_4 = q_5 = 0\\ 2q_1\sqrt{c_1}c_2 + 2q_3\sqrt{c_1} + q_7\sqrt{\frac{c_2}{c_3}} = 0 \end{cases}$$

(3)
$$2q_1c_1\sqrt{c_2} + q_7\sqrt{\frac{c_1}{c_3}} + 2q_9\sqrt{c_2} = 0,$$

(4)
$$2q_3c_1 + q_7\sqrt{\frac{c_1c_2}{c_3}} + 2q_9c_2 = 0.$$

From (3) $\times \sqrt{c_2}$ - (4), we get $q_3 = c_2 q_1$, thus from (2), (5) $q_7 = -4q_1$.

$$\Gamma_{max}(1)(2) = 1(5)$$

From (1), (3), and (5), we get $q_9 = c_1q_1$ and $q_{11} = c_3q_1$.

Therefore, we obtain $K(x, y, z, w) = q_1 Q[c_1, c_2, c_3](x, y, z, w)$ and the proof is completed.

Remark. In [3], Choi and Lam gave another explicit example of non-square psd extremal ternary quatric form S(x, y, z), that is,

$$S(x, y, z) = x^4 y^2 + y^4 z^2 + z^4 x^2 - 3x^2 y^2 z^2$$

As in the case of $Q[c_1, c_2, c_3]$ we expect the extremality of $S[c_1, c_2, c_3]$;

$$S[c_1, c_2, c_3](x, y, z) = c_1 x^4 y^2 + c_2 y^4 z^2 + c_3 z^4 x^2 - 3x^2 y^2 z^2$$

where c_1 , c_2 , and c_3 are nonnegative real numbers with $c_1 \times c_2 \times c_3 = 1$. We know, however, that $S[c_1, c_2, c_3]$ is not extremal in $P_{3,6}$ except for $c_1 = c_2 = c_3 = 1$ from [10, Theorem 2].

Suppose
$$F\begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix}$$
 is a biquadratic form such that
 $B_{\theta}[2; c_1, c_2, c_3] \ge F \ge 0$.

Since

$$B_{\theta}[2; c_1, c_2, c_3] \begin{pmatrix} x & w & z \\ y & z & w \end{pmatrix} = x^2 y^2 + c_1 y^2 z^2 + c_2 x^2 z^2 + c_3 w^4 - 4xyzw,$$

$$B_{\theta}[2; c_1, c_2, c_3] \begin{pmatrix} w & z & x \\ z & w & y \end{pmatrix} = x^2 y^2 + c_1 x^2 z^2 + c_2 w^4 + c_3 y^2 z^2 - 4xyzw,$$

$$B_{\theta}[2; c_1, c_2, c_3] \begin{pmatrix} z & x & w \\ w & y & z \end{pmatrix} = x^2 y^2 + c_1 w^4 + c_2 y^2 z^2 + c_3 x^2 z^2 - 4xyzw,$$

from the previous proposition we get

$$\begin{split} F\begin{pmatrix} x & w & z \\ y & z & w \end{pmatrix} &= \lambda_1 B_{\theta}[2; c_1, c_2, c_3] \begin{pmatrix} x & w & z \\ y & z & w \end{pmatrix}, \\ F\begin{pmatrix} w & z & x \\ z & w & y \end{pmatrix} &= \lambda_2 B_{\theta}[2; c_1, c_2, c_3] \begin{pmatrix} w & z & x \\ z & w & y \end{pmatrix}, \\ F\begin{pmatrix} z & x & w \\ w & y & z \end{pmatrix} &= \lambda_3 B_{\theta}[2; c_1, c_2, c_3] \begin{pmatrix} z & x & w \\ w & y & z \end{pmatrix}. \end{split}$$

By compairing the coefficient of x^2y^2 , y^2z^2 , and z^2x^2 , we get $\lambda_1 = \lambda_2 = \lambda_3$. As in the same argument in [5, Theorem 4.4], we obtain the main result in this section.

Theorem 2.3.

$$B_{\Theta}[2; c_1, c_2, c_3] \in \epsilon(P_{6,4})$$

§3. The Algebraic Structure of $P(M_3)$

Let $P(M_n)$ be the set of all positive linear maps in $M_n(\mathbb{C})$. For each $k = 1, 2, ..., a \max \varphi \in P(M_n)$ is said to be k-positive (respectively, k-copositive) if the k-multiplicity map $\varphi(k)$ (respectively, the k-comultiplicity map $\varphi^c(k)$);

$$\varphi(k); [a_{i,j}] \in M_k(M_n(\mathbb{C})) \mapsto [\varphi(a_{i,j})]_{i,j=1}^k$$
(respectively, $\varphi^c(k); [a_{i,j}] \in M_k(M_n(\mathbb{C})) \mapsto [\varphi(a_{j,i})]_{i,j=1}^k$),

is positive. If φ is k-positive for every k, then φ is said to be completely positive. It is, however, known that every *n*-positive map in $M_n(\mathbb{C})$ is completely positive and the class of completely positive maps is equal to

$$\left\{\sum_i V_i(\)V_i^*; V_i \in M_n(\mathbb{C})\right\} \ .$$

Completely copositive maps are defined in a similar way and the saturation of copositivity in $M_n(\mathbb{C})$ also occur. In particular, the class of completely copositive maps is equal to

$$\left\{\sum_{j} W_{j}()^{t} W_{j}^{*}; W_{j} \in M_{n}(\mathbb{C})\right\},\$$

where t means the transpose map in $M_n(\mathbb{C})$. A map $\varphi \in P(M_n)$ is said to be decomposable if φ can be a sum of a completely positive map and a completely copositive map. As a new candidate for the previous basic problem, Tanahasi and Tomiyama [12] have introduced the following concept;

Definition. A map $\varphi \in P(M_n)$ is said to be *atomic* if φ can not be decomposed into a sum of a 2-positive map and a 2-copositive map.

Note that the class of atomic maps is not a positive cone [8].

A map $\varphi \in P(M_n)$ is said to be extremal if $\varphi = \varphi_1 + \varphi_2$, $\varphi_i \in P(M_n)$, should imply $\varphi_i = \lambda_i \varphi$, where λ_1 , λ_2 are nonnegative real numbers, $\lambda_1 + \lambda_2 = 1$.

Since $\Theta[2; c_1, c_2, c_3](M_3(\mathbb{R})) \subset M_3(\mathbb{R})$, from Theorem 2.3 and [6, Theorem 3.2] we obtain the main result;

Theorem 3.1. For negative number c_1 , c_2 , c_3 with $c_1 \times c_2 \times c_3 = 1$, $\Theta[2; c_1, c_2, c_3]$ are extremal atomic maps.

For the completeness, we give the elementary proof of the atomic property of $\Theta[2; c_1, c_2, c_3]$.

Proof. At first, we give a proof of the positivity of $\Theta[2; c_1, c_2, c_3]$ as in the argument of [4, Appendix B].

Since $B_{\theta}[2; c_1, c_2, c_3]$ is a psd form by Lemma 2.1, for every rank one positive semidefinite complex matrix $[\overline{\alpha}_i \alpha_j]$,

$$\begin{split} \boldsymbol{\varTheta} \left[2; c_1, c_2, c_3\right] \begin{pmatrix} \overline{\alpha_1} \alpha_2 & \overline{\alpha_1} \alpha_2 & \overline{\alpha_1} \alpha_3 \\ \overline{\alpha_2} \alpha_1 & \overline{\alpha_2} \alpha_2 & \overline{\alpha_2} \alpha_3 \\ \overline{\alpha_3} \alpha_1 & \overline{\alpha_3} \alpha_2 & \overline{\alpha_3} \alpha_3 \end{pmatrix} \\ &= \begin{pmatrix} \overline{\lambda_1} & 0 & 0 \\ 0 & \overline{\lambda_2} & 0 \\ 0 & 0 & \overline{\lambda_3} \end{pmatrix} \boldsymbol{\varTheta} \left[2; c_1, c_2, c_3\right] \begin{pmatrix} |\alpha_1|^2 & |\alpha_1 \alpha_2| & |\alpha_1 \alpha_3| \\ |\alpha_2 \alpha_1| & |\alpha_2|^2 & |\alpha_2 \alpha_3| \\ |\alpha_3 \alpha_1| & |\alpha_3 \alpha_2| & |\alpha_3|^2 \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \end{split}$$

turns out to be positive semidefinite too, where $\lambda_i (i = 1, 2, 3)$ are complex numbers of modulus 1 with $\alpha_i = \lambda_i |\alpha_i|$. Hence by linearity, $\Theta[2; c_1, c_2, c_3](X) \ge 0$ for every positive semidefinite complex matrix X.

Let $\xi = [0, 1, 1, 1, 1, 0] \in \mathbb{R}^6$ and $x = \xi^t \xi$. We have, then,

$$(\Theta[2; c_1, c_2, c_3](2)(x)\eta^t | \eta^t) = -1,$$

where $\eta = [0, 1, 1, 1, 0, -1] \in \mathbb{R}^6$. Hence we know $\Theta[2; c_1, c_2, c_3]$ is not 2-positive.

Let $\{e_{i,j}\}_{1 \le i,j \le n}$ be canonical matrix units for $M_3(\mathbb{C})$. It is easily seen

$$\Theta[2; c_1, c_2, c_3](2) \begin{pmatrix} e_{1,1} & e_{2,1} \\ e_{1,2} & e_{2,2} \end{pmatrix} \not\geq 0,$$

and $\Theta[2; c_1, c_2, c_3]$ is not 2-copositive.

Since $\Theta[2; c_1, c_2, c_3]$ is extremal, $\Theta[2; c_1, c_2, c_3]$ is atomic.

Thanks to the previous Theorem, to clear the structure of the set $P(M_3)$ it is important to analysis the existence of extremal 2-positive maps which is not 3-positive, that is, completely positive. In [2], Choi gave examples of (n-1)-positive maps $\varphi_n \in P(M_n)$ $(n \ge 3)$ which are not *n*-positive;

$$\varphi_n(X) = (n-1) \operatorname{trace}(X) \mathbb{1}_n - X \, ,$$

where trace(·) means the canonical trace in $M_n(\mathbb{C})$. According to Ando's note, φ_n is purely (n-1)-positive; If ψ_1 is (n-1)-positive and ψ_2 *n*-positive in $P(M_n)$ satisfying $\varphi_n = \psi_1 + \psi_2$, then $\psi_2 = 0$. In particular, φ_3 is a decomposable map [1]. But using the concept of atom, we get the another aspect of φ_n . Indeed,

$$\varphi_n(X) = (n-1)\varepsilon(X) + \varepsilon(SXS^*) - X + \psi_2(X)$$
$$= \psi_1(X) + \psi_2(X) \quad X \in M_n(\mathbb{C}),$$

where ε is a canonical projection of $M_n(\mathbb{C})$ to the diagonal part, S is the rotation matrix in $M_n(\mathbb{C})$ such that $S = [\delta_{i,j+1}]$. From [9, Theorem], ψ_1 is atomic and obviously ψ_2 is completely positive.

On the other hand, in the study of contractive projections on C^* -algebras we know an arbitrary $\begin{bmatrix} n \\ \overline{2} \end{bmatrix}$ -positive contractive projection in $P(M_n)$ automatically becomes a completely positive map [7, Theorem 3.1], where [] means Gaussian symbol. Therefore, we can pose the following problem;

Problem 3.2. Let $n \ge 3$. Is an arbitrary extremal (n - 1)-positive map in $P(M_n)$ completely positive?

If this problem is true, we can completely determine the algebraic structure of $P(M_3)$, that is,

Problem 3.3. For any $\varphi \in P(M_3)$, can φ be written as a positive linear sum of decomposable maps and atomic maps?

References

- [1] Cho, S. J., Kye, S.-H. and Lee, S. G., Generalized Choi's map in 3-dimensional matrix algebras, preprint.
- [2] Choi, M. D., Positive linear maps on C*-algebras, Canad. J. Math., 24 (1972), 520-529.
- [3] ——, Positive semidefinite biquadratic forms, Linear Algebra Appl., 12 (1975), 95-100.
- [4] ——, Some assorted inequalities for positive linear maps on C*-algebras, J. Operator Theory, 4 (1980), 271-285.
- [5] Choi, M. D. and Lam, T. Y., Extremal positive semidefinite forms, Math. Ann., 231 (1977), 1-18.

HIROYUKI OSAKA

- [6] Kye, S.-H., A class of atomic positive maps in 3-dimensional matrix algebras, preprint.
- [7] Osaka, H., Positive projections on C*-algebras, Tokyo J. Math., 14 (1991), 73-83.
- [8] —, Indecomposable positive maps in low dimensional matrix algebras, Linear Algebra Appl., 153 (1991), 73-83.
- [9] ——, A series of absolutely indecomposable maps in matrix algebras, submitted.
- [10] Reznick, B., Extremal psd forms with few terms, Duke Math. J., 45 (1978), 363-373.
- [11] Størmer, E., Positive linear maps of operator algebras, Acta Math., 110 (1963), 233-278.
- [12] Tanahasi, K., and Tomiyama, J., Indecomposable positive maps in matrix algebras, Canad. Math. Bull., 31 (1988), 308-317.
- [13] Woronowicz, S. L., Positive maps of low dimensional matrix algebras, Rep. Math. Phys., 10 (1976), 165-183.