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On the Regularity of the Partial
0*-Algebras Generated

by a Closed Symmetric Operator

By

Jean-Pierre ANTOINE*, Atsushi INOUE** and Camillo TRAP AMI***

Abstract

Let be given a dense domain 2 in a Hilbert space and a closed symmetric operator T with
domain containing 2. Then the restriction of T to 2 generates (algebraically) two partial *-
algebras of closable operators (called weak and strong), possibly nonabelian and nonassociative.
We characterize them completely. In particular, we examine under what conditions they are
regular, that is, consist of polynomials only, and standard. Simple differential operators provide
concrete examples of all the pathologies allowed by the abstract theory.

§ 1. Introduction

In two recent papers [1, 2], we have started a systematic investigation of
partial *-algebras of closable operators, for short, partial 0*-algebras. By this
we mean a collection of closable operators in a Hilbert space, defined on a
common dense domain, which is not necessarily invariant, and equipped with
appropriate operations of addition and (partial) multiplication. The resulting
algebraic structure is a generalization of *-algebras of bounded operators (W*-
or C*-algebras) and *-algebras of unbounded operators [3].

One of the motivations for that work, as well as our previous work with
Karwowski [4, 5] and Mathot [6, 7], is the formulation of quantum theories,
where the algebraic approach has proven to be both elegant and efficient. We
have argued previously [1] that partial 0*-algebras are a natural tool in this
context, and there is no need of repeating those arguments here. Instead we
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would like to focus on one particular aspect, that of a "complete set of
commuting observables" (CSCO), which plays a basic role in Dirac's formula-
tion of Quantum Mechanics. In the Hilbert space framework, an observable
is represented by a self-adjoint operator, thus a CSCO is a maximal set of
(strongly) commuting self-adjoint operators. In algebraic language, a CSCO
is nothing but a maximal abelian von Neumann algebra. The concept was
later extended to unbounded operators, using the so-called F*-algebras [8, 9].

But now two remarks are in order. First, one ought to extend the concept
of CSCO to the case of a partial 0*-algebra. Second, it may be too restrictive
to consider only self-adjoint observables. Indeed recent developments in the
description of quantum mechanical measurements and their repeatability give
an increasingly important role to positive operator valued (POV) measures.
And whereas projection valued measures generate self-adjoint operators, the
operator generated by a POV-measure, if it exists at all, is in general only
symmetric [10-13].

The aim of the present paper is to provide an answer to these two
questions. More precisely, we want to investigate the case of a single observ-
able, represented by a closed symmetric operator: What kind of structure does
it generate in the context of a partial O*-algebra? ('Generate' is taken here
in the naive sense, by sums and products, not by considering bicommutants,
as is done in the algebraic formulation, both with von Neumann algebras and
with F* algebras [8, 9]). Actually there are two structures to examine, since
there are two partial multiplications, the weak one and the strong one. The
answer is expected to be tricky, since both partial multiplications are in general
nonassociative. And indeed we will find that quite often the symmetric opera-
tor generates a partial 0*-algebra which is neither abelian, nor associative!

The paper is organized as follows. We begin by recalling in Section 2
the basic definitions about partial (0)*-algebras. Then, in Section 3, we fix
a closed symmetric operator T in a Hilbert space ffl and a core 2 for T,
and we study the partial O*-algebras on 2 generated by the restriction of T
to 0, denoted by T[1]; these are called mw(T[l]) and SFIS(T

[1]), for the weak
and the strong partial multiplication, respectively. These objects have been
introduced in [1], and their structure determined. In particular, it has been
shown that, in general, both partial 0*-algebras possess a regular part, consist-
ing of polynomials in T[1] (with respect to the weak or the strong partial
multiplication), and a singular part, the elements of which cannot in general
be written as a polynomial. Here we focus our attention to the question of
regularity of the two partial 0*-algebras, i.e. we look for conditions under
which their singular part is empty. In this case, they are of course abelian
and associative. As expected, the answer lies in the "naturalness" of the do-
main 2 with respect to T. For instance, a sufficient condition is that T be
maximal and that 2 contain all the C°°-vectors of T.
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In Section 4, we turn to the question of standardness of the two partial
0*-algebras Wlw(T{1}) and 9WS(T[1]). This notion, which generalizes that intro-
duced by Powers [14] in the case of abelian 0*-algebras, was also defined
in [1]. Some results in this direction were already obtained in that paper,
and we shall extend them here. Finally, in Section 5, we exhibit some explicit
examples and counterexamples, all of them differential operators, which show
that all the pathologies described in the general theory do in fact occur in
practice.

It is interesting to note in this respect that such a bad behavior may
persist even if the operator T is self-adjoint: here too, regularity follows only
if the domain ^ is "natural". This is in fact the general lesson of the present
study, and it is entirely in agreement with the philosophy developed in all
quantum mechanical formalisms based on the notion of "selected" observables
[5, 8, and references quoted therein].

§2. 0*-aIgebras

In order to make the paper self-contained, we shall repeat here the essential
definitions. For further details, we refer the reader to [1, 6].

A partial *-algebra is a complex vector space 31 with an involution XH-»X*
(i.e. (x + Ay)* = x* + ly*9 x** = x, x, y e 91, A e C) and a subset F c 91 x 91
such that:

( i ) (x,j ;)eriff (y*,x*)er;
(ii) if (x, y) e F and (x, z) e F, then (x, Xy + uz) e F for all A, ju e C;
(iii) whenever (x, j;) e F, there exists an element x. y e 91 with the usual

properties of the multiplication:

x. (y + Az) = x. y + /l(x. z) and (x, y)* = y*. x*, for (x, y\ (x, z) e F and /I € C .

An element e of 51 is said to be a unit if e* = e, (e, x) e F and ex = xe = x
for every x E 91.

Whenever (x, j;) e F, we simply say that the product x. y exists. Notice
the analogy with the notion of groupoid.

We emphasize that the multiplication is not required to be associative.
This makes the structure of abelian partial *-algebras much trickier than usual,
as we shall see below. On the other hand, abelianness is defined in the
natural way: A partial *-algebra 91 is said to be abelian, or commutative, if
the following conditions hold:

(i) ( x 9 y ) E F o (y,x)eF, x, ye«l; (2.la)
(ii) x.y = y.x, V(x,j;)er. (lib)

To fix ideas, we give a simple example, namely that of partial *-algebras of
polynomials. Let ^J(z) be the set of all complex polynomials of arbitrary
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degree in the real variable z. ^B(z) is an abelian *-algebra (where * is understood
to be the complex conjugation), but it contains plenty of abelian partial *-
algebras. Denote by ^r(z) the set of all polynomials of degree at most r (by
dp we mean the degree of the polynomial p):

<$r(z) = { p ( z ) E ^ ( z ) \ 5 p < r } . (2.2)

It is readily checked that ^Pr(z) is an abelian partial *-algebra when we take
for F the following set

r = {(p, q) e $r(*) x ^r(z)\dp + Sq < r} . (2.3)

Actually this is the basic example: a partial *-algebra will be called regular
whenever it is isomorphic to a usual polynomial partial *-algebra ^Pr for some
r < oo.

One of the simplest examples of abelian *-algebras is that generated by
a single hermitian element of a nonabelian *-algebra. If 91 is a *-algebra
and x = x* € 51, the *-algebra SW(x) generated by x is well-defined as the
intersection of all *-subalgebras of 91 containing x, and it consists of all
polynomials in x. But, for partial *-algebras, the situation is more involved,
since (i) an element x cannot necessarily be multiplied by itself; (ii) if they
are defined, we may have several nih powers of x, because of the failure of
associativity. So abelianness may fail in general!

From this we gather that much care has to be exercised in the definition
of successive powers of a given element. Instead of examining the situation
in the abstract setting, we will concentrate in this paper on the case of a
closed symmetric operator on a Hilbert space. The full discussion may be
found in [6].

Let ffl be a Hilbert space and 2 a fixed dense subspace of 3tf. We
denote by &+(@, J^) the set of all (closable) linear operators X such that
3(X) = 39 ®(X*) ID 3. The set ^+(^, Jt?) is a partial *-algebra with unit,
denoted £P* (@, 3?\ with respect to the following operations: the usual sum
X1 + X29 the scalar multiplication AX, the involution X^>X + = X* \ 3f and
the -weak partial multiplication Xl n X2 = X1

+*X2, defined whenever X2@ c
3(X^*) and Xi+9 c &(X2*). Then a weak partial O*-algebra on 3 is a
partial *-subalgebra SR of £e+(9,3tf)\ that is, 9R is a subspace of J&?+(^, Jf)
such that X+ e 9W for each X e 9K, and X1 n X2 e 9K whenever Xl9X2eWl and
Xl n X2 exists. (Remark: in the previous literature, these were called partial
Op*-algebras; here we follow the terminology of Schmiidgen [3]).

On JS?+(®, Jf) we also consider the strong partial multiplication: Xl *X2 =
X~iX2, defined whenever X2@ c 9(X\) and X^& c 3(X^\ Equipped with
this partial multiplication, &+(@,3tf} is denoted by &s

+(@, Jtf). However
^S

+(&9J^) is in general not a partial *-algebra, because the strong partial
multiplication may fail to be distributive with respect to the addition [4, 6].
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Thus we define a strong partial 0*-algebra as a subspace of $£* (2, 3tf) which
is stable under all operations and in which, in addition, the distributive law
holds.

A remarkable subset of <e+(2,tf) is the *-algebra JSf+(0) = {4eJS?+(®, Jf);
AQ) a 3 and A+@ c 3}. A *-subalgebra of <£+(@) containing the identity
operator is called an O* -algebra on ^[3, 15-17].

As usual [14], a (partial) 0*-algebra 90? is called standard if every operator
X e 9JI satisfies the condition X+ = X*. Notice that in this case we don't
have to distinguish between strong and weak multiplication, since the two
notions now coincide.

Let 91 be a +-invariant subset of &+(@, Jtf). Then there is a minimal
weak partial O*-algebra on 3 containing 91, that we denote by 9Ww[9l], defined
simply as the intersection of all weak partial 0*-algebras containing 91. In
the strong case, the corresponding object 9Ws[9l], defined in the same way,
does not necessarily exist, since J£?s

+ (3, JJ?) may fail to be a partial *-alge-
bra. However, as shown in [1], 9Ks[9l] does exist if 91 = {Tf^}, where T
is a closed symmetric operator in ffl. The two partial O*-algebras 9MW(T \ 3)
and 9J13(T[3) form the subject matter of the present paper.

We recall some additional terminology about partial 0*-algebras [1, 4, 6].
Given a +-in variant subset 91 of &+(@, 3tf\ define the two domains:

so that

3 a 3(91) c 3*(9l) . (2.6)

Then 91 is said to be fully closed if 3(91) = 3, essentially self-adjoint if 3*(9l) =
and self-adjoint if 3*(9l) = 3.

Finally we will need the two closable operators:

Xe9l, (2.7)

i*(Jf) = X+* \ 3*(9l) , Xe9l. (2.8)

In particular, the fully closure of 91 is the set:

9l^f(9l) = {f(X);Xe9l}, (2.9)

which is clearly a subspace of <2?+(J(9t), Jtf).

§3. Regularity of the Partial 0*-algebras 2RW(T[1]) and 9KS(J[1])

Throughout this section, T is a closed symmetric unbounded operator in
34?, 3 a core for T, T[1] =T\3 and n the largest number among all k e N u
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{00} such that & a @(Tk) (for n = oo, we mean ^(T°°) = ^°°(T) = p|*=i
We want to study the weak and strong partial O*-algebras on 2 generated
by T[1]. We will denote them by 9KW(T[1]) and 2JIS(T[1]), respectively. We
define:

= (IU «*TW; afc e C, k = 0, 1, 2, . . . , r}, 1 < r < n, if n 6 N ;

= 9UT111) = {£Uo «krw; a, 6 C, fc = 0, 1, 2, ..., r; r e M}, if n = oo .

As it is well-known [1], the norms ||.||p(r) and || . || Tr are equivalent for every
complex polynomial P of degree r (here, as usual, \\.\\ A denotes the graph
norm of an operator A: \\£\\\ = \\A£\\2 + ||£||2, V{ E 2(A)\ and a subspace & a
@(Tr) is a core for Tr iff it is a core for every complex polynomial P(T) of
degree r. Hence it suffices to study the powers of T for controlling arbitrary
polynomials in T. So we have to define properly the successive powers of
T[1], both weak and strong.

It is easy to see that, when n e M , TmnT[m~k] exists and equals T[m]

for each m < n and each k < m. Thus, for each m = 1, 2, ..., n, T[m] is the
weak mth power T [ 1 ] n - - - n T[1] (m times) of T[1] (hence the notation is consis-
tent). Higher weak powers of T[1] are now defined recursively. If all products
Tm n T[m] exist for each pair fc, m e M with k + m = n + 1 and they coincide,
we say that the weak (n + l)th power of T[1] is defined and we denote it by
r[n+1]. Successive higher powers T[n+2\ T[w+3]

? ... may be defined in the same
way, if the corresponding conditions hold.

For strong powers, the situation changes drastically. Let m < n. Then,
if all products Tm®T[m~k] exist for k = 1, ... m and they coincide, we say
that the strong mth power of T[1] is defined; we denote it by T(m), although
it coincides with T[m]. But now the process stops at m = n, no higher strong
power may be defined. Indeed, it is easy to see that, if Tlk] © T[m] exists for
fc, m<n, then k + m < n.

In order to visualize the behaviour of T[1] under the two partial multiplica-
tions, we denote by /w = IW(TI1]) the largest number in N u {00} such that all
the weak feth powers T[k], 1 < k < lw, of T[1] are defined, and call it the weak
length of T[1]. The strong length /s = /S(T[1]) is defined in an analogous way.
Thus the discussion above may be summarized by the inequalities n < lw < oo,
1 < /. < n.

In that language, the structure of the partial 0*-algebras 2F}W(T[1]) and
9WS(T[1]) is described by the following theorem, obtained in [1]:

Theorem 3.1. Let n be the largest number among all fcePyu{oo} swell
that @ a <&(Tk) and m be the largest number among all k e M u {0} u {00} such
that Tn@ c= ̂ (T*fc). Then the following statements hold:
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(1) 1 < ls < n < min(m, n) + n < /w < m + n.
In particular, if T is self-adjoint, then lw = n.

(2) // n = oo, that is, 3 c 9*>(T), then lw = oo and 50lw(T[1]) =
thus it is abelian and associative.

(3) // n < oo, then

w/xere 9lw(T[1]), t/ie regular part o/ 9WW(T[1]), equals the polynomial algebra
^PZw(T[1]), and ®W(T[1]), t/ze singular part, consists of elements which cannot be
represented as polynomials. Then 2ttw(T[11) need not be abelian, nor associative.

(4) %Jls(T
[1]) always exists and may be written as

where 91S(T
[1]) = {£is=o akT(fe); ak e C (fc = 1, 2, ..., ls)} is the regular part, and

SS(T[1]), tfce singular part, consists of polynomials of degree at most n. $)ls(T
ll])

is in general neither abelian, nor associative.
(5) m,(TW) c: yn(TW) cz mw(T^).

In this Section we investigate under what conditions 9KW(T[1]) and 2RS(:F[1])
are regular, that is, coincide with a polynomial algebra ^r(T

[11) = (Xfe=o afc^[fc]J
a k eC, /c = 0, 1, 2, ...,r}, in which case they are abelian and associative.

Proposition 3.2. Let n be the largest number among all k E M u {00} such
that 2 c @(Tk). Suppose 2 is a core for all Tk, l<k<n. Then /S(T[1]) = n
and 9RS(T[1]) = ^n(T

[1]), but ^n(T
[1]) ^ 9WW(T[1]) in general

Proof. Since S is a core for every polynomial of degree at most n
([3], Corollary 1.2), we see that ls(^

[1]) = n and 5Rs(r
[1]) - ^n(T

[1]). Examples
where ^Pn(T

[1]) is different from 9KW(T[1]) will be given in Corollary 3.7 and
Examples 5.2, 5.3 below. •

We shall first examine the regularity of $RS(T[1]) and aRw(T[1]) when
n = oo. The following result is immediate.

Proposition 33. Let ^ be a dense sub space of $? contained in ^°°(T) and
T[1] = T\3. Then the following statements hold.

(1) y T[1]) = oo and 9RW(T[1]) = ^(T[1]).
(2) Suppose 2 is a core for Tk, Vfce 1^1. Then

and its full closure is a closed 0*-algebra on 2f°(T).

We turn now to the case n < oo.
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Lemma 3.4 (1) Suppose ^°°(T) is a core for all Tk, k € N. Then

^(T*fc) = P| ^(T<*)3 Vfc e ^ .
i=l

(2) Suppose T is maximal symmetric or that T^°°(T) is a core for all Tfc,
k e N. Then

^(T*k) = ^(Tfc*), Vfe e ^ .

Proof. (1) Obvious.
(2) Suppose T is maximal symmetric, so that p(T) / 0. By Theorem

1.9 of [18], this implies that &*>(T) is a core for all T\ k e N. Let r0 E p(T).
We show that ^(Tfe*) c ^((T - r0l)*

k). This is clear for k = L Let now
k > 1. For every r\ e ^(Tfe*) and <!; e ®°°(T), we have

!,). (3.1)

Since (T - rol)1'^ e ̂ °°(T) and Tk = a0l + a^T - r0l) + ••• + (T - r0l)
k for

some a0, ..., afc_x e C, we have by (3.1)

= ((T -

Hence we get

for some fi eJf, and therefore, since ^°°(T) is a core for (T — r0l),

iye«((T-r0l)*). (3.2)

In the same way, since (T- r0l)2~fc<^ e^°°(T), we have, by (3.1) and (3.2),

|̂

and so

for some C2e^f. Since ^°°(r) is a core for (T-r0l)2, we get
Repeating the argument, we obtain r\ e 2((T — r0l)*

k). By a similar reasoning
we prove ®((T - r0l)**) c ^(T*fc). Thus we have finally

c ^((T - r0l)*fe) c ^((T - r0l)fc*) c

which implies the statement.
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Suppose now that T^°°(T) is a core for all Tk, k E M. It is clear that
@(T*k) c: ^(Tk*), V f c e N . By induction we prove the converse inclusion:

0(T*k) =D ^(Tk*), Vk 6 M . (3.3)

This is clear for k = 1. Suppose (3.3) holds for some fc e N. Take any vector
1)*). Then we have

(Tk(n)\n) = (Tk+1£\ri) = (t\(Tk+l)*f,) , for all { E <0«>(T) . (3.4)

Since T@°°(T) is a core for Tk, we have YI E @(Tk*), which equals ®(T*k) by
assumption. Hence we get, by (3.4),

for all f e ̂ (T). Since ^°°(T) is a core for T, we have T**f/ E ̂ (T*), and
therefore q

Theorem 3.5. Let T be a closed symmetric operator in J^, 3 a dense
subspace of JJ? containing ^°°(T) and n the largest number among all keNu
{00} such that 3 c @(Tk). Then the following statement hold:

(1) Suppose that @°°(T) is a core for all Tk, k E N. Then

;S(T[1]) = n and 50ls(T
[1]) = ^n(T

[11) ,

i.e. 9MS(T[1]) is regular.
(2) Suppose, in addition, that ^(T*k) = ^(Tk*), Vk s N. Then

Ws(TW) = yn(TM) and BUT111) = VJ7™),

i.«. 9KS(T[1]) and 9WW(T[1]) are both regular.

Proof. (1) This follows from Proposition 3.2.
(2) Let fc1? fc2

el^ with 0 ^ k i » k2<lw. Then it follows from the as-
sumptions (1) and (2) that TIkl ln TIkz] exists if and only if 2 c ^((Tkl+kz)*) =

kl+k2), which implies J^ + fc2 < lw. Therefore 9KW(T[1]) is regular. •

The assumptions of Theorem 3.5 (2) are sufficient for the regularity of the
two partial subalgebras, but difficult to prove in practice. The following corol-
lary gives stronger, but easier conditions under which the result holds. In
Section 5, Ex. 5.2, we give an example (E.4) where the conditions of Theorem
3.5 (2) hold, but those of the corollary do not.

Corollary 3.6. Suppose that either T@*(T) is a core for all Tk, fc E N, or
the resolvent set p(T) is nonempty, that is, T is self-adjoint or maximal symmetric.
Then 9KS(T[1]) and 2RW(T[1]) are both regular.

Proof. If r^QO(T) is a core for all Tk, k E N, so is ^°(T). If p(T) * 0,
the same conclusion follows from Theorem 1.9 of [18]. Then, in both cases,
the statement follows from Lemma 3.4 (2) and Theorem 3.5. •
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Remark 3.7. (1) The first statement of Theorem 3.5 holds true if we
assume only that one of the deficiency indices is finite ([18], Theorem 1.9). But
the second statement does probably not hold under the sole assumption that
^°°(T) is a core for Tfc, Vfc e N (or that one of the deficiency indices is finite),
because there are cases where T[l™]@ £ ^(T*2), but T[l-]^ c ^(T2*), so that
T[2]nT[lw] exists and thus 9MW(T[1]) is not regular.

(2) Let S be the maximal symmetric extension of T and i E p(S). Then
the following conditions are easily shown to be equivalent: (i) T = S9 i.e. T
is maximal symmetric; (ii) (T - il)@"(T) is a core for all Tk, keM; (in) (T - il)
<&™(T) is dense in ffl (one shows (i) => (ii) => (iii) => (i)). However it is not clear
that T being maximal symmetric implies that TW°(T) is a core for all Tfc,
k e N9 or vice versa. In other words, the two conditions of Corollary 3.6
seem mutually independent.

In the special case 3) = 2(Tn), the situation gets simpler.

Corollary 3.8. Assume & = @(Tn). Then:
(1) // 2(Tn) is a core for every Tk(l <k<n\ then

ls(T \ @(Tn)) = n and

(2) If T is maximal symmetric or T^QO(T) is a core for all Tk, k e ̂ 1,
then

and

for every n e N. In particular, if T is self-adjoint, then ^n(T l@(Tn)) is a stan-
dard, abelian partial 0* -algebra on

Proof. (1) We must have @(Tn+1) ^ @(T"). Suppose indeed that @(Tn) =
l). Then, by the closed graph theorem, the norms ||.||Tn and ||.||Tn+i

are equivalent, which, by [3], Proposition 2.1.11, implies that T is bounded.
Then the statement (1) follows from Proposition 3.2.

(2) By Theorem 3.5, it is sufficient to show that lw = n. Suppose that
/w > n. Then we have

n) . (3.5)

Given any x 6 Jf , we put

Thus / is a continuous linear functional on the Hilbert space (<$(Tn\ <. | .».
Hence, by the Riesz theorem, there exists r\ e @(Tn) such that
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that is,

which implies by Lemma 3.4 that

x - Tnrj e

and so by (3.5), x = (x - Tnrj) + Tnrj e ®(T*). Hence &(T*) = JP. By the
closed graph theorem, T* is bounded, and so is T9 which is a contradiction. H

3.9. If ^(Tn*) ^ 0(7**), we cannot prove that @(Tn) * @(T*Tn),
hence we cannot determine the structure of $RW(T \ 2(Tn)) in general.

Corollary 3.10. (1) Suppose that T is maximal symmetric or that T@™(T)
is a core for all Tk, fc e N. Let n, m e N, ® = ^(rm*Tn) and T[1] =T\®.
Then

n <

and

(2) In particular, when m = 1 and T is maximal symmetric (hence p(T)
0), but not self-adjoint,

= n and W,(T™) = «PB(T[1]) .

Proof. (1) First we can prove, exactly as in Lemma 3.4, that

m*Tn) = &(T*mT") .

Then, by Theorem 3.5, it is sufficient to show that /W(T[1]) = m + n. Clearly
m + n< /W(T[1]). Suppose that m + n < /W(T[1]). This means

@(T*mTn) = ^(T*m+1 T") . (3.6)

Exactly as in the proof of Corollary 3.8 (2), we can show that for each x e
J^ there exists an element r\ of @(Tm+n) such that x - Tm+nr\ e ^((Tm+n)*) =
^(T*m+n) c: ®(T*). On the other hand, Tm+nrj = T*mTnr] e ®(T*), by (3.6),
and so,

Hence @(T*) = ffl. By the closed graph theorem, T is bounded, which is a
contradiction.

(2) Let m = 1. Suppose that 0 c ^(Tn+1). Then we have

3((T - r0l)*(T - r0l)") c ®((T - r0l)w+1), r0 6 p(T) .



768 JEAN-PIERRE ANTOINE ET AL.

It follows that &((T - r0l)*) c &((T - r0i))9 which contradicts the fact that
T is not self-adjoint. Hence, n is the largest among all fcef^Ju{oo} such
that Q c 3(Tk\ and thus it follows from Theorem 3.5 that /S(T[1]) = n and
9KS(T[1]) = ^PW(T[1]). The remaining assertions are proved as in Theorem 3.5. •

Remark 3.11. Let 3 = ®(Tm*Tn). Then /S(T[1]) = n if and only if n is
the largest among all fceNu{oo} such that 9) c ^(Tfc), which happens if
and only if 3((T - r0l)*m) £ 3((T - r0l)). Thus, when m > 2, we don't know
whether /S(TI1]) = n. On the other hand, without the assumption p(T) / 0,
9WW(TI1]) need not be regular (see Example 5.3 below).

§4 Standardness of 2RS(TC1]) and 9Jlw(J[1])

In this Section, we shall investigate the question of Standardness of the
two partial 0*-algebras 50ls(T

[1]) and 50!W(T[1]). We recall that a partial O*-
algebra SR is standard if X* = X* for every X e 9K. As before, T will be a
closed symmetric unbounded operator in Jf, ^ a core for T, T[1] = T f 3 and n
the largest number among all fce N u {00} such that 2 c @(Tk). In the case
of an 0*-algebra, the following results have been obtained in [19], Theorem 2.1:

Proposition 4.1. Suppose that T[1] = T^®eJS?+(®). Then the following
statements are equivalent.

(1) T/u? c/oswre o/ ^(T[1]) is standard.
(2) T/ig closure of ^}(T[1]) is self-adjoint.
(3) ^(T[11)/

W^(T[11)) c
(4) T is self-adjoint and
(5) T[k] is essentially self-adjoint for k = 1, 2,

We assume now that T® <£ ^ and extend these results to the partial O*-
algebras 9WS(T[1]) and 9MW(T[1]).

For convenience, we recall that the weak bounded commutant of a
+-invariant subset 91 of &+(@, 3f) is defined [7, 20] as

5R'W = {Ce 0(XJ, (CX^\rj) = (CftX+n), for each X e 91 and {, i/ e 2} . (4.1)

Then the commutants 9WS(T[1])'W and 9WW(T[1])'W have the following properties.

Lemma 4.2. Let T be a closed symmetric operator and 2 a dense subspace
of the Hilbert space 9(T), T[1] =T\3>. Then:

(1) ms(T
[1])'w = {T I @}'w and it contains the Cayley transform U of T.

(2) The following statements are equivalent:
(2.a) T is self-adjoint',
(2.b) 9Ws(r

[1]yw is a von Neumann algebra',
(2.c) There exists a von Neumann algebra 91 c $0ts(T

[1])'w containing
the Cayley transform U of T.
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(3) Let T be self-adjoint and 5RW(T[1]) regular (thus 5RW(T[1]) = $n(T
[1]));

then

Proof. (1) The equality of the commutants was stated in [6] Proposition
4.7. The Cay ley transform U of T commutes with T, i.e. UT c Tl/, and this
implies the statement.

(2) •(2.a)=>(2.b):See [6] Proposition 4.7 (2).
• (2.b)=>(2.c): Obvious.
* (2.c)=>(2.a): This can be proved as in [14] Lemma 4.2.

(3) See [6] Corollary 4.8. •

Remark 4.3. Even if SWW(T[1]) is regular, but n < 1W9 50lw(T[1])'w need not
equal 9KS(TI1])'W; also U e ®ls(T

{l])'w, but U $ Ww(T[1})f
w in general (see Example

5.2, E.4 below).

Theorem 4.4. The following statements are equivalent:
(1) The full closure SKS(T[1]) of 2Jls(T

[1]) is standard.
(!') The full closure SRW(T[1]) of 9KW(T[1]) is standard.
(2) SRs(r

[1]) is self-adjoint.
(2') 5RW(T[1]) = <Pn(T

[1]) and it is essentially self-adjoint.
(3) SWS(T[1])'W J(9KS(T[1])) c ^(SRS(T

[1])).
(4) T is self-adjoint and ^(SRS( T

[1])) = ^(Tm) /or some m e N u {oo}.
(4') T is self-adjoint and §(9KW(T[1])) = @(Tm) for some m e N u {oo}.
(5) TU1, T[2] ... T1"1 are essentially self-adjoint.

When this is the case,

Proof. The equivalence of (1) to (5) follows from [1], Proposition 4.9,
except the implication (3) => (5), that we prove now. Let Q = J(5RS(T

[13)).
Suppose that ms(T^)'w 3 a J. Since SRS(T[1])'W = ms(T

[i])'w [1], it follows that
yRs(T

[1})'w is a von Neumann algebra. By Lemma 4.2, T is self-adjoint and
therefore lw = n. If n = 1, the statement is clear. Let n > 2 and define T =
1^ A d£(A) and Em = pm dE(l), meM. Since Em e {T™}'w = m,(T™)'w, we get
Em@d®, V m e N , and therefore (Jme^Em@ci@. Since T[2] e SRS(T[1]), it
follows that ^c^(T2) and (JmeN^m^ is dense in (JmeNEm@(T2) with re-
spect to the Hilbert norm ||.||r2. Furthermore, (JmeN£m^(T2) is dense in
the Hilbert space @(T2). Hence, 2 is a core for T2. On the other hand,
3) is dense in 2 with respect to the norm ||.||r2. Since TI2] 6 9KS(T[1]), it
follows that ^ also is a core for T2. Repeating this argument, we can show
that T[1], T[21 ... T[n] are essentially self-adjoint. This completes the proof.
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Remark 4.5. (1) Even if T is self-adjoint and ms(T
[1]) = aFiw(T[1]) =

^PM(T[1])5 T[1], T[2] ... T[n] are not necessarily essentially self-adjoint (see Exam-
ple 5.1 below).

(2) Contrary to the case of 9WS(T[1]), even if 9KW(T[1]) is self-adjoint (and
therefore mw(T[1])'w@(mw(T[1])) c J(2RW(T[1]))), T[1], T[2] ... T[n] need not be
essentially self-adjoint (see Example 5.2, E.4 below).

§ 5, Examples

Example 5.1. Let T be an arbitrary unbounded self-adjoint operator in jtf
and take any n e M. As shown by Schmiidgen ([18], Theorem 5.3), there
exists a subspace & of &(Tn) such that 2 is a core for Tn~l

9 T[n] = Tn \3 is
a closed symmetric operator in 3tf with infinite deficiency indices and

1) = {0}. Then we have:

(E.I) /S(T[1]) = /w(rI1]) = n and 9WS(T[1]) = 9WW(T[1]) = %(T[1]) ,

but the latter is not standard, because Tn \2 is not self-adjoint.

(E.2)
and thus i*(5[Rw(r[1])) = **(9WS(T[1])) = ^(T f @(Tn)\ and this is a standard
partial 0*-algebra on

Example 5.2. As in [1], let us consider the closed operators S, T and
H in the Hilbert space L2[0, 1] defined by

. 9(S) = {/ 6 C[0, 1]: /(*) - /(O) = JS /x(r) dr for some A e L2[0, 1]}

As it is well-known, T* = S and If is self-adjoint. It is possible to describe
explicitly the partial *-algebras generated by the above operators on the follow-
ing domains:

^ = {/ e C(w)[0, 1]; /(fc>(0) = /<fc)(l) = 0, k = 0, 1, 2, . . . n} ,

3f$ = {/ e C(w)[0, 1]; / e ̂ "~ 1} and /(n) 6 »(S)} ,

^(w) = {/ e C(w)[0, 1]; /(fe)(0) = /<*>(!), k = 0, 1, 2, . . . n} ,

for ?i e N u {oo}. Then we have
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(1) For each n e N, Tn is a closed symmetric operator in L2[0, 1] with
domain

3(Tm) = {/ e ̂ T1}; /("~1J

in particular, ^00) = ®°°(T). Moreover, ^°°} is a core for T", Vn e N.

(2) ^ c ^<a
n) c 0(7"), but ̂ (

D
n) <£ @(Tn+l).

Moreover, ^(
n

w) is a core for each Tk, 1 < k < n.

(3) @(Hn) = {/ e ^("~1); y^1* e 0(/f)} => @(n\ for each n e N. ̂ (00) =

and Hn |"^(oo) is essentially self-adjoint for each n e N.
Taking into account these statements and the previous propositions, we get

the following results:

(E.3) ms(T f ®W) = WW(T I &P) = ^n(T 1 9M\ n E N ,

ms(T i9p») = mw(Tt^) = WT \^) ,
and the latter is a closed O*-algebra on 2^.

(E.4) ms(T \&*) = ̂ n(T \&*)

+ a+ T*T"

This is an example where the assumptions of Theorem 3.5 (2) hold, but not
those of Corollary 3.6. Indeed, the defect indices of T are (1, 1), so that
^°°(T) is a core for all Tfc, fc e N, but T^°°(T) is not (for instance, T^°°(T)
is not a core for T). On the other hand, one has S(T*k) = ^(Tfc*), Vfe e N,
and thus Theorem 3.5 applies: WS(T \^) and 9DIW(T |^(

D
n)) are both regular.

Furthermore, T f ® ^ is not essentially self-adjoint, but 9MW(T \2%}) is a

self-adjoint partial 0*-algebra on 2(*\ and thus

In fact, it is easily seen that 2™ = ^(r*T) and 9Ww(r ^(
D

1)) =
a I - e C . Since

n

it follows that 9Ww(r f 0^) is self-adjoint, so that 9KW(T ^^ is a von Neu-
mann algebra. On the other hand, since T \ ̂ } is not essentially self-adjoint,
it follows from Lemma 4.2 that 9WS(T I ̂ })'w is not a von Neumann algebra.
Therefore, mw(T ) &»)'„ $ ms(T f &»)'„ .
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(E.5) ms(H ^(n))

and its full closure is a standard partial O*-algebra tyn(H\@(Hn)); in particular,

and this is a standard partial 0*-algebra on

Example 5.3. Let T and H be as in Example 5.2.
(1) Let Q = @(Tm*Tn). Then we have:

(E.6) /S(T[1]) = n and 9RS(T[1]) = ^n(T
[1]) .

Furthermore we have

(E.7) When m < n + 1,

lw(T^) = m + n and SRW(

(E.8) When m > n + 1,

UTm) = 2n + 1 and 9lw(7™) = ^2n+1(Tf1J), and

{T[2n+21,...,T[m+nl}c:(Sw(r[1]).

In this case p ( T [ l ] ) = 0 and the deficiency indices are both finite.
(2) Let 3 = @(HmTn). Then we have:

(E.9) ls(TM) = n< UT[1]) = m + n,

§6. Final Comments

Of course, the case examined here is very simple, and the situation becomes
already more involved if one considers the partial O*-algebras generated by
two closed symmetric operators, as is done in [21]. Yet this simple example
illustrates clearly the difficulties which are characteristic of partial O*-algebras.
The lesson we draw from it is twofold. First, most of the pathologies vanish
if the basic domain 3 is well adapted to the operators one considers (this
was already the moral of the earlier work [5]). In physical applications, this
remark points of course to the problem of the correct identification of the
observables (see also [22] in this respect). On the other hand, assuming the
basic operator T to be self-adjoint does not significantly simplify the situa-
tion. The second conclusion is that, despite its intricacies, the theory of partial
0*-algebras offers a number of interesting mathematical challenges. Some of
them (e.g. representation theory) are met in our previous work [1, 2, 23], to
which we refer the interested reader.
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