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Abstract

The tensor product of two representations of the discrete series and the limit of the discrete
series of ^fq(a^(l9 1)) is decomposed into the direct sum of irreducible components of <^q(X(l, 1)),
and the Clebsch-Gordan coefficients with respect to this decomposition are computed in two
ways. In some cases, the tensor product of an irreducible unitary representation of ^(<*«(2))
and a representation of the discrete series of <%q(<j*(l9 1)) is decomposed into the direct sum of
irreducible components of ^(^(2)), and the Clebsch-Gordan coefficients with respect to this
decomposition are calculated, too. Making use of these coefficients, the linearization formula of
the matrix elements is obtained.

§ 0. Introduction

The real form <%q(o&(2)) of the quantum universal enveloping algebra
<%q(4t(2)) has been studied in Mathematical Physics. In particular, the finite
dimensional unitary representations of ^€(d^(2)) have been considered so far.
Jimbo [4] constructed the finite dimensional irreducible unitary representations
of ^(<^(2)), and proved that the tensor product of two irreducible unitary
representations of <%q(a&(2)) is decomposed into the direct sum of irreducible
unitary representations of <%q(4&(2)). Further, Kirillov and Reshetikhin [5]
calculated the Clebsch-Gordan coefficients for <%q(aa(2)) with respect to the
above decomposition. Ruegg [9] generalized the d^(2)-invariants theory to
^q(o^(2)\ which van der Waerden has used. Making use of this method, he
also calculated the Clebsch-Gordan coefficients for <%q(oa(2)). Masuda et al.
[7, 8] studied the quantum group SUq(2), and expressed the matrix elements
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associated with the irreducible unitary representations of ^(<^(2)) by the basic

hypergeometric series J V 2>4>z •
L &i J

On the other hand, the study of the real form #,(d«(l, 1)) of
has just started. Masuda et al. [6] constructed the series of the infinite dimen-
sional irreducible unitary representations of <%q(oa(l9 1)) (cf. [10]), and proved
that the matrix elements associated with the irreducible unitary representations
of <%q(o&(l9 1)) are also expressed by the basic hypergeometric series 2^i-

In this paper, we prove that the tensor product of two representations
which belong to discrete series and the limit of the discrete series of <9tq(<j*(l9 1))
is decomposed into the direct sum of irreducible components of <%q(4&(l, 1)),
and compute the Clebsch-Gordan coefficients for <%q(o&(l9 1)) with respect to
this decomposition in two ways. Moreover we prove that, in some cases, the
tensor product of an irreducible unitary representation of <%q(a&(2)) and a
representation of the discrete series of <%q(a&(l9 1)) is decomposed into the
direct sum of irreducible components of <%q(at(2))9 and compute the Clebsch-
Gordan coefficients for ^lq(^(2)) with respect to this decomposition. Making
use of these coefficients, we obtain the linearization formula of the matrix
elements associated with the discrete series of <^(^(1, I)).

The plan of this paper is as follows. First, in Section 1, we define
the real form <^(^(2)) and <%q(4&(!9 1)) of the quantum universal enveloping
algebra Wq(at(2))9 and introduce their irreducible unitary representations,

lWJ / 6 N u N + of *,M2)) and vle -, 0, , 1, ... of *,M1, 1)).

We call Vl I I G l\l u N + - ] discrete series, and call K_1/2 the limit of the discrete

series. In Section 2 we study the decomposition of the tensor product V^ ® Vl2

of ^(^(1, 1)). The result is as follows:

Theorem 2BL Vt ® Vh ~ @ Vl as unitary representations of
leMl^Iz)

*,M1, 1)), where L^(ll9 12) = /e N u N + |l > lx + 12 + 1, 1 - ^ - 12 e I

In Section 3, we calculate the Clebsch-Gordan coefficients for $^(^(1, 1))
with respect to the decomposition in Theorem 2.1. For f eL^, 12) we define
/i = {/+ 1, / + 2,...}, and let {^mel^ (resp. {^\m1elll}9 {|^2Jm2 e/jj)
be an orthonormal basis of Vl (resp. Vil9 Vl2). From Theorem 2.1, £l

m is denoted
as

|, = ^ HI '2
m^/i^mae/,, Lml m2

ri, <, n
|_wii wi2 m_j

where all I ^ "z I e C but finite are zero. Then we compute the Clebsch-
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Gordan coefficients * 2 by solving the recurrence relation. In
lml m2 mj

Section 4, we generalize the d^(2)-invariants theory to <%q(4&(l, 1)), and calculate
the Clebsch-Gordan coefficients making use of this method. Let V be a represen-
tation of *,(^(2)). The vector / e V is #,(<^(2)) invariant if kl = l, el=fl = 0.
Using that the dimension of the subspace of the ^q(^(2)) invariant vectors
of some representation V is less than or equal to 1, we obtain another expres-
sion of the Clebsch-Gordan coefficients. At the end of this section we express
the Clebsch-Gordan coefficients for <%q(o&(l9 1)) by the basic hypergeometric

series 3^ 2L 1 ' , 2 ' 3 J ^ Z • In Section 5, we first consider the decomposition
I b-i, bi II i ' Z —I

of the tensor product Wh ® Vh of *,(^(2)), where /x - /2 < 1 and 12 e M u N +

-. The result is

Theorem 5.1. Wt ® Vl2 ~ (J) ^ 0s representations of <%q(<i£(2)\ where
l e L 2 ( l l t l 2 )

Next we calculate the Clebsch-Gordan coefficients for ^q(^(2)) with re-
spect to the decomposition in Theorem 5.1. Let {|^|me/j} be an orthogonal
basis of Vl and [xl^\ml e J^} be an orthonormal basis of Wti. By Theorem 5.1,
li is denoted as

where all * 2 e C but finite are zero. We call these coefficients

1 2 the Clebsch-Gordan coefficients for tfla(o£(2)). Then we cal-
LL^i ^2 wJJ

culate the Clebsch-Gordan coefficients | 2 in the same way as
LLmi m2 mJJ

Section 4. At the end of this section we express the Clebsch-Gordan coeffi-
cients for <%q(at(2)) by the basic hypergeometric series 3^2- Finally, in Section
6, we introduce the matrix elements p® associated with the representation

/ A / f i i n
Wl I / e N u l\l + - I and w^ associated with Vl ( / e < —, 0, -, 1,... > J, and

prove the linearization formula of the matrix elements w$. In particular, we
show the three-term recurrence relation of the matrix elements w$.

The author expresses his deep gratitude to Professor Yoshiyuki Shimizu
and Professor Kimio Ueno for inviting him to this area, useful advices and
constant encouragement.
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§ 1. 4r4(<i«(2)), 4T4(d«(l» 1)) ml Their Irreducible Unitary

The quantum universal enveloping algebra <%q(<}£(2)) is the algebra over
C with a complex parameter q (q=£Q, ±1) generated by fc*1, e, / with the
following relations [2, 4]:

k2 — k~2

kk~1 = k~lk=l9 kek~1=qe, ~ -

This algebra has a Hopf algebra structure. The coproduct A :
is defined on the generators as

= e ® k + k'1 ® e ,

The counit e: Wq(<v?(2)) -> C is defined by

The antipode S: #,(<^(2)) ->• *4(^(2)) is defined by

k-i, S(e)=-qe, S(f)=-q~
1f.

In the sequel we assume that qm i=- 1 for any integer m.
A * structure ^aai -^a^e^l of a Hopf algebra (A, A, £, S) over C is a

morphism satisfying the following conditions [6]:
* is a conjugate linear, anti-automorphism of A such that

*2 = id .

(* o S)2 = id .

We regard a pair of A and * structure as a real form of A. Then, for
-l<q<l (q*Q\ we define <Wq(o«(2)) and #,(<**(!, 1)) as real forms of

with the following * structures:

*,(*«(2)): fc* = k , **=/, /* = «•

*,(̂ (1, 1)): fc* = fc , «* = -/, f*=-e.

Let F be a representation of ^(^(2)). For any aGC\{0}, we set
= {t; E V\kv = at?}. Whenever F(a) / {0}, we call it a weight space of V

and call a a weight of V. We additionally assume that V has an Hermitian
inner product < • , • > . If this inner product satisfies the condition

y, w> = <v, a*w> for a e ^(^(2)), v, w e

we call F a unitary representation of the real form of <%q
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Let 0 < q < 1. For / e l\l + - we introduce the finite dimensional irreduc-

ible unitary representations Wl = 0 Cxj of <%q(a&(2)) [4,5], where Jt =

{ —/, —/+ I, . . . , /}. The action of <%q(a&(2)) is given on the generators as

xj = qjxj ,

1 - q2m

where [m] = - - Y ^or m e ^- ^he Hermitian inner product on F^ is given

on the basis by

with dj = q(l-jW^ ~ , where [m]! = [i] for meN\{0} and
[2/j! i=i

[0]! = 1.

Next, for I e < — -,0, -, 1, ... >• we introduce the infinite dimensional irre-

ducible unitary representations V, = © Cfi of <%q(<)a(l, 1)) [6], where /, =
jei,

{/ + 1, / + 2, ...}. The action of #,(<*«(!, 1)) is as follows.

The Hermitian inner product is given by

r/ _ / _ 11? [2/ + n? / A
where c] = q-u-w-l-vy. J'L J". We call Vl (/ e N u N + -J dis-

crete series, and call F_1/2 the limit of the discrete series.

Remark. Masuda et al. [6] have constructed all series of irreducible uni-
tary representations of #,(<*«(!, 1)) (0 < q < 1) (cf. [10]).

Let / e C and It be a subset of Z or Z + -. We define a representation

Vl = 0 Cfj of %(^(2)) with the action
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- n ~ ~
?l _ n(5/2)+l-2j L V _ fl
Sj--<* 1 - q* Sj-i

FJ is an irreducible unitary representation of ^(d^(l, 1)) in the following
cases.
The case of /z c= Z:

(1) l e^J , and /, = {/ + I,/ + 2,...} or 1, = {-/ - 1, -/ - 2, ...} ,

< /I < — and /, = Z ,
2hJ

(s > 0) and /, = Z ,
^ Z,fJ

(4) -- < I < 0 and /, = Z .

The case of /, c Z + -:

(1) / e N + 1 , and /, = { /+! , / +2,. . .} or /, = {-/- 1, -/- 2,. . .},

(2) f = _ i + yri.

(3) /=- + ^ + s ( s > 0 ) and /, = Z + ,

\A / * ~ ^j

where q = e~h. For each family, an Hermitian inner product on V{ is defined
by

with

3 -. for the family (1), (4), (!'),

q 2j 1 for the family (2),

- , _ - , • _ 1 + a"2s+2j'+1

" J for the family (3).
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Further, any irreducible unitary representation of <%q(4&(l, 1)) is isomorphic
to one of the above families.

Let Vl and V2 be representations of %q(<i£(2)). The tensor product of the
representations V1 and V2 is a representation of ^q(^(2)) on the vector space
Vl ® V2 with the action

a - C = J(a)C for a 6 *K(2)) , C e Fx ® V2 .

We denote this representation by Vl®V2. If Fx and V2 are unitary representa-
tions of <%q(4#(l, 1)), then the tensor product V^ ® V2 becomes a unitary repre-
sentation of <%q(o&(l9 1)) with the Hermitian inner product

/ ' > f o r & £ ' 6 F , i , f ' e 7 .

§2. Decomposition of Tensor Product of Two Representations of Discrete
Series and Limit of Discrete Series of 4f4(4«(l,1))

In the sequel 0 < q < 1. To the end of Section 4, we fix Il9 12 e

\ — ~, 0, -, 1,... >. We have the decomposition of Vh ® Vh into the direct sum

of irreducible components of <%q(o&(l9 1)).

Theorem 2.1. Vti ® Vh~ 0 Vl as unitary representations of <%q(<ia(l, 1)),

l- I > I, + 12 + 1, / - /! - 12 €

To prove this theorem, we first construct the basis {£l
m\l e L^l^, 12), me It}

L) we define Cl (me/,) as follows.

^m^m1!® %l + l-mi

where

) ' 'l *2 M

L mi ~ /i - 1 J
and

C Twlf
if 0 < m < n ,

otherwise.
V.

For m > I + 2

f m-l

Ci,= D («(1/2)-'[;+ /+!])-
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Lemma 2.2. The vectors £m are non-zero for all / e L ^ / u ^ ) and mel^

Proof. By definition, it is trivial that £/+1 9^ 0. Making use of the formula

( m-l-l nj _ n~j\ /m-l-1 nl~Jk2 _ n~^~j)k

n ^T)( JJ f *,.',-.

for m > I + 2, we have em~l~~1fm~l~l^l+1 + 0. This implies the result.

We note that Cm satisfies

and consequently, £ ^£m i§ a representation of
me 1 1

Proposition 23. The set of vectors (Cml ' 6 ^iGi* h\ we/J is linearly
independent over C.

Proof. Suppose that

T fldCi = 0 ,
leL^U)

me Jj

where all am G C but finite are zero. Then, for any m > lx 4- 12 H- 2 we have

Z /v* r^ nOC C == U ,m^m '

because

For the proof, it suffices to show the following.

I oiCi = 0, then a4 = 0 for /x + /2 + 1 < v/ < m - 1 .

We prove this by the induction on m > ^ + /2 + 2. It is trivial in the case
of m = /! + I2 + 2. Applying e to both sides of £ oCm+iCm+i = 0, we

f i
obtain

The induction hypothesis leads us to am+1 = Q for ^ + 12 + I < I <m — I, and
hence am+1 = 0 for /x + I2 + 1 < I < m. D

Moreover we use the following lemma.
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Lemma 2A (i) <Cm, Cw,> = Mm»'<i<Ci+i, Ci+i> -
(ii) (J) C£m — Vl as unitary representations of <%q(o&(l9 1)).

Proof, (i) We first note that the formula (2.1) shows that

(2.2) <Ci , ,C>=0 unless m-l = m'-l'.V / \ 3 m 5 s y n x

Suppose m — I = mf — lr and / ^ /', then m ^ m'. This means that the
weight of Ci, is not equal to that of (^,, and, as a result, <(m, (^,> = 0- From
(2.1) and (2.2), one can show the result.

(ii) From (i) one can show this easily, then we omit the proof. Q

Now we prove Theorem 2.1. For n > l^ + 12 + 2 (n — l^ — 12 e N)

dim(Vli®Vl2)(q-n) = dim(
\ * «

me 11

and consequently, Vli®Vl2= @ CCm. Making use of Lemma 2.4, we

obtain Theorem 2.1. me/ ' D

§3. Clebsch-Gordan Coefficients for ^(^(1,1))

In addition to ^ and /25 we fix /eL^, /2) to the end of Section 4. Let

{liJme/J (resp. {|^JJmj 6/Zl}, {|^2
2m2e/i2}) is an orthonormal basis of Vl

(resp. Vli9 Vl2). By Theorem 2.1, |m is denoted as

/,.

where all * 2 e C but finite are zero. We call these coefficients
m2

the Clebsch-Gordan coefficients for #„(<*«(!, 1)).

The next proposition is the key to obtain these coefficients.

Proposition 3.1. We have

t 1 2

mi m2 mJ

fm-l-lrl _ y Y 'l '2 ' \fl
-^ w+i - Z^ r K

m l 6 J I l f m 2 6 / l 2

w/zere

/! /2

mt m2 m
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The sum over k is taken such that none of the factorials could have a negative
integer.

Proof. The weight of /m"z~1Ci+i is q~m, and, as a result,

r =0 unless ml + m2 = m.i _ m^ _ i

Applying / to both sides of (3.2), we obtain the recurrence relation of
' / ii, i, n

! m — ml mj

/2

Wl — fWj

m

-(Il2+mi-l2)(m-l-l) ri l i-|

Putting a(ml9m) = r
 q - — — r l 2 I (3.3) turns

[wi! + /1]![m-m1 + /2]! [mi m - ml mj
out to be

a(ml9 m + 1) = ^"'l+l2~2ma(m1 - 1, m) + a(ml9 m) .

Solving this recurrence relation under the condition

a(ml9 1 + 1) = (— i)mi~ /i-1^mi~ /

x _ _
IX - 'i - !]![/ - /2 - «i]![«i + /i]![J + /2 - »«! + 1]! '

we get

a(mlt m) = (_if .-'i-i^o-i-'i-^m.-i+i.+w

m-I-1 1

k mi + /! - fc rnj - /! - 1 - fc

Hence Proposition 3.1 is proved.
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Moreover we use the following lemma.

Lemma 3.2.

. We omit the proof of (ii) (cf. [1]). One can easily prove (i) by
(2.1) and (iii) by (ii), and then we also omit the proof. D

By the definition of r * 2

[m^ m2 mj

'! 2 _ r ! 2 /^i U/2^?2 U/2/ fm-l-lfl fm-l-lrl

-' ^ (C^} <f C'+1>/ Cl
-l/2

and hence we obtain

Theorem 3e3. The Clebsch-Gordan coefficient is expressed as

(3.4)

["'' '2 '1
\_m1 m2 mj

==Vm,m1+m2(~ *) Q

x

tfce swm ouer fc is taken such that none of the factorials could have a
negative integer.
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§4S Another Way to Calculate CSebsch-Gordae Coefficients

We first define <%q(o£(2)) invariant vectors.

Definition 4.1. Let V be a representation of *,(^(2)). I e V is a *fl

invariant vector if / satisfies the condition

kl = l, el = fl = 0 .

Let F be a set of complex valued functions which are defined on the
Cartesian product Iti x J,2 x Jz. F is a representation of <%q(ot(2)) with the
following action on the generators: For F e F,

(k±lF)(ml9 m2, m) = ^±(-mi~m2+m)F(m1? m25 m) ,

^

m2 + 1, m)

(/F)(ml5 m25 m) =

! , IW2 - 1,

The following proposition plays an important role in this section.

Proposition 42, The dimension of the subspace of <%q(a£(2)) invariant vec-
tors of V is less than or equal to I.

Proof. Let /j and I2 be tffq(<i£(2)) invariant vectors such that lx / 0 and
1 2 / 0. To prove this proposition, it suffices to show that there exists a e C
such that /! = a/2- By the condition klt = It (i = 1, 2)

I f(m l5 m2, m) = 0 unless ml + m2 = m .

We set /^wiu m) = 7,-^!, m — ml9 m). The condition e/(- = flt = 0 turns out to
be

(4.1) q^dm, +/! + !] [mx - /1])
1/2/l(m1 + 1, m)

+ ^(3/2)+2mi([m - ml + /2] Im-m1-l2- l])172^^!, m)

+ ^1/2([m - I - l][m + /])1/2I,(m1? m - 1) = 0 ,

(4.2) 9
1/2([m1 -/!-!] [m! + l^12!^ - 1, m)

mi(I> - mx - /2] [m - m, + /2 + l])1/2/^(m1? m)

+ / + 1] [m - I])1/2I,(m1? m + 1) = 0 .
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Since It j= 0, 7^ + 1, / 4- 1) ^ 0 by (4.1) and (4.2). Then we put a -

^— . Making use of (4.1) and (4.2), one can show Il(ml,m) =
I2(lt + 1, / 4- 1)
a/2(m1,m) by induction on mx and m. D

We define two vectors /, J e V:

^ * ( T , \ ,I(m1,m2,m) = 8mtmi+m\ ^ Iv<aif jr^m^, m2, m),

k 12

n1 m2 m

where

n - Zl _ /2 _ nn + /, _ /2 + ap - /, + 12 + /»i
XL v 1 a 1 /» J

S(ml9 m) = {(v, a, ft) e N3 |a + j8 = m - / - l , a + v = m1

r^m^ m2, m) = ^(/^ mJr^/2, m2)r1(/? m) ,

and

/rm _ I _ n?
/ Lm J

1/2

.

Proposition 4.3. The vectors I and J are %q(<jtC(2)) invariant.

For the proof, we use the following lemma.

Lemma 4.4.

(i) _
m2 m

l 1
— 1J

i + l m2 m

^2 + '2 + 1][^2~ '2])1/2 l 2, ,Lm! m2 + 1 m
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(ii)
m2 m +

-/!-!] [m,

Proof. Applying e and / to both sides of (3.1), we have the above
formulas. D

Proof of Proposition 4.3. It is trivial that kl = I and fcJ = J. By Lemma
4.4 (i),

(eJ)(ml9m29 m)

12 ~r

1 '2
! m2

= 0.

1 mj

' I
m — 1 J

In the same way as above, one can prove fJ = 0 by Lemma 4.4 (ii), and
then we omit it.

Next we show el = fl = 0. Making use of the formula

we have

(el)(ml9m29m)

, m2,

6S(m l5m-l)
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We calculate the each term in the above equation as follows.

q(5'2)+mi+lllml — ll_

(v,a,j8)

— 1) eS(ml5m)

eS(ml5m)

(v,a,j8)

eS(mi.m-l)

a] + ?
2('+'.-'2

+1^)[/ - /t + /

6S(m1,m— 1

Thus we get

(el)(m1,m2,m)

X («<7/2)+v+38+2I'[v
(v,a,^)

eS(ml5m)
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eS(m1,m-l)

By straightforward computation, we can show that the each term in the above
equation is zero. Thus we obtain el = 0. Moreover

(fl)(ml9m2,m)

We calculate under the condition m + 1 = m1 + m2.

i-^r _ L / -
Lmi T- fl

eS(mi-l,m)

X [/-/!- /2 - 1 - V])/V..,,

= E « -<3/2>-»-'-21' [/ + /! - 12 + 1 + a] 7V,M
(v,«,^)

6S(mi-l,m)

eS(ml5m)

i
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4<5 /2 )+m+ ' [m-/]( Z 'v...,
\ (v,«,/3)

eS(m l5m4-l)

= X ^ a La + lj^v,a + l,^ + Z-4 Q * LP + l]^v,a,/3 + l

sS(wii—1 ,m) sS(wii,wi)

Therefore we obtain

(/J)(m l Jm2 ,m)

= 0.

Hence the proof of Proposition 4.3 is completed. D

Proposition 4.2 and the value of I 1 ? lead us to theF L/i + 1 m - /! - 1 mj
following theorem.

Theorem 4.5. T/ie Clebsch-Gordan coefficient is expressed as

(4.3)

m2
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xI(-w2+v(4'i+3)

where the sum over v is taken such that none of the factorials could have a
negative integer.

There Is a simple relation between the Clebsch-Gordan coefficients and
the basic hypergeometric series.

Let 0 < q < 1 and r e N\{0}. We define basic hypergeometric series r(j)r-i
by

ra1;a2,...,a r 1 » (at; g)/a2; q)} . . . (a,; g)j ^
rf'-1 |_ &!, . . - A-i J A to; «)X&i; «), • • • (6,-iJ «)j '

where

f 1 , 7 = 0,
lfl'^ {(1 - a)(l -aq)... (l-fl?^1), 7 = 1,2,...,

and it is assumed that the parameters bls ..., br^ are such that the denomina-
tor factors in the terms of the series are never zero [3]. Then the Clebsch-
Gordan coefficient (3.4) is expressed by the basic hypergeometric series 3^2 as
follows.

(3.4)' If (m2 - /2 - 1) - (m - / - 1) > 0,

Hi '2 /"
\_m^ m2 m_

S /
Lfm,ml+m2\

/2

x 3<*2 r 2«»9+iT<«-i-miTi2'ci q-i -li-d-i-D+i}; ̂  42i •\_q , q J

(3.4)" If (ro2 - 12 - 1) - (m - / - 1) < 0,

t i J > ( I B
x ^{(m-«-l)-(m2-Z2-l)}(-3m+m2-/+3/2 + 3)
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[m - 1 - l]![mt -I,- l]![mt + /t]![m2 + I2]![l -11+ 12]![1 + tt + J2 + 1]! V'2

[^X302| 2{(m-J-l)-(m2-J2-l) + l} ~2(2l2 + 2)y. 5 4
On the other hand, the Clebsch-Gordan coefficient (4.3) is also expressed by
the basic hypergeometric series 3^2

 as

(4.3)' If (m - / - 1) - (mi - ^ - 1) > 0,

n, i, n
\_ml m2 mj

X 3^2 [" 2{(m-l-ll-(^ +1 )-l ; 42> ̂ 2] '
L^ 1 'Q J

(4.3f If (m - I - 1) - (mt - l^ - 1) < 0,

['• " 'lLmx m2 mj

[ -2(m-Z-l) -2(m2-l2-l) / J2(/-I1+Z2+D 1
" ' " ' " . 2 2 1

^-2{(m1+J1)+(m2-Z2-l)} ^{(mi-^-D-Cm-l-D+l}' 9 ' ̂

1/2

§5. Clebsch-Gordan Coefficients for

We fix /19 /2 e l\l u N + - such that 1^ — 12< 1. The tensor product

is decomposed into the direct sum of irreducible components of
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Theorem 5.1. Wt ® Vl ~ 0 Vl as representations of # (<^(2)), where
2 IeL2( l l f l2)

2 t l^3 —li T *2 ^ l -^ H ~i

Proof. We define the set of vectors {Ci,|/eL2(/i,/2), wie /J in Wti ® l^2

as follows.

*i
C I Y"1 I / Zl /^N >• ^T1 —. \ fj* v *1 ft^N > *2

Ci = { .Q1 («(1/2>"'[7 + ' + I])"11/"1"'"1^! for m > I + 2 ,

R + 'i ~ '2]where bm
 = q_ x 1 2 1 I . .Making use ol these

[_ li — m^ J
vectors, this theorem is proved in the same way as Theorem 2.1, and then
we omit the proof. D

In addition to lx and 12, we fix ieL2(l1?!2). Let ll
m = (clj~1/2^l

m and
jc^ = (d^\)~1/2^\. The set {^|w6/,} is an orthogonal basis of J^ and the
set {jc^Jm! 6 JZl} is an orthonormal basis of WJ t. By Theorem 5.1, ll

m is
denoted as

(5-1) = Z IP1

m i e J Z l , m 2 6 / Z 2 LLml

| 2

LIj% m2 mJJ

1 2

LL^i ^2 wJJ

where all | 2 E C but finite are zero. We call these coefficients

the Clebsch-Gordan coefficients for «fl€

Let F be a set of complex valued functions which are defined on the
Cartesian product Jti x Ih x /,. F is a representation of <%q(aS(2)) with the
following action: For F e F,

(k±lF)(ml9 m2, m) = ^±(mi-m2+m)F(m1? m2, m) ,

(eF)(ml9 m29 m) = flf-»2+»-it+(i/2)([/i _ mi + i]^ + ml^
2F(ml - 1, m2, m)

(/F)(ml3 m2, m) = ^-»2+»-'i+(i/2)(p i +m± + 1]^ -mj)1^^! + 1, m2, m)
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Proposition 5.2. The dimension of the space of <%q(<i£(2)) invariant vectors
is less than or equal to 1.

Proof. We omit the proof, because one can prove this in the same way
as Proposition 4.2. D

We define two vectors /, J e V:

J(ml5 m2, m) = <5mi+m>m2 £ /VfM Jr2(m1, m2, m) ,
(v,x,P)eT(mltm)

_ _ i m 2 m

where

/ _ (_ nv+0 (l /2)(Z 1+J 2-Z-2a)

x ^-/J(/»-l

x g(J+Ji-J

p, + /2 - nn + 1, - qn + 1, + /2 + 1 + /?-j
L a 1 v 1 /» J'

T(ml5 m) = {(v, a, 0) e N3 |a + v = /x - ml9 a + j8 = m - / - 1} ,

r2(m l5 m2, m) = r2(/ l9 mjr^, m2)r1(/, m) ,

and

Proposition 5.3. / and J are %q(^(2)) invariant.

For the proof, we use the following.

Lemma 5.4.

(i) mi m2 m- 1
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oo

Proof. Applying e and / to both sides of (5.1), we have (i) and (ii). D

Proof of Proposition 5.3. It is easy to see that kl = I and kJ = J, and,
by Lemma 5.4, we get eJ = fJ = 0.

We show el = fl = 0. Making use of the formula

we obtain

i, ^2, m)

er(m l fm-l)

We continue the calculation of the each term in the above equation.

eT(m1,m-l)

(v,a,/3)
6T(m lsm)
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^

(v,«,0)
eT(m l fm—1)

(v,a,/3)
6r(m l fm-l)

eT(mi,m-l)

t/2)/r; i ? i i i ^ i 0~i n i / i «i \r
^v.a,/?

6T(mi,m-l)

Thus we get

(el)(m1,m2,m)

x [/! + /2 - / - a]/,,.,,)

X [/ + /!- /2 - V] /,...,

(v,a,/3)
6r(m l fm-l)

= 0.

Further

!, m2, m)

_ a-/3-2i1-2i2-(3/2)
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(v.a.0)
er(mlsm)

x Z
(v,a,j8)

We calculate the each term under the condition m1 + m 4- 1 = m2.

(v,a,jB)

(v,a,j8)
€7(01!,m)

Z
(v,a,/8)
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Therefore

(v,a,/3)

= o. a
From Proposition 5.2, we have

Theorem 585. The Clebsch-Gordan coefficient is expressed as

(5.2)

rn, ., .-i
LLw! m2 mj

tfte sum orer v is taken such that none of the factorials could have a
negative integer.

This coefficient is also expressed by the basic hypergeometric series 3^2:
(5.2)' If (m2 + /2) - (m + /) > 0 and (m - / - 1) - (I, - mj > 0,
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rn, ., ITI
LL^! m2 mJJ

[ ^-2((+(,-l2)> ^-2(1,-™^ g2(m2+/2 + 2) "I

2{(m2+I2)-<m+/)+l} _2{(m-I-l)-(Ii-m,) + l}' 1 ' Q '

(5.2)" If (/! - mj - (m - / - 1) > 0 and & + mj - (m2 - /2 - 1) > 0,

rn, ., m
LL?WI ^2 »»jj

= s (l/2)(m1-/+i2)(m1+
t/m1+m,m2"

[m2-/2-l]![m2

1/2

q-2(m-l-l)^ q-2(m2-l2-l)^ ^2(1+^+12 + 3) ~|

^{(^-m^-dii-I-D + l^ ^2{(I1+m1)-(m2-Z2-l) + l}' ^ ? ^ J '

(5.2)'" If (m + I) - (m2 + /2) > 0 and (m2 - I2 - 1) - (/x + wj > 0,

i,
I m2 m

_ s /|(
~~c;m1+m,m2'i

x

[m + i + !]![/+ 1, -f2]!

[ _-2(l,+in1) j --2(/,+l2-/)) ^2(m+l+2) "I

_2{(m+/)-(m2+I2)+l)j ^2{(m2-/j-l)-(l,+m,)+l}' ^ ' ^ J
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§6. Linearization Formula of Matrix Elements

Let d be a full dual space Homc(#fl(<^(2)), C) of #fl(<^(2)). We in-
troduce the weak * topology in sf [6]. A sequence {q)j} converges to (p
in s4 if <pj(a) = <p(a) (j » 1) for any a 6 ̂ q(^(2)). j/ is complete with this
topology. Moreover we introduce the weak * topology in Homc(^(^(2))®n, C).
The algebraic tensor product j/®n is dense in Homc(^(d/(2))®", C), and conse-
quently, one can identify the topological tensor product j/®n = j/ ®w s/ ®w ...
®wj/ with Homc(^€(d*f(2))®n, C). Then $t is a topological associative algebra
with the following multiplication \i^\ stf ®w j/ -> j/.

for * 6 ̂  ®w st , a e

We note that the unit 1^ is the counit e.

For / e N u 1^1 + - we define the matrix elements p® E s£ (i, j e Jt) asso-

ciated with W{ (cf. [7, 8]) as

ieJl

In particular, we define coordinate elements x, u, v, y e j?/ as follows.

v _ nd/2) _ n(l/2) ,. _ n(l/2) .. _ n(l/2)
X — Pi/2,112 > U — Pl/2,-1/2 > V — P-l/2,1/2 J y — P-l/2,-1/2 •

The elements x, M, y, j; satisfy the relations

qxu = MX, gxt; = t;x , quy = yu , giry = yv , uv = vu ,

xy — q~luv = yx — quv = 1 ^ .

We have a basis of the ring y4(SL€(2)) which is generated by the coordinate
elements:

A(SLq(2))= X® £XLUMVN® X® CwMi;V.
0<L,M,N 0<L,0<M,N

Then we define the set of formally analytic elements in sf by

= X xmi;»C[[C]] + X xwt/"C[[C]] + I C[[C]]ii-ym + I C[[f ]]» V ,

where C = —q^uv. This is a subalgebra of s$.

For F; (/E ^ --, 0, -, 1, ... > L we have the elements wW e j/(z, j e It)

determined by

<= Z «W». ae^K(2)).
i e / z

We regard w^ as the matrix elements associated with Vl [6].
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The matrix elements pf? and w'j* are expressed by x, u, v, y in
[6, 7, 8].

Theorem 6.1. (i) The matrix elements pfj (i, j £ J{) are

(i + j> 0, i > j) p$ = x'+V-yuw-MW-w-n P ~ ;

2(l+i+l)[ -2(1-0

qW

' + fl

(j + j < 0, j > i) 1" ' + ̂ 1

(i + ; < 0, i > ;') pg' = 9(i/2xnxi+j)+u-*XJ+;) P ~ {

[ -2((+j) -2(I-j+l)

q2(i-j+i} ;«2, -

(ii) Tfte matrix elements wf? (i, j e /,) are

f 2(i+l-i). ,,2-v
j < 0,7 < 0 w« = gu-0(^) 2 • '

W 3 *? Ji-j

t q2(i-j+i) q-2(i+j)
^2(1-7+1) ;

(i + 7 < 0, i < j) wg>= 2

x 2^r
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We define pV and w}? as follows:

Pij ' WU (Ci/Cj

n"L for Zi.

easily see the linearization formula:

On the other hand, by Theorem 5.1, jc^ ® |^ (Zj — 12 < 1) is denoted as

(611 5c(l (x)?'2 - V nTf ' 1 /2

(6-1) X»"®^- leLL2, LU rn2
mel z

where all J * 2 e C but finite
LL^i m2 mJJ

Proposition 6.2. // / = —, then

are zero.

/ ^ —-, then

m

/i '2

For the proof we use the following.

Lemma 63. (i) n x 2 =0 unless mt + m = m2.LLm! m2 ^JJ
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/2(ii) - m I
_IJ

(iii)
"1! m2 "

! m2 — i m — i

'11
J

m2-l2][m2 + l2 + l

'i 12 nuni *2
"', i, 1 TI
_m1 m2 + 1 m + ij J '

(v) yr 1)* [fl " 1 + fc]![c - 1]!M!
1 ; ,4 l ; [k]![a - l]![c - 1 + k]![n -

where c 4- ft — a > 0.

Proof. Applying Ic, e and / to both sides of (6.1), we obtain (i), (ii) and

(iii). The formula (iv) is trivial by the definition of n | 2 . We
LLmi m2 ^JJ

get (v) by the ^-Vandermonde sum [3]:

2an

where c + n — a > 0. D

of Proposition 6.2. Comparing Lemma 5.4 with Lemma 6.3 (i), (ii)
and (iii), we get

rr'i '2 ni +,, r r / i '2 mn =(-1^ 2«(Ui,/2) m h
Ll_ 1 2 _IJ L_l_ 1 2 JJ

where

l-i
a(UlJ2) = (-l/ " I I I 7

Ji *i
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If / = — 9 then 1 2 = 1 1 -- . By definition, we have

^-(1/2) -(1/2)

i /i +(V2) 1/2
11 = IT/! I, -(1/2) "(1/2)11 =

JJ LL'i I i+(V2) 1/2 JJ '

and, as a result, a( --, /19 /x — - J = 1. We assume / / —-, and then / - /x

/2 > 0. By Lemma 6.3 (iv),

mi=l2~l

Thus

1
+ / + 1 / + i '11=1i i + uJ

Making use of Lemma 6.3 (v), we obtain

i+ii-h
y (-D-i+'-

/! - f2]![2f2 + 1]!
1]!

= - - . - . - + 'i ~ '2]!Pi + '2 ~ f]![2f2 + 1]!

Hence we get the result. D

We have the linearization formula.

Theorem 6.4.

1 /2 '»i ^2 m 2 - m ^l mi mi -m '
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Proof. For a e <%(at(2)), let A(a) = £. a' ® a;. We have

'2 flp(!l) .(a')w<w..(a,))"2Vr ""•"" m2>m2 /

m1,m2

On the other hand,

)-«(£-Hi, ^ „.]]&•

Hence we obtain Theorem 6.4. D

Putting /i = 1 and mj = m\ = 0 in Theorem 6.4, we get the three-term
recurrence relation: For / > 0

'

p +1 +!][_/ + / + ! ] _
(0

r W; •
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