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Quantum Lorentz Group Having
Gauss Decomposition Property

By

S. L. WORONOWICZ** and S. ZAKRZEWSKI**

Abstract

A new deformation of SL(2, C) (considered as a real Lie group) is constructed and shown
to have a Gauss type decomposition. The groups entering this decomposition are identified
as £M(2) and its Pontryagin dual £M(2). The whole group is the double group built
over JEM(2).

§ 0. Introduction

The first quantum deformation of Lorentz group was described in [5],
The theory presented in that paper based on the following four assumptions:

1. The tensor square of the (two-dimensional) spinor representation splits
into a direct sum of two components, one of which is a one-dimensional
trivial representation.

2. The tensor product of the spinor representation by the complex conju-
gate one is irreducible and does not depend on the order of factors.

3. The quantum Lorentz group contains SflU(2) as a subgroup (Through-
out the paper, jue]0, 1[ denotes the deformation parameter).

4. The quantum Lorentz group is not a proper subgroup of a quantum
group satisfying the above three conditions.

The role of the last assumption (which was used but not explicitely formu-
lated in [5]) is explained in [9]. It was shown that the above requirements
determine the quantum Lorentz group completely (in fact there are two solu-
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tions, the choice consists in declaring which of the two spinor representation
is the fundamental one).

It turns out that deleting the third assumption we still have a limited
number of possibilities. We refer to our paper [9] where we classify (on the
Hopf *-algebra level) all quantum groups of 2 x 2 matrices satisfying the
assumptions 1, 2 and 4. In the present paper we investigate in details one
of the possibilities distinguished by the fact that the corresponding quantum
Lorentz group exhibits Gauss-type decomposition.

The classical Gauss decomposition [2] says that except a closed set
of measure zero any element g of SL(2, C) has a unique decomposition of
the form

g = n+hn_

where n+ (n_ resp.) belongs to the subgroup N+ (JV_ resp.) of all upper (lower
resp.) triangular matrices with one on the diagonal and h belongs to the
subgroup H of all diagonal matrices. In short.

G' = N+HN_ (1)

where G' is an open full measure subset of SL(2, C).
In the quantum case however the subgroups analogous to N± do not

exist (because of the nontrivial commutation relations between diagonal and
off-diagonal elements). To deal with this difficulty one may include the diago-
nal part of the decomposition into the both factors N± considering the decom-
position of the form

G' = M+M_

where M+ (M_ resp.) is the subgroup of all upper (lower) triangular matri-
ces. This form of Gauss decomposition was proposed by Faddeev, Reshetikhin
and Takhtajan [4]. One should notice however that in this case the decompo-
sition is not unique.

In this paper we shall prove the quantum version of the decomposition
of the form

G/ = G1G2

where G1 (G2 resp.) is the subgroup of upper (lower resp.) triangular matrices
having unitary (positive resp.) elements on the diagonal Comparing with (1)
we see that If has been split into Hunitary included into N+ and Hpositive included
into AL. We would like to point out that in certain sense the Gauss decompo-
sition in the quantum case is more satisfactory than the classical one: due to
the commutation relations the diagonal elements are invertible so the decompo-
sition has the global character with no exceptions.
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G1 is the (double covering) of the group of motions of the euclidean
plane, G2 is isomorphic to the group of transformations of the plane generated
by dilations and translations. In the quantum case the second group is the
Pontriagin dual of the first one. Due to this fact we may use the double
group construction (cf. [3], [5]). As a result we get the quantum Lorentz
group on the C*-level. In what follows this group will be called GM.

The paper is composed in the following way. In Section 1 we introduce
the Hopf *-algebra being a quantum deformation of the polynomial algebra
on SL(2, C). It is generated by four elements a, /?, y and 6 satisfying certain
commutation relations. The relations completed by a spectral condition for-
mulated at the beginning of Section 4 are the main input of our theory. The
anatomy of the commutation relations is investigated in Section 2. The main
aim of this Section is to assign the strong meaning to the relations: since the
involved elements are unbounded, one has to define carefully the domains
where the relations are supposed to hold. In Section 3 we consider the
Hilbert space representations of our relations. The main result shows that a
and d are invertible and that Sp f$y exhibits a radius quantization. Section
4 is devoted to the Gauss decomposition. In Section 5 we repeat the double
group construction of [5] replacing the Iwasawa decomposition by that of
Gauss to achieve our main goal. Namely we define the universal C*-algebra
A "generated" by four elements a, j3, y and d affiliated with it, satisfying the
commutation relations and the spectral condition. It plays the role of the
algebra of "all continuous functions on GM vanishing at infinity". The algebra
A is equipped with the comultiplication 0 E Mor(A9 A ® A) acting on the gener-
ators in the standard way.

The notation used in this paper is explained in [7] and [8]. In particular

C» = {teC:t = Q or \t\e^},

FM(-) is the continuous function on CM introduced by

All C*-algebras are concrete (i.e: acting on Hilbert spaces). For any
Hilbert space H, C*(H) denotes the set of all C*-algebras contained in B(H).
Let A E C*(HA), B E C*(HB) and ^ be a representation of A acting on HB. We
remind that ^ e Mor(^4, B) if and only if (/>(A)B is contained and dense in
B. The symbol "iy" denotes the C*-affiliation relation ([1], [6]): for any A e
C*(H) and any closed operator T acting on H, TrjA if and only if

[T(/+ T*T)-1/2]A d A ,

A\T(I+ T*T)-1/2] cA,
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[(/ + T*T)-l'2~]A is dense in A .

The actions of morphisms admit the natural extension to the affiliated elements:
if ^ e Mor(y4, B) and TrjA then ^(T) is a well defined element affiliated with B.

The closure of the sum of two operators .R and S will be denoted by R + S.

§1. Hopf *-a!gebra Level

We fix deformation parameter /xe]0, 1]. Let si be the unital *-algebra
generated by four elements a, ft y and 6 satisfying the following 17 relations:

aj8 = jujga , fiy = yfi , ay = ,

(2)fid = iidfi , yd =

I , doc —

ay* = Ju"1

aa* = a*a , jSjS* = j8*j8 , yy* = y*y ,

dd* = 5*6 .

(3)

The relations may be rewritten in a compact matrix form. Let u =

and u = { .' _ ). Then
7 .

aa, aft /?a, ft8
ay, a5, jSy, ft5
ya, yft 5a, 5jg
yy, yd, 5y, 55

and one can easily verify that relations (2) are equivalent to

(u © u)E = El and IE* = E*(u © w)

where

0 "

_ and £* = (0, 1, -JM, 0).

, 0 ̂

Similarly

*aa^,
ay*, a5*, fiy*,
ya*, yjS*, 5a*,
yy*, y5*, 5y*,

a*a, a*ft j8*a, fi*fi

a*y, a*5, j8*y, fi*d

y*a, y*ft 5*a,
y*y, y*5, 5*y,
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and relations (3) are equivalent to

X(u ® 11) = (u © u)X ,

where

X =

\ 0, 0, 0
0, 0, 1, 0
0, 1, 0, 0
0, 0, 0 p

Using the matrix form of the commutation relations one may prove

Theorem 1.1. 1. There exists unique *-algebra homomorphism

0: d ->.«/ ® si

such that

(4)

2. There exists unique ^-character

such that

, 0
e(y\ e(6)J~\Q,

3. There exists unique linear antimultiplicative mapping

K: s# -+ s$

such that

( K(OL) K
K(y\ K

/K(OC*), ic(j5*)
\?c(y*), K(§*)

4. (stf, 0, e, K) is a Hopf*-algebra.

In the rest of the paper we shall construct a C*-algebra "generated" by
four distinguished elements a, j8, y and 6 affiliated with it such that the
relations (2) and (3) are satisfied in a certain strong sense. We shall also
prove that there exists unique C*-algebra category morphism 0 e Mor(A, A® A)
acting on distinguished elements a, /?, 7 and d in the way described by (4).



814 S. L. WORONOWICZ AND S. ZAKRZEWSKI

§ 20 (p9 q )-eommuting Normal Operators

Throughout this section, p and q will denote two fixed strictly positive
real numbers. The purpose of this section is to give a meaning to the following
relations

RS = pSR ,
(5)

RS* = qS*R ,

where R and S are normal (unbounded) operators acting on a Hilbert space
H. We shall use the following.

Definition 2.1. Let R and S be normal operators acting on a Hilbert space
H. We say that (R, S) is a (p, q)-commuting pair if

1. \R\ and \S\ strongly commute
2. (Phase R) (Phase S) = (Phase S) (Phase R)
3. On (ker J*)1 we have

(Phase *)|S|(Phase R)* = Jpq\S\

4. On (key S)L we have

(Phase S)|£|(Phase 5)* = y/q/p\R\ .

The set of all (p, q)-commuting pairs of normal operators acting on a Hilbert
space H will be denoted by %* (p, q) or simply by *K(p9 q) when it makes no
confusion.

If (R, S) e %(p9 q) then the composition R o S is closeable and its closure
will be denoted by RS. One can easily verify that

Phase(*S) = (Phase R) (Phase S)
(6)

The operator RS is normal if and only if q = 1. Similarly one may
consider products S*, R*S, S*R9 etc.

Let (JR, S) e ^(p, g). Then one can easily verify that

(7)

(*, Phase S) e %(^p/q, ^/p) (8)

(9)

(10)

Moreover if ker S = {0} then

(11)
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If (R,Si)eV(pl9qi), (R, S2) e V(p29 q2) and (Sl5 S2) e «(p3, q3) then using
(6) to compute Phase (S1S2) and |S1S2 we see that

(12)

Similarly
(R,R29S)eV(Plp29qiq2) (13)

provided (Rl9 S) eV(pl9 qj, (R2,S)e%(p2,q2) and (Rl9 R2) e^(p3, q3).
Two normal operators ^ and S strongly commute (have joint spectral

decomposition) if and only if (R, S) e #(1, 1).
We shall use the following version of Theorems 2.1 and 2.2 of [7].

Theorem 22. Let (R, S) e ^(^~2, 1). Assume that ker R = {0}.
following three conditions are equivalent:

( i ) R + S admits a normal extension,
(ii) R 4- S is normal,
(Hi) SpOR^S) c= C*.

Moreover, if one of the above conditions holds then R + S is unitarily equivalent
to R:

R + S = F^R-^RF^R-^S)* . (14)

Proof. If S = 0 then R-*S = 0, F^R^S) = I. Hence the conditions (i)-
(iii) are satisfied and the formula (14) holds. Therefore we may assume that
ker S = {0}. In this case our theorem coincides with Theorem 2.1 of [7].

Q.E.D.

We also have

Theorem 2.3. Let (R, S) e ^(/T2, 1). Assume that ker S = {0}. Then the
following three conditions are equivalent:

( i ) R + S admits a normal extension,
(ii) R + S is normal,
(iii) Sp(RS~1) c C".

Moreover, if one of the above conditions holds then R+iS is unitarily equivalent
to S:

R + S = F^RS-^SF^RS'1) . (15)

Proof. If R = 0 then RS'1 = 0, F^RS'1) = I. Hence the conditions (i)-
(iii) are satisfied and the formula (15) holds. Therefore we may assume that
ker# = {0}. Then, by virtue of Theorem 2.2: (^(^-^((Sp^S)) c C").
Clearly the latter condition is equivalent to (iii) (RS'1 = fi2(R~lS)~l, the trans-
formation t\-^fi2t~1 maps CM - {0} onto itself).
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Assume that SpiRS'1) c C". Then Spft&S"1)*) c C* and inserting in
Theorem 2.2 S* and /?* instead of R and S we get

R* + 5* = ̂ (Jtr^S*^/^-1). (16)

Clearly (I? + S)* =3 (R* + S*). Remembering that normal operators have no
proper normal extensions we see that (R 4- S)* = (R* 4- S*). Now (15) follows
immediately from (16). Q.E.D.

Let Q be a normal operator acting on a Hilbert space H, EQ(-) be the
spectral measure associated with Q and x e H. We denote by suppe(x) the
support of the measure (x\dEQ(-)x). We say that x is of compact Q-support
if suppQ(x) is bounded (hence compact). Clearly the concept of compact Q-
support and that of compact |Q|-support coincide.

The link between (5) and Definition 2.1 is given by the following.

Theorem 2A Let R and S be normal operators acting on a Hilbert space
H. Then the following conditions are equivalent:

1. (R, S) is a (p, q)-commuting pair,
2. The set 2 of all vectors with compact R and S support is dense,

invariant under the action of R9 R*, S9 5* and

RSx = pSRx,
(17)

RS*x = qS*Rx,

for any x e &
3. There exists a dense domain 2) consisting of vectors with compact R

and S-support invariant under the action of R, R*, S and S* such that relations
(17) hold for any x e D.

Proof.
1=>2: The density of 2 follows from the strong commutativity of \R\

and |S|. To show that 2 is R, S9 R* and S*-invariant it is sufficient to
notice that due to the Conditions 3 and 4 of Definition 2.1:

suppw((Phase S)x) c Jp/q suppw(x), supp,^,((Phase S)*x) c Jq/p suppw(x)

supp|S|((Phase R)x) c ^/T/pq supp,s|(x), supp,S|((Phase R)*x) c Jpq supp|s,(x).

The trivial verification of (17) is left to the reader.
2 => 3: trivial.
3 => 1: It follows easily from (17) that

R*Sx = q'lSR*x,
(18)

R*S*x = p~1S*R*x,
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for any x e Q). Using (17) and (18) one can easily verify that for any non-
negative integers k, I, r and s we have

(R*)rRk+r(S*)sSl+sx = (akS*)s(akS)l+s(blR*)r(blR)k+rx ,

where a = ^fpq and b = <\/p/q. It follows that

(Phase R)kf(\R\)(PhasQ S)lg(\S\)x = (Phase S)lg(ak\S\) (Phase R)kf(bl\R\)x ,

where f(X) is a linear combinations of monomials A fc+2r (r = 0, 1, 2, ...) and
g(X) is a linear combinations of monomials kl+2s (s = 0, 1, 2, . . .)• Remembering
that x is of compact \R\- and |S| -support and that the set of polynomials is
dense in L2(v) for any measure v with compact support we see that

(Phase R)*/(|K|)(Phase S)lg(\S\) = (Phase S)lg(ak\S\) (Phase R)kf(bl \R\) ,

holds for any bounded measurable functions / and g on R+ such that /(O) =
0(0) = 0. Considering the following particular cases

1. fc = I = 0;
2. k = l=l, f(X) = g(X) = 1 for A > 0;
3. k = 1, / = 0, /(A) = 1 for A > 0;
4. k = 0, / = 1, g(X) = 1 for /I > 0;

we see that Conditions 1, 2, 3 and 4 of Definition 2.1 are satisfied. Q.E.D.

§3. The Hilberi Space Level

Motivated by Theorem 2.4 we introduce

Definition 3.1. Let a, /?, y and 6 be closed operators acting on a Hilbert
space H. We say that (a, /?, y, d) satisfies the relations (2) and (3) if

1. a, /?, y anrf 5 are normal,
2. (a, j8) anrf (y, I) are ( ^u, ̂ -commuting pairs,
3. (a, y) and (j8, ^) are (/^, ijTl)-commuting pairs,
4. (j3, y) is a (1, V)-commuting pair,
5. For any x e @(d) n ^(^y) we /iat;e ^x e ^(a) and

= x .

6. For any x E @(3) n ^(/?y) we have obc G ̂ (5) and

<56bc — iT^fiyx = x .

We have

Theorem 3.2. Let (a, j8, y, d) be a quadruple of closed operators satisfying
the relations (2) and (3). Then
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2. ker S = {0} and 8~l =
3. g = (T1 +

Proof. Let y e ker 5 n ®(/?y), then <5*j; = <5j; = 0. By virtue of Condition
5 of Definition 3.1: fiyy = —^~ly. Consequently (fly)*y = —\i~ly and for any
x e ®(o) n ®(/?y) we get (cf. Condition 6 of Definition 3.1)

(y\x) = (y\8&x - n

= (8*y\oix) -

Therefore (y\x) = 0 and remembering that ®(a)n^(/?y) is dense (cf. Theorem
2.4.3; (a, $y) is a (/x2, l)-commuting pair) we see that ker § n 2($y) = {0}. On
the other hand we know (cf. Conditions 2, 3 and 4 of Definition 3.1) that \8\
and |j3y| strongly commute. Therefore ker<5n^(/?y) is dense in ker 8 and
ker 8 = {0}.

It means that 8 is invertible: 8'1 is an unbounded normal operator. By
virtue of (13), (jiy, 8) e ^(p2, 1). Using (11) and (10) we get (f\ £y) e *(^2, 1).

Let j; e ̂ (J-1) n 2(8~lpy). Then j; = ^x where x e ®(3) n ®(j8y) and using
Condition 5 of Definition 3.1 we see that y e ^(a) and try = x +

. It shows that

Using Theorem 2.3 with R and 5 replaced by fJ,fiyd~l and (5"1 and remembering
that normal operators have no proper normal extensions we get

a =

Now statements 1, 2, and 3 follow immediately. Q.E.D.

The reader certainly noticed that Definition 3.1 takes into account only
16 out of 17 relations (2) and (3): the relation "ad* = <5*a" seems to be forgot-
ten. It turns out however that it may be derived from other relations if we
know that 8 is invertible: Assuming the nine relations

yd = tidy , Qy = yfi ,

$P* = jg*^ , 77* = y*y , §8* = 8*8

and setting a = 8'1 + ju/tyd"1 one may easily derive the remaining seven rela-
tions (2) and (3).
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§4 Gauss Decomposition

According to (4)

Therefore we may expect that y ® /? + <5 ® (5 is a normal element or at least
has a normal extension. However (cf. Theoem 2.2) this is the case only if
SpfycS"1 ® P&~1} c= CM. One can easily check that (except the trivial case, when
either /? or y vanishes) the latter is equivalent to

where r is a positive real number. Multiplying $ and dividing y by r (this
operation preserves all the relations considered so far) we may assume that
r= 1.

The above considerations show that the satisfactory theory of the Lorentz
group investigated in this paper cannot be based on the algebraic relations
(2) and (3) only. We are forced to add conditions of the analytic nature. We
met this phenomenon for the first time investigating quantum £(2)-group (cf.
[6], page 424).

Definition 41. Let (a, /?, y, <5) be a quadruple of closed operators satisfying
the relations (2) and (3). We say that (a, /?, y, <5) satisfies the spectral condition if

A izu{0},
(19)

— f s 1
Let Z^ be the closure (in R2) of the set Z^ = <(s, //): s, r — - e Z >. Then

we have ^ ^

Theorem 4.2. Let (a, /?, y, ^) be a quadruple of closed operators on a Hilbert
space H satisfying the relations (2) and (3) and the spectral condition (19). Then

oi = v^/2 + nb"

[ (20)
y = v*b

where v, n, N and b are closed operators such that

(i) f; is unitary

(ii) n is normal and Sp n c C^ ^ (21)

(iii) vnv* = un
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( i ) N is selfadjoint

(ii) b is normal

(iii) N and \b\ strongly commute

(iv) The joint spectrum (22)

(v) On (kerfe)1

(Phase 6)*AT(Phase b) = N + 2.

Any element of the pair (v, n) strongly commutes]
with any element of the pair (N, b). }

(23)

The elements v, n, N and b are uniquely determined by a? /?, y and d.
Conversely if v, n, N and b are closed operators satisfying relations (21),

(22) and (23) then the quadruple (a, /?, y, d) of operators introduced by (20)
satisfies the relations (2) and (3) and the spectral condition (19).

Moreover for any non-degenerate C*-algebra A acting on H

(a, $, y, $rjA) <£> (v, n, N, brjA).

Remark. The best way to memorize the relations (20) is to write them
in the matrix form:

'///2, 0

The first matrix on the right hand side is of the form of basic representation
of £M(2), whereas the second one is in the same way related to £M(2) (cf. [6]
and [8]). We call (24) the Gauss decomposition (cf. [2]).

Proof. We know (cf. Theorem 3.2.2) that <5 is invertible. Comparing (19)
with Theorem 3.2.1 one can easily show that Sp 52 c C^. Therefore the polar
decomposition of d may be written in the following form

d = v*!*-*'2 (25)

where i; is a unitary and N is a selfadjoint operator with integer spectrum
and v strongly commutes with N.

We know that (y, d) e %(n, n). Therefore (cf. Conditions 2 and 4 of Defini-
tion 2.1) 0* = Phase 5 strongly commutes with y and

b = vy (26)

is a normal operator strongly commuting with v. Moreover (b, \S\) = (b9 ju~^/2) e
^(^, //) and relations (iii) and (v) of (22) follow immediately. Remembering
that Sp N a Z and using the first inclusion (19) we get relation (iv) of (22).
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By virtue of (9) and (11), (/?, \S\) E <g(l, 1) and (/?, l^p1) e V(l, 1). Therefore

=fc*12 (27)

is a normal operator strongly commuting with N. According to the second
inclusion (19) Sp n a CM. Combining the relation (/?, d) e ^(/^, p ~ l ) with the
obvious one (\d\~\ d) e #(1, 1) we get (rc, <5) e %u, /T1) and (cf. (8)) (n,v*)e

u, /T1) and relation (iii) of (21) follows.
Using in turn (8), (7), (12) and (10) we get (J8, 0*) e <€(p, jT1), (ft 0) e
1,/*), (ft 5) e ^OT1, /*) and (b, ft) e W(n, p). Similarly using (9), (11) and

(13) we obtain (y, |3|) e «(ji, jx), (y, l^l'1) e ̂ (jr1, M"1) and (S, l^p1) e ^(/T1, ^).
Using now (12) we get (fr, n) e #(1, 1). It shows that fc and n strongly commute.

The last three formulae of (20) follow immediately from (25), (26) and
(27). The first one follows from Theorem 3.2.3. This way the first part of
the theorem is proved.

Assume now the relations (21), (22) and (23) and consider operators a, /?,
y and d introduced by (20). The only nontrivial points of the second part
of the theorem are the normality of a and the commutation relations involving
Phase a and |a|. Let 5 = v^/2 = d'1 and R = nb = fifty S. Then (R, S) e
%tT2

5 1), Sp^S"1) c (> and a - S 4- R. By virtue of Theorem 2.3, a is
normal and

^ = F^y)*v^/2F^Py) . (28)

Using the last formula one can easily check that (a, /?) e #(/j, //) and (a, y) e
<&(& /x"1). This ends the proof of the second part of the theorem.

If a, /5, y, SrjA then (cf. Theorem 3.2.2) d~lr\A. Therefore v = (Phase S)*
and N = — 21ogM(|5|) are affiliated with A and by virtue of (26) and (27): n, brjA.

Conversely if 0, n, N, b r\A then according to the last three relations (20)
jg, y, Sri A. Using (28) we get &rjA. Q.E.D.

§5. C* -algebra Level

In this Section we construct the universal C* -algebra A related with (2),
(3) and (19). The algebra A plays the role of function algebra of GM. The
comultiplication 0 e Mor(^4, A (x) A) endowing GM with the group structure will
be introduced.

Comparing Theorem 4.2 with the content of [8] we discover that the
relations (21) and (22) coincide with the relations imposed on "generators" v9

n and AT, 6 of the function algebras A and B of £M(2) and EM(2) quantum
groups. In what follows we write Al and A2 instead of A and B.

The algebra A1 is described in details in Section 1 of [8]. We know
that there exists comultiplication 01 e Mor(^4l5 A1 (x) A±) (denoted by 0 in [8])
such that
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i(n) = v®n + n® v* .}

The algebra A2 is introduced in Section 3 of [8]. It is known that there
exists comultiplication <P2

 e Mor(,42, ^2 ® ̂ 2) (denoted by ^ in [8]) such that

2 = 0 . l j

Let

w = F^^b ® vn)(I ® i?)N ®J . (31)

Then w is a unitary element of M(A2®A1)
 and (cf. Theorems 3.2 and 4.1

of [8])

(id® <P!)W = w12w13

Let yl = yl! ® X2 and (cf. (20))

a =

= w23w13.

y = v* i
(33)

Then a, ft 7, drjA. Combining the Theorems 1.1 and 3.1 of [8] with Theorem
4.2 we get

Theorem 5.1. 1. Le£ n be a representation of A in a Hilbert space H and

a = 7c(a), j8 = 7c(j8),

the quadruple (a, ft y, ^) satisfies the relations (2), (3) anJ tfte spectral
condition (19).

2. Awy quadruple (a, ft ys ^) o/ c/os^d operators on a Hilbert space H
satisfying the relations (2), (3) and (19) is o/ the form (34), where n is a repre-
sentation of A in H. The representation n is uniquely determined by (a, ft y, 8).

3. Let n, H, a, ft 7, ^ be as in Statement 1 and AeC*(H). Then

o (n e Moi(A, A)) .

This theorem shows that the algebra A is the one corresponding to the
commutation relations (2), (3) and (19). Copying formulae (4.9) and (4.16) of
[5] we set:

0 = (id ® a ® id)(01 ® 02) ,
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where a e Mor(A1 ® A2, A2 ® AJ is introduced by the formula

a(a ® x) = w(x ® a)w*

for any a^Al and xey4 2 . Clearly 0 e Mor(v4, A ® A). Repeating the com-
putations of [5] (pp. 406-408) one can easily show that 0 is coassociative. We
shall prove

Theorem 5.2. The action of 0 on the distinguished elements a, j8, y, drjA
is described by the standard formulae:

Proof. By virtue of the second part of Theorem 4.4 of [5] it is sufficient
to show that

fiJLNI2
9 0 \~| (n"*2, 0u, ,-

or in the expanded form

N/2 + n ® b)

<r(v* (g) /TN/2) = ft ® n + fJL~NI2 ® u* .

These relations are equivalent to

IJLNI2 ® v + b ® n = W*(JUTO ® t;)w (35)

w(/i-N/2 ® w)w* = ^N/2 ® n (36)

w(ft ® y*)w* = ft ® i; (37)

w(ju~w ® u*)w* = 6 ® n 4- /x~W ® u* • (38)

To prove (36) and (37) it is sufficient to notice that (/ ® vf®1^'"12 ®n)x
(I ® v)-N®* = nN/2 ® n and (/ ® v)N®*(b ® u*)(/ ® v)~N®* = b®v, whereas ^N/2b ®
vn strongly commutes with nN/2 ® n and b ® v.

To prove (38) it is sufficient to notice that (1 ® i;)^®1 commutes with
^-N/I ^ y* an(j tjlen use ^ formuia (14) ^h j^ an(j 5 replaced by ̂ ~N/2 ® t;*

and 6 ® n resp.
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Similarly to prove (35) it is sufficient to use the formula (15) with R
and S replaced by [*N~2Ib ® v2n and fiNI2 ® v and then use the equality:
(/ <g> v)-N9I(l^N~2Ib ® v2n)(I ® vf®1 = b®n. Q.E.D.
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