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Discrete Cubic Interpolatory Splines

By

Manjulata SHRIVASTAVA*

Abstract

In the present paper, existence, uniqueness and convergence properties of a discrete cubic
spline which satisfies certain averaging interpolatory condition are established. This type of inter-
polatory condition has been studies earlier for usual cubic splines in [3]. More precise range
for weights involved in the interpolatory condition and sharper error estimates than in [3], are
obtained in the present paper.

§ 1. Introduction

Discrete splines are piecewise polynomial functions which satisfy smooth-
ness requirements at the knots in terms of differences. They depend for their
definition, on a real parameter h > 0. In particular, when h -»0, discrete
splines reduce to corresponding usual splines. Thus discrete splines are a
natural generalization of usual splines. Discrete splines were introduced by
Mangasarian and Schumaker [8] in connection with solution of certain minimi-
zation problems involving differences. Schumaker [9], [10], Lyche [6], [7]
and Astor and Duris [2] have studied in details, different aspects of discrete
spline approximation. Recently, Dikshit and Powar [4], [5] have considered
different important interpolatory properties of discrete cubic splines. Our aim
in this paper is to study the existence and convergence properties of discrete
cubic spline which satisfies certain averaging interpolatory condition. Such
an interpolatory condition has been considered by Chatterjee and Dikshit [3]
for usual cubic splines. Error estimates obtained in the present paper are
sharper than those obtained in [3]. Moreover, the range of variation of
weight a involved in the interpolatory condition is determined more precisely
in the present paper.

In Section 2, we shall establish the existence and uniqueness of a discrete
cubic spline satisfying interpolatory condition mentioned above, while the con-
vergence properties of these interpolatory splines are discussed in Section 3.
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§20 Existence and Uniqueness

Let a real number h > 0 be given. Then for any fixed real number a,
discrete real line Rah is given by

Rah = { • • • 9
 a — h> a* a + h, a + 2/z, . . . }

and a discrete interval [a, b\ is defined by

[a, b]h = [a, b] n Rah .

Discrete intervals (a, 5]h, (a, b)h and [a, b)h are defined analogously.
Let P = {xf}"=0 such that 0 = x0 < x1 < • • • < xn = 1, be a uniform

sequence of points in the discrete interval [0, Y]h. Let xt — x^ = p, i =
1, 2, ..., n.

A discrete cubic spline s is a piecewise cubic polynomial with knots in
P which satisfies following conditions

(2.1) DpSi(Xi) = D^si+l(xt) , j = 0, 1 and 2, i = 1, 2, . . . , n - 1 ;

where st is the restriction of s in interval [x f_ l 5xj for each L Also,
denotes the j-th central difference of function g. More precisely we have,

and
Dl2]g(x) = lg(x + h) + g(x -h)- 2g

For convenience we shall denote D^g by g^ and g(xt) by g{ for any function
g defined on [0, l]fc. The space of discrete cubic splines with knots in P is
denoted by ^(4, F, h).

We shall investigate the following:

Problem 20L Given a l-periodic function f defined over [0, l]ft and some
non-negative number a, does there exist a unique l-periodic discrete cubic spline
s in £f(4, P, h) satisfying the interpolatory condition

(2.2) s,_! + as, = /^ + & , i = 1, 2, ..., n ?

It is clear that D^s(x) is linear in each interval [x f_ l9 xj. Therefore we have

(2.3) pD^s(x) = (x, - x)Mi_l + (x - x^JM,

where Mf = DJ2^s(xt-). Thus summing twice we get

(2.4) 6ps(x) = M^ - x)^ + M.(X _ x^jO) + 6ct(xt - x)

+ 6^(x - x£_!) , i = 1, 2, . . . , n ;
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where ci and d{ are arbitrary constants and x^ are the factorial functions
given by

XW = X
2(x2 - h2)... (x2 -(k- l)2h2),

k being a positive integer.
For given functional values z£ on [x^jxj and real number r we set

0r(Zi) = z,_i + rz;, i = l , ..., n.

It is easy to see that requirements (2.1) lead to following relations:

(2.5) di = ci+i,

and

Since s satisfies the interpolatory conditions (2.2) we get

Eliminating ct and dt in (2.5)-(2.7), we get, in view of periodicity of /
and s, the following system of equations in unknowns Mh i = 1, ..., n:

(2.8) (p2 - /z2)0a(M,) + (4p2 + 2/i2)0a(Mm) + (p2 - h2)0x(Mi+2)

= 6[0a(/;) - 2fl.(/l+1) + 0.(/l+2)] = Ff (say), i = 1, 2, ..., n ;

where fn+r = fr and Mn+r = Mr, r = 0, 1, 2, . . . .
It is easy to observe that the system of equations (2.8) can be written in

matrix-form as AM = F where M = f(M l9 M2,..., MB), F = f(F1? F2,..., FJ and
matrix A is given by

y + aj5 j3 + ay a£ 0 0 ... 0 j8
j8 >; + aj8 jS -h ay aj8 0 ... 0 0

jS + ay aj8 0 O 0 . . . j 6 } ; +

where j8 = p2 — h2 and y = 4p2 + 2fe2. Now, we see that the matrix A can
be written as the product of matrices B and C where

a 0 0 ... 0 1"
1 a 0 ... 0 0
0 1 a ... 0 0

(2.9) B =

0 0 0 ... a 0
0 0 0 l a
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and

(2.10) C =

p2-h2 4p2 + 2h2 p2-h2 0 ... 0 0
0 p2-h2 4p2 + 2h2 p2-h2 ... 0 0

4p2 + 2h2 p2-h2 0 0 ... 0 p2-h2

The system of equations (2.8) has a unique solution if the matrix A is
non-singular. We observe that matrix A is non-singular if and only if matrices
B and C are non-singular. Obviously, a permuted form of the matrix C is
diagonally dominant for any p > h. The matrix C is therefore, non-singu-
lar. On the other hand, we see that det B = a" + (- 1)"'1 which vanishes only
when a = 1 and n is even. Thus we find that the matrix A is non-singular
for all non-negative values of a except the particular case when a = 1 and n
is even.

We have thus proved the following:

Theorem 2.1. Given a l-periodic discrete function f defined over [0, l]ft

and a uniform sequence of points P in [0, 1]^, such that p > h, there exists a
unique l-periodic discrete cubic spline 56^(4, P, h) satisfying the interpolatory
condition (2.2) for all non-negative values of a except the case when a = 1 and
n is even.

§30 Error Estimates

In this section we aim to obtain the bounds of the error function e = s — f
for the discrete cubic interpolatory spline s of Theorem 2.1. We estimate the
error-bounds over the discrete interval [0, Y]h, in terms of 'discrete norm' and
'discrete modulus of smoothness'. These will be denoted as ||0|| and w(g, t) for
some discrete function g (when there is no scope of confusion in using the
same symbols as those used in case of a continuous function).

Discrete norm of a function g in [a, b~\h is given by

For the points xt e P we shall consider vectors (g(x1), g(x2\ . . . , g(xn)). We
will be using sup norm for vectors defined as

and the induced row-max norm for matrices defined as

= max £1^1 where B = (bv)H
n 7=1

Discrete modulus of smoothness is defined, for a non-negative number t, by

w(g, t) = max{|0(x) - g(y)\: \x - y\ < t, x, y E [a, b]h}
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We shall need certain normalized version of usual forward differences,
called 'forward-difference-operators'. The j-th forward difference operator of a
function g, denoted by Dh

(j}g or g(j} is given by

ifc) -
i=o

Thus in particular,

0(1)M = [0(* + h) - g(x)l/h .

Also, for given points ti9 i = 1, 2, ...; [ti9ti+i, ...,ti+k]g denotes the fc-th
divided difference of the function g at the points ti9 ti+l9 ..., ti+k. Clearly we
have

and so on.

In order to obtain error-estimates over a discrete interval we need follow-
ing Lemma due to Lyche (7):

Lemma 3.1. Let {flj£Li and {ftjf=1 be two sequences of non-negative real
numbers such that £"=1 *i = D=i b«- Suppose {yy}r=ij=o>{^K=i.j=o c [«> J8]fc

/or some a, jS. Then, for a discrete function g defined on [a, /?]/,

m r

Z fli[tto»:Vii»--.>)'ik]0- Z & i l>i (»*i i»-»>*t t ]

< (1/k!) Z ^
\i=i

where |/| = jS — a — fcfc.

The proof of the Lemma is easily deduced.

We are now set to prove the following:

Theorem 3.2. Let f be a l-periodic discrete function defined on [0, !]>,
and s G &*(49 P, h) be the unique l-periodic discrete cubic spline satisfying (2.2)
for non-negative number a specified by Theorem 2.1, then

(3.1)

and

(3.2) ||e<
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where constant K is bounded as follows

K < 12,| + Q^ , if n is even and a / 1

tf n is odd and *- - >1 + a" 1 — a

< 6(1 + a)- n if n is odd and a = 1 .

Proof of the Theorem. In the system of equations (2.8) we replace Mf

by e\2} + f i { 2 } and we get

(3.3) (p2 - h2)el2\ + [4p2 + 2h2 + a(p2 - h2)~]eW

+ [p2 _ ^2 + a(4p2 + 2h2)~jel2l + a(p2 - ft2X!2^

= 12p2[^_l5 xi9 xI+1]/ - (p2 - h2)ftf - (4p2

~ (P2 ~ h2)f$ + a[

= Gt say ; f = 1, 2, . . . , n .

Now the system of equation (3.3) can be written as

AE = G or E = C~1B~1G ,

with E = f(e{2\ 42>, . . . , e^\ G = f(G l9 G2? . . . , GJ and A = B C where B and
C are given by (2.9) and (2.10) respectively.

Considering the row-max norm we have

(3.4) ||£||= max eJ2) | £ IIB"1!!' IICT1!! • ||G|| .
l < i < «

We observe, in view of Lemma 3.1, that

a)p2w(/^,p)9 i = l , 2, ..., n.

Hence,

(3.5) HG| |<24( l+a)p 2 w(/ ( 2 >,p) .

Also, the row-max norm of C"1 is bounded as follows:

(3-6) IIC-1!!^ min

< l/2(p2 + 2h2)

[In the above relation the suffix j = n + 1 is identified with suffix j = 1, since
C is a circulant matrix.]
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Now we find that

a»-i (-I)"-1 (-l)"-2a ... -a71"2"
-an~2 a""1 (-1)""1 ... a"'3

Clearly the row-max norm of B'1 is

(3.7) = - , if n is even and a ̂  1 ;
|1 - a|

-f • AA A ^ 1if n is odd and a ^ I ;
1 + a" 1 - a

= n/2 , if n is odd and a = 1 .

Therefore estimates (3.5)-(3.7) when combined with (3.4) yield (3.1).
Next, we see that s^ is linear in [Xj_1?xJ i = 1, 2, . .., n and is given

by (2.3). Therefore

(x - x^HAf, -

(x - x^H/iLV -

Thus

(3.8) k { 2 } (x) |<lkPHl+w(/ ( 2 ) ,p) .

In view of (3.1) and (3.8) we get (3.2). This completes the proof of the Theorem
3.2.

Discussion. In the case a ^ 1, we observe from (3.2) that as n increases
to infinity, ||e^(x)|| goes to zero. Thus s^* converges uniformly to /^ as
n -> oo in this case. On the other hand, when a = 1 and n is odd, error
\\e^\\ varies as ||/(2)||. Thus the rate of convergence of s^2} to /^ is fast
except in the case when a = 1 and n is odd.

§ 4, Remarks

4.1. Theorem 2.1 and Theorem 3.2 are more general than the corresponding
results of Lyche [7] where he considers a discrete cubic spline satisfying
condition (2.2) for the case a = 0 only.

4.2. When /i-»0, results of Theorems 2.1 and 3.2 correspond to the results
of Theorems 1 and 4 of [3] for usual cubic splines. But wider range
for weight a and sharper error estimates than those obtained in [3] are
established in Theorems 2.1 and 3.2.
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43. It is easy to observe from (2.2)-(2.7) that when a = 1 and n is odd, the
discrete cubic spline interpolant of Theorem 2.1 matches the function-
values at the meshpoints, i.e. we have

s(xt) = f ( x t ) , i = 1, 2, ..., n ,

in this case.
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