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Goldman's Type Theorem for Index 3

By

Masaki IZUMI*

Abstract

We show a Goldman's type theorem for any inclusions of (not necessarily AFD) factors with
the principal graph A5. Our main tools are correspondences and sectors.

§1. Introduction and Main Results

In our previous paper [I, Theorem 5.1], we showed that any pair of III^
AFD factors whose principal graph is the Coxeter graph A5 is as follows.

where R^ is the type Ill1 AFD factor. This theorem has been known in the
case of the type II 1 and IIIA (0 < /I < 1) AFD factors using classifications of
subfactors [Li, O, P]. The aim of the present work is to generalize this
theorem for arbitrary factors. Since we will not use classifications of subfactors
and group actions, we need no assumption of AFD.

V. Jones' index theory is one of the most important and interesting topics
in recent operator algebras, and many connections with other areas of mathe-
matics and mathematical physics are pointed out. As one of his motivations
of his definition of index [J], there is Goldman's theorem [G], which says
that any inclusion of factors with index 2 is written by the crossed product of
a Z2 action. One direction of generalizations of this theorem is a characteriza-
tion of crossed products in terms of indices and higher relative commutants
(principal graphs). This was done by M. Pimsner and S. Popa [PP1], A.
Ocneanu in the case of II 1 factors, and H. Kosaki [K2] in the case of properly
infinite factors. Our approach is considered to be another direction of the
generalizations.
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In Section 39 we first prove the main theorem in the case of properly
infinite factors using sectors, and next in the case of finite factors using corre-
spondences. Although the latter argument may be valid for general cases, we
leave the former because of perspective.

Our basic references are [G.HJ, Kl] for the index theory and [I, L2]
for the sector theory.

The author would like to thank H. Araki for his constant encouragement
and H. Kosaki for discussions.

§ 20 Preliminaries

In this section we extend the notion of sectors defined by R. Longo in
[L2], and show basic facts.

Throughout this paper we assume that von Neumann algebras have sepa-
rable preduals and Hilbert spaces are separable.

Let M and N be factors. We use the following notations.

Mor(JV, M): the set of unital normal isomorphisms from N into M .

In the case of N c= M,

E(M, N): the set of faithful normal conditional expectations from M to N .

pl9 p2eMor(N,M) are unitary equivalent if and only if there exists a
unitary u e M such that

Pi = Ad(ii)-p2.

For properly infinite factors M, N, we denote by Sect(M, N) the quotient of
Mor(N, M) by the above equivalence, and call elements in Sect(M, N) M — N
sectors. If p e Mor(N, M), M[p]N denotes its class in Sect(M, N). If M = N
Sect(M, N) coincides with Sect(M) in [L2, I]. We sometimes associate different
sectors with one morphism. For example, let N be a subfactor of M and
7: M -> N the canonical endomorphism [L3]. If we consider 7 a map from
M to N (resp. from M to M, from N to M, from N to N), we write N[y"]M

(resp. M[y]M, Af[y]tf» jvMjv)- Sum, product and irreducible decomposition are
defined on the sectors in the same way as in [I, § 2] , except that the product
is a map Sect(M, N) x Sect(]¥5 L) -» Sect(M, L).

Let L, M, N be properly infinite factors and H be L — M correspondence
(For the definition of correspondence see [P2, L2, I].). If p e Mor(Af, M) (resp.
p e Mor(N, L)), we define a L — N correspondence Hp (resp. N — M correspon-
dence PH) by

x e L , y e N , {eH, ? £ Hp

(resp. x'?'y = p ( x ) ' ! ; ' y , x e JV , y e M , £ e f f , f e PH)
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where £ = £' as an element of the Hilbert space. If we consider L2(M) as
M - M correspondence by the natural actions, then the map ph->L2(M)p in-
duces bijection between Sect(M, N) and the set of equivalence classes of M — N
correspondence [L2, Corollary 2.2]. (Note that our convention is different
from that in [L2, I], because it is convenient to consider that the left action
is standard.) We define a map called conjugation M[P]NI~^N[P]M using that
of the correspondences and the above bijection. For simplicity p denotes one
of representatives of #[p]M. Let y: M -> p(N) be the canonical endomorphism.
Then p is given as follows [L2, Theorem 3.1].

p = p~l-y •
Using similar calculation in the proof of [L2, Theorem 3.1], we can show the
following relation.

. (2.1)

The following proposition shows that our convention is natural.

Proposition 2.1, Let M, N, L be properly infinite factors and M[PI]#E

Sect(M, JV), w[p2]L e Sect(N, L). Then,

M(L2(M)pi)N ® N(L2(N)P2)L S M(V(M)PIP2)L
N

where ® means Sauvageofs relative tensor product [S].
N

Proof. Due to (2.1) and

NL2(N)N®NL2(N)N^NL2(N)N,
N

we have

M(L2(M)P1)N ® N(L2(N)P2)L * M(-PIL
2(N))N ® N(L2(N)Pi)L

SM(-PL2(N)P2)^M(L2(M)PIP2)L. Q.E.D.

Remark 2.2. If M is a IIt factor we cannot use sectors. But (2.1) and
Proposition 2.1 make sense if we consider only automorphisms. Namely, the
following hold.

M(L2(M)P)MSM(^,L2(M))M (2.2)

M(L2(M)pi)M ® M(L2(M)P2)M s M(L2(M)P1P2)M (2.3)
M

where p, piy p2 6 Aut(M) and we use p = p'1.

We assume again that M and N are properly infinite factors. Let <j>: M -» N
be a unital normal completely positive map and Q be a separating and cyclic
vector for N. Then there exists a unique sector N[p]M

 e Sect(AT, M) and £ 6
L2(N) satisfying the following [I, subsection 2.2].

JjV0, fl) = <xJNp(y*)JNS, O for x e AT, y E M

NJNp(M)JNt = L2(1V)
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where JN is the modular conjugation of N. We denote N\_p]M by #MM- If
M ^> N and E e E(M, N), we can compute N[E]M explicitly as in [L2, Proposi-
tion 3.3], [I, subsection 2.2]. Let y: M -> AT be the canonical endomorphism.
Then,

= *M*. (2-4)

If we consider £ to be a map from M to M, we obtain

M[£]M = M!>]M. (2-5)

Now we will move to the index theory. Let M[p]# 6 Sect(M, N). We
define the (statistical) dimension d(p) by

d(p) = [M: p(N)To12 .

In the above equation [M: p(JV)]0 means Hiai's minimum index [H]. If
there is possibility of confusion we will write d(MpN). As in [I, subsection
2.3] d(p) satisfies the additivity and the multiplicativity [KL], [L4].

In the same way as in [L2, Theorem 4.1], [I, Theorem 2.1], we can show
the following proposition.

Proposition 23, Let M, N be a pair of properly infinite factors and
*[>I]M e Sect(N, M) M[p2]JV e Sect(M, N) with d(pl\ d(p2) < oo. // p1 and p2

are irreducible then the following conditions are equivalent:
(1) tfEPiPzljv or MiPiPi^M contains the identity sector.
(2) jvOiLf = ArEPiLr-
// p1 and p2 satisfy the above condition, jv[pip2]jv and u\-P2Pi\M contain

the identity sector with multiplicity one.

Let M =3 N be a pair of properly infinite factors and y: M -> N be the
canonical endomorphism. Then,

M => N => y(M) ID y(N) => f(M) z> • • •

is the tower associated with M => N. Let r. N -> M be the embedding map.
By easy computation we obtain

ivDlM = *MM • (2-6)

Then the principal graphs of M =3 JV and JV => y(M) show the fusion rules of
the following sequences of sectors [I, §3].

We call the sectors appearing in the decomposition of the above sectors as
descendant sectors.
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Before closing this section, we show the following proposition as an appli-
cation of sectors.

Proposition 2.4 Let M =D N be a pair of properly infinite factors with
finite depth. If the principal graph of M ^ N has two points whose entries of
the Perron-Frobenius eigenvector are minimal and they have different colors,
(note that principal graphs are always bipartite), then M is isomorphic to N.

Proof. Let M[p]]v be the descendant sector corresponding to one of the
above points which is not the distinguished point. Then the above condition
implies d(p) = 1 as in [I, subsection 2.3]. This means [M: p(JV)] = 1 and so
we have the result. Q.E.D.

Remark 2.5. If the principal graph has a graph automorphism which
does not preserve the colors of vertices, then the condition of Proposition 2.4
is satisfied. For example, Coxeter graph Aeven and D^d satisfy the condition.

§3. The Main Theorem

The main theorem of the present work is as follows.

Theorem 3.1. Let M ^ N be a pair of factors with the principal graph
A5. Then there exists L a subfactor of N and an outer action of S3 on L
such that

(M =3 N) = (L x S3 ID L x S2).

Proof. First, we show the theorem in the case of properly infinite factors
using sectors. Let y: M -> N be the canonical endomorphism and r.N-+M
the embedding map. The descendant sectors and fusion rules are as follows
(see Fig. 1) [I, §5]:

«['"]* M^W

M [a]M

N .,,,^
^ [yl „ CT ^ N N ' N

[id]N ^ ^N [p]N ^

„[/]„ »[P]N-NM

Fig. 1. The diagram of fusion rules of A5.
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p]M, (3.1)

M!>]M ' M U\N = M MAT © M!>]M ' M^N , (3-2)

M[P]M' = MlXL © M!>]M © M[P]M , (33)

M[>]M ' M[P!M = M!>]M ' M!>]M = M[>]M , (3-4)

l. (3.5)

U, (3-6)

]*>MM> (3.7)

* © *[/*]* © *[plv , (3.8)

= N^N > (3-9)

d ( f i ) = 2 , d(0)=l. (3.10)

M!>]M> N[P]JV, AfMM? jv[)8]jv are self-conjugate and d(a) = d(j8) = 1 implies
a e Aut(M), /? 6 Aut(JV). We can choose a and /? such that a2 = idM, ft2 = idN

as in [I, Proposition 3.3]. Now we will consider the following inclusions of
factors.

M => N ID L = Np

where Nft is the fixed point algebra of N under /?. Let £19 E2 be the unique
elements in E(M, JV) and E(JV, L). Due to [LI, Proposition 5.1] there exists
an isometry v e N satisfying the following.

vy = y(y)v for y E N

E1(x) = v*y(x)v for x e M .

If we define E e E(M, N) by E = £ 2°^i9 we can show the following as in [I,
§5].

From Fig. 1 and

we can see

where we use (2.6) and self-conjugacy of a. So using (3.1), (3.4) we have

M[£]M= M[?]M © M!J]M'M|>]M

= M[^]M © M[«]M © 2M[P]M - (3.H)
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Fig. 2. A part of the principal graph of M => L

If the depth of M ID L is 2, we obtain the result due to [I, Corollary 5.4,
Proposition 4.1]. Although [I, Proposition 4.2] is also valid for our case, we
apply another proof for latter use. Due to (2.5), (3.11) means the principal
graph of M =) L contains the graph in Fig. 2 as a part, and it is easy to see
that the Perron-Frobenius eigenvalue of this graph is ^/6. On the other
hand, thanks to [KL, L4] we have [M : L]0 = [M : N]0[W '• L]o = 6- So this

graph must coincide with the principal graph of M => L because of [GHJ,
Lemma 1.4.2].

In the case of finite factors, we have to repeat the essentially same argu-
ment treating correspondences (bimodules) directly. Before completing the
proof, we will prepare a few facts on correspondences. Let

N c= M c= M! c M2 c • • •,

be the tower associated with N a M. (For simplicity, we will write
instead of ML2(Mn)M.) Then it is well known that Mn is equivalent to

n+l

as an M — M(N — M, M — N, N — N) correspondence [GHJ, Corollary 3.6.5]
[J2]. The correspondences appearing in the irreducible decomposition of
M(MJM, N(Mn)M, M(MJN, N(Mn)N, and their restriction-induction graph are as
in Fig. 3 (see [O2]). Using the formula in [Jl, page 4] and the local index
formula in [PP2, Corollary 3.2], we can show the following.

M-N

N-N

Fig. 3. The restriction-induction graph of A5
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= 2, (3.12)

dimM(7) = dim(7)M = 1 , (3.13)

dirndl) = dim(X)N = 2 , (3.14)

dimN(Y) = dim(Y)N =1. (3.15)

Since {MMM, M^M>M^M} and {NNN9 NXN, NYN} are closed under conjugation
and MMM, NNN are self-conjugate, they are all self-conjugate. Due to (3.13),
(3.15) and self-conjugacy of MYM, NYN, there exist outer automorphisms ae
Aut(M), /JeAut(iV) satisfying

a2e!nt(M) j82eInt(JV), (3.16)

M^M = M(*M)M ^ M(MX)M , (3.17)

NYN*N(,N)N*N(N,)N9 (3.18)

where we use (2.2), (2.3). So using the restriction-induction graph, we have

NZM^N(Mx)M^N(ftM)M^N(aM)M. (3.19)

Lemma 3«,20 For each fixed /?, a can be chosen such that

a|* = j8.

Proof. First we fix a and jS. Due to (3.19) the following two N — M
actions on L2(M) are equivalent.

x - £ - y = l](x)Jy*J£ for x e J V , y e M , { e L2(M)

x - ^ - j ; = a(x)Jj;*J^ for x e N , 3; e M , £ e L2(M) .

where J is the canonical conjugation of M. Then there exists a unitary
w e B(L2(M)) satisfying

wJy* J = Jy* Jw for y e M ,

w/?(x) = a(x)w for xe N .

From the first equation we obtain w e M. So the second equation shows
that Ad(w*)-a is the desired automorphism. Q.E.D.

As we computed the fusion rules of sectors, we can show the following.

M^M ® M^M = MMM 0 MXM 0 M(MJM , (3.20)
M

M(OL^)M = M\%aJM = M%M J (3.21)

NXN ® NXN s ^^ © ̂  © N(NP)N , (3.22)
N

N($%)N = N(%P)N = N^N - (3.23)

As in the properly infinite case, the following holds.
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Lemma 33. We can take /? such that ft2 = idN.

Proof. Let P = Hom(XN). Then N can be considered a subfactor of
P. Due to (3.23), j8 is implemented by a unitary in P. Thanks to P n AT' = C
the obstruction of ($ is trivial [C], and we obtain the result. Q.E.D.

We assume j82 = idN and a|JV = /?. Note that a2 = idM also holds due
to (3.16) and MnAT = C. Let 0 be the unique extension of a to M1 such
that 6(eN) = eN [Kw][Li]. Then, since the principal graph of M c= M1 is A5,
[PP3, Proposition 1.7 (iii)] shows that 6 is outer. As in the properly infinite
case, we will consider the following inclusions of factors.

L = N? c N c M c M! c M! xZ2 .
0

Let
L c= M c M! c= M2 c • • •

be the tower associated with L c M.

Lemma 3.4.
(i) M <= Mx X0 Z2 is isomorphic to M c= M\
(ii) M c M! is aw irreducible pair.

Proof, (i): Let J be the canonical conjugation of M and w the canonical
implementation of a. By definition, we can see

M! = JL'J = J(N' v {u})J

= JN'J v [u] = M! v {M} .

Since a preserves AT, a commutes with the unique element in E(M, N). Thus
w commutes with eN and so Ad(w)|Mi = 9 holds. Thanks to [A, II.3] we
obtain the result, (ii): If x + yu e Ml n M', x, y E Mx. Then x e C, and y
satisfies the following.

ya = ca(a)y for a e M .

From M! n M' = C, 3; is a multiple of a unitary in Ml. But this implies
y = 0 because of [PP3, Proposition 1.7. (ii)]. Q.E.D.

Completion of the proof of Theorem 3.1. Due to Lemma 3.4 the irreduci-
ble decomposition of M(M1)M is as follows.

M(Mi)M ^ M(Ml)M 0 M(M1u)M

= M(M1)M0M((M1)a)M

= MMM 0 MXM ® M(MJM 0 M(XJM
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In the above equations we used (3.21). Then as in the properly infinite case,
the depth of L c M is two. Thanks to [I, Corollary 5.4], the relation between
L and M are one of the following, (i) L c M = L c L x G, (ii) L c M ^ MG c
M, where G is a group of order 6. Suppose (ii). Due to the characterization
of crossed product [PP1, Corollary 1.1.6], dim(M2 n M') = 6. But M2 n M' is
isomorphic to Hom(ML2(M1)M) and hence this is not the case. So (i) holds
and G is not commutative i.e. G ^ S3. From [JV: L] = 23 there exists T an
outer action of Z2 on L such that

N = L x Z 2 .
T

Then T is implemented by a unitary in M. [PP3, Proposition 1.7 (ii)] shows
that T comes from a subgroup action of G up to cocycle conjugacy, and so
we obtain the result. Q.E.D.
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