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Introduction

Let X be a compact Kahler manifold and E a holomorphic vector bundle
on X. If E admits a hermitian metric h whose curvature form is sufficiently
positive, then the Bochner-Kodaira method leads us to vanishing theorems of
relevant sheaf cohomology groups. However, if the metric h, and also the
Kahler metric g on the base, are given only on some Zariski open subset U
of X, then what we obtain by the Bochner-Kodaira method is just the cor-
responding vanishing theorems of L2 cohomology groups defined by using the
metrics h and g. In order to obtain the vanishing theorem of the sheaf
cohomology groups as in the compact case, we need to establish isomorphisms
of these two kinds of cohomology groups. This would be done if we establish
the corresponding L2 Dolbeault lemma, i.e., if we show that the corresponding
L2 Dolbeault complex on X is a resolution of the sheaf of holomorphic
sections of E.

Such an L2 Dolbeault lemma was first formulated and proved in the
context of variations of Hodge structures by Zucker in [31] when X is of
dimension one. Later, a generalization to the higher dimensional case was
given by Timmerscheid in [28] in a similar context. On the other hand, it
seems important to pursue Zucker's method further in the general context as
mentioned above.

The first purpose of this paper is then to give a version of such an L2

Dolbeault lemma in arbitrary dimensions, where we assume that Y := X — U
is a divisor with only normal crossings in X and that a certain special asympto-
tic behaviour of the metrics g and h along Y is satisfied (Proposition 2.1). The
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assumption on g is for example satisfied if g is either of Poincare, ball quotient,
or Hilbert modular type along Y (cf. 3.2 for the definition).

We give two applications of the L2 Dolbeault lemma. The first one is
as follows. Let D be the unit ball or the polydisc in C", and X a smooth
toroidal compactification of the quotient U = D/F of D by an arithmetically
defined group F [1]. Let 0< —T> be the sheaf of holomorphic vector fields
on X which are tangent to Y. Then we show that Hq(X, 0<- 7» = 0 for
any q < n (Theorem 4.1). In particular, the pair (X, Y) is (infinitesimally)
rigid under deformations. (See [12] [18] [25] for the related results).

The second application, which was the original motivation for the present
investigation, is concerned with a necessary condition for the existence of a
complete Kahler-Einstein metric on a Zariski open subset of a compact com-
plex manifold. We prove that if there exists a complete Kahler-Einstein metric
g on U with negative scalar curvature and if g has Poincare growth along
Y, then the line bundle L:=KX®[7] is ample on X (Theorem 5.1). This
gives a kind of converse too the existence theorem of R. Kobayashi in [16].
On the other hand, L is not ample for the smooth toroidal compactification
X of D/F as above, though U admits a complete Kahler-Einstein metric of
negative scalar curvature induced by the Bergman metric on the ball or the
polydisc. By changing the growth condition suitably, we can also formulate
and prove an analogue of Theorem 5.1 in relation with these examples (Theo-
rem 5.3). In the case of dimension two there exists a more precise existence
theorem for the complete Kahler-Einstein metrics due again to R. Kobayashi
[17]. We shall also give a certain converse to this result by a different method
(Theorem 6.1).

The paper is arranged as follows. In Section 1 we prove a preliminary
lemma which is used to prove the L2 Dolbeault lemma in Section 2. In
Section 3 we recall basic facts about L2 cohomology groups and give a result
concerning isomorphisms of L2 and sheaf cohomology groups (Proposition
3.3). In the remaining Sections 4, 5 and 6 we give the applications of the
Dolbeault lemma as mentioned above.

The author thanks T. Ohsawa for calling his attention to the reference
[20] so that he could avoid repeating the known argument.

§1. A Preliminary Lemma

1.1. Fix a sufficiently small positive real number e. Let d(r) and n(r)
be positive C°° functions defined on the half-open interval (0, e], and depending
also on another C°° parameter s e S, where S is a certain C°° manifold. We
assume the following conditions I and II:

I. We may write d(r) in the form
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where as is a positive constant which may depend on s, and c and q are real
numbers such that

a) for each fixed s we have

bs < n(r) < cs

for some positive constants bs and cs depending possibly on s,

b) limr(logl/r)(logn(r))' = 0
r-»0

uniformly with respect to s, where ' denotes the differentiation with respect
to r, and finally

c) q ^ — 1 when c is an odd integer .

II. r2(log l/r)2^(r)~l is bounded uniformly with respect to s.
Note that the real numbers c and q above are uniquely determined by

the condition a). From I, b) we obtain:

Lemma 1.1. Set m(r) = (log l/r)*-n(r) = a~lr~cd(r). Then we have

lim r(log m(r))' = 0 (1)
r->0

uniformly with respect to s.

Proof. This follows from the equalities

r(log m(r))' = -q(log 1/rf1 + r(log 1/r)(log n(r))'-(log 1/r)-1

= (log l/r)~l( — q + r(log l/r)(log n(r))').

Remark 1.1. Below, actually we consider only the simple cases where
either

i) n(r) = 1 , or ii) n(r) = e(r)f, e(r) = 1 + cs/log 1/r ,

where cs is a constant depending on s, and t is a real number. (The latter
moreover appears only in the Hilbert modular case (cf. 2.1).) In fact, n(r) in
ii) satisfies the conditions a) and b) since 1 < e(r) < 1 + cs/(log 1/e) and

r(log e(r))' = (cs/(log l/r)2)e(r) < l/(log 1/r).

Also note that e(r) is an increasing function. Moreover, in the above cases
/*(r) will respectively be of the form

i) Mr) = r2(log 1/r)2 , or ii) //(r) = r2(log l/r)2e(r)2

so that the condition II is also satisfied.
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We distinguish now the following cases:

a) 2c + 1 < d
Case 1 2c + 1 ̂  d . , . ^ . .

b) 2c+l>d

Case 2 2c + 1 = d I *) < ? > J
( t) 0 < 1 .

1.2. Let (/n(r)} be a sequence of C°° functions /w(r) which are defined
on (0, e], with compact supports, and are parametrized by the integers n. They
may depend smoothly on the parameter 5 e S above. Then we define another
sequence {un(r)} of C°° functions un(r) on (0, e] as follows (cf. [31; p.437]):

In Case 1, a) and Case 2, a)

«„(>•) =
Jo

and in Case 1, b) and Case 2, b)

un(r)=-2rn | p-n-fn+l(p)dp.

In this case we shall write

un(r) = En(fn+1(r)). (2)

We then define weighted L2-norms of un and /„ as follows;

\\un(r)\\2= { E \ u n ( p } \ 2 d ( r } d r
Jo

and

= \fn(p)\2n(r)d(r)dr.
Jo

Then the purpose of this section is to prove the following:

Lemma 1.2. The notations and assumptions being as above, there exists
a positive constant C such that for any integer n we have the estimate

\\un(r)\\2<C\\fn+1(r)\\2,

where C is independent of the sequence (fn(r)} and the parameter s e S.

Remark 1.2. If c is not an odd integer, Case 2 does not occur. Then
we may replace the condition I, b) (resp. II) by the condition (1) of Lemma
1.1 (resp. IF: r2^(r)~l is bounded), as the proof below of the lemma obviously
shows.
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In what follows we use for simplicity the following notation. Let A(r)
and B(r) be C°° functions on (0, a] which depend possibly on the parameter
s. Then an inequality A(r) < B(r) means that there exists a positive constant
C such that A(r) < CB(r) uniformly with respect to s.

1.3. Proof of Lemma 1.2. (cf. the proof of [31], Proposition 6.4) We
treat the four cases separately, and in each case the proof is divided into
three steps which are similar to each other. In the first step the argument
is independent of the assumptions I and II. Steps 2 and 3 are related respec-
tively to the assumptions I and II.

We take and fix any positive real number e such that for any integer n,
according as n is in Case 1 a), Case 1 b), Case 2 a), and Case 2 b), we have
2n + c + e + 1 < 0, 2rc + c + e + 1 > 0, q - e + 1 > 0, and q + e + 1 < 0, re-
spectively.

Case 1, a): Step 1. By the Cauchy-Schwarz inequality we have

o Jo

-2n-e+lr (^\2f r

_ r2n+e

Jo

; r%2 B + e r r
Jo LJo

p-2n-e+ifn+i(pr dp.
Jo

Then we have

\\un(r)\\2<\ r2n+e\ I p - 2 — + i f n + 1 ( p ) 2 d p - ] d ( r ) d r

dp . (3)

Step 2. We have

f £

0<-(2n + c + e+ l)/as r2n+e d(r) dr

= -(In + c + e 4- 1) r2n+c+em(r) dr
JP

= l/as0
2"+e+1 d(r)]f + f£ r2"+'+e+1m'(r) dr .

Jp

Then, since

r2n+c+e+1m'(r)/r2n+c+em(r) = rm'(r)/m(r) -^ 0

by Lemma 1.1, we get

r2"+e d(r) dr X P
2n+e+1 d(p).

P
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Step 3. Substituting this into (3) and using the assumption II we get

Case 1, b): Step 1. In the corresponding argument in a) we replace — e
by + e, and jo by J*. Then by the same argument we have

\\un(r)\\2 < P p-2n+e+1fn+i(p)2 \ I" r2"-' d(r) dr] dp .
Jo LJo J

Step 2. Replacing — e by +e, and J0 by jg in the corresponding argument
in a) we get

/*. I"Jo
l)/as j r2n~ed(r)dr

p

° Jo f

Since r
2n~e+1 d(r) tends to 0 when r tends to 0 by the condition I, a), by the

same argument using Lemma 1.1 we get

r2n~e d(r) dr < P
2n~e+1 d(p).

Jo

Step 3. The same argument as in a) works also in this case.
Case 2, a): Step 1. As in Case 1 we have

\un(r)\2<r2n

Jo Jo

p~2n+1 -(log l/p)1+efn+1(p)2 dp ,
o

and hence

' p~2n+l(log l/p)1+efn+1(p)2' [ f£ r2"(log l/rr d(r) dr \ dp (4)
;o LJp

Step 2. We have

0<(q + l- e)/as r2w(log l/r)'e d(r) dr
JP

fE -1= (q + 1 — e) \ r (log l/r)q en(r) dr
JP

T£

= l/as[r
2n+1(log 1/r)1-6 d(r)]f + (log
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Since by the condition I, a) we have

(log l/rY+1-enf(r)/r~l(log l/rf~en(r) = rflog l/r)(log n(rff -> 0 ,

from this we get

fJP
r2"(log l/r)~c d(r) dr < p2n+1(log l/r)1'6 d(p) .

Step 3. Substituting this in (4) and using the assumption II we have

lk(r)||2 < f ' p2(log l/p)2/n+1(p)2 d(p) dp

(log
o

Case 2, b): Step 1.

lk(r)||2 < p-2w+1(log l/p)l-'fm+1(p)2 r2«(log l/r)e d(r) dr dp .

In fact, if in the corresponding argument in a) we replace e by — e, Jj ^y Jr
E,

then the argument is quite identical.
Step 2. Replacing ~e by +e, and Jj; by Jg, in the corresponding argu-

ment in a) we have

p
2nf0 < -(q + 1 + e)/a, r2«(log l/r)e d(r) dr

Jo
P

(log l/r)q+1+en'(r) dr.
o

Then as in the case a) this implies that

r2"(log l/r)e d(r) dr < p2n+1(logI;o
noting that r2n+1(log l/r)1+e d(r) tends to 0 as r tends to 0 by the condition I, a).

Step 3. The same argument as above works.
It is immediate to see the constants which are implicit in the notations <

above are actually independent of n. The lemma follows.

§2. L2 Lemma

2.1. Let C" = C"(z l3..., zj be a complex euclidian space for some n > 0.
For a positive number s with 0 < e < 1 we consider the polycylinder W = WB

in Cn;

W={z = (z1,...,zn)ECn;\zi\<s}.
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Denote by Yt the hyperplane in W defined by zi = 0. Then fix an integer k
with 1 < k < n, and let Y = (J*=i Yt;

We put W = W — Y. In polar coordinates we write zt = r^1. Let F be a
(trivial) holomorphic line bundle defined on W, with a generating holomorphic
section a on W. Fix a C°° hermitian metric h of F over W and denote by
| a |2 the square norm of (7 with respect to h. Let gr be a Kahler metric on
W such that the associated Kahler form CD is of the following form

co = V^T X I/ft dzt A dz, , (5)
i

where fj,t = |dz£|
2 is a positive function on FT. Then the volume form dv

associated to co is written in the form;

dv = ( l ) n v - n dzt A dzt , i; = l Vft - (6)
i i=l

We assume that the functions |<j|2 and \JL{ (and hence also i;) depend only on
H, 1 < i < k. We set

d(r1 , . . . , r l k) = |c7 | 2- i ; - 0 rt, (7)

and further make the following three assumptions:
Al) The function d is of the form

d(rl9 . . . , rk) = r? . . . r^(iog l/r,p . . . (log l/rJ*L(rl9 . . . , rk)' , (8)

where

L = L(r l s . . . , r k )= £ log 1/r, ,
i=l

and cf, b7-, t are real numbers with t > 0 such that q{ := bt + t ^ — 1 if cf is
an odd integer. We set a{ = (ct + l)/2 and denote by [0J the largest integer
which does not exceed at.

A2) If 1 < i < k, then \JL{ is either of the following two forms;

ft(r) = rf(log 1/r,)2 , or =r?L2 . (9)

A3) If Ic + 1 < i < n, then /j^1 is bounded (above) on W.
Note that A2) implies that the Kahler metric g is (uniformly) complete

along Y.
In this note we are mainly interested in the following three types of

Kahler forms co.
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Example 2.1. 1) Poincare (Growth) Type: We take co = o)P, where

—- * /—- "
- ! Z dzj A dz/'J J^(r.logl/r,)2

in particular, ^ = rf (log l/r£)2, 1 < i < k, and ju,- = 1, fc + 1 < 7 < n, so that
A2) and A3) above are satisfied; we have

v= n rr2(iog i/n)-2.
2) Bfl// Quotient Type: We assume that /c = 1 and take CD = COB, where

<ki A *zi , ^^r v^ rfz/ A dz/

in particular, //! = rl(log 1/rJ2, ^ = log l/rl9 fc + 1 < ; < n, so that A2) and
A3) are satisfied; also we have

v = rr2(log l/rj-^1* •

3) Hilbert Modular Type: We take co = COH, where

( z rr2 rfzf A d*i + Z
\ l < i < f e k<j

z; A
k<j<n

in particular, ju£ = rfL2 for 1 < i < k and ^ = L~2 for /c + 1 < j < n so that
A2) and A3) are again satisfied (cf. Remark 1.1). Also we have

M-2

2.2. Let g and h be the metrics satisfying A1)-A3) as in 2.1. By using
the metrics g and ft, we may speak as usual of the L2-integrable F-valued
(0, g)-forms on any open subset F of W (with measurable coefficients). Then
consider the space Lq = Lq(V, F) of F- valued (0, <?)-forms cp on V such that
both cp and dcp are L2-integrable. We can also consider the corresponding
sheaves ^q(F) on W which form a complex with respect to the 5-opera-
tors. Then our L2-Dolbeault lemma is stated as follows.

Proposition 2.1. In the notations of Al) the L2 Dolbeault complex
is a resolution of the sheaf 0X(F ® [Yi]Pl ® ••• ® [^]Pk), where pt = [aj - 1
if c{ is an odd integer and q{> —1, and pt = [at], otherwise.

Remark 2.1. Two nonnegative functions (or hermitian metrics) / and g
defined on W are said to be equivalent along Y if for any relatively compact
subdomain V of W there exists a positive constant C such that (l/C)g < f < Cg
on V — Y. In this case we use the notation / ~ g. Since the (local) L2 condi-
tion is unchanged if we pass to equivalent metrics or norms, the Dolbeault lemma
above still holds if we replace "=" by "~" in formulas (5) (6) and (8) above.
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Example 2.2. In each case of Example 2.1 we obtain the following conclu-
sion.

1) Poincare Type: If we assume that \o>\2 is of the form

|d 2 = r2a> . . . r^Oog 1/r^1 . . . (log l/rk)^

where bt^= — 1 whenever 2at is an integer, then the function d above (cf. (7))
satisfies Al) with ct = 2a{ — 1 and qt = bt. Hence, the L2-Dolbeault complex
is a resolution of &X(F ® [Yi]Pl ® ••• ® [I*]1*) in this case.

The result is due to Zucker [31; Prop. 6.4, Prop. 11.5] when n = 1. A
generalization to the higher dimensional case is found in [28; Prop. D.4 b)].

2) Ball Quotient Type: If we assume that \a\2 is of the form

where b1 ^ n if 2a1 is an integer, then the function d above satisfies Al) with
c1 = 2al — 1 and q1 = bl — (n + 1). Hence, the L2-Dolbeault complex is a
resolution of 0X(F ® UiY1} in this case.

3) Hilbert Modular Type: We assume that \o\2 is of the form

where u > 2n. Then the function d above satisfies Al) with ci = 2at — 1,
and qt = t = u — 2n. Hence, the L2-Dolbeault complex is a resolution of
&x(F® [ l" i ]P l®---® iYkY

k) in this case also.

Note that in all the above cases the notations at are compatible with
those used in the proposition.

203o Proof of Proposition 2.1. A. First we identify L2-holomorphic sec-
tions of F on W. Consider any holomorphic section fi of F of the form
j8 = zj11 ... z™ k • a. Then we have

for some positive constant C. Suppose that jS is L2-integrable. Then by the
Fubini theorem, the integrand must be integrable with respect to rf when the
other rj9 j ^ i, are fixed generically. It follows that ht := 2m{ + c{ + 1 > 0, or
ht = 0 and qt < — 1.

Conversely, if either of these conditions are fulfilled, then in view of the
inequality L < Fli<;<fc 1°S l/rt tf°r sufficiently small r,) and the assumption
t > 0 we get that /? is L2-integrable. From this, one concludes easily that
the holomorphic sections of F on W which are L2-integrable and meromor-
phic along Y are naturally identified with the sections of the line bundle
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It remains thus to show that an L2 holomorphic section are necessarily
meromorphic along Y. By using the Fubini theorem as above, we may reduce
the proof to the case where n = k = 1. Consider any section ua of F, where
u is a holomorphic function on W. Let u = £„ anr

nein° be the Fourier series
expansion of u. Then for any n we have

2n\an\
2 r2nd(r)dr< \uo\2 dv < + 00 ,

Jo Jw

where r = rl and 9 = 9l. Hence, if 2n + c < — 1, we must have an = 0, i.e.,
u is meromorphic as desired.

B. We next show the exactness of the complex &'(F) at any positive
degree q. We proceed in steps.

a) Since the problem is local, by restricting W if necessary, we may
assume that every object under consideration is defined on the closure W of
W. As in the standard proof of the Dolbeault lemma (cf. [10; p.27]) it suffices
to show the following assertion (*)f for any i with 1 < i < n.

(*)i Let / be any d-closed element of Lq(W, F) = Lq(W, F) which involves
no dzj for j < L Then for any relatively compact subdomain V of W there
exists an element g of L^~1(F, F) such that the element / — dg involves no
dzj with j < i, where V = V n W.

So we fix any i and prove (*)f.
b) Denote by Cq(W, F) the space of F-valued C°°(0, <z)-forms on W9 and

A9(W, F) the subspace of Cq(W, F) consisting of forms which are obtained as
restrictions of those defined in a neighborhood of W and whose supports are
disjoint from Y. We have the direct sum decomposition

Cq(W, F) = 'Cq(W, F) 0 "Cq(W, F),

where the elements of 'Cq(W, F) (resp. "Cq(W, F)) involve (resp. do not involve)
dzt. We denote by Aq(W, F) = 'Aq(W, F) ® "Aq(W, F), the similar decomposi-
tion for Aq(W9 F). We fix any relative compact subdomain V of W as in
(*),.. Let rv\ Cq(W, F) -> Cq(V, F) be the natural restriction map. Define a part
bW = bW{ of the boundary of W by

bW= { (z 1 ? . . . ? z n )e Wri\zt\ =s}^Dx--'xDxSxDx'-xD,

where D = {z e C; z| < e}, S = [z e D; z| = e}, and S is on the i-th place. Let
Cq(bW, F) be the space of C°° g-forms on the C°° manifold with boundary bW
which are linear combinations of the forms dzj and ddt A dzr with coefficients
in C(bW) := C°(bW), where J and J' do not involve L Then we get the
surjective restriction map

r: Aq(W, F) ^> Cq(bW, F),
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and the corresponding direct sum decomposition Cq(bW9 F) = *Cq(bW, F) 0
"Cq(bW,F\ where for instance the forms in nCq(bW,F) do not involve d0t.
With respect to the induced Riemannian metric on bW we can speak of
L2-norms of the forms in Cq(bW, F) also.

c) In order to prove (*)£ we shall show that for any q > 0 there exist
linear operators

G = Gt: A
q(W, F) -> "Cq~l(W, F), (C~l(W, F) = 0)

and

P = Pt: C
q(bW, F) -> "Cq(W, F)

with the following three properties:
cl) G and the composite map rvP: Cq(bW, F) -> "Cq(V, F) are bounded

with respect to the L2-norms.
c2) Write d = ]T dj9 where fy is the 5-exterior derivative with respect to

Zj. Then among the resulting operators Aq(W9 F) -»Cq(W9 F) the following
relations hold true:

(a) / = Gdi 4- dtG 4- Pr and (b) 0 = Gdj 4- djG , j±i,

where 1 denotes the natural inclusion /: Aq(W, F) c_» Cq(W9 F).
c3) If an element <p of Aq(W, F) does not involve dzj for some j + i,

then the same is true also for Pr(q>).
Note that summing up the equations (a) and (b) we have

1 = G8 + BG 4- Pr . (10)

We then show how the existence of such operators would lead to the proof
of (*)f in the next two steps d) and e).

d) Assume more specifically that for any r\ e (0, e] such operators G = Gn

and P = Pn have already been constructed on Wn ̂  We. (The operators clearly
depend on the domain Wn.) Fix a 3-closed element / of Lq(W9 F) which
involves no dzj9 j < i, as in (*).. First of all, we note the following fact, which
follows readily from the argument in [2; pp. 92, 93] and the completeness of
our metric along Y.

(A) Aq(W9 F) is dense in Lq(W9 F) with respect to the norm \\q>\\ + \\dcp\\.

Hence, there exists a sequence {/„} of elements fn of Aq(W9 F), such that
fn and dfn converge respectively to / and Sf ( = 0) in the L2-norm as n tends
to oo. Moreover, we may assume that fn contain no dzj9 j < i (cf. loc. cit.). By
the property cl), G and rvP extend to bounded linear operators of the L2-
completions of the corresponding spaces (still denoted by the same letters). In
particular, Gf makes sense as an element of Lq~l(W9F). Note also that the
image of rvP again consists of forms which involve no dzt.
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e) By the Fubini's theorem, for almost all rj e (0, e], r(/) makes sense as
an element of Lq(bWn, F), the L2-completion of Cq(bW^ F), and moreover, we
can assume that r(fn) converge to r(/) in the L2-norm on bWn, after passing
to a subsequence if necessary (cf. [3; 3.43]). Then, by replacing s by one of
such Y\ e (0, e] which is sufficiently close to e so that V c W^ we may assume
that this is true already for r\ = e. Then applying the formula (10) to /„, and
taking the weak limit, we get

B(rvG(f)) = rvdG(f) = rv(f) - rvGd(f) - rvPr(f) = rv(f) - rvPr(f) ,

where d are taken in the sense of currents. This implies that d(rvG(f)) is
actually in Lq(V9 F). Moreover, rv(f) - d(rvG(f)) ( = rvPr(f)) does not involve
any dzj with j < i by the remark at the end of d) and the property c3). Thus
the element g := rvG(f) is a desired element having the required properties
in (*)f. It remains thus to construct operators G and P as in c) with the
properties cl), c2) and c3).

f) We shall reduce the problem of constructing G and P to that of
constructing certain other linear maps

E:A(W)^C(W) and Q: C(bW) -» C(W) ,

where A(W) = A°(W9 F), C(W) = C°(W, F) and C(bW) = C°(bW, F); thus A(W)
is for instance the space of complex-valued C°° functions on W whose supports
do not intersect with Y. These operators are required to have the two proper-
ties fl) and f2) below. For any fixed zj9 j / i, consider elements a of A(W)
and h of C(bW) as C°° functions on D = zl x ••• x z^ x D x zi+1 x ••• x zn

and on S = z1 x ••• x zf_! x S x z£+1 x ••• x zn, respectively. In general for
YI > 0 set Dn = {zt G C; \zt\ < rj} so that D = DE. Write r = rt and 6 = 9t. On
D and Dn we shall consider the volume form dh = d^t defined by

dv =

similarly on S we consider the volume form w defined by dA|S = (dr|S) A w.
Then:

fl) We have the following estimates of L2 norms || ||, || ||^, and || ||s
on D, D^, and S respectively;

C\\adzt\\ , aeA(W)

and

C,||/i||s, heC(bW),

where C and C^ are positive constants which are independent of zj9 j ^ i, and
YI is any number in the interval (0, e].
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f2) Among the resulting operators A(W) -> C(W\ the following relations
hold:

/ = £3£, I = Eid + Qr, jdE = E j d , j * i , (11)

where 1: A(W) -» C(W) is the natural inclusion and jd is the operator 5/3 z7-
so that Sj = jS-dZj A .

g) We shall first see how to introduce the operators G and P as in c)
in terms of the operators E and Q above (assuming that they have already
been constructed). Consider the given generating holomorphic section a of F
as giving a fixed trivialization of F on W. Accordingly, we regard F-valued
forms naturally as ordinary forms. For simplicity we write Aq = Aq(W, F),
"Aq = "Aq(W, F) etc. An element / of "A9 is written uniquely in the form

where the summation £' is taken over all the ordered ^-tuples J with i $ J.

Definition of G and P: We define G: Aq -> "C9"1 by specifying it in the
following two cases:

a) If / e V4«, write / = dzt A ft with ft = £' O; dzj e "A*"1 uniquely.
Then G(f) is by definition a (q — l)-form on W obtained by replacing each
coefficients a j E A ( W ) of ft by E(aj) e C(W)\

G(f) = ^fE(aj)dzj.

P) If / e "X«, by definition G/ = 0.
Similarly, we define the operator P:Cq(bW,F)->"Cq as follows.
a) If / E 'C«(fc W, F), then Pf = 0 by definition.
P) If /e "Cq(bW, F), then F/ is the ^-form obtained from / = ^' %^^j?

i ^ J, aj e C(bW), by replacing a, by

Verification of the properties cl)-c3). The property c3) is clear from the
above definition of P. So it suffices to check cl) and c2).

cl) For G: we may assume that fe'Aq. Then, in the above notations
we have

IIG/H 2 = ^'\\E(aj)dzj\\2 <C%' \\ajdZi A dzj\\2 = C\\f\\2 .
J J

For ryP: we may assume that / = £' % dzj e "Cq(bW, F) with aj£C(bW).
Then:

\\ryP(f)\ 2=I'\\ rvP(aj dzj)\\2 = %' || rvQ(aj) dzj\\2 < Cn ̂  || % dzj\\lwn ,

where ?| is any number in (0, e] such that V ^ Wr
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c2): We check the relations (a) and (b).
(a):
a) If fe'Aq

y by using the first relation of (11) we get

(Gdi + 3£G)/ = 3,G/ = Z'5E(fl,) dzt A dzj

= £'a, dz; A dzj = dz( A /, - 0 = / - Pf.

P) If /e'M*, by using the second relation of (11) we get

(G5, + 3,G)/ = GSt/1 = G£'Gda,) dz« A dz,

= Z'EGda,) ^ = £'a7 ^ - Z'Qa} dzj = f- Pf.

(b) Take any j with j 7^ J. Then:
a) If fe'Aq, by the third relation of (11) we get

dj dzj A dzt A dzj) ^

P) If /6 'M*,

(G^- + djG)f = G(djf) = 0 ,

since d/ is in "Aq+1.
Thus the proof is reduced to the construction of the operators E and Q

in f). For this purpose we distinguish the following two cases: Case 1: 1 < i <
fc, and Case 2: k 4- 1 < i < n. (Recall that Y is defined in W by the equation
zl-~zk = 0.)

h) We start with Case 1: 1 < i < k. Write r = rt and 0 = 0i so that

Definition of E and Q: Case of E: We expand elements a = a(r, 6) of
A(W) in the Fourier series with respect to 6 with parameters r and zj9 j ^ i'.

a(r,0) = Yjan(r)eine, 1 = ^1,
n

where an(r) is a C°° function on (0, e] with compact supports, depending on
the parameters zj9 j + i, and £„ implies that the summation is over all the
integers n. (Here and in what follows, we usually suppress zj9 j + L) Then
we define E(d) e A(W) in the form a Fourier series by

where En(an+l(r)) is defined by the formula §1 (2) before Lemma 1.2. By the
rapidly decreasing property of Fourier coefficients it is easy to see that E(a)
is in fact a smooth function on W.
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Case of Q. Similarly, given any element h of C(bW), expand it in the
Fourier series h = £n hne

ine, where hn are independent of r, but may depend
on other variables zj9 and then define Q(h) e C(W) by

where £j, denotes taking the summation over all n with n> — a{ (resp. n>
-flf) if ̂ > -1 (resp. g£< -1).

Properties of E and Q: We shall check the properties fl) and f2) required
for E and Q. We fix z,- for j ^ i.

fl) Case of E: We consider the functions d and n = fa, defined by (7)
and (9) respectively, as functions d = d(r) and \JL = \JL(T) of r = rf e (0, e] depend-
ing on the parameter s = (rl5 ..., fi9 ..., rfc) e (0, e]*"1. In particular, we may
write d(r) uniquely in the form

Here, 0S := f|jvi rjJ0°g Vrj)&J ^s a positive constant which may depend on s,
q{ = bt + t with qt ^= — 1 if c is an odd integer, and n(r) = e(r)\ where e(r) =
1 4- cs/log l/rt with cs = ^jV£ log 1/r,-. Then by Remark 1.1, under this conven-
tion d satisfies the condition I of 1.1. Similarly, by our assumption A2), p
satisfies the condition II of 1.1. Now letting En(r) = En(an+l(r)) we can write
\\E(a)\\2 = %n\\En(r)\\2, where

On the other hand, \\adz\\2 = £„ \\an(r) dz\\2, where

\\an(r)dz\\2=
o

Thus by Lemma 1.2 we can conclude that there exists a positive constant C
which is independent of the parameter s such that for any n we get ||£M(r)||2 <
C||0n+1(r) dz\\2. The desired L2 estimate for E follows immediately from this.

Case of Q. We have

and hence

f 8
Jo

(r/£)
2»+'[(log
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Here, the summation is over n with 2n + c > — 1 (resp. > — 1) if g > — 1 (resp.
<— 1). Moreover n(r)/ra(e) < 1 since £>0 (cf. Remark 1.1). Thus the inte-
grals in the last term are bounded by a positive constant which can be taken
independently of n. Hence, we have

where Cl5 and hence C := C1d(s)~l also, is a constant which is independent
of n and of the parameter s. Thus if we set Cn = C, fl) is verified for any rj.

f2) We have to verify the equalities in (11). In view of the relations (cf.
[31; p.437])

2an+1(r) = (E'n(r)-n/rEn(r))>

where ' denotes the differentiation with respect to r, the first and the third
equalities are obtained immediately by termwise differentiation and by differen-
tiation with respect to the parameter Zj respectively. We shall prove the
second equality. Start with an arbitrary element u = £„ un(r)eind of A(W).
Then we have tdu = £„ an(r)eind with

Hence, if we write E(tdu) = £n vn(r)ein0, then we have:

vn(r) = 2r" [' (l/2)[p-X(p)]' dp = «B(r)
Jo

in Case 1 of Lemma 1.2, and

vH(r) = -2rn J (l/2)[p-X(p)]' dp = un(r) - (r/s)nun(s)

in Case 2 of Lemma 1.2. Hence, we have

u = E(idu) 4- X'(r/e)"M«(fiX"0 = E(idu) + Qr(u)
n

as desired.
i) Next consider Case 2: k + 1 < i < n. We write z = zt and omit the

other variables z,-.

Definitions of E and Q: We set

E(a)(z) = l/2ni

and

Q(a)(z) = 1/271
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Properties of E and Q:
fl) Since k 4- 1 < i < n, d(rl9 . . . , rk) is independent of r = rf. In particu-

lar, when Zj, j / i, are all fixed, d(r) is a constant and dA is invariant under
translation by z.

Case of E. Let £ = y + ^/—lv. Then we have

ldii A dt?T

< |a(f + z)|2|r'l du A dv If1! dw A dv (Schwarz)
JD' JD'

D'

where D' is the translation of D by z and A := 3n > JD, 1C"11 du A dv. Hence,
we have

2ft2 \E(a)\2 dA < A | I I \a(L + z)!2!^"1! du A dv \ dA

[Jw
)' LjD

:(f + zjpldzl2^)-1 dA 11C'1! du A di; (Fubini)
D'

2 I i r- i i ,/„ A x?,, ^ r1 ^2 ii .,112< (L4||a||2 K"1! du /\dv< CA2\\a\\
JD

by our assumption A3), where C is a positive constant.
Case of Q.

II.4n2||Q(fc)||,2

- i
JS

for some positive constant Cn which is independent of s.
f2) The equalities (11) are well-known (cf. [10; I, Dl(6), D2, D(9)]).

§3o L2 Cohoinology Groups

30lo We first recall some standard L2 vanishing theorems. Let X be a
Kahler manifold of dimension n with a complete Kahler metric g. Let E be
a holomorphic vector bundle on X of rank r with a hermitian metric fc. By
using the metrics g and h, we may speak of the L2-integrable E-valued (0, q)-
forms on X (with measurable coefficients). Then we consider the space Lq =
Lq(X, E) of E-valued (0, #)-forms <p on X such that both <p and 3<p are L2-
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integrable. L forms a complex with respect to 3, and the associated cohomo-
logy groups Hq(X, E)(2) are called the L2 (Dolbeault) cohomology groups with
coefficients in E. For any q > 0 let Dq(X, E) be the space of E-valued C°°
(0, g)-forms with compact supports on X. Then with the help of the Kahler
metric g the curvature form F of h defines a hermitian endomorphism (denoted
by the same letter F) of the space Dq(X, E) with its natural inner product
defined by h and g. Thus (F<p, cp) gives a hermitian form on Dq(X, E). If
we write

l<a,b<r

with respect to local coordinates zl5 ..., zn of X and a local trivialization of
E, then for any (p e Dq(X, E), Fcp is written in the form

'•/ = 2-f ' / feiJa^ -/a '
l < a < r

where the summation is over all fc, i and a with 1 < b < r, 1 < i < n, and
1 < a < q\ furthermore, J = ( j l 9 . . . , jg) is any ^f-tuple with j1 <-•< jq and
^a = (Ji • • • h - • >iq\ L denoting the absense of ja. We say that (£, h) is Nakano
q-positive (cf. [27; 4.1]) if there exists a positive constant C such that for any
cp E Dq(X, E) we have

(Ftp, <p) > C(q>, 9) - (12)

Let Hj(X,K®E\2) (resp. HJ'(X, £*)(2)) be the L2-cohomology groups with
coefficients in K ® E (resp. the dual £* of E) defined naturally by using the
above metrics g and h, where K is the canonical bundle of X with the natural
hermitian metric induced by g. We use the standard L2-vanishing theorem
in the following form:

Lemma 3.1. // (£, h) is Nakano q-positive, then the L2-cohomology groups
Hq(X, K (x) £)(2) and Hn~q(X, £*)(2) yamsfc.

Proof. We have the well-known Bochner-Kodaira inequality (cf. [2],
Prop. 15 and the ensuing remark);

(Fq>, <p) < \\dcp\\2 + \\d*<P\\2 , 9 e D«(X K ® £),

where 3* is the formal adjoint of S. (Here, we note that the usual Ricci term
has cancelled out because of the presence of the canonical bundle.) Together
with (12) this implies that E®K is W°'*-elliptie (or equivalent^, E is Wn'q-
elliptic) in the sense of [2; p.89]. It also follows that £* is W°'n~q-elliptic
(cf. [2; Lemma 2]). Then the desired vanishing result follows by the argument
of Theorem 2 of [2; p.94]. In fact, if, for instance, cp is a 5-closed element
of Lq(X, K (x) £), then there exists an element x of Lq(X, K®E) for which
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d*x is also in L2, such ihatcp = Dx in the weak sense, where Q= 55* 4- d*d.
Since Odx = dtp = 0, dx is smooth by the regularity theorem, and d*dx =
0 by [2; Prop. 7], so that cp is a coboundary; (p = dd*x. The proof for
Hn~q(X, £*)(2) is the same.

We also record the following well-known fact (cf. e.g. [31; §7]).

Lemma 3.2* Suppose that the L2-cohomology groups Hq(X, E)(2) are finite
dimensional for all q. Then each Hq(X9 £)(2) is naturally isomorphic to the
space of E-valued harmonic (0, q)-forms on X.

3.2o Let X be a compact complex manifold, and Y a divisor with only
normal crossings in X. We set U = X — Y. Suppose that we are given a
complete Kahler metric g on 17 with the associated Kahler form a). By our
assumption, for any point x of Y there exists a coordinate neighborhood W0

of x in X9 isomorphic to the polycylinder W =W& = {(zl5 ..., zj; \zt < e} in
Cn = CH(zl9...,zn) for some 0 < e < l , _ s u c h that Wn Y = {z1 ... zk = 0} for
some 1 < k < n (cf. 2.1). (We identify W0 and W) We call any polycylinder
W ^ W0 as above simply a polycylinder along Y (of type k) in what follows.
We set W= WnU.

Definition. We say that co is of Poincare (resp. ball quotient, resp. Hilbert
modular) type along 7 if for each polycylinder W along Y as above the
restriction co\W is equivalent on W to the Kahler form a>P (resp. cos, resp.
c%) in Example 2.1 (cf. Remark 2.1). (In the ball quotient case we assume
that k = 1.)

More generally, we consider Kahler metrics g such that for each poly-
cylinder W along 7, the associated form CD is equivalent on W to a Kahler
form a>w of the form

where ^ = \dzt\
2 are positive functions on JP. Let £ be a holomorphic vector

bundle on X with a hermitian metric h on 17. First we compare the L2-
cohomology groups Hq(U, E\2) with the sheaf cohomology groups Hq(X, E) in
general. Let &'(E) be the corresponding Dolbeault complex of sheaves on
X (cf. 2.2). We assume that the Dolbeault lemma holds for E, namely that

(A) JST(E) is a resolution of &X(E) on X.

If fa are all bounded on U, then for any C°° function / on W, its
differential df has a bounded norm with respect to cow so that each yq(E)
is an ja/y -module, where j/y is the sheaf of germs of C°° functions on X. In
particular, it is a fine sheaf. Then as usual, we have natural isomorphisms
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H9(X, E) ^ Hq(U, £)(2) for any q. We shall see that the same result is still
true under some weaker assumptions. We fix q > 0 and assume the following
condition (B) = (E)q:

(B) There exist C00 positive functions u and v on U satisfying the follow-
ing conditions:

Bl) Any local holomorphic section s of E satisfies |s|2 < Cu locally along
r, _

B2) For any W as above with coordinates z£ we have \dzt\
2 < C'v for

any i locally along 7,
E3)q For any p < q, any E-valued C°° p-form cp on U is L2-integrable,

if 1 9 12 < C"uvp along Y
Here C, C and C" are some positive constants.
For example if co is of Poincare type, then fa are all bounded and the

sheaves <£q(E) are all fine. If co is of ball quotient (resp. Hilbert modular)
type, take v to be any function on U which is equivalent to log l/r1 (resp.
L(r)2) on each W as above. Then the condition 2) is fulfilled.

Proposition 3.3. Let the notations and assumptions be as above. In partic-
ular the conditions (A) and (B) above are satisfied. Then we have natural
isomorphisms Hq(X, E) ^ Hq(U, £)(2).

Proof. Take a sufficiently fine Stein open covering fy, = {l/a} of X. We
have then a natural isomorphism Hq(X, E) ^ Hq(C'(W, S)\ where (C"(#, *),£)
denotes in general a Cech complex, and $ = 0^(£). Denote by Cp'q =
Cq(% £ep) the double complex (Cp>q, d, d), where &p = ^P(E). Furthermore,
let '& p be the subsheaf of & p of germs of measurable £-valued forms s whose
norm square |s|2 is bounded by Cuvp locally along Y for some constant
C. We set 'Cp>q = Cq(% 'gp\ Then ('C17'', S) also forms a Cech complex.
Now let p = {pa} be a partition of unity subordinate to ^. Then by using
p we define as usual the homotopy operators

y = yP

by

?«,...,.-, = E Pa^...^ , a = (flfc...v.) '
a

where j:U<=^X is the inclusion, and by definition C"1 = F(X, j#&£) and
(5: C"1 -> C° is the natural inclusion. Then we have / = dy 4- y(5, where / is
the identity operator.

Claim. If a is a ^-closed element of 'Cp'«, then dy(a) is in '

Proof. Write a = (flao...aq) with 5aao...ag = 0. Then 3y(a) = £a(<3pa) A
a a 0 - - -a k - - .a -r Since pafe is smooth on the whole I7afc and Idz^l2 < C'i; by B2),
the claim follows from B3).
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Now we start with an arbitrary element (p of Hq(X, E) represented by a
cocycle <p = (<p«0...a ) e Cq(^l, &\ By Claim above we can define inductively
elements cpj e 'Cj'q~j, 0 < j < q, with dcpj = 0 by

cp° = icp , and cpj = dy(q>j~l) , j > 0 ,

where i: C«(*, ^)->C«(«,'JSf°) is the natural inclusion (cf. Bl)). Then ep« is
considered as a 5-closed element of Lq(U, E) and we associate to <p the class
of 9* in Jf€(f7, E)(2). The independence of the definition from the choice of
the representatives <p, the partition of unity, and the covering <% is checked
as usual by using the claim above.

We show the injectivity of the resulting map u: Hq(X, E) -» Hq(U, E)(2}. So
suppose that we can write q>q = dij/ for some element \j/ e Lq~l(U, E). Then
by using the assumption (A) we can find successively elements /?J e Cq~2~jtj,
0<j<q-2, such that

30° = 7(<Pq~l) - t , Wj = y(9q~J'1) - 8(PJ~l) , 1 < j < q - 2 ,

and that % := y(cp°) - c5(^^~2) belongs to C0^"1 with d% = 0 and d% = (p. By
our assumption (A), % is an element of Cq~^(%£\ Thus ^ vanishes. The
injectivity is proved.

The surjectivity is proved similarly by the successive application of the
Dolbeault lemma as follows. Given an arbitrary ^-closed element <pq in
Lq(U, E) we can find elements i//1 of C*"1"***, 0 < i < q - 1, such that 8i/s° = <pq,
and d\l/1 = d\l/l~l, 1 < i < q — 1, and that dij/q~l = i(p for some element <p of
Cq(^H, $) (by again using (A)). Then we see immediately that u(cp) = the class
of (pq.

We also note that the next lemma follows immediately from Lemma 3.1.

Lemma 3,4* Let F be a hermitian holomorphic vector bundle on X. Let
L be a holomorphic line bundle on X with a hermitian metric defined on U
such that its curvature form a) majorates on U some Kdhler form i\ defined on
the whole X, i.e., CD — r\ is positive definite on U. Then there exists a positive
integer n0 such that Hq(U, K <g) F ® Lw)(2) = 0 for all n>n0 and q>Q.

§4 Certain Rigidity Theorem

4.1. Let D be a bounded symmetric domain in Cn and F an arithmetically
defined discrete subgroup of the identity component of the group of biholomor-
phic isometries of D acting properly discontinuously on D. We assume that
F is torsion-free so that U := D/F is a complex manifold. Let U ci* X be
one of the smooth toroidal compactifications of 17 [1]; in particular Y := X —
U is a divisor with only normal crossings. The Bergman metric on D descends
to a complete Kahler metric g on U. Denote by @< — 7> the sheaf of germs
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of holomorphic vector fields on X which are tangent to Y at each point of
y. 0<-y> is a locally free sheaf which is dual to the sheaf Ql(log Y) of
germs of meromorphic 1 -forms on X with logarithmic pole along Y. In this
section we are concerned with the vanishing theorem of the cohomology groups
Hq(X, <9<-y» in analogy with the results of Calabi-Vesentini [4] in the
compact quotient case; indeed, as an application of our L2 Dolbeault lemma
we shall obtain the desired vanishing theorem when D is either the unit ball
or the unit polydisc. Namely:

Theorem 4.1. Let U = D/F and X be as above. Suppose that D is
either the unit ball or the unit polydisc in C". Suppose further that F is
irreducible (cf. below) when D is the polydisc. Then for any q<n we have

For q = 0, this implies that the group Aut(AT, y) of biholomorphic auto-
morphisms of X which leave Y invariant is discrete. On the other hand,
since Hl(X,0( — y» is the tangent space of the deformation of the pair
(X9 y), we get the following:

Corollary 4.2B The pair (X, Y) is rigid under small and infinitesimal
deformations.

Remark 4.1. The fact that (X, Y) is "geometrically rigid", and hence is
rigid under small deformations is already known ([12], cf. also [18] [9; IV, §7]).
See also [25] for a related result.

4.2. Suppose that D is either the unit ball B in C", or the product Hn

of n copies of upper half plane H = {w eC; t; := Im w>0}. When D = Hn,
suppose further that F is irreducible in the sense that the projection of F
onto any partial direct factor (Aut H)k, I <k < n, has a dense image. Let
17 ci* X * be the Satake compactification of U. Then, X* has only a finite
number of isolated singular points, say pl9 ..., pm, and X is obtained as a
resolution of X*. Let Yv be the connected component of Y corresponding to
pv. When D = B, each Yv is nonsingular and in fact abelian varieties. The
following lemma is more or less well-known; see e.g. [12; § 1, b), c)] [32] [17].

Lemma 4.3. The Kdhler metric g on U above is of ball quotient type
(resp. Hilbert modular type) along Y in the sense of Definition in 3.2 if D = B
(resp. Hn).

Proof, a) We start with the case D = Hn. Write Hn = {(wl5 . . . , wn) e C";
vt := Im wt > 0}. The Bergman Kahler form co on Hn is given up to constants
by

n _ n _

E Vf? d™i A d™i = v - ! E 33 log vi •
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Let (o be the Kahler form associated to g. We have to show that for any
polycylinder W along Y as in 3.2 the restriction co\W is equivalent to the
Kahler form a>H on W (cf. Example 2.1,3)). We may consider the problem
along a component Yv corresponding to the typical cusp "(100)"" since the
other cases can be treated similarly (cf. [1; p.42]). We shall follow the
exposition in [1; I, §5, III, §1] for the description of X along E= Yv. Let
F! (resp. F2) be the subgroup of F consisting of the elements of the form

1 6\ / fa b
0 i) \resp' \Q a-1

Then for any d > 0 the open subset

is left invariant by F2 and the natural map Wd/F2 -» U = Hn/F is an open
embedding if d is large enough; then the interior Vd of the closure of the
image of this map in X forms an open neighborhood of E, the structure
of which we shall now describe. FL is a free abelian group of rank n and
it acts on Wd £ Hn £ C" by (real) translations. Setting N = R", consider C"
as C" = N + IN, and Hn as a tube domain Hn = N + iC, where C =
{(vl9..., vn) E N; vt > 0}. Now we have

wd := wd/r, s cy/; s c*w,
and hence, WJ admits a smooth toroidal embedding W£ ^ C*n ̂  Jif ̂  depend-
ing on a certain F2-invariant polyhedral decomposition {a^} of (AT, C). On
the other hand, Fx is a normal subgroup of F2, and if we denote by Vd the
interior of the closure of Wd in X^9 the induced action of F2/r1 extends to
a properly discontinuous and fixed point free action on Vd\ moreover, Vd is
exactly the quotient ^'/(A/^i) which fits in the diagram;

Ki7(/y^i) ̂  »i/A ^ Hn/F.

Therefore, we have only to consider the growth of the induced Kahler form
co' on Vd along E' := Vd — Wd. X^ is covered by coordinate patches Ux ^
C"(zJ,..., z"), one for each <ra, in which E' is defined by the equation zf ... z£ =
0. We shall describe the growth of co' on Ua in terms of the functions
r f : = \ z f \ . Note that the functions vt are F!-invariant, and hence can be
thought of as functions on each Ua. Then the key observation is contained
in the following:

Claim. There exist positive real numbers cij9 1 < i, j < n, such that on
l/a the following relations hold:
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Proof. For simplicity we write zt = zf and rt = rf. Recall that the coor-
dinates Zj of l/a is described as follows. There exists a basis {eji<i<n of N
with et e F! n C ^ N spanning the polyhedral cone aa, where JV is identified
with the group of translations of itself. Let {ef } i<i<n be the dual basis. Then
we get an isomorphism Cn//i = C*n £ C"(zl5 . .., zj by

Zj = exp(27nef (w)) , w = (w l5 . . . , wj e C" .

Then taking lm(l/2ni) log, we obtain ef(v) = — log l/rf, 1 < i < n, where w =
271

w + it? with v E N c C" and Im denotes the imaginary part. It follows that

1 "

where ea, . .., e^ are components of ef with respect to the standard basis of
R". Since et e C, c{j := l/2n e^ are all positive.

Now, using the fact that vt are pluriharmonic, we compute

dd log vt = —v^2^t A At-

where /Lt- = J]"=1 c0- dzj/z^-. On the other hand, by Claim we conclude that vt

is equivalent to L(r1? ..., rj on any relatively compact open subset, say F, of
Utt. Moreover, since (c^) is a constant nonsingular matrix, £"=1 ^i A \ is
equivalent on F to £ "=1 (dZj/Zj) A (dZj/Zj). Hence, cor is equivalent on F to
the Kahler form

The lemma follows from this immediately in the polydisc case.
b) In the ball quotient case one proceeds in the same way. Associated

to each singular point of X* we get an unbounded realization of D in
C"(w, M ! , . . . , !*„_!>;

In this case the group corresponding to 7~i above is cyclic and one of its
generators acts on C" by translation by a positive real number, say a, on the
first component. Then we get a canonical toroidal embedding

n/r a cn/r ~ c* * cn~l c C(T\ * cn~l(ii u \Lf IJL | Z = ^ / - I ^ = ^ A \^ :=: ^\£) A \^ V^l' • • • J ^*n —I/ 5

where z = exp(27dw/a). The Bergman Kahler form on D is given up to con-
stants by CD = ^f^ldd log(lm w - ]£,. |wj2), which descends to a Kahler form
o>' on D//i

. r r /
|2co' = y-ia5log<-log rfl/27Cexp £ IM
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By the same reasoning as in the polydisc case it suffices to check that the
growth of a/ along (z = 0} is of ball quotient type in the sense of Example
2.2. Since the Hessian of log exp(J^ |t^|2) = ]£,• ut\

2 is positive definite on
{z = 0}, this in fact follows from Lemma 2.3 of [26].

4.3. We denote by T< — Y> the vector bundle corresponding to the lo-
cally free sheaf @< — 7>. Though the proof of the theorem is essentially the
same in both cases, we first treat the ball quotient case because in the polydisc
case a slightly more general result will be given.

Proof of Theorem 4.1 for the case D = B. Let E = T<-7>. Let the
hermitian metric h on E\U be induced by g, identifying E\U with the tangent
bundle of U. Then the dual E*\U with the induced hermitian metric has the
Nakano ^-positive curvature form for any q > 0 (cf. [27, Lemma 4.3 and
6.6A]). Hence by Lemma 3.1 the L2-cohomology group Hq(U, £)(2) vanishes
for any q < n. Let W be any polycilinder along Y with local coordinates zl9

..., zn. Then we have the local decomposition

^ &zld/dzl @ &8/dz2 © • • • © (9d/dzn , 0 = (9X

and the estimates

M/dZil2 - (log 1/r)-2 , \d/dzj\2 - (log 1/r)-1 , j > I ,

where r = rl. We can apply the L2 Dolbeault lemma for the line bundles
with generating sections a = z13/3z1 or d/dzj (cf. Example 2.2, 2)). It follows
that the L2 Dolbeault complex &'(E) is a resolution of 0X(E) = 0<-7>, i.e.,
the condition (A) in 3.2 is satisfied. We take any C°° function u which is
equivalent to (log 1/r)"1 on any W as above. Set v = u~1. Then the condi-
tions Bl) and B2) in 3.2 are clearly satisfied. Moreover, any C°° function i//
with \l/2 < (log 1/r)""1 ~ uvn is L2-integrable with respect to the volume form
(6) of 2.1 with v = rf2(log l/r1)~(n+1). So the condition E3)q also is satis-
fied for any q < n. Hence by Proposition 3.3 we have Hq(X, E) ^ Hq(U9 E\2Y

Thus the theorem follows in this case.

44 Next, we consider the case where D = Hn. Let Lk be the pull back
of the holomorphic tangent (line) bundle of the fc-th factor Hk of Hn by the
natural projection Hn -» Hk. Lk has the natural hermitian metric hk induced
by the Poincare metric of H. The hermitian bundle (L/c, hk) admits a natural
action of F and it descends to a holomorphic hermitian line bundle Lk on
U = Hn/F. For any increasing sequence 1 < i1 < • • - < ip < n and an asso-
ciated sequence of integers s f l, . . . , st , denote by E = E(sti, . . . , st ) the holomor-
phic hermitian vector bundle LJ11 © ••• ©Lj lp. Using the hermitian metric on
E and g we can define the 5-Laplacian |j=33* + 3*3 as usual, acting on
the space of £-valued C°° forms. We say that an L2-integrable C°° form cp
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Is harmonic if ncp = 0. Then we have the following theorem of Matsushima-
Shimura-Lai-Mok (cf. [20]), which we state in the dual form:

1A Let E = E(stl,..., st ) be as above. Suppose that si(i > 0 for
any a and sifi > 0 for at least one /?. Then there exists no nontrivial L2-
integrable K (x) E*-valued harmonic (0, q)~form on U for any q > 0.

Proof. Since F is irreducible, there exists no nontrivial L2-integrable har-
monic E-valued (0, fc)-form on U for any 0 < k < n by [20; Th. 1]. On the
other hand, the Hodge ^-operator and the hermitian metric defines an anti-
isomorphism of the space of such forms and the space of L2-integrable £*-
valued harmonic (n, n — fc)-forms, or equivalently (cf. [2; p. 333 (24)]), of L2-
integrable K ® E*-valued harmonic (0, n — fc)-forms. The lemma follows.

The line bundles Lk above are special cases of vector bundles considered
by Mumford in [24]; in particular it extends naturally to a holomorphic line
bundle Lk on X (cf. [24; Th. 3.1]). We set £(s£ l , . . . , sip) = IN 0 ••• 0LJ;P,
which is also the natural extension of E(sii,...,si ) in the sense of [24]. In
particular, T<-7> ^ E(l, . . . , 1) (n-tuples of 1) (cf. [24; Prop. 3.4]). Thus,
Theorem 4.1 in the poly disc case is a special case of the following:

Theorem 4.5. Let X be a smooth toroidal compactification of the quotient
U = Hn/T as above. Then Hq(X, E(sil9..., sip)) = 0 for any q<n if sia > 0
for any a, and > 0 for at least one a.

First we note the following:

Lemma 4=6* On any poly cylinder W along Y (cf. 3.2), Lt admits a generat-
ing section o whose squared norm \a\2 is equivalent to L(r)~2 on W.

Proof. We use the notations in the proof of Lemma 4.3. Lt\Wd descends
to a holomorphic line bundle on W^ and then extends to one on V'd9 which
we denote by LJ. By the construction of X it suffices to show the correspond-
ing statement for LJ. Since the typical generating section d/dwt of L{ is 7"i-
invariant, It descends to a generating section a' of LJ on W£. Its norm square
cr'|2 is then given by l/vf on each Ua9 which is equivalent to L(r)~2 there. On

the other hand, a' extends to a generating section of LJ by the definition of
LI in [24] (cf. 1.3 and 3.1 there). The lemma follows.

Proof of Theorem 4.5. By Serre duality it suffices to show that
HP(X, Kx ® E*) = 0 for p > 1, where E = E(sil9..., sip). By the above lemma,
locally on any polycylinder W along 7, Kx (x) Ljla admits a generating section

T with |r|2 ~ f]i<t<k r?'L( r)2"+2Sla- since at= 1 and ^fi = 2s £ >0 in the no-
tation of 2.1 and E is a direct sum of such line bundles, by Example 2.2,
3) we conclude that L2-Dolbeault complex for Kx (x) E* is a resolution of
(9X(KX (x) E*)9 i.e., the condition (A) in 3.2 is satisfied. We take u (resp. v) to
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be any positive C°° function which is equivalent to ]~|i<i<fc r?-L(r)2n+2s (resp.
L(r)2) on any polycylinder W along Y9 where s is the maximum of s^. Then
the conditions Bl) and B2) in 3.2 are clearly satisfied. Moreover, a C°° func-
tion \l/ with ij/2 < C'W~ C"ni<i<fc r?< LW4 n + 2 s is clearly L2-integrable so
that the condition E3)q also Is satisfied for any q. Thus, by Proposition 3.3
we have natural Isomorphisms

H*(X, Kx ® £*) * H«(17, K ® £*)((2) .

In particular, Hq(U, K (x) £*)(2) are all finite dimensional. Then, in view of
our assumption on sia, these vanish for all q < n by Lemmas 3.2 and 4.4. The
theorem follows.

Remark 4.2. By the similar reasoning as above, using Propositions 2.1
and 3.3 we can also show the following: Let X be the compactification of
17 = D/F as in Theorem 4.1. If D = B (resp. HM), then there exist natural
isomorphisms

H«(U, Qp
v)(2) ^ H«(X, Q*(log Y))

for p + q < n — 2 (resp. n — 1), where O°(log Y) = (9X. (Here, one needs the
full strength of the condition B3) .)

§5o

§0L Let X be a Kahler manifold of dimension n with a Kahler metric
g. The associated Kahler form co Is written as co = ^/—l X g^ dzt A dzj for
any local coordinates zl3 ..., zn on X. The Ricci form p of co is then a real
il-closed (1, l)-form on X which Is written in the form

with respect to the same coordinates. The metric g, or the associated Kahler
form co, Is said to be Kdhler-Einstein if

p = kco for some real constant k = k(g) .

Here, by replacing g by (l/\k\)g If k / 0, we can always normalize the constant
k so that k = 1, 0 or — 1. In what follows we are concerned only with the
case k = — 1. If AT is compact, It is well-known that there exists a Kahler-
Einstein metric g on X with k(g) = - 1 if and only if the canonical bundle
Kx of X is ample (cf. [30]).

We are interested in the open case as in the following situation. Let X
be a compact connected complex manifold and U a Zariski open subset of
X. After suitably blowing up the boundary Y = X — U we may assume that
Y is a divisor with only normal crossings on X by Hironaka. We ask (neces-
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sary) conditions on (X, Y) for U to admit a complete Kahler-Einstein metric
g with k(g) = — 1. We note that such a metric is always unique if one exists
([5; Prop. 5.5]). In the one dimensional case the answer is well-known.

Example 5.1. If n = dim X = 1, Y consists of a finite number of points
pl5 ..., pd. Then the following conditions are equivalent: 1) U := X — Y ad-
mits a Kahler-Einstein metric. 2) The universal covering of 17 is isomorphic
to the upper half plane H. 3) 2g - 2 + d > 0. 4) Kx ® [7] is ample on X,
where [7] is the line bundle defined by the divisor Y. In this case the desired
metric is (up to constants) induced by the Poincare metric on H.

The implication 4) to 1) above was generalized to the higher dimensional
case by R. Kobayashi [16]:

Theorem Kt [16]. Suppose that X is projective and the line bundle Kx®
[7] is ample on X. Then there exists a complete Kahler-Einstein metric g on
U with k(g)= -1.

If dim X > 1, however, the condition is not necessary. First of all, if we
blow up X with center a suitable submanifold of 7, then U is unchanged,
but KX® [7] is in general not ample for the resulting pair (X, Y). In this
respect the condition of the theorem should read: After passing to a suitable
bimeromorphic model (inducing the identity of [/), L is ample on X. Namely,
one assumes the existence of a good "log canonical model" for (X, 7). More
essential examples are provided by the arithmetic quotients of bounded sym-
metric domains of dimension >1.

Example 5.2. Let D be a bounded symmetric domain in Cn. Let F,
U := D/F, and U<=^X be as in 4.1. The complete Kahler metric g on U
induced by the Bergman metric on D is Kahler-Einstein with k(g) = — 1. How-
ever, L := Kx (x) [7] is never ample if n > 1. Indeed, if U ^ X* is the Baily-
Borel compactification of U and /: X -»X* is the natural morphism, we may
write L = f*F for some ample line bundle F on X* (cf. [24; Prop. 3.4(b)]). It
is also easy to see that L is never ample on any bimeromorphic model (Xf, Y')
with U = X' - Y'.

5.2a Thus, in order to get a converse to the above theorem we need to
impose certain extra conditions on the metric, which are satisfied by the metric
in the above theorem. We contend that such a condition can be given by
a suitable growth condition of the metric along 7. Namely, observing that
the Kahler-Einstein metric in Theorem K1 is of Poincare type along 7 (cf.
the proof of [16; Th. 1]), we formulate a converse to Theorem K^ in the
following form.
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Theorem S.L Let X be a compact complex manifold and U a Zariski
open subset of X such that Y := X — U is a divisor with only normal cross-
ings. Suppose that there exists a complete Kahler-Einstein metric g on U of
Poincare type along Y with k(g) = —I. Then the line bundle L = KX®[Y~]
is ample on U; in particular, U is quasi-projective and X is Moishezon. If,
further, X is either Kdhler or algebraic (cf. below), then L is ample on the
whole X.

By "L is ample on 17" we mean that If for all sufficiently large integer
m, any basis of H°(X9 Lm) defines a birational map of X into a complex
projective space which gives a biholomorphic embedding of 17. On the other
hand, we call X algebraic If X Is a compact complex manifold underlying a
smooth complete algebraic variety (defined over C).

The main point of the proof Is contained in the following:

Lemma §020 Under the assumption of the theorem for any holomorphic vec-
tor bundle E on X there exists a positive integer m0 such that Hq(X, E ® Lm) = 0
for any q> I and m > m0.

Proof. For any Integer m > 1 we set

w-m /rx r vim-1
m — J^XW I1 J

Then, since E® Lm = (£(x) [7])® Lm, we have only to show the vanishing
of Hq(X, E ® Lm\ q>l, for any holomorphic vector bundle E and for any
sufficiently large m. We prove this by Identifying these cohomology groups
with the L2 cohomology groups Hq(U, Em)(2} with coefficients in Em := E (x) Lm.
More precisely, take any C°° hermitian metric hE on E over X and consider
the hermitian metric on E over U obtained by the restriction. On the other
hand, on the line bundle Lm\U = K™\U = K™ we put the metric km Induced
by the given Kahler-EInstein metric g on U. By using the metrics g and the
Induced metric hm on Em over 17, we consider the L2 cohomology groups
H*(U, EJ(2).

First we claim that the L2-Dolbeault complex J^°(£m) Is a resolution of
&x(Em). On a polycylinder W along 7 we take a holomorphic trivialization
E\W ^ W x Cr; &°(Em) Is unchanged on W If we replace hE by the flat metric
h0 induced by the standard inner product of Cr and this trivialization. Then,
Em\W is Isomorphic to a direct sum of copies of Lm as a hermitian vector
bundle. Thus the problem is reduced to the case Em = Lm. There exists then
a generating section am of Lm with

kJ2 = v~m(ri ... r,r2^2 = (r, ... rk)
2(log l/r, ... log 1/r,)2- .

Then, In Example 2.1, 1) we have at = 1 and qi = 2m> —1; hence £?°(Lm) Is
a resolution of Ox(Lm). Thus our claim is proved.
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On the other hand, since the metric is of Poincare type along 7, as we
have noted in 3.2 &'(Em) is a fine sheaf. Hence we get a natural isomorphism
Hq(X, Em) ^ Hq(U, Em\2} for any q > 0. Since g is Kahler-Einstein, the curva-
ture form of the metric on Lm\U = K™ is nothing but the multiple mco of the
original Kahler form co. Since co is of Poincare type, it majorates some Kahler
form on X. Thus we can apply Lemma 3.4 to get the lemma.

Proof of Theorem 5.1. First, assuming that X is Moishezon we show
the last assertion. In this case if X is Kahler, then X is necessarily projective
by Moishezon [23]. Hence, we may assume that X is algebraic. Then every
coherent analytic sheaf on X admits a resolution of finite length by coherent
locally free sheaves (cf. [11; p. 92, Lemma 3.2]). It follows that the conclusion
of Lemma 5.2 holds true also for any coherent analytic sheaf $ on X, which
implies that L is ample on X (cf. [11]; see also the argument below).

It remains to show that in the general case L is ample on 17. (In that
case X would clearly be Moishezon.) We follow the standard argument due
to [19]. Let x be any point of 17 and mx the ideal sheaf of x in X. We
show that there exists an integer m0 such that

H1^, ™xL
m) = 0 for any m > m0 . (13)

Let f\X-*X be the blowing up of X at x, and set A = /~1(x). Then the
assertion is equivalent to:

) = Q9 m > m 0 , (14)

where L is the pull-back of L to X endowed with the induced hermitian
metric ft. As usual, we can find a hermitian metric hA on [X]"1 whose first
chern form ^ has support in a neighborhood of A in 17:=/""1(17) and is
positive (definite) in a smaller neighborhood, where chern form = (^/ —1/2) x
(curvature form). Then there exists a positive integer mx such that mf*co — v\
is positive on U for any m>m1. Then the form c5m := mf*co — r\ is the first
chern form of the hermitian line bundle L"1®^]"1 and defines a complete
Kahler metric on U whose growth at the boundary Y:=f~1(Y)^ Y is of
Poincare type, being the same as that of CD along Y. Then by the same
reasoning as in the proof of Lemma 5.2 we can get the vanishing (14) from
Lemma 3.1 and Proposition 3.3.

Then by the standard Noetherian argument, if m0 is chosen larger
we can assume that (13) is true for all x e 17. This then implies that
the sections of H°(X, Lm) have no common zeroes. Similarly, we show that
Hl(X9mx'&ix,L

m) = 0 for any two points x, x' of 17 if m is sufficiently large,
which implies as usual that L is ample in the sense of the theorem.

The Kahler-Einstein form determines on U the first chern form of L with
its natural metric. Then Theorem 5.1 is considered as giving a criterion of
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ampleness of a line bundle on X in terms of the positivity of certain chern
forms for it on 17 with suitable growth condition. We hope to treat such
situation more generally in [8] by a different method.

53* We shall slightly generalize the above theorem in the direction of
Example 5.2. First we note that in Example 5.2 L = KX®[Y\ is actually
very close to being ample. For instance they have the following properties;

(a) L is semiample, i.e., H°(X, Lm) is base point free for all sufficiently
large m; in fact for a sufficiently large m the rational map <Pm: X -> P^ into
some protective space defined by the sections of Lm is a birational morphism
which is isomorphic outside Y.

(b) L is nef and big; namely, for any curve C in X, L • C > 0 and Ln > 0
(c) L • C > 0 for any irreducible curve C which is not contained in Y.
(d) Y can be blown down to a subspace of smaller dimension. In partic-

ular, when D is the unit ball or the polydisc, Y can be blown down to a
finite number of points.

In view of (d) we start with the following situation (cf. also Remark 6.1,
2)). Let X* be a compact connected normal complex space with only isolated
singular points pl9 ..., pm. Let f:X-+X* be a resolution of X* such that
7V := /~1(pv) are divisor with only normal crossings in X and that / is obtained
by a blowing up of some ideal sheaf on X* with support in {pv}. Let 70

be a divisor with only normal crossings on X which does not intersect any
of Yv. We set Y = Y0 u Yl u - - - u Ym and U = X - Y. We call a Kahler-
Einstein metric g on U admissible if g is of Poincare type along Y0, and is
either of ball quotient type or of Hilbert modular type along Yv, v > 1, (where
Yv is assumed nonsingular in the ball quotient case).

Theorem 5.3. The notations being as above, suppose that there exists an
admissible Kdhler-Einstein metric g with k(g) = — 1 on U. Then U is quasi-
projective and X is Moishezon. If, further, X is either Kdhler or algebraic,
the conditions (b) and (c) above hold true. Moreover, if every Yv is nonsingular,
then even (a) holds true; in fact in this case for a sufficiently large m the
rational map <$>m is a birational morphism which is isomorphic outside the union
of Yv.

Remark 5.1. In the situation stated before the theorem suppose that Y0

is empty and Yv are all nonsingular with numerically trivial canonical bun-
dles. Then Tsuji [29] has shown that if the conditions (a) and (c) above hold
true, then there exists a complete Kahler-Einstein metric g on U assumed
with k(g) = — 1 which are of ball quotient type along Y. The above theorem
is a kind of converse to his result.

Lemma 5.4. Under the assumption of the theorem we have Hq(X, Kn
x ®

[IT"1) = 0 for any q > 0 and n>2.
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Proof. The cohomology groups under consideration are isomorphic to
the L2 cohomology groups Hq(U9 K^\2) by Propositions 2.1 and 3.3. On the
other hand, the curvature form of the canonical metric on Kn

v induced by
the given Kahler-Einstein metric has clearly a (Nakano) positive curvature.
Hence the lemma follows from Lemma 3.1.

Proof of Theorem 5.3. Let Y' = (J Yv. By our assumption there exists
an effective divisor D such that its support coincides with Y' and — D is
ample in a neighborhood of Y'. Hence, we can find a hermitian metric hD

on the line bundles [D]"1 whose curvature form £ has its support contained
in a small neighborhood of D and is positive definite in a smaller neighbor-
hood. Then there exists an integer m0 > 0 such that mco + ^ is positive on 17
and majorates some Kahler form defined on X for any m > m0. We set L'm =
Lm®[D]-1 and put the hermitian metric QK®^D on L'm\U ^ K™ ® [D]"1!^
where gK is the hermitian metric of Kv induced by the given complete Kahler-
Einstein metric, whose curvature form is exactly mco + £. By Lemma 3.4 it
follows that for any holomorphic vector bundle E on X with a hermitian
metric defined on the whole X we have the vanishing of the L2 cohomology
group Hq(U, E (x) (L'm)k\2) if 4 > 0, m>m0 and fe is sufficiently large.

On the other hand, by using Propositions 2.1 and 3.3 as in the proof of
Theorem 5.1, we get natural isomorphisms

H*(U, E (x)(Z4)*)(2) ^ H'(X, E®Lmk® [D]-fc) ^ H*(X, E® [F]'1 ® (L'm)k)

for all q, where Ld = Kd
x® [F^'1 in general. (We may take v to be constant

in Proposition 3.3 also in this case.) Again as in the proof of Theorem 5.1,
from these we conclude that L'm is ample for m>m0 on U and that X is
Moishezon.

Suppose next that X is either Kahler or algebraic. Then as before, L'm
is ample even on the whole X, and hence the Q-divisor

(l/m)L'm = KX + [7] - l/w[D]

is in the ample cone of the rational Neron severi group of X. Taking the
limit as m-»oo, we see that L = KX®[Y] is nef. Moreover, if B is any
curve which is not contained in 7, we have L-B > (i/m)D-B > 0 since D has
support in Y. On the other hand, since L is nef and dim H°(X, Lmk) >
dim H°(X, (L'm)k) > ckn for some positive constant c and for sufficiently large
fc, Lm, and hence L, is big by a lemma of Sommese (cf. [13; Lemma 3]).

Finally, suppose that 7V are all nonsingular. Since L is nef, L Yv are
also nef on Yv. By Kawamata [15] KY (^L|7V) are all semiample. On the
other hand, L|Y0 is ample since Lm\Y0 = L'm\Y0. Thus L\Y is semiample. In
view of Lemma 5.4, the long exact sequence associated to the short exact
sequence
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gives rise to a surjection H°(X, Lm)^H°(Y9 Lm
F). It follows that H°(X,Lm)

has no base point on Y, while it has one neither on U since H°(X, Lm) 2
H°(X9 L'm\ L'm is ample and Lm ^ L'm on X — Y'. Hence, L is semiample. The
last assertion also is clear from the above descriptions.

In concluding this section we note that the metrics in Example 5.2 have
also the following property:

(e) The Kahler form co of g extends to a rf-closed (1, l)-current co on X,
and moreover, its de Rham class y in H2(X, R) represents the first chern class
Ci(L) of L.

In general, if a Kahler form co is (at most) of Poincare growth, then it
extends to a d-closed (1, l)-current a) on X (cf. [24; Prop. 1.2]). However,
for the associated class y to coincide with cx(L) in the Kahler-Einstein case,
one needs some extra condition. For instance, this is the case if we assume
that the induced metric on the canonical bundle Kv is good with respect to
the extension L of Kv to X in the sense of Mumford [24; § 1]; moreover,
this latter condition is satisfied by the metrics in Example 5.2 [24; Th. 1.4
and Prop. 3.4].

6.L In this section we prove another version of the theorems in Section
5 in the case where dim X = 2, in relation with the property (e) discussed at
the end of the previous section. (The method of proof, however, is quite
independent of the previous arguments; in particular, we make no use of L2

Dolbeault lemma here.) The result is a kind of converse to that of R. Kobayashi
in [17] (cf. also [18]), which we first recall in a form convenient for our
purpose. Let X be a projective nonsingular surface and Y a divisor with
only normal crossings on X. We set L = Kx ® [Y] as before.

Theorem K2 [17]. Let the notations be as above. Assume that the condi-
tions (b) and (c) in 5.3 hold true and that the irreducible components Yt of Y
are smooth except possibly for those Yt with L - Yt = 0. Then there exists a
complete Kahler-Einstein metric g with k(g) = —1 on U = X — Y.

Remark 6.1. 1) We call a nonsingular rational curve on X with self-
intersection number — k simply a ( — lc)-curve. Note that the assumption (c)
implies that there is no (— l)-curve intersecting transersally with Y at exactly
one point, and there is no (—1) or ( —2)-curve which does not intersect with Y.

2) Under the above assumptions the situation is essentially the same as
that considered in Theorem 5.3 up to chains of nonsingular rational curves
which can be contracted to quotient singularities (cf. [17; §2]). Moreover,
the metric obtained in the above theorem has the property (e) above. Indeed,
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the metric Is good in the sense of [24] (cf. [17; p. 67]) and Theorem 1.4 of
[24] applies.

Then the purpose of this section Is to prove the converse to the above
theorem in the following form:

Theorem 6.1. Let X be a compact connected complex manifold of dimension
2 and Y a divisor with only normal crossings on X. Suppose that there exists
a complete Kdhler metric g on U := X — Y with k(g) = — 1 and with the property
(e). Then the conditions (b) and (c) in 53 are satisfied, i.e., L is nef and big
and L • C > 0 for any irreducible curve C which is not contained in Y.

6.20 We work in the situation of Theorem 6.1 in what follows. Let CD
and y be as in (e) above, defined with respect to the given Kahler-Einstein
metric g on U. By the definition, for any C°° 2-form I; on X <&(£) = J^co A £.
Thus, CD is a positive current (cf. [21]) and Is the simple extension of CD in
the sense of Lelong [21; Chap. 1, §2]. We also note that CD is the "minimal"
extension of CD as a positive current. Namely:

Lemma 6,2, Let CD be any extension of CD to a positive (1, i)-current on
X. Then cb — CD is a positive current.

Proof. Let r\ = CD — CD. The problem is local. Take any point x of X
and take arbitrary local coordinates zt, z2 of X with center x defined in a
neighborhood V of x. Then it suffices to show that r](^/—lf dz1 A dzj is
nonnegative for any nonnegative C°° function / with compact support in
V. Take a sequence of C°° functions an on F with 0 < an < 1, each of which
Is equal to the constant 1 in some neighborhood of V n Y and converge to
the characteristic function %Y of the set Y (cf. [21], p. 12, Remarks). Now
we set ft = ^—ifdz1 A dzl. Then

since r\ has support clearly In Y, while (1 — ajj8 has support outside Y. On
the other hand, when n tends to oo, a>(an$) converges to zero by the very
existence of CD as a current on X. Thus ??(/?) = lim^^ ??(an/?) = lim^^ co(anj8) >
0 as desired.

Let y be the de Rham class of CD in H2(X9 R). The main Idea of the
proof of Theorem 6.1 is contained In:

Lemma 6.3. a) For any irreducible curve B in X which is not contained
in Y we have y-B>®. b) Let F be an exceptional curve in X which is
contractible to a rational singular point, where by convention a smooth point is
a special case of rational singular points. Then either I) y • Ft > 0 for some
irreducible component Ft of F or II) y Ft = 0 for all Ft.
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Proof, a) Let n: B -» X be the normalization of B composed with the
inclusion B <==-+ X. Since B £ X, n*co is a d-closed positive current on B which
represents the class n*y (cf. e.g. [6; Lemma 2.2]). Thus, its degree, which is
equal to y-B, is positive.

b) There exist a neighborhood 17 of F in X and a plurisubharmonic
function u on U — F such that

a)\(U -F) = ̂ Iddu . (15)

In fact, co defines naturally a class y in H*(X,&X\ where in general £PZ de-
notes the sheaf of germs of pluriharmonic functions on Z (cf. e.g. [7; (2.0) (c)]
and [6; p.737(l)]). On the other hand, the restriction map Hl(U99>v)-+
Hl(U — F, 0*v) is the zero map since F is rationally contractible to a point
(cf. the proof of (1) of Prop. 3 of [7]). In particular, the image of y in
Hl(U — F, &v) is zero, which amounts to the equality (15). Let n: U -» U be
the contraction of F to a rational singular point p. Consider u as a function
on U — {p}. Then u extends to a plurisubharmonic function u on U as in
the proof of Lemma 1 of [6]. We may then pull u back to U by n to
obtain a plurisubharmonic function u on U extending u on U — F. Let at :=
^/—iddu be the d-closed positive (1, l)-current defined by u. We compare
the two extensions co and co of CD. By Lemma 6.2 co — co is a positive current
on X with support in Y. Then we may write co — co = JV^Ff) f°r a unique
nonnegative real numbers ri9 where <F^> are the integration currents on Ft

(cf. the proof of Lemma 2.4 of [6]). Then by taking the cohomology class
in H2(U, 1) we obtain

where f is the class determined by d). However, y vanishes because co admits
a global potential on 17. Hence, y = — 27c£I.ric1(Fi).

Now suppose that 7 • Ff < 0 for any z. Then we have

where c0- = (Ff-F))- Since r£ > 0 for all i, from this we get Xi<u<d ri rjco - ^ 0-
Since (Cy) is negative definite by Grauert, this implies that rt = 0 for all i, and
therefore y - Ft = 0 for all i. b) follows.

6J0 Let Yt be the irreducible components of Y. We set vt = L-Yt and
A = {i; vt < 0}. Let Y' = (JieA Yt and Yx, 1 < a < s, the connected components
of 7' which contains at least one Yt with vt < 0.

Lemma 6A, Ya consists of a (linear) chain of nonsingular rational curves
for any a.
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Proof. For any Irreducible component Yt of Y set d{ = (Y- YJ)- Y{ > 0.
Then we have vt- = (Kx + 1Q- Yt + d{ = 2n(Yi) - 2 + dh where 71 denotes the
arithmetic genus. Hence, vt < 0 if and only if either

a) y. ^ P1 and dt < 2 (and in this case v{ = dt — 2), or
b) n(Yt) = 1 and d{ = 0 (and in this case vf = 0).
Thus, for the irreducible components of Ya only the case a) occurs. It

is easy from this to derive the conclusion of the lemma.

Lemma 6.5. Let B in general be a connected curve in X consisting of a
(linear) chain of nonsingular rational curves. Suppose that the self-intersection
number (Bt - Bt) < 0 for any irreducible component Bt of B. Then either of the
following is true: a) B is exceptional, or b) there exist a connected curve B'
which is a union of irreducible components of B, an open neighborhood U of
B' in X, and a proper holomorphic map h:U-+D of U onto the unit disc
D — {|z| < 1}, with connected fibers such that h~l(Q) = Bf as a set.

Proof. Suppose that there exists a sequence of bimeromorphic morphisms

, m>0

such that i) if we define B(k) = fk-->fi(B) for any k, 1 < k < m, fk is a blowing
down of a (-l)-curve contained in B(k), and ii) the self-intersection number
of some irreducible component B(m)t of B(m) are zero. (Note that B(k) always
consists of a chain of nonsingular rational curves for each k.) Then there
exist a neighborhood Um of B(m)i and a proper holomorphic map hm: Um -» D
with connected fibers such that h^l(0) = B(m)t. Then, if we set U =
(/m'- ' / irH^mX the induced map h:= hmfm...fi\U -+D enjoys the property
in b).

So we may assume that there Is no sequence of bimeromorphic morphisms
as above. This means that if we take any maximal sequence of bimeromorphic
morphisms with the property i) above, B(m) consists of nonsingular rational
curves with self-intersection number < — 2 on Xm so that its intersection matrix
is negative definite. Thus B(m), and hence B itself, can be contractible to a
point by a theorem of Grauert; the case a) occurs.

Lemma 6.6. Suppose that X is projective. If L is nef and L • B > 0 for
any irreducible curve B which is not contained in Y, then L is big, i.e., L2 > 0.

Proof. Since L is nef, we have L2 > 0. (Recall that cx(L) is on the
boundary of the ample cone.) So, supposing that L2 = 0, we shall derive a
contradiction. First we show that hQ(nL) > 0 for all sufficiently large n. (We
write tensor products additively here.) Since L2 = 0, by the Riemann-Roch
inequality we get

h°(nL) + h°(K - nL) > (l/2)nL • (nL - K) + X(GX) = (n/2)L • Y
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where %(C)X) Is the arithmetic genus of X. For any ample divisor A on X
and for all sufficiently large n we have A - (K — nL) < 0 so that h°(K — nL) = 0.
Hence, If the Irregularity q(X) of X vanishes, we have h°(nL) > i((9x) > 1 as
desired. On the other hand, If q(X) > 0, the desired conclusion follows from
[22; Th. 1.2.3]. (In fact, by our assumption, L • B > 0 for any irreducible curve
B which is not contained in Y; hence the condition (2) of Lemma 2.2 In [22]
there Is not satisfied.) Thus, h°(nL) > 0 for some n, I.e., the logarithmic Kodaira
dimension K(U) of U = X — Y is nonnegative.

Since L Is nef, this implies by Kawamata that L Is semlample In the
sense of 5.3 (a) (cf. [14; §2]). Let fn:X^»Z be the morphism associated to
H°(X,Ln) for sufficiently n. Then, If lc(U) = 0 or 1, the (irreducible
components of) general fiber of fn contains an Irreducible curve B with B - L = 0
and B £ Y. This is a contradiction. But If K(U) = 2, we have clearly L2 > 0,
leading again to a contradiction. Thus the lemma is proved.

Proof of Theorem 6.1. First of all, by Lemma 6.3, a) L-B>Q for any
Irreducible curve B which Is not contained in Y. Suppose that L Is not
nef. Then there exist at least one connected component 7a of Y' as In Lemma
6.4. Then by that lemma Ya consists of a chain of nonsingular rational curves.
If Yi • YI > 0 for some Irreducible component Yt of Yx, then Yt is algebraically
equivalent to an irreducible curve which is not contained In Y. Then by what
we have noted above, we have L-Yt>09 which contradicts the definition of
7a. So we may assume that Yt- Yt < 0 for any Irreducible component Yt. Then
by Lemma 6.5 we see that either Ya is exceptional, in which case It is contracted
to a rational singular point, or a certain connected curve Y' in Yu Is alge-
braically equivalent to an irreducible curve which is not contained In Y. The
latter case, however, does not occur as we see by the same reasoning as
above. Hence Ya is exceptional. Note that by the definition of Ya we have
L-Yi<Q for some Irreducible component Yt of Ya. Then by Lemma 6.3, b)
we get that L-Yj>0 for some irreducible component Yj of 7a. This again
contradicts the choice of Ya. Hence, L Is nef. Then by Lemma 6.6 L2 > 0
when X Is projectlve.

It remains to check that X Is necessarily projectlve. Indeed, if the alge-
braic dimension a(X) equals one, then X admits a natural elliptic fibering
/: X -»C over a compact RIemann surface C and Kx - F = 0 for a general
fiber F of /. Moreover, since a(X) = 1 every component of Y Is contained
In a fiber of /. Hence, L • F = 0, contradicting what we have shown above.
So suppose that a(X) = 0. In this case, every curve C on X is a nonsingular
rational curve with negative self-Intersection; moreover, X contains no cycle
of ratonal curves. (When X Is minimal, Kx is trivial, and the assertion Is
easily checked by using the adjunction formula and the Rlemann-Roch theo-
rem. The general case follows from this immediately.) On the other hand,
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since L is nef, for any component Yt of Y we have 0 < L- Yt = —2 + (Y— y f)-
Yi9 I.e., (Y—Y^-Yi>2. Since Yt is arbitrary, this implies that Y contains a
cycle of rational curves. This Is a contradiction. Thus X must be projective
and the theorem is proved.
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