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Continuation of Bicharacteristics for
Effectively Hyperbolic Operators^

By

Gen KOMATSU* and Tatsuo NISHITANI**

Introduction

The present paper is concerned with bicharacteristics of an effectively
hyperbolic differential or pseudo-differential operator. Given a hyperbolic
principal symbol p = p(p)=p(x, ^) and an effectively hyperbolic characteristic
point p = (x, cf) e T* J?" + *, we consider bicharacteristics p = p(s) tending to p
as sfH-cQ or sj — oo. Our main purpose is to prove the following two facts
(cf. Theorem 1):

(0.1) There are exactly four such bicharacteristics. Two of them are

incoming toward the reference point ft with respect to the parameter s, and the

other two are outgoing.

(0.2) Each one of the incoming (resp. outgoing) bicharacteristics is naturally

continued to the other one, and the resulting two curves are regular, C°° or

analytic corresponding to the assumption on the principal symbol.

Concerning (0.1), it was first observed by Melrose [12] that there are
at least four such bicharacteristics. Following that work, the second named
author showed in [13] that the number of such bicharacteristics is exactly
four, under a smallness assumption on the purely imaginary eigenvalues of
the Hamilton map. This assumption was then eliminated by Iwasaki [11]
by using his result in [10] concerning a factorization of the principal
symbol. He also observed the C°° result in (0.2), the C°° continuation of
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bicharacteristics. The method employed in [10] is the Nash-Moser implicit
function theorem or, rather, its proof. It will be extremely difficult, even
if it is possible, to obtain an analytic version of the result in [10].

Our method of proving (0.1) and (0.2) above is completely elementary
and applies equally to the analytic case as well as the C°° case; rather, the
analytic case is much simpler. We reduce the problem to the study of a
Briot-Bouquet singularity (cf. Theorem 2), where a linear algebraic condition
appears quite naturally. Nevertheless, it is plausible that the same idea is
applied also to a higher order analogue of effectively hyperbolic principal
symbol. We hope to return to this matter at a future time.

It has been known that the Cauchy problem for a hyperbolic operator
is C°° well-posed independent of the choice of lower order terms if and only
if the principal symbol is effectively hyperbolic at every multiple (necessarily
double) characteristic point. (There were many contributions of proving
this fact in general, and Iwasaki's factorization theorem in [10] was
fundamental in order to reduce the general problem to a special case.) The
notion of effective hyperbolicity was first introduced by Ivrii and Petkov in
[9]. Its definition requires the existence of (necessarily two) non-vanishing
real eigenvalues of the Hamilton map i.e. the so-called fundamental matrix
obtained by linearizing the Hamilton field of the principal symbol. (It turns
out that such eigenvalues must be of the form +A.) The question arises
how this linear algebraic definition is reflected in the dynamical system of
bicharacteristics near the reference point. This is a motivation of the present
work.

The present paper is organized as follows. The main result (Theorem
1) is stated in Subsection 1.1. We then exhibit, in Subsection 1.2, a heuristic
argument by considering a linearized problem. An outline of the proof of
Theorem 1 is given in Subsection 1.3, where we reduce the problem to the
study of a singular initial value problem (cf. Theorem 2). This reduction
involves a symplectic change of coordinates, which we achieve in Subsection
2.1. Using the new coordinates p — (3;, rj) with p = (0, 0), we get a factorization
of the form p=p+p~ with

p±(y, rj) = r]()-y0Ti±(y0, v/v0), v = (y', f/ '),

cf. (1.7), a factorization which is only valid within a restricted neighborhood
of p. This restriction causes no difficulty (cf. Proposition 1), as we see in
Subsection 2.2. Thus, Section 2 concerns the reduction of the proof of
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Theorem 1 to that of Theorem 2. We prove Theorem 2 in Section 3 by
using (the C°° version of) the Briot-Bouquet theorem due to Briot-Bouquet
[1] (and de Hoog-Weiss [3], [4] for the C°° version, see also Russell [14]). We
first state, in Subsection 3.1, the original holomorphic Briot-Bouquet theorem
in system form (Proposition 2). This implies Theorem 2 in the analytic
case, whereas the C°° version (Proposition 3), formulated as a one-sided
problem, reduces the proof of Theorem 2 to examining the consistency of
the successive right and left derivatives of the solution at the origin. This
step requires some knowledge of a related linear system, which is also used
in the proof of Proposition 3— we prepare it in Subsection 3.2. Finally in
Subsection 3.3, we complete the proof of Theorem 2 after stating and proving
Proposition 3.

§1. Statement of the Results and Outline of the Proof

1.1. Continuation for two pairs of bicharacteristics

Suppose given a linear partial differential (or pseudo-differential) operator

P = P(x, Dx), Dx= — ^ j — \ d/dx, of order m with C°° coefficients in an open
set Ocl?"+1 with coordinates x = (x0, x') = (x0, x^ • • • , xn). We denote by
p=p(p)=p(X) f) the (real) principal symbol of P, so that£eC°°(T*Q\0), where
the cotangent bundle T*Q is equipped with the standard coordinates p =
(x, £), £ = (£0, £') = (<i;0, c^, • • • , £„). Suppose also given a multiple characteristic
reference point p = (x, £)eZ 2 ~^V^i> where

so that Zx is the simple characteristic set of p. We assume that p(x,-) is
hyperbolic with respect to dx0 near x = xe£l, that is, the equation p(x, £) = Q
(£/0) with unknown £0 has exactly m real zeros £0 = £0(x, £') near x = x
counted with multiplicity.

Setting (3;, rj) = (x — x, £ — ̂ )ER2n + 2, we obtain a new coordinate system
p = (y, rf) on T*fi for which p is the origin. It then follows from the Taylor
expansion around p = p that

, rj)\3) as p^fi,

where p*(y, f/) is a quadratic polynomial of (y, rj) corresponding to the



888 GEN KOMATSU AND TATSUO NISHITANI

Hessian of -p(p) at p = p. Observe that this quadratic polynomial extends

naturally to a quadratic form Q(v) on T^(T*O). Then, the Hamilton map

ffl of p at p is defined by

(r(X, 3PY) = Q(X, Y) for X,

where a stands for the natural symplectic form given by

n n

j = 0 j=Q

Recall that the matrix expression of $? with respect to the coordinates

(y, rj) is the so-called fundamental matrix given by

Pny Pnn I evaluated at p = p,
2 \~Pyy -Pj

where the subscripts y, rj stand for the differentiation.

Let us assume that p=p(p) is effectively hyperbolic at p = p, that is, the

Hamilton map ffl admits at least one non-vanishing real eigenvalue. (It

turns out that the number of such eigenvalues is exactly two, if there exist,

and that they must be of the form +A, 0/AeJ?.) Clearly, this condition

is open with respect to points p 6 S2- Observe that p is a double characteristic

point, because the quadratic form Q(v) does not vanish identically.

We are interested in the behavior of bicharacteristics of p=p(p) near

p = p. By definition, a (null) bicharacteristic of p is an integral curve p = p(s)

of the Hamilton field

TT \^ I "f ~ ~r ~ I "^ ~ P
£!„ =

subject to the restriction p(p(s)) = Q. In terms of the coordinates p = (y, f|),

this curve p = p(s) satisfies the following system of ordinary differential

equations

(1.1) (,) = (y(5), f,(S)), (S)=
rf5 5f/ a^

the Hamilton system with Hamilton function p=p(y, /f). It is worthwhile
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noting that the linearization of (1.1) at p = p yields a matrix corresponding
to

We are thus led to study solutions of (1.1) satisfying

(1.2) (y(s), f/(s))->(0,0) as s | + oo (resp. s I -oo);

we refer to them as incoming (resp. outgoing) bicharacteristics relative to the
reference point p = p. Two bicharacteristics will be identified if they are

equivalent under a trivial change of parameters s— *s + constant. Now, the
main result of the present paper is stated as follows:

Theorem 1. There are exactly two incoming (resp. outgoing) bicharac-

teristics of p=p(p), relative to p = p> contained in the simple characteristic set

Zj. Furthermore, one of the incoming (resp. outgoing) bicharacteristics is

naturally continued to the other one, and the resulting two curves are C°° regular

near p = p as submanifolds of T*O. These two curves are (real) analytic near

p — p whenever p=p(p) is assumed to be analytic there.

1.2. A linearized model

(A). A linearized problem. Before beginning the proof of Theorem 1
above, we wish to exhibit a heuristic argument. Readers can skip it and

proceed directly to the next Subsection, in which the proof of Theorem 1

is outlined.

It may be natural to expect that our problem (1.1) with (1.2) is a
perturbation of its linearization at p = p:

(1.1)' d?-(s) = 23rp(s), p = (y , f j ) eK" + 1 x j r ' + 1 ,
as

under the limit condition (1.2), where p=(y, rj) is regarded as a column
vector. To consider (1.1)' is equivalent to replacing p(p) by its quadratic
part p$(p). After a linear symplectic change of coordinates, we can write

) = Q(p, p) in normal form — up to non-vanishing multiplicative factor,

= Z QJ(PJ> PJ) for
j=o
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where fj,jy ££0>0 and 0<nl<n2<n (cf. (1.3) with (1.5) and the proof of
Lemma 2.2 below). Therefore, (1.1)' splits into real 2x2 systems

(1.1)'; pj(s) = 2jejpJ(S) for
as

where each matrix J^^M2(R) corresponds to Qj(pjy Pj). We are thus led
to consider (1.1)'^ under the condition

(1.2)',. p^OO-KO, Q)eR2 as 5 | -oo or s f +00.

It is well known in the linear theory of ordinary differential equations that
the nature of the equilibrium point (0, 0) is determined by the spectral
property of the real matrix Jtifji if j = 0 (resp. \<j<nl), then ^j has

eigenvalues ±1 (resp. ±^J — l fJLj)y so that the origin (0, 0) is a saddle point
(resp. center); if nl<j<n2 (resp. n2<j<n)y then rankJf7

J-=l (resp. JJ?j = Q)
and Jjfj has only one eigenvalue 0. Therefore,

Claim,, // \<j<n then there are no (non-trivial) singular trajectories,
that is, pj(s) = (Q, 0) is the only one solution of (1.1)} with (1.2)}.

Namely, we do not encounter the following types of the equilibrium
point (0, 0)eJ?2:

Non-degenerate (or two-tangent) node: In this case, there are distinct
real eigenvalues A + > A _ of the same sign.

Degenerate node: This is the case where two-tangent node degenerates
to A+=/l_eJ?\0; it is a stellar node (resp. a one-tangent node) if the matrix
in normal form is diagonal (resp. triangular and not diagonal).

Focus: In this case, the eigenvalues 1± are not real nor purely imaginary.

One-dimensional flow: This is the case where the matrix in normal form
is diagonal and of rank one.

Therefore, it suffices to consider the saddle point case j = Q.

(B). The simplest model. To consider the casej = 0 amounts to replacing
the principal symbol by its simplest model

P°(y, n)=nl-vl in Rn+lxR»+l.
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In this case, we have an obvious factorization

P°(y> ri) = (rjQ-y0) (r

it is then immediately seen that the singular trajectories constitute two

straight lines. Indeed, on the trajectory of each bicharacteristic p° = p°(s) =

(y, r\) o f p ° , we have a Hamilton system with Hamilton function p°+ or p^. :

y o , o , - idt \5f7o dy0

d (dpi dp°+
- (/, r,') « = HTT ' ~ -fr
^ V 3f|' dy'

Solving it under the initial condition p0(0) = (0, Q)eR2n + 2, we obtain

CVo, »/o) = (^ ±0, (y, ^') = (0, 0)6U"xU".

Here, the change of parameters s-*t = t± satisfies the relation

|i| = e~2 '5 ' as t—*Q along singular trajectories.

We wish to emphasize that, passing from p° to £4., we can take y0 as a

new parameter t = t±.

In the case of quadratic model (i.e. the linearized problem), we have a

similar factorization

Vo, v)1/2J,

w

where v = (y'y if'), E(y09 v)=y%+ £ Qj(Pj> Pj)>

which does not hold in a full neighborhood of p=(y> ?y) = (0, 0); it is only

valid in a restricted part 3^0/0 (or M/bol < constant). Nevertheless, this is

sufficient for our purpose, because every incoming or outgoing bicharacteristic

p(s) = (y, r\) satisfies v = 0—we have

d / ? 2X— (yj+rij)=Q ^or
ds
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Furthermore, the term E(y0, v)1/2 in this model does not involve the variable
t]0, so that as in the simplest case we can single out y0 as a new parameter:

-TT ̂ oC^)^1 (thus, we may take t = t±=y0).

Therefore, we obtain a closed system having v = v(t) as unknown, a system
which admits only a trivial solution v(°) = 0 (under the initial condition
v(0) = 0), as we have already known.

In what follows, we shall observe that the general problem can be put
in a situation similar to that as above.

L3p How to continue Mcharacterlstlcs

In order to prove Theorem 1 above, we shall perform in Subsection 2.1
below a symplectic change of variables about p = p. In the new coordinates
p = (y^ Y\) with p = (0, 0), the principal symbol p = p(p) takes the form

(1.3) p(p)=q(P) \{n0-<p(y, n')}2-^(y, rm with

so that we may assume q(p) = l. Here, p(yy •) is hyperbolic with respect to
dy0 near y = Q, a fact which implies that

(1.4) iKp*)>0 near p* = (y, f/') = (0, Q)eR2n+1.

Furthermore, if we write Ol = O(\p*\l) as p*-»0, then

) = O2, ^(P*)-£(P*) = O3
S where

,,2

(1.5)
II1 W2

with some positive constants ftp JLLO, where ®<nl<n2<n- (The case

ni=n2 = n does not occur in our problem, though we need not exclude it

in what follows.)
We now set, for u = (z, £')eR2n with \u\<l, that

, you)>
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, u)1/2+y0 0(y0, «),

where the square root can be taken by virtue of (1.4). Observe that <I> and

*F are smooth (i.e. C°° or analytic, corresponding to the assumption on the

principal symbol p=p(p)) as far as |j;0| is small, a fact which can be observed

by inspecting the remainders of the Taylor expansions. Similarly for *F1/2,

a consequence of the fact *¥(y0, u) = E(l, u)-\ . Thus, the functions n±

are smooth whenever |j;0| is small, say, in {|y0|<«> I M I<1}> and satisfy

(1.6) ±n±(0, M) = £(l)«)1/2 = l+l E(0, w) + 0(H4)

as w-»0. Therefore, setting v = (y', r\') and

(1.7) p±(y, rj) = r]0-y0n
±(y()y v/y0),

we have a factorization of the principal symbol

(1.8) P(p)=P + (p)P~(p) near p = p

which is valid within a certain cone (or, rather, a two-sided wedge having

the 770-axis as its edge):

(1.9) |v| = |(3/, ff ' ) l< f lbol with some constant «>0.

It will be shown in Subsection 2.2 below that:

Proposition 1. Suppose given an incoming or outgoing bicharacteristic

p(s) = (y(s)y f|(s)), a solution o/(l.l) with (1.2). Then, v(s) = (y'(s), r\'(s)) satisfies

(1.10) |v(s)|<Cbo(*)|3/2 as p(s)^p,

where C > 0 is a constant independent of the choice of a bicharacteristic p = p(s).

By virtue of Proposition 1 above, every solution of (1.1) with (1.2) must

stay, locally near p = p, in the cone (1.9). Furthermore, we see, in view of

the factorization (1.8), that it must be an integral curve p = p(t) of either

Hp+ or Hp- with the limit point p = p, where the parameter must be changed

from s to t = t±. Therefore, setting
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we have (dyQ/dt)(t) = 1 in either case, so that we may take y0 to be the
parameter t = t± simultaneously. Then,

dr[ dn± ( v(t)
, , a

AZ -»QER2n as t-*® (by Proposition 1),

and similarly for the scalar function TJO = fj0(t), that is,

fo(0) = 0.

Conversely, if we are given a solution of (1.11)~, then we can reproduce a
solution of (1.1) with (1.2) by integrating (1.12)*.

It may be worthwhile noting that (1.7) with (1.6) determines how the
orientation of the parameter is changed from (1.1) to (1.11)*. Namely, in
case g>0 in (1.3), every solution of (1.11) + (resp. (1.11)~) in either t>® or
t<® corresponds to an incoming (resp. outgoing) bicharacteristic of p. The
situation is reversed in case g<0.

We are thus led to investigate the unique existence and the regularity for
the solution of each one of the initial value problems (1.11)*. Here, the
uniqueness is for the one-sided problems, whereas the regularity is for the
two-sided ones. Evidently, the regularity of v = v(t) in (1.11)* ensures that
of r]0 = ii0(t) in (1.12)*.

Let us write (1.11)* as follows:

(1.11) ) = **, <)6*" as
dt

where N=2n and

dn±,
F(y0, u) = F±(y0, u) = —- (j,0, u), — (y0,

d£ dz

It then follows from (1.6) that
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(1.13) F(0, 0) = 0, <7(FM(0, 0))c:{AeC; Re /l<0},

where cr(Fu(0, 0)) stands for the spectrum of the Jacobian matrix Fu(0,0)
= (dF/du) (0, 0). Indeed,

so that the eigenvalues of each one of F*(0, 0) are 0 and + >/ — 1 Af/ for
/=!, 2, • • • , ni. We shall prove in Section 3 below that:

Theorem 2. Suppose given a C°° (resp. analytic) function F=F(y0,u)
G J?N near (y0, u) = (Q, Q)eRxRN satisfying (1.13). Then, the two-sided initial

value problem (1.11) admits a C°° (resp. analytic) solution v = v(t) near
t = Q. Furthermore, the uniqueness is valid for each one of the one-sided problems,
among solutions of C1 -class except at the end point t = §.

Therefore, Theorem 1 will be established if we shall prove Theorem 2
together with Proposition 1.

Remark. In view of (l.ll)* and (1.12)*, we see that

<o)=o, 0=^(0, o )=± i ,
dt dt

so that the integral curves p = p ± (t) of Hp± with p ± (0) = p satisfy, respectively,

(1.14)* tf ^— (Q)= ± — (0).
dt dt

Namely, the tangent lines at p of the two curves in Theorem 1 are spanned
by eigenvectors of the Hamilton map ffl associated with the two non-vanishing
real eigenvalues +A. In (1.1 4)* above, the normalization A=l is made
corresponding to the assumption q(p) = l in (1.3).

§2. Preliminary Reductions

2.1. Normalization by symplectic transformations

The present subsection is devoted to the justification of (1.3) with (1.4)
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and (1.5) stated in Subsection 1.3. Every function will be C°° or analytic

near p = p, without any mention of it, corresponding to the assumption on

the principal symbol p=p(p). In particular, the abbreviated expression Ol

as in (1.5) can be differentiated in a usual manner.

We first reduce the problem to the case of second order symbol

p=p(p). More precisely,

Lemma 2,1. After a symplectic change of coordinates about p = p, the

principal symbol takes the form

(2.1) p(X, £) = <?(*, 0 {£g-M*, £')},

where q(x, <f)^0 and \j/(x, <f)>0.

Proof. We first observe that

d2p
(2.2) -J (/))/0,

^Co

a fact which is obtained without difficulty by using Lemma 1.3.1 in Hormander

[5]. Namely, suppose the contrary; then the hyperbolicity implies the

vanishing of the Hessian of p(p) at p = p, but this contradicts the effective

hyperbolicity.

By virtue of (2.2), we may apply the Malgrange (or Weierstrass)

preparation theorem and conclude that p(x, £) takes the form

P(X, £) = <?(*, &f(X, £), q(X,

Here, the hyperbolicity inherits from p(x, £)top(x, ^), so that \J/(x, ^')>0.

The desired symplectic coordinate system is obtained by a repeated

application of the Frobenius theorem (see Theorem 21.1.6 in Hormander

[6]). Indeed, it is possible to construct a change of variables (x, £)-*(<£ > O:

in such a way that, for 0<j,
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where {•,•} stands for the Poisson bracket. q.e.d.

Remark. The symplectic transformation in Lemma 2.1 above can be

taken to preserve the homogeneity (cf. Theorem 21.1.9 in Hormander

[6]). Furthermore, it is possible to make p(x, £) homogeneous in £ in the

proof above. Then, \l/(x, £') in (2.1) is homogeneous of degree two in £',

so that the problem is completely reduced to the case m = 2. In what follows,

however, we shall not use the homogeneity of \l/(x, £').

Without loss of generality, we assume that q(x, £) = 1 in (2.1). It is

also convenient to deal with a coordinate system having p as the origin

because the homogeneity is not concerned. We thus introduce a coordinate

system p = (y, rf) by setting

(v, iO = (*-A, {-

so that j5 = (0, 0). Then,

Lemma 2,2. After a linear symplectic change of coordinates about p = p,

the symbol p=p(y, rf) normalized as above takes the form

(2.3) p(y, n) = c{nl-E(y, rj')} + O3(yy rj) as p-*py

with some constant c>0, where E(y, rf) is a quadratic polynomial of (y, rjr)

given by (1.5) with p* = (y, rf). Furthermore, preserved is the hyperbolicity of

P(y>') with respect to dyQ near y = Q, after the change of coordinates.

Proof. Let us first write (2.1) in Lemma 2.1 with g(jc, £) = ! in terms

of the (y, Y\) coordinates as follows:

Since peE2 , it follows that ^0 = 0. We next set

pp(y, n) = Q((y, »?), (y, ^))=^o-^(y, »?'),

where Q(',') is a quadratic polynomial as in Subsection 1.1, so that

p(y, n)=Pp(y> ^) + o3Cy, TJ) as p-+p.
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By virtue of the effective hyperbolicity, we can write p^(yy YJ) in normal form

(see, e.g., Theorem 21.5.3 of Hormander [6]) as follows: there exists a linear

symplectic change of coordinates S: (y, fj)\— »(y, rj) about (0, 0) such that

Pfi(y, *l}=Pp(S(y, fj)) = c{fj2-E(y, fj')}

with some constant c>0, where E(y , fj') is given by (1.5) with p* =

(y,fjf). Setting

we see that its quadratic part is given by

Therefore, we obtain (2.3) in the (y, fj) coordinates.

It remains to observe that the hyperbolicity with respect to the f]0

variable is preserved under the symplectic transformation S as above. Since

£ is linear, this fact is easily verified as follows. Setting

p±(y> n}=

we shall show that each one of p±(y, fj) has a real zero

^?o =n^(y^ n'} with l ^ ? o l < e

in a closed region \(y, f j ' ) \ < e 2 , as far as the constant e>0 is small enough. (It

should be noticed that p± above are different from p± in Subsection 1.3). If

we write

in a closed region {(y, fj); |fy0 |<8, \(y, fj')\<s2} with constants a and /?, then

and

P(y, n)=P(y, ^) = (a2-Mo

so that (2.3) yields a2 — /? = c > 0. On the other hand, if in addition |ry 0| = s then

p±(y, fj) = afj0 + ^ Wol + 0(e2),

so that each one of p±(y, fj) has different sign at fj0~= ±e. Therefore, the
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desired conclusion follows from the continuity of p±(y> fj) with respect to

the fj0 variable. q.e.d.

Justification of (1.3) with (1.4) and (1.5). By virtue of Lemmas 2.1 and

2.2, we have, after a symplectic change of coordinates about p — p, that

p(y, n}=q(y, *?) fao
\l/(y, ri) = E(y, ?f') + O3(j>, q) as p->p,

where q(p)^Q. It then follows from the Malgrange (or Weierstrass)

preparation theorem that p(yy rj) takes the form (1.3) in which <p(0,0)

= 1/^(0, 0) = 0. Comparing the quadratic parts of these two expressions of

the same function p=p(y, *?), we obtain (1.5). Let us finally recall by

Lemma 2.2 that p(y,m) in the new coordinates is hyperbolic with respect to

dy0 near y = 0. This together with (1.3) implies (1.4).

2.2. An estimate for bicharacferistics near the reference point

The purpose of the present subsection is to prove Proposition 1. Let us

begin with the following simple observation.

Lemma 2.3. There exists a constant C>0 such that

\dp(p)\<C -(/?) for peE near p.

Proof. If peZ, then p(p) = Q1 so that

On the other hand, i / f>0 implies \d(l/\<C'\l/112 with some constant C'>0.

Therefore, the desired conclusion follows from

dp d<p d\l/ dp dcp d\l/
—=2(<p-*ioh i~» ^-, = Xv-ioh-, - ̂ -7-dy cy oy crj Of] of]

q.e.d.

By using Lemma 2.3, we obtain the following estimate for incoming
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or outgoing bicharacteristic p = p(s).

Lemma 2 A* A weaker version of Proposition 1 holds, where the conclusion
(1.10) is replaced by

\p(s)\<C\y0(s)\ as p(s)^ft.

Proof. We first note that

j>0(s)^0 as p(s)->/9,

where the dot refers to differentiation with respect to s. Indeed, if y0(s) = Q
at some point p^eEj near p, then

so that Lemma 2.3 implies dp(p(s)) = Q, but this contradicts p(5)eE1. Thus,
we may take y0 as a new parameter of the curve p = p(s) near the reference
point p. Then,

d
dy0

so that Lemma 2.3 implies

]p-*-p=\<Hp, dp>\ = \dp\<C
1o dy0

on the curve p = p(s). Therefore,

, , , „„,, ̂  <C\y0(s)\.
dyG

q.e.d.

By virtue of Lemma 2.4 above, it can be understood that

(2.4) 0^ = 0^(3;, rj) = O(\yQ\l) as p-»p,

as far as the limit is taken along a bicharacteristic.

The following lemma is crucial in the proof of Proposition 1.
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Lemma 2.5. For every e>0, there exists 8>0 such that

(2-5) bo(*)l < ^~Y bJoWl whenever 0< \y0(s)\ <d,

where d is independent of the choice of a bicharacteristic p = p(s) satisfying p(s)-*p.

Proof. We shall be working on the bicharacteristic p = p(s). Since the

trajectory is included in the characteristic set Z, it follows that

On the other hand, we have by using (1.5) and Lemma 2.4 that

under the notation (2.4). Since \yQ\ is small enough, we obtain the desired

conclusion (2.5). q.e.d.

Remarks. (1) In proving Proposition 1, we only need the fact that

(l-fe)/2 in (2.5) above is a positive constant independent of the choice of

a bicharacteristic. Nevertheless, it might be worthwhile noting that (2.5)

yields the following estimate

Y+(s)<Y+(s0) as p(s)-*p with s0 fixed,

where F±(s) = |;y0(s)| exp [2|s|/(l ±e)]. In particular,

as p(s)-*p

with some constant C>0, cf. Subsection 1.2, (B).

(2) A reversed inequality with 1— £ in place of 1+e is also obtained

by using the conclusion of Proposition 1 (or Theorem 2). Namely, it follows

that v = O3'2 (or v = O2) under the notation (2.4), so that \l/(p*}—yl = O*.

This yields, as in the proof of Lemma 2.5, that

1 —8
bo(*)l^-— - boWl whenever 0< |;y0(s)| <£,
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which in turn leads to

F_(s)>y_(s0) as p(s)-+p with s0 fixed.

In particular, with some constant C>0,

oWl >C exp (- \s\ } as
, 1 — 6

Proof of Proposition 1 . Settintg

for

we shall show under the notation (2.4) that

(2.6) tj = O3 for l<j<nly e} = O4 for

Let us first consider the case \<j<n^. Since

under the notation (2.4), it follows that

tj(s)=yj^(p)-vj^(
drjj dyj

This together with Lemma 2.5 implies

where a change of variables s-*y0 is made as in the proof of Lemma

2.4. Integrating both sides with respect to j;0, we obtain the desired estimate

In case n2<j<n, we have



CONTINUATION OF BICHARACTERISTICS 903

so that €j = O4 is obtained by the same argument as above. Indeed,

f .
dy0 dy0

It remains to consider the case w1< i /<w2- We first have, as above,

so that yj = O2. By using this, we obtain

so that rjj = O2, and hence ej = O4. This completes the proof of (2.6).

§3. A Singular Initial Value Problem

3.1. The Briot-Bouquet singularity

In order to prove Theorem 2, we begin with the existence result in the

analytic case. Setting u(t) = v(t)/t, we write (1.11) as

(3.1) t
dt

with f ( t , u) = F(t, u) — u, so that (1.13) implies

(3.2) /(O, 0) = 0, a(7Vf)c:{AeC; Re

where M=fu(Q, 0). Let us now recall a celebrated result of Briot and

Bouquet in [1] which states that:

Proposition 2. ///=/(£, u) e CN is holomorphic near (t, u) = (0, 0) e C x CN

awd/ satisfies

(3.2)' /(O, 0) = 0, (7



904 GEN KOMATSU AND TATSUO NISHITANI

where N={1, 2, • • •} , then (3.1) admits a unique holomorphic solution u = u(t)
near t =

Indeed, Proposition 2 in case N=l is obtained in [1], pp. 164—171 (see
also, e.g., Ince [8] or Hille [2]), and their method remains valid for general
N. The proof is sketched as follows.

It is easily seen that the assumption (3.2)' implies the unique existence
of a solution as a formal power series u(t) = c1t + c2t

2 H ---- . Thus, it suffices
to find a convergent scalar majorant U(t) = Clt-{- C2£2H ---- , which can be
obtained as the unique solution of a functional equation of the form

(3.1)+ eU(t) = <S>(ty C7(0), C7(0) = OeC

with a small constant e>0, where €>(£, 17) is a standard scalar majorant of
f(t,u) — Mu. Since ®(0,0) = 0^(0,0) = 0, the unique existence of a holo-
morphic solution U(i) of (3.1 )+ near £ = OeC follows from the implicit
function theorem.

Remark. It turns out that every formal solution of (3.1) is necessarily
convergent without any assumption on cr(Af), cf. Hukuhara et al. [7], pp.
77-78. Indeed, the subtraction of the polynomial of degree <r part
Cit-\ ----- \-crf from u(t) amounts to reducing the eigenvalues of Mby r. Taking
r large enough, we may apply the contraction principle to the reduced
equation in order to obtain a holomorphic solution, while the formal
solution of the original equation is unique up to terms of degree <r. Hence,
an arbitrarily prescribed formal solution must be holomorphic near t = Q.

Therefore, it remains to establish the C°° version of the Bnot-Bouquet
theorem (Proposition 2) under the assumption (3.2) in place of (3.2)'. This
has been done by de Hoog and Weiss [3], [4] (see also Russell [14]). We

shall reproduce the proof in Subsections 3.2 and 3.3 below, because the
setting in [3], [4] is too general for our purpose.

The proof of Theorem 2 in the C°° case is fairly elementary. We shall
first consider in Subsection 3.2 a linear problem with "constant coefficients."
Then, the nonlinear problem can be regarded as a perturbation of the linear
one — as we shall see in Subsection 3.3. Indeed, the unique existence is
obtained via the contraction principle, whereas the proof of the regularity
requires a closer look at the linear problem.
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3.2. A linear system

Let us consider a linear system of singular ordinary differential equations

(3.3) t — (t)-Mu(t)=g(t) for 0<a<T,
dt

where gEC°[0, T\ = C°([0, T], CN) and MeMN(C). As in (3.2), we assume
that

(3.4) <j(M)c={AeC; Re A<0}.

In order to solve (3.3) in the space <g%l = C°[Q, TJnCHO, T\, let us
introduce a linear operator <?M:C°[0, T]-*^*1 by setting

where £M = exp(M log*), so that £Mg(Q)= -M lg(Q). It is easily seen that
u = $Mg satisfies the equation (3.3). Furthermore,

Lemma 3.1. A unique solution uE^^1 of (3.3) is given by u = $Mg.

Proof. With i e (0, T] arbitrarily fixed, the general solution of (3.3)
takes the form

ft\M p (t\M ds
(3.5) ii(0= - H(T)+ - g(s) - •

W Jt \V s

If ME^y'1 , then the assumption (3.4) permits us to take the limit uj,0 in (3.5);

thus u = $Mg. q.e.d.

The differentiability property of the operator $ u is clear from the second

expression of its definition. Namely, if geCr[0, T] with some reNQ = {Q, 1,

2, .»}, then &Mge<&ril = Cr[Q, T]nCr+1(05 T] and

(3.6)
dt

where IeMN(C) stands for the identity matrix. In particular,
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(3.6)0 (<?Mg)(r)(Q) = (rI-M)-y\Q).

In the application to the nonlinear problem, we also need an estimate
for the operators $M_rJ with reN0 in terms of the norm ||w||r = max{|w(£)|;
®<t<T} for w£C°[0, T], where the pointwise norm |-| on CN is specified
appropriately. The following lemma asserts that the operator norm of $M_rI

with respect to ||-||T is bounded as TJ,0.

Lemma 3.2, // a constant <5>0 satisfies

(T(M)c{AeC; Re 1<-S},

then there exists a constant C>0 such that

\\*M-«8\\T<> —. \\g\\T forg€C°[0, T\,
r-hd

where C = CMtd is independent of T>0 and rEN0.

Proof. It suffices to choose C in such a way that

\s~Mv\ < C sd\v\ for se(0, 1) and veCN,

a fact which can be easily seen by writing M in Jordan normal form, q.e.d.

33, A nonlinear system; Proof of Theorem 2

In order to complete the proof of Theorem 2, we consider a nonlinear
system of singular ordinary differential equations

(3.7) t—(t)=f(t,u(t)) f o r O < * < T ,
dt

where /, df/dueC°([Q, T0]xB(R0)) with 0<T<T 0 and B(jR0) = {veCN;
|v|<^0}, R0>0. Assuming, as in (3.2), that

(3.8) M=— (0, 0) satisfies (3.4) and /(O, 0) = 0,
du

we shall prove the unique existence in the set ^T^R with 0<R<R0, where
, T], B(R))nCr+1(Q, T], together with the corresponding regularity
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f°r each re N in case

(3-9)r /,
0W

More precisely,

Proposition 3. There exist constants T e (0, T0] <W # e (0, R0] such

that (3.7) has a unique solution u in ^T'JZ* which satisfies u(Q) = Q
automatically. Furthermore, u e *&rf*R provided (3.9)r holds with r e N.

Proof of the unique existence. Setting g[u](t)=f(t, u(t)) — Mu(t), we see
that the equation (3.7) takes the form (3.3) with g=g\u\. It then follows

from Lemma 3.1 that (3.7) with u e ^r,R ̂ s equivalent to u = #r[u], where
^r[u] = £'M g[u]. Thus, it suffices to show that

(3.10) & is a contraction on (^T,R = C°([QJ T], B(R))

with respect to the norm \\-\\T as far as the constants T and R are chosen
appropriately.

We first observe that if wlf u2 e ^T,R then

where h(t) = [M (t) - M] (u^t)-u2(t)} with

^ (t, u2(t) + e[u,(t)-u2(t)]) dO.
o 3u

It then follows from Lemma 3.2 that

||«r[Ml]-^[M2]||r< ~ \\h\\T< L\\u,-u2\\T
0

with L = (C/d)max{\M(t) — M\; 0<t<T}, where |-| stands for the matrix
norm. Clearly, 0<L<1 provided T and R are small enough. We next
notice that if UE^JR then

\\3?[u]\\T <L\\u\\T+
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while g[Q] (t)=f(t, 0), so that \\&[u]\\T<R provided T and R are small
enough. Therefore, the desired conclusion (3.10) is obtained under the
assumption (3.8).

The proof above shows that Re(0, R0] can be chosen arbitrarily small
by shrinking Te(0, T0]. Hence, the unique solution u E ^T'JI must satisfy
n(0) = 0.

Proof of the regularity. It suffices to prove by induction on r that

(3.11)r uECr[Q, T] provided (3.9), holds,

where UE^T\IR is the unique solution of (3.7), so that (3.11)0 is valid. In
fact, (3.11)r together with UE^T^R implies the desired conclusion uE^rj-l

R.
Recall that the unique existence was proved via the contraction principle,
so that the unique solution u = uaoE

($TtR (see (3.10)) is obtained by taking
the limit in the iteration scheme

uk+1=^[uk] = £M g[uk] for kEN0i u0 = Q.

It then follows from the differentiability property of SM as in (3.6) that if
(3.9)r is assumed then {wJ&ci^^cC^O, T] and

(3.i2)r ufti=*M-r/*[«J(r) for

Thus, the desired conclusion u^ E Cr[0, T] will be obtained if we shall show that

(3.13)r {*4^}fc is uniformly convergent on [0, T],

by shrinking T>0 if necessary.
Let us prove (3.13)l.+ 1 by assuming (3.13),. and (3.9)r+1, so that (3.12)r+1

is valid. Setting wk = u%+1\ we regard (3.12)r+1 as an iteration scheme for
{wk}k involving uk, uk, --,u

(
k
} as known functions. In order to write it down

more explicitly, we begin by observing that g[uk]' = A[uk]uk + b[uk], where

A[u] (t) = (t, u(t))-M, b[u] (t) = (t,
ou ot

Differentiating both sides successively, we obtain
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where

-j

Then, (3.12)r+1 can be written as

(3.14) wk+1=j/r[ttk]wk + #r[ttj
 for

where J*r[u]w = gM.(r+1)I (A[u]w) and ^rM = <fM_ ( r + 1 ) / 6r[n].

The uniform convergence of {wk}k is obtained awi (3.14) as follows. We

first observe by Lemma 3.2 that

\\J*r\u\w\\T < s MMwIlr < L'\\w\\T,
r-f 1 -f 0

where L'^l+dJ^C sup{|^[i/](0|; 0 < * < T, UE<£^R} so that 0<L'<1

provided T and ̂  are small enough. Thus, there exists a unique w^ e C°[0, T]

satisfying

Setting a)k = wk — wao, we have ||cujk+1||r < L' ||wfe||r + £fc with efe J, 0 as &— »oo.

This yields at first the boundedness of {ctfjjfc, and then the convergence

cufc->0 as k— >oo, which implies the desired conclusion (3.13)r+1. Therefore,

the proof of Proposition 3 is complete.

We are now in a position to prove Theorem 2. By virtue of Propositions

2 and 3, we can finish the proof with the aid of the formula (3.6)0 as follows.

Proof of Theorem 2. It remains to show that the C°° solution for each

one of the one-sided problems continues smoothly across t = Q to that for

the other one. But this fact is obvious if we write the equation (1.11) in

the form (3.1). Indeed, the limits w(r) (±0) can be computed successively by

using the formula (3.6)0, and it is easily verified that

(3.15) u(r\ + 0) = u(r\-0) for r e AT0.

Let us explain it more precisely. By virtue of Proposition 3, we see

that the C°° solution v(t) = tu(t) of (1.11) for 0 < t < T exists and that the
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solution u(t) is unique in the class <g%l = C°[Q, T] n C^O, T], where T>0
is small enough. The same is true for the problem on [— T, 0]. Indeed,
setting u + (t) = u( + i), we are led to the equations

t— u±(t)=f±(t,u±(t)) for Q<t<T,
at

where f+(t,u)=f(±t,u), so that /_(0, 0)=/+(0, 0) = 0 and

?L (Oj 0) = ̂ ± (0, 0) = M.
<7^ 0M

Therefore, Proposition 3 can be applied equally to both problems. It remains
to verify (3.15), i.e.

(3.15)' M<!? ( + 0) = (-l)r u($ (4-0) for

Setting £±(0=/±(*,M±W)-M "±(0, we have

d
— u±(i)-M u±(t)=g±(t).
at

It then follows from the formula (3.6)0 that

4> ( + 0) = (r/-Af)-1 £? (4-0),

so that (3.15)' is equivalent to

(3.1Sr ^}( + 0) = (-l)r *?( + <)) for

Recall M + (40) = 0, so that ^±( + 0) = 0. On the other hand, it is clear from
the definition of g±(i) that g+}(40) are independent of u*$ (40) and depend
only on uf±* ( + 0) with r'<r. Therefore, the desired conclusion (3.15)" is
obtained by induction on r.
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