
Publ. RIMS, Kyoto Univ.
28 (1992), 913-942

The Word Problem for Groups
with Regular Relations

-Improvement of the Knuth-Bendix Algorithm-

By

Chuya HAYASHI*

Abstract

The Knuth-Bendix algorithm is a practical algorithm which, for a given finite presentation
of a group, finds a finite confluent set of relations, if it terminates. From this confluent set
we can know a solution of the word problem for the group. In this paper we introduce a
concept of a regular confluent set of relations, which also gives a solution of the word problem,
and represent a class of groups with such sets in terms of the Cayley graphs of the
groups. Furthermore we make an algorithm to find a regular confluent set of relations as an
improvement of the Knuth-Bendix algorithm. This new algorithm is a genuine improvement
because there are some finite presentation, for which the Knuth-Bendix algorithm does not
stop but the new one does.

§1. Introduction

In general a finitely presented group does not have a solvable word
problem, that is, for a (and hence any) generating set, it does not have an
effective algorithm (or algorithm which necessarily terminates and has the
answer as its output) to determine whether or not a given word of the
generators represents the identity element in the group. (Such an algorithm
is called a solution of the word problem.) So there exists no effective algorithm
that, for a given finite presentation for a group, finds a solution of the word
problem. But there are such non-effective but practical algorithms, where
a non-effective algorithm means an algorithm which does not necessarily
terminate but has the answer as its output if it terminates.

The Knuth-Bendix algorithm is one of them. It finds a certain kind,
called confluent, of finite set of relations from a given finite presentation, if it

Communicated by K. Saito, March 18, 1991. Revised March 23, 1992.
1991 Mathematics Subject Classification: 20F10, 68Q42

* Mitsubishi Electric Corporation Asic Design Engineering Center, Hyogo 664, Japan.

914 CHUYA HAYASHI

terminates. The finite confluent set of relations gives a solution of the word
problem. When we obtain a finite confluent set, we can in an effectively
algorithmic (and practical) way know whether or not given two words of
the generators represent the same element in the group.

Of course some groups with finite ordered sets of generators do not
have finite confluent sets of relations. Nevertheless some of them have
regular confluent sets, where "regular" means "accepted by a finite state
automaton" (see Section 4). For example it is shown in Section 5 that
hyperbolic groups in Gromov's sense ([Gr]) (or negatively curved groups)
have regular confluent sets. So in this paper we develop a non-effective
algorithm denoted by A which can find a regular confluent set from a given
finite presentation. When we obtain a regular confluent set, we have almost
the same advantage as a finite one, namely the word problem is
solvable. However it is not proved that this algorithm A necessarily
terminates when the considered group with the finite ordered set of generators
has a regular confluent set of relations.

The contents are as follows. We define a confluent set of relations in
Section 2. We describe the Knuth-Bendix algorithm in Section 3 and finite
state automata in Section 4. In Section 5 we define regular confluent sets,
and show their properties and their characterization. We describe the
algorithm A in Sections 6—8. We show in Section 6 that a group defined
by a finite set of generators and a regular set of relations is finitely
presented. Further we mention some examples in Section 10. (If one is
not interested in the Knuth-Bendix algorithm nor the algorithm A, one may
skip Sections 3 and 7-9.)

Remark. For finite groups, though the Knuth-Bendix algorithm
necessarily terminates, the Todd-Coxeter coset enumeration is almost always
a superior algorithm. Further there is another concept of automatic groups,
of which the word problem is practicaly solvable ([CEHPT]). Incidentally
it is proved that geodesic automatic groups have regular confluent sets of
relations (see Theorem 5.5).

§28 Confluent Sets of Relations

Let A be a finite set, A* stand for the free monoid (semigroup with
unit) generated by A and € be the identity element of ^4*. An element of
A* is often called a word. For a subset R of A*xA*, let <.R> be the

THE WORD PROBLEM FOR REGULAR RELATIONS 915

congruence generated by R (with respect to A), that is, the minimal equivalence

relation in A* which contains

{(/>> q)\p = sut, q = svt for some s, teA* and (u, v)ER}.

Then A*/(R*) is a monoid. We say that A is a set of (semigroup) generators

and .R is a set of defining relations for the monoid.

For instance if G is a group presented by

<*, y, ••• \s = t, u = v, • • • > ,

then by setting A = {x, x~l
y y, y~l,~m} and

R = {(xx~l, 6), (x-
lx, 6), (yy~\ e), (y~ly, e), •-, (s, *), (u, *;),-••},

is isomorphic to G by the obvious correspondance. We do not

assume that A*/(Ry is a group in Sections 2-4, but we shall assume it from

Section 5 on.

We write < and < for a fixed well-ordering of A* with the property that

(1) For all s, UE A*, s<su and s<us.

(2) For all s, u, veA*, u<v implies su<sv and us<vs.

(In fact (1) follows from (2) and the property of well-ordering.) The

following two orderings have this property.

Example 2.1 (lexicographical ordering). First fix any total ordering

of A. For all u, VEA*, we write u<v if u is a shorter word than v or if

u and v have the same length and u is less than v lexicographicaly.

Example 2.2. Let A = {x, X, y, Y,c, C] and define x<X< y < Y<c<C.

For all u, veA*y we define u<v if with respect to the ordering of Example

2.1 (lexicographical ordering) u° is less than v° or (u° — v° and u is less than

v), where i/°, v° denote elements of A* obtained by replacing every appearance

of c or C in u, v (resp.) by 6.

We will deal only with the ordering of Example 2.1 (lexicographical

ordering) from Section 5 on. Now we fix, A, R and <.

Let £ be a subset of A* x A*. (We are interested in the case when S

is a subset of <jR>.) For all p, qeA* we write p-+s q if p = sut, q = svt for

some s, tEA* and (u, v)ES. We introduce further relations in A*. We

916 CHUYA HAY ASH

define -*f as the reflexive transitive closure of -*s, and «->f as the reflexive
symmetric transitive closure of -»s. We write p\Js q when there exists a
sequence of elements of A* p = u0, • • - , un = q such that t^<max(/>, q) for all
0<?<^ and (ut — »s ui+l or ui+l -+s ut) for all 0<i<n. In particular ^ = g
implies pus q. Notice that «-»f is the same as <$>. If given S, S' a A* x A*

satisfy that (p, q)eS implies pvs' q, then we obtain that pus q implies
p\js' q. We use -»f also for two subsets P, Q of A* x ̂ 4*, that is, we define P

->* 0 if for any (/> t, p2}^P there exists (g1} g2)e(? such that pj ->J gj and
Pz ~*f <?2- We say that S is normalized if for all (w, v)eS u>v. Then p
— >5 g implies p>q, and /> — >* g implies p>q. We say that i^6^4* is
S-irreducible if there does not exist £e^4* such that u —*>s t and M > ^ . Notice
that for all peA* there exists an *S-irreducible word q such that p -»f q
since < is a well-ordering. <^jR)>-irreducible means minimal in an equivalence
class with respect to <jR>. From now on we assume that S is normalized.
We say that S is confluent if for any re A* there exists a unique (S-irreducible
word tzA* such that r -»f t. We define DA* = {(w,w)\weA*}. The
following proposition is easily shown.

Proposition 2,3. Let S be a normalized subset of <!?> . Then the following

are equivalent.

(1) <S> = <.R> and S is confluent.
(2) Every equivalence class with respect to <jR) has a unique S-irreducible word.

(3) All S-irreducible words are <J?> -irreducible.
(4)

We say that S is R-confluent if it satisfies one of the above equivalent
conditions. Clearly, S is ^-confluent if and only if S is confluent. The
set {(u, v)e(Ry\u>v} is jR-confluent.

Assume that a finite normalized subset S of A* x A* is given. Let r
be any element of A*. We can constructively find a sequence r = r0 —»$-• —>s

rn (where rn is iS-irreducible) as follows. If r0 is not ^-irreducible, then we
can find s, t, u, veA* such that r0 = sut and (u, v)eS, and we know r0 ->s

rj =svt. We can repeat this procedure until we obtain the above sequence. If
S is l?-confluent, rn is <,R)-irreducible and (r, rn) e(R). In particular,

Proposition 2 A ([Gi]). // (A, R) has a finite R-confluent set, then
has a solvable word problem.

THE WORD PROBLEM FOR REGULAR RELATIONS 917

Definition 2.5. We define

) = {rEA*\r is not ^^-irreducible, but its any proper subword is <^}-

irreducible} and for SdA* x A* we define pr1(S) = {ueA*\(ut v)eS for some

VEA*}.

Proposition 2.60 Let S be a normalized subset of <J?>. Then the following

are equivalent.

(1) S is R-confluent.

(2)

Proof.

(1) implies (2) Assume that S is ,R-confluent. Let r be any element of

J(R). Since r is not {.R)>-irreducible, r is not »S-irreducible. There exist

p, qeA* and (u, v)eS such that r=puq. But any proper subword of r is

^jR)-irreducible and u is not, thus r = u and we obtain (r, v)eS.

(2) implies (1) Assume that prl(S)^J(R) and let r be not <^>-irreducible

element of A*. We will show that r is not ^-irreducible to show the

condition (3) in Proposition 2.3. There exists a subword u of r such that

ueJ(R). (The reason is that there exist r', r"eA* and xeA such that

r = r'xr", r' is <(J?)-irreducible and r'x is not <,R>-irreducible, further there

exist r'", r""e^4* and x'eA such that r'# = r' Vr"", r"" is <J?>-irreducible and

x'r"" is not <JR)-irreducible, thus we can take u = x'r"" . Notice that a subword

of an <JR>-irreducible word is also <J^)-irreducible.) Thus uepr^S) and r is

not /^-irreducible. Q

Example 2.70 Consider the free abelian group of rank 2

<X J ' l t^j jl — 1> (where [a, 6] = flfta~16~1 for all a, b).

Set ^4 = {^, X, y, Y} (we use X, Y instead of ^c"1, 3;"1) and

R = {(xX, 6), (Xx, 6), (yY, 6), (Fy, 6), (^^F, 6)}.

2.7.1 We define < as in Example 2.1 (lexicographical ordering) for

x<X<y<Y. Then the set of all <jR>-irreducible words is

U {xnym, X"ym, xnYm, XnYm]

918 CHUYA HAYASHI

and J(R) = {xX, Xx, y Y, Yy, yx, yX, Yx, YX}. Thus one of the ^-confluent
sets is

{(xX, e), (Xx, e), (yY, e), (Yy, (), (yx, xy), (yX, Xy), (Yx, xY), (YX, XY)}.

2.7.2 We define < as in Example 2.1 (lexicographical ordering) for
x<y<X< Y. Then one of the .R-confluent sets is

{(xX, t), (Xx, f), (y Y , f) , (Yy, e), (yx, xy), (Xy, yX), (Yx, x Y), (YX, XY)}
CO

u Q {(xy"X, y"), (yX"Y, X")}.
11=1

Example 2.8. Consider the nilpotent group

<a, y, c\[x, y] = c, [x, c] = l, [y, c] = l>.

Set A = {x, X, y, F, c, C} and define < as in Example 2.2. Set

R={(xX, f), -, (Cc, (), (xyXY, c), (xcXC, f), (ycYC, e)}.

Then one of the jR-confluent sets is

{(xX, 6), .-, (Cc, 6), (yx, xyC), (Yx, xYc), (yX, Xyc),

(YX, XYC), (ex, xc), (cX, Xc), (Cx, xC), (CX, XC), (cy, yc),

(cY, Yc), (Cy,yC), (CY, YC)}.

§3. The Kimth-Bendfx Algorithm

Definition 3.1. For any normalized subset 5 of A*xA*, we define
(to state the following lemma)

K(S) = {(p, q)\3wEA* such that (w, p)eS and w ->s q]

U((P> 9)13^, v'y s, t, we A* such that (st, v), (tw, v')eS, t / e,

and p = vw, q = sv (so stw —>s p, q)}.

If S is finite, then K(S) is also finite. For any (p, q)eK(S), there exists
we A* such that w -+s p, q. In particular K(S)c(Sy.

THE WORD PROBLEM FOR REGULAR RELATIONS 919

Lemma 3.2. Let S be a normalized subset of A* x A*. Then the
following are equivalent.

(1) S is confluent.
(2) K(S) -»J DA*. ((l)o(2) is called the Knuth-Bendix lemma.)
(3) For all (p, q)EK(S) pusq.

Proof. Clearly (1)=>(2)=>(3).

(3) implies (1) We assume that the condition (3) holds and show the
condition (1) by induction on the well-ordering of A*. Let r be an element
of A* and suppose that for any r'EA* less than r there exists a unique
S-irreducible word t'EA* such that r' — ** t' . Let t± and t2 be ^-irreducible
words such that r — >* t± and r — >* t2. We must show tl = t2.

We can assume that r is not AS-irreducible since if r is /S-irreducible,
we obtain t± = t2 (= r) clearly. Let uly u2 be elements of A* such that r

~*s ui ~~*s *i and r ~*s U2 ~*s ^2- ^ ui= M2> then tl = t2 by the induction
hypothesis. So we assume that MI ^t/2.

Claim. u± us M2.

Proof of Claim. There exist (pit q^) and (p2, q2)ES such that

^{(P!^)} wi and r-*{(P2i«2)} "2-

We have three cases.

(a) pl and p2 are disjoint subwords of r. Then ul -»{(J? q » v and
^ for some veA*. Thus2 - t (p q)}

(b) One of />! and /?2 ^s a subword of the other in r. Without loss of
generality we can assume that p2 is a subword of / > j . Then p\=sp2t
for some 5, £e./4*. Since (/> t, q±)ES and £t ->s s^2f, we obtain
(#i> S(l2t}£K(S} (°r rather (gls 5g2f) is contained in the left operand of
U in the definition of K(S)). By the condition (3), qi us j^2f and

(c) p1 and ^>2 overlap. Without loss of generality we can assume that
pl = st and p2 = tw for some 5, t, WE A* such that t / 6. Since (si,
qi)ES and (i«;, q2)ES, we obtain (g^, sq2)EK(S). Hence q\w^ssq2

and so ulusu2.
We conclude the proof of Claim and continue the proof of the lemma.

Since u1
<usu2) u1-^*tl and M2-^|^2, there exists a sequence of elements

920 CHUYA HAYASHI

of A* at most max(^1, u2) (so, less than r)

tl=z0, z'Qj zif z\, • • • , z'mi zm + i = t2

such that zj-^l^i and zj -»*£,•+! for all 0<i<m. We can replace z{ by an

»S-irreducible word zf satisfying Zi-**z?, so that each zt is /S-irreducible. By

the induction hypothesis, we obtain Zi = zi+i for all Q<i<m. Thus tl = t2,

and we conclude the proof of the lemma. Q

Let a yira'te subset R of ^f*x^f* be given explicitly. Now we define

(non-effective) algorithm called the Knuth-Bendix algorithm to produce a

finite .R-confluent set using the Knuth-Bendix Lemma in Lemma 3.2.

We recursively define a sequence of finite normalized subsets of A* x A*

R0, Rlf ••• such that (Rny = (R) and K^-J-*^ DA* for all ^>0, where

we define K(R_l) = 0. We define R0 = {(u, v)\u>v and ((u, v) or (v,u)

eR)}. Clearly <1?0> = (Ry. Assume that Rn,1 and Rn are defined so

that (Rny = (Ry and !£(/?„_ j)-^/)^. First produce K(^) (recall that

K(Rn) c </?„». Furthermore for each (M, ̂ eK^JX^^.j) find a pair

(u', ?;') of ^-irreducible words such that t£-»| u and ^->| ^' (see the
n n

statement previous to Theorem 2.4, if necessary). Let Ln c: A* x A* be the

set of all such (M', u'), then K(flJ\ /£(/*„_ ^-^ ^n and LM c= <#„>. If

LB c D^, then K^^K^^)^^ ^ and so /£(*.) -^ Dy. Then we

obtain a finite l?-confluent set J^w and this algorithm terminates.

If Ln <£ Dj*> we define

Rn+l=Rnv{(p, q)\p>q and (p, q) or (q, p)eLn}.

Then K^JXK^.^-^^^D^ and so K(R,)^+iDA^ and

We conclude the definition of this algorithm.

By (l)o(3) in Lemma 3.2, it is easily shown that we are allowed to

change the definition of Rn+i (and jRM + 1 itself) to

, q)\p>q and (p, q) or (q, p)eLn}

where

def
(7(5) = *S'\{(r, />)e/S|some proper subword of r is contained in p

In this case we have to assume that for all (u, v)eK(Rn_l) UVR v instead

THE WORD PROBLEM FOR REGULAR RELATIONS 921

of K(Rn_l)-+% DA*. It is almost always better to use this definition in
n

terms of computer time and memory because each Rn contains fewer elements.
This algorithm succeeds for Example 2.7.1 and Example 2.8. More

generally it is shown that if J(R) is finite, this algorithm terminates ([Gi]). But
in the case of Example 2.7.2 it does not terminate, since J(R) is infinite and
so there exists no finite .R-confluent set. One of our main purpose is to
introduce an algorithm to find an ^-confluent set also in such a case. The
algorithm A in Section 8 is to produce such an ^-confluent set with a certain
regular property.

§4. Finite State Automata and Regular Languages

In this section we follow [CEHPT]. We define a finite state automaton
and a regular language. In addition we show some of their properties.

Let B be a finite set. We call a subset of J3* a language over B.

Definition 4.1 (non-deterministic finite state automaton). A
non-deterministic finite state automaton over I? is a finite labelled directed
graph (not necessarily connected), with two set S0 and Y of distinguished
vertices, where a label is an element of B or the identity element 6 of B*. A
vertex of the graph is called a state. A vertex in S0 is called an initial
state, and a vertex in Y is called an accept state. A directed edge is called
an arrow.

Let M be a non-deterministic finite state automaton over B. We say
that an element of B* is accepted by M if the element is represented by
some path of arrows from an initial state to an accept state (where a path
of arrows means a finite sequence of arrows such that the target of each
arrow of the sequence except the last one is the source of the next arrow). The
language over B consisting all elements accepted by M, is called the language
accepted by M and denoted by L(M). We say that a state of M is dead
(resp. inaccessible) if there does not exist a path of arrows from the state to
an accept state (resp. from an initial state to the state). We can make a
new non-deterministic finite state automaton accepting L(M) by removing
from M all dead states, all inaccessible states and all arrows with such states
as their sources or their targets.

Definition 4.2 (finite state automaton). We say that M is a finite

922 CHUYA HAYASHI

state automaton over B if M is connected non-deterministic finite state
automaton with the just one initial state and without the label e.

Notice that this definition is exceptional. It is usual that a finite state
automaton means a deterministic finite state automaton defined below.
Anyway a finite state automaton is a special case of a non-deterministic
finite state automaton.

Definition 4.3 (deterministic finite state automaton). We say that
M is a deterministic finite state automaton if M is a finite state automaton
with the property that any pair of distinct arrows with the same state as
their source does not have the same label.

The following theorem means that languages accepted by the above
three kind of automata are equivalent (the proof is omitted).

Theorem 4.4 ([RS]). If M^ is a non-deterministic finite state automaton,
then there exists a deterministic finite state automaton M2 such that
L(M2) = L(Ml), and there exists an explicit construction of M2 from M\.

We say that a language over B is regular (over B) if the language is
accepted by a (non-deterministic, deterministic) finite state automaton over
B. We identify (B x jB)* with a subset of B* x B*. For example DB* is a
regular language over B x B. The proof of the following theorem is also
omitted.

Theorem 4.5. Let B be a finite set. Let Ll and L2 be regular languages
over B. Then the following languages are regular over B.

def
(1) L1L2 = {l1l2\l1eLl) 12EL2}

(2) L t n L 2

(3) L t u L 2

(4) L,\L2.

The following is a regular language over B x B.

(5) (L1xL2)n(BxBr.

Further, if L is a regular language over B x B, then

(6) prv(L)

is a regular language over B.

THE WORD PROBLEM FOR REGULAR RELATIONS 923

If we are given finite state automata accepting L1? L2 and L, we can
construct finite state automata accepting the above regular languages (l)-(6).

The following lemma is necessary to define the algorithm A.

Lemma 4.6. Let S be a regular language over B x B such that (e,e)
^ S. Then the following are regular languages over B x B and we can construct
finite state automata accepting them from a finite state automaton accepting S.

(1) K(S) = {(p, q)\3weB* such that (TO, p)eS and w-»s q}

u{(/>, q)\3v, v', s, t, weB* such that (st, v), (tw, v')eS, t^€,

and p = vw, q = sv (so stw-*s p, q)}

(2) C(S) = S\{(r, p)eS\some proper subword of r is contained in prv(S)}.

Proof. (1) Notice that

def
'

Let M be a finite state automaton over B x B accepting S. Since M does
not accept (e, 6), the initial state of M is not an accept state. We can
assume that no arrow of M has an accept state as its source by adding one
new accept state to M (the old accept states are no longer accept states) and
adding to M an arrow with a label (x, y) from a state 5 to the new state if
there exists an arrow labelled (jc, y) from 5 to an old accept state. Further
we can similarly assume that M has no arrow with the initial state as its
target. We can construct a finite state automaton Ml over B x B accepting
S DB* by adding an arrow labelled (x, x) from the accept state to itself for
each xeB. Similarly construct a finite state automaton M2 accepting
DB*S £>B*.

We construct a finite state automaton T over B x B accepting K' as
follows. A state of T is a pair of a state of Mi and a state of M2. The
initial (resp. accept) state of T is the pair of the initial (accept) state of Ml

and the initial (accept) state of M2. T has an arrow labelled (x, y) from a
state (sly s2) to a state (s\, s'2) if and only if for some ztB M± has the arrow
labelled (z, x) from the state s^ to the state s\ and M2 has the arrow labelled
(z, y) from the state s2 to the state s'2.

Finally we obtain the required finite state automaton over Bx B accepting
K(S) by removing from T every arrow with the accept state of T as its
source (so its target) and removing the state the pair of the accept state of Ml

924 CHUYA HAYASHI

and the initial state of M2 (and every arrow with the state as its source or
its target).

(2) Notice that

{(r, />) e/S | some proper subword of r is contained in pr^S)}

is the union of the two language

{(r, p)ES\3qeB* such that (r, q)e(DB*\{(e , €)})S DB>}

and

{(r, p)eS\3qeB* such that (r, q)eS(DB*\{(€, 0})}.

Similarly as the proof of (1), we can construct two finite state automata Tly

T2 over B x B accepting these two languages. From the above theorem we
can construct the required finite state automaton accepting S\(L(T1)uL(T2)).

D

§50 Groups with Regular Confluent Sets of Relations

We can assume that R is normalized by throwing away (uy v)eR if
u = v and interchanging u and v if u<v. From now on we assume that
A*/(Ry is a group. We define A = Au{e} where e is a new element. (In
the result the element e works similarly as the padded string $. Nevertheless
we do not use $ but e because $ has the ristriction that it cannot appear
before any element of A.) We fix < as in Example 2.1 (lexicographical
ordering) assuming that e<x for all xeA. Let Lex be the subset of (A x A)*
consisting of every element (p, q) such that p>q. Then Lex is a regular
language over A x A. We identify A* x A* with a subset of A * x A *. We
define

R=Rv{(e, 6)}.

Clearly A*/(1C) is isomorphic to A*/(Ry by the obvious correspondance.
(CR> and J(R) are still defined over A, not A. So <J?>c:^*x^* and
J(R)cA*.) Further an element r of A* is <jR>-irreducible if and only if r
is <JR)-irreducible. Any element of ^4*\^4* is not <^>-irreducible. In fact

consists of all (u, v)eA*x A* such that (u°3 v°)e(Ry, where M°, ̂ °are

THE WORD PROBLEM FOR REGULAR RELATIONS 925

the elements obtained by replacing every appearance of e in u, v (resp.) by
e. It is easily shown that J(R) = J(R)<u{e}. So instead of looking for
.R-confluent sets (over A), we shall look for R -confluent sets (over A). We
define

R' = {(p, q)e(AxA)*\q = enq and (/>, q')<=R for some g'e^4*, n>0}

u (J {(xe, ex)}
xeA

A)*.

The following two lemmas are necessary to define (and show correctness of)
the algorithm A in Section 8.

Lemma 5.1. Let S be a normalized confluent subset of (A xA)* such that
<J?'>c=<S>c:<.R>. Suppose that (u, v)e(AxA)* and (eu, ev)eS implies
(u, v)eS. Then S is < jR>n(>2 x A)* -confluent.

Proof. Notice that <<£>n(J x J)*> = <^>n(J x A)*- By the hy-
pothesis it holds that <5>c:<^>n(J x A)*. We must show that <£>=>
<#>n(J x ̂)*. Let (p, q) be an element of <^>n(JxJ)*/ First we
show that there exists n>Q such that (enp, enq)e(Rryc:(Sy. If (z,w)
eA* x A* and z -*{(ee)} wy then z — >~, ew since R' contains (xe, ex) for each
XEA. So z -»£ w implies z ->|, e"'w; for some w'>0. Thus we obtain (en/>, e"g)
e<^')for some w>0. Let p', g' be *S-irreducible elements such that p ->*/>',
g-»|g'. Because (w, T;)e(^4 x^4)* and (ew, e^)e5 implies (u, v)ES, enp' and
e'Y are ^-irreducible. We obtain enp' = enq and p' = q since S is (^-confluent,
enp ->| e"/>' and e"g -»f eY- So (/>, g) e <S> and we obtain <^ > n (A x A)* c
<^>. Thus <£>n(J x J)*-<^>. Since 5 is confluent, 5 is
(A x J)*-confluent. D

Lemma 5.2. Let S be a normalized <^> n (A x A)* -confluent subset of
(A xA)*. Then Sv{(e, e)} is R-confluent.

Proof. For re A*, r is <,R)-irreducible if and only if r is <J5) n
(J x J)*-irreducible. Furthermore £rt (51) z> J(<,R> n (A x A)*) ^ J(R).

So />r!(5u{(6, e)})z>J(^). Since Su{(e, e)}c=< JR>, Su{(«, e)} is £-
confluent. Q

926 CHUYA HAYASHI

Definition 5.3, We say that a normalized subset *5 of (A x A)* is

R-semiconfluent if *Su{(e, e)} is R-confluent.

Clearly pr^S) =3 J(R) if and only if $ is j?-semiconfluent. If S is a regular

.R-semiconfluent set over A x A, the set consisting of all {!?)>=irreducible

words A*\(A*prl(S)A*) is regular over A (so A). Now we concentrate

on finding a regular J?-semiconfluent set from R.

Defioltiofii 5.4o We call the following set the minimal R-semiconfluent

A)* | peJ(jR) and g is <^>n(J x J)*-irreducible}.

set

Notice that qEA* is <J?)n(J[x^4)*-irreducible if and only if q = enq for

some nonnegative integer n and for some <(/^)-irreducible word

For each word r = xl--xn (xtEA), we define

-'-Xi forQ<i<n
, .

r for i > n

Let G be the group J*/<^>- For each WE J* let w be the element of G

represented by w. From now on in this section except Theorem 5.9, we

assume that A is closed under inversion. Let F^(G) stand for the Cayley

graph of the group G with respect to the generating set A (or rather the

directed labelled graph such that the set of vertices is G and for each xeA

and for each geG there is a directed edge labelled x from the vertex g to

the vertex gx). Let d be the distance function in Fjj(G) where length of

each edge is 1. FA(G) is considered as a subgraph of FA(G). We often

consider an element w of A * as a path from the identity element to w in FA(G).

For a positive number k and a point q in FA(G) we call the following

subset of FA(G) the hausdorff k- neighbour hood of q.

{gerA(G)\3i>0 d(g,W)]<k}.

Theorem §05. The following are equivalent. {Recall that A is closed
under inversion.)

(1) The minimal R-semiconfluent set is regular over Ax A.
(2) There exists a constant k>0 with the following property. For any

THE WORD PROBLEM FOR REGULAR RELATIONS 927

(/>,#) e<JR> such that pEJ(R) and q is <jR) -irreducible, p is in the hausdorff

k-neighbourhood of q in the Cay ley graph FA(G).

Proof.

(1) implies (2) Let M be a finite state automaton without a dead state,

accepting the minimal j? -semiconfluent set. For each state s we fix a

path of arrows from the state 5 to an accept state, and let (us, vs)E(A x A)*

be represented by this path. We take k' greater than the length of (us, vs)

in any state s. Let (/>, q) be an element of <^) such that peJ(R) and q is

<.R)-irreducible. By setting n — length(/>) — length(g) and q=enq, we obtain

(p, q)eL(M). We show that for all 0 < i < length(/>) dffitj, qrU))<2k'.

Since (/>, q')eL(M), (p(z)> q'(i)) is represented by a path of arrows from the

initial state to a state 5. Thus

(p(i)usy q'(i)vs)EL(M), p(i)us = q'(i)vs and ^''W)^^'1-

We obtain d(p(i) , q'(i)) = d(us^^) < 2k'. Hence p is in the hausdorff

2&'-neighbourhood of q' in the Cayley graph FA(G) and so p is in the

hausdorff 2&'-neighbourhood of q in FA(G).

(2) implies (1) Let T be the minimal .R-semiconfluent set. For each

we fix zxeA such that zxx = 1 . We will show that for any (p,

for all 0<i <length(/>).

Since q is <^)n(^4 x ^4)*-irreducible, there exist w>0 and <^)-irreducible

word qeA* such that qf = enq. Then (p, g)e<,R>. By the hypothesis p is

in the hausdorff ^-neighbourhood of q in TA(G). First we show n<2. Let

p = xw (x<=A, we A*). Then (wy ^xg)e<jR>. Since peJ(R), w is

irreducible. Thus w<zxq holds.

n = length(/>) — length(^)

< length(«;) + 1 - length(g) + (l - length(^))

= length(^) — length(£xg) -}- 2

So we obtain n<2.

For 0</<length(/>) there exists 0<j<length(g) such that d(p(i) ,

q(J))<k. Since p(i) and q(j) are <(j^)-irreducible, they are geodesies in FA(G)

and so \i—j\<k.

928 CHUYA HAYASHI

<k + k

= 2k

<2k + n

For f = length(p), d(p(0", 7(0) = 0.

Now we construct a finite state automaton M over ^4 x A accepting at
least all elements of T. Let N be the subset of G consisting of elements
with distance at most 2k-\-2 from the identity element in FA(G) . The state
set of M is N. The initial and accept state is the identity element in G. M
has an arrow labelled (x, y)eA xA from a state nseN to a state nteN if
and only if jc"1 7?^ =nt. Clearly TcL(M)c:<JR). L(M)nLex is regular. It
contains T and so it is jR-semiconfluent. Define

S = C(L(M) n Lex \ (A *{e}A * x J *).

Then S is regular and contains T. Further pri(S) = J(R). Let H=
J(R)u(jxeA{xe}y then the required T is equal to S\(A* x J*£L4 *), and it
is regular. n

Corollary 5. 6, Suppose that A and the set of all <jR) -irreducible words

are a part of automatic structure ([CEHPT]) or in particular suppose that
G = A*/(Ry is a hyperbolic group ([Gr]) (or negatively curved group). Then
the minimal R-semiconfluent set with respect to any ordering of A is regular.

Similarly we can show the following two theorems.

Theorem 5.70 The following are equivalent.

(1) There exists a regular R-semiconfluent set.

(2) There exists a constant k>0 with the following property. For any p e J(R)

there exists qeA* such that (p, g)£<jR>, p>q and p is in the hausdorff
k-neighbourhood of q in the Cay ley graph FA(G).

Theorem 5.80 Suppose that there exists a constant k>® with the following
property. For any peA* such that in FA(G) p is not a geodesic but any proper

THE WORD PROBLEM FOR REGULAR RELATIONS 929

subword of p is a geodesic, there exists qeA* such that (p, g)
length(p) > length(g) and p is in the hausdorff k-neighbourhood of q in the
Cayley graph FA(G). Then the set of all geodesic words in A* is a regular
language over A.

Theorem 5.9. If (A,R) has a regular R-semiconfluent set, then
G = A*/(Ry has a solvable word problem.

Proof. This is clear since the set of (l^)-irreducible words is
regular. But directly for a given word re A* we can find <JR)-irreducible
word r such that (r, r ')e<.R> by using (e, e) and elements of the regular
^-semiconfluent set with length at most length(r). (See the statement
previous to Theorem 2.4, if necessary.) Q

Theorem 5.10. If the set of all (R) -irreducible words is regular, or in
particular if (A, R) has a regular R-semic on fluent set, then the growth function
of G = A*/(R) with respect to the generating set A is a rational function.

Sketch of Proof (K. Saito et al.). Let M be the finite state automaton
accepting all the <(jR}-irreducible words. For any nonnegative integer n let
an be the number of elements in L(M) with length n. Then the growth
function in z

rt = 0 n = 0

is a rational function in z, where H is the transition matrix of M, e is the
vector of its accept states, / is the vector of its initial states and / is the
unit matrix. O

§6. Amalgamation of States with the Same Word Difference

When we start with a finite set R and try to find an infinite regular
.R-semiconfluent set, how can we produce a finite state automaton T over
A x A such that L(T) ci <jR) and L(T) is infinite? If we are given a candidate
for a finite state automaton accepting an jR-semiconfluent set, we can check
its correctness at least in easy cases such as Example 2.7.2. But if we
simply continue the Knuth-Bendix algorithm, we cannot obtain even a

930 CHUYA HAYASHI

candidate in finite time. In this section we describe a way, amalgamation
of states, for producing an infinite (and regular) set of relations from a given
finite one. Furthermore we show that finitely generated and regularly related
groups are finitely related.

Definition 6.1. Let M be a finite state automaton over A xA and let
sl and s2 be states of M. Amalgamation of the states sl and s2 is topological
identification of sl and s2 in M. More strictly, the result of amalgamation
of 5j and s2 is the finite state automaton obtained by adding one new state
s0 to M, changing the source of every arrow with st or s2 as its source to
the state s0, changing targets similarly and removing s^ and s2 from M. (s0

is an accept (resp. initial) state if and only if either Sj or s2 is an accept
(initial) state.)

Notice that all words accepted by the original finite state automaton are
accepted by the result of amalgamation.

Definition 6.2,, Let M be a finite state automaton over A xA. Let
5 be a subset of A*xA* such that G = A*/(Sy is a group. We say that
M is a word difference automaton (with respect to S) if there exists a
function / from the state set of M to the group G, with the following
property. The images of the initial state and all accept states are the identity
element in G, and existence of an arrow labelled (x, y)eA xA with a source
state 5t and a target state s2 implies f(s2) = x~1f(si)y (where for all zeA*,
z denotes the element of G represented by z).

From now on we deal only with finite state automata which have no
dead state and no inaccessible state.

Lemma 6.3. Let S be a subset of A*xA* such that G = A*/(Sy is a
group. Let M be a finite state automaton over A x A . Then the following
are equivalent.

(1)
(2) M is a word difference automaton.

Proof. Clearly (2) implies (1).

(1) implies (2) We define / in Definition 6.1. First fix a state 5 of
M. Choose a path of arrows from the initial state to the state s. Let

THE WORD PROBLEM FOR REGULAR RELATIONS 931

(u, v) be the element of (A x A)* represented by this path and define

f(s) = u~lv. We show that f(s) is well-defined (for this fixed s) to conclude
the proof. We fix a path of arrows from the state s to an accept state. Let

(u, v) be the element of (A x A)* represented by this path. Then (uu,
vv')eL(M) c: <£>. Thus uu ' = vv and so ~u~l^ = li' ~v~l. Q

Definition 6.4. When M is a word difference automaton over A x A ,
the function / in Definition 6.2 is unique and so we call the image of a state
by / the word difference of the state.

The following two lemmas are easily shown.

Lemma 6.5. Let M be a word difference automaton. Then the result

of amalgamation of states of M with the same word difference is also a word

difference automaton.

Lemma 6.6. Let M and M' be word difference automata with respect

to S (which may be the same). Suppose that M accepts (slwltl, S2w2t2) and

M' accepts (sltl, s2t2) for some (s1? s2), (
wi> W2\ (*i> ̂)e(^ xA)*. Then the

target state of the path of arrows in M representing (s1, s2) and the target

state of the path in M representing (slzvl, S2w2) have the same word difference.

Way to find a regular set of relations from finite relations. Lemmas 6.5 and
6.6 give the way to make a finite state automaton T over A x A such that
L(T) c: <^-R) and L(T) is infinite, from finite sets of relations L(M) and
L(M'). That is, we may be able to make such a word difference automaton
by finding two states of M with the same word difference using M', and

amalgamating these two states.

Theorem 6.7. Let T be a finite state automaton (without a dead state nor

an inaccessible state) over A x A and N be a finite subset of A * x A * which

contains (e, e). // G = A*/(L(T)vNy is a group, then G is finitely presented.

Proof. Without loss of generality we can assume that no arrow of T

has the initial state as its target. We fix zxeA* such that (xzx, e)e<L(T)uAT>

(so (zxx, e)e<L(T)uAT>). We can assume that (xzxt e), (zxx, e)<=N for all
xeA by adding to N these elements (xzx, 6), (zxx, e), if necessary (of course

932 CHUYA HAYASHI

this addition does not affect (L(T)vNy). Then for all Lc:A*xA*

A*/(LvNy is a group.

We prove the theorem inductively with respect to the number

(1) ^ {(the number of arrows with the state s as their targets) — !}
s

where the sum is taken over all states s of T except the initial state. Notice

that this number (1) is at least 0. When it is 0, there exists just one arrow

with each state as its target except for the initial state. This implies that

L(T) is finite.

We assume that the theorem is true when the number (1) is

n(>0). Suppose that the number (1) with respect to T is n + 1. We must

show that ^*/<L(T)uJV> is finitely presented. Since the number (1)

is greater than 0, more than one arows have one state as their targets. Choose

one such arrow al5 let s0 be its source state and let sl be its target. There

exists a sequence of arrows from the state s1 to an accept state. Let «2,

• • - , am be such a sequence.

We construct a new finite state automaton T" as follows. Remove the

arrow al from T. Add m new states s\, • • • , s'm. Finally add m arrows a\

(l < z < w) with the same label as at from the state sf
i_l to the state s| where

s'0 denotes s0 and s'm is an accept state (s\, •••, s'm_l is not accept states). Notice

that the number (1) with respect to T' is n.

A */^jL(T")uJV) is a group. T" is a word difference automaton with

respect to L(T')uN by Lemma 6.3. Further sm and sm have the same word

difference 1. Since am and a'm have the same label, 5m_ 1 and s'm_ t have the

same word difference. Similarly st and s't have the same word difference for

all m>i>l. We obtain (a copy of) T by amalgamating st and sj for all

l<i<m. This means that T is a word difference automaton with respect

to L(T')vN. Thus

L(T) c: <L(T')uAT> and

Clearly L(T) =3 L(T'). Hence (L(T)vNy = (L(T')vNy. By the induction

hypothesis G = A*/(L(T)(jNy=A*/(L(T')vNy is finitely presented. Q

Corollary 608D // (^4, R) has a regular R-semiconfluent set over A xA

and A*/(Ry is a group, then yl*/<jR> (= JI*/<,R» is a finitely presented group.

THE WORD PROBLEM FOR REGULAR RELATIONS 933

Corollary 6.9. All (asynchronous) automatic groups are finitely presented.

§7. To Reduce All Elements Accepted by a

Finite State Automaton

We want to apply the Knuth-Bendix algorithm to the case when Rt's

in the definition of this algorithm are regular over A x A . Then the remaining

problem is how from given finite state automata S and T over A xA such

that L(S), L(jT)c:<(J5) and L(T) is normalized, we should find a finite state

automaton M over A x A such that L(S) -+*(r) L(M), L(M) c <^> and all

elements of L(M) are pairs of L(T)-irreducible elements. But as recognized

later the author gave up finding M which accepts only pairs of L(T)-irreducible

elements (see Remark below).

Definition 7.3 below gives a way to find a finite state automaton M as

above. To do this more efficiently, we decompose S by path of arrows

(Definition 7.1) previously. These ways can be done constructively.

Definition 7.1 (decomposition of a finite state automaton by

path). Let S be a finite state automaton. Let AR be the set consisting

of all arrows of /S. Let ARseq be the set consisting of all finite sequences

of arrows from an initial state to an accept state. Let ARim be the image

of the obvious projection from ARseq to 2AR (the set consisting of all subset

of AR). For all PeARim, we define SP as the finite state automaton obtained

by removing from S all arrows not in P (and all dead states). Then we

obtain the decomposition L(S) = (JPeAR L(SP).

Definition 7.2. Let T be a finite state automaton over A x A . We

say that T is of reducing type if its initial state is the only accept state, and

L(T) is normalized.

Definition 7.3 (complete reduction of a finite state automaton).

Let S0 = S be a finite state automaton over A x A (we may think of it as

an above SP). Let T be a finite state automaton of reducing type. Let T'

stand for the finite state automaton obtained by adding to T an arrow labelled

(x, x) from the initial (and accept) state to itself for each xeA. Then

For i = \ or 2, we say that a function h is an i-\-homomorphism from S to

934 CHUYA HAY ASH i

7" if h maps states of S to states of T", the initial state and all accept states

of S to the initial (and accept) state of T", each arrow labelled (x l y x2) to

an arrow labelled (xt, y) for some ye A so that the image of its source state

is the source state of its image and the image of its target is the target of

its image.

We say that h is an i-l-reduction homomorphism if h is an i-l-

homomorphism and the label of the image of some arrow of S is the form

(xi9 y), where xt>y.

If there exists an i-l-reduction homomorphism for some i, let Sl be the

finite state automaton obtained by replacing xt of each label of S0 by y of

the label of T' in the definition of i-l -homomorphism. Then L(S0) -»*(T)

L(Si) and L^) c <L(S0) u L(T)>. Then we say that S^ is a result of

(i-)reduction of S0 by T. By repeating this procedure, we obtain a sequence

of finite state automata S = S0, • • • , Sm such that L(S0) -»*(T) >*(T}L(Sm),

Sm cannot be reduced (or there does not exist i-l -reduction homomorphism

from Sm to T') and L(Sm) c <L(50) uL(T)>.

Claim. This process necessarily terminates.

We say that Sm is a result of complete reduction of S by T.

Proof of Claim. We can assume that there exists a path y of arrows

in S from the initial state to an accept state including all arrows in S, by

considering the decomposition of S. It is sufficient to show that for fixed

i there does not exist an infinite sequence of finite state automata S = S0,

Sly-- such that Sj+i is a result of z-reduction of Sj for all y>0. Assume

that there exists such a sequence. For nonnegative integer k let (w l j f c , ^2,fc)

be the element of (A x A)* represented by the path of arrows in Sk

corresponding to the path y in S. Since Sj+i is a result of x-reduction of

Sj, wij+l<wij holds. This means that wiQ> wu > • • • . Since < is a

well-ordering, this cannot happen. Thus we conclude the proof. G

Remark. By the following example it seems to be impossible to make

a finite state automaton M consisting of only L(T)-irreducible elements.

Set L(r) = {(**, ee\ (**, yy\ (yy, wx), (xw, wx)} and L(S) = {(z2n,

y2n)\n>\}. Then for example L(M) should be {(e2n
y wnxn)\n>l} because

of z2n = (zz)n ->?(T) (ee)n = e2n and y2n = (yy)n ->?(T) (woe)" ->J(T) wV. But this

set is not regular.

Definition 7.4- Let H be a finite state automaton. We say that H is

THE WORD PROBLEM FOR REGULAR RELATIONS 935

NAIT if H has no arrow with the initial state as its target and if its initial

state is not an accept state. We say that H is NAAS if H has no arrow

with an accept state as its source.

If H and H' are finite state automata which are NAIT and if H" is the

result of amalgamation of the initial states of H and H', clearly

L(H") = L(H) u L(H') holds.

The following definition gives a way to find M in the head of this

section from S and T using decomposition and complete reduction.

Definition 7.5 (decomposition complete reduction). Let S be a

finite state automaton over A x A which is NAIT. Let T be a finite state

automaton of reducing type. Let L(S) = (JPL(SP) be the decomposition of

S. Since S is NAIT, SP has just one arrow with the initial state as its

source for all P. For each P let S'P be the result of complete reduction of

SP by T. S'P has just one arrow with the initial state as its source. Let

(KI, x2) be the label of this arrow. We can assume that x1>x2 by

interchanging y± and y2 for all label (yl9 y2) in SP, if necessary. We call

the result of amalgamation of the initial states of all SP's the result of

decomposition complete reduction of S by T.

Lemma 7.6. Let S be a finite state automaton over A x A which is

NAIT. Let T be a finite state automaton of reducing type. If S' be the result

of decomposition complete reduction of S by T. Then L(S) —»*(r)L(/S") and

L(S') c= (L(S) u L(T)>. Further every element of L(*S") has the form (xlwl,

x2w2) where xly x2eA, wly w2eA* and xi>x2.

Let 5 be a finite state automaton over A x A and let T be a finite state

automaton of reducing type. Assume that L(S), L(T)e<JR>. Now we go

into details to find a finite state automaton M such that L(M) c: (Ry and

(1) for all (/>, q)eL(S) p uL(r)uL(M)<?.

Notice that (1) is a weaker condition than L(S) —**(T)L(M). (Of course

defining L(M)=L(S) satisfies (1), but it will not be practical in terms of

computer time and memory, and further whether the algorithm stops or

not.) It may seem to be sufficient that we define M as the result of

decomposition complete reduction. Nevertheless such M may accept (eu,

ev) for some u, veA*. So such M is not good (see Lemma 5.1). Next

936 CHUYA HAYASHI

we consider removing such elements (eu, ev).

For all Uc: A*xA*, we define \U] = {(p, q)eA*xA*\p(juq}. Then

(1) is the same as L(S) a fL(T) u L(M)1. Notice that if Ul c= [£721, then

rt/j c ri72i.

Definition 7»7 (removing arrows with diagonal labels),, Let 5 be

a word difference automaton over A x A with respect to jR. Define S' as

the result of amalgamation of the initial state of S, its all accept states and

its states connected with the initial state or accept states by paths of

non-oriented arrows with labels of the form (#, x)eAxA. (Notice that

L(S) c L(S') c <jR>.) Let S" be the finite state automaton obtained by

removing from Sf every arrow labelled (x, x) for some xeA with the initial

state as its source (so its target). (Then S" does not accept (xu, xv) or (ux,

vx) for any xeA, (u, v)e(A xA)*. Notice that L(S") c L(S') and

L(S') c: [X(S"')l.)Let S"' be the finite state automaton obtained by adding to

S" a new initial state (the old initial state is no longer an initial state) and

changing the source of every arrow with the old initial state as its source

to the new initial state. (Then L(Sr") a L(S") and L(S") c: \L(S'")']. Notice

that the result of amalgamation of the initial state of S"f and its accept state

is the same as S".) We say that S'" is the result of removing arrows with

diagonal labels.

Lemma 7.8. Let S be a word difference automaton with respect to R.

Let S"f be the result of removing arrows with diagonal labels. Then S'" does

not accept (xu, xv) or (ux, vx) for any xEA, (u, v)e(A xA)*. In particular

S'" does not accept (eu, ev) for any (u, v)e(A xA)*. Further L(S) c \L(S'"y]

c CR>. S'" is NAIT and NAAS.

The following definition gives a way to make M itself in the head of

this section from S and T.

Definition 7.9 (RAD-DCR*). Let S = SQ and T be word difference

automata over A x A with respect to R. Let T be of reducing type. Define

SQ as the result of removing arrows with diagonal labels of S0, and Sl as

the result of decomposition complete reduction of *S"0. (Then Lemma 7.8

tells that L(S0) c [L(5"0)l c <!>>. Lemma 7.6 tells that L(S'0) -»f(T) L(S^

and L(S^ c <L(5"0) u L(T)>. These mean that L(S0) c \L(S'0y\ c \L(Sl) u

L(T)1 c <5>.) Similarly we can define Si, S2, S'2, • • - , S'm, Sm+1, where

THE WORD PROBLEM FOR REGULAR RELATIONS 937

S'm cannot be reduced (or more strictly, any element S'mp of decomposition

of S'm cannot be reduced).

Claim. This process necessarily terminates.

Then we call Sm+1 the result of RAD-DCR* of S by T.

Sketch of the proof of Claim: For each n > 0 we define an as follows. Let

L(S'n) = (JPL(S'np) be the decomposition of S'n. We define

an = max {the number of arrows in S'np}>
p

where the maximum is taken over P for which S'np can be reduced. Then

an is strictly decreasing sequence. So this sequence is not infinite. Q

Since any element S'mp of decomposition of Sf
m cannot be reduced,

1) = {(w1, w2)\(w1, w2) or (w2, Wi)eS'm, and w1(

where w(l) means the first letter of w. (Notice that S'm does not accept

(xu, xv) for any xeA, (u, v)e(A xA)* from Lemma 7.8). Further Sm+i

is NAIT and NAAS since so is S'm. From L(S0) c \ L(S J v L(Ty\

similarly it holds that

L(S0) c rL(S!)uL(T)l c [L(S2)uL(T)l c - c rL(5m+1)uL(T)l c

Thus we obtain the following lemma.

Lemma 7.10. Let S and T be word difference automata over Ax A

with respect to R. Let T be of reducing type. Define M as the result of

RAD-DCR* of S by T. Then L(S0) c \L(M) u L(T)1 c <£>. M is NAIT

and NAAS. Further M accepts only elements of the form (wly w2)e(A x A)*

where w1(l)>w2(l).

§ 8. An Improvement of the Knuth-Bendix Algorithm

Let a finite set A and a normalized finite subset R of A* xA* be given

explicitly. Let a total ordering of A be given. Then a well-ordering < of

A* is determined as in Example 2.1 (lexicographical ordering). We have

prepared to exhibit our (non-effective) algorithm A to produce a regular

jR-semiconfluent set using Lemmas 3.2, 5.1 and 5.2. This algorithm is very

938 CHUYA HAY ASH i

similar to the Knuth-Bendix algorithm except for using finite state automata.
Now we describe the algorithm. First construct the finite state

automaton S0 over A x A accepting R'. (Since we no longer refer to R,
finiteness of R is not essential as long as R' is regular.) Let T0 be the
result of amalgamation of the initial state of S0 and all its accept states. We
define recursively finite state automata Sn and Tn for n>0, with the property
that for all n>0 (in fact, Tn is the result of amalgamation of the initial state
of Sn and all its accept states. See Remark below about the reason why Tn

is necessary.)

(1) Sn is NAIT and NAAS,
(2) L(Sn) and L(Tn) are normalized,
(3) Tn is of reducing type,
(4) <^'>C<L(5B)> = <L(Tn)>c=< JR>,

(5) Sn does not accept (eu, ev) for any (u, v)E(A xA)*,

(6) for all (p, q)eTnp UL(SJJ) q,
(7) for all (p, q)eK(Sn_1) p UL(r } q and so pVL(S) q, where we define

Let n be a nonnegative integer and assume that £„_!, Sn and Tn are defined,
satisfying the above (l)-(7). We must define Sn + l and Tn+l. First construct
a finite state automaton Kn accepting J^(L(5'n))\JKr(L(*Sw_1)). Next let Mn be
the result of RAD-DCR* of Kn by Tn. Then

a) for all (p, q)eK(L(SH))\K(l.(S^1))9 P^L(M^L(Tn} q,
b) L(Mn) c: <£>,
c) L(Mn) is normalized,
d) Mn does not accept (eu, ev) for any (u, v)e(A xA)*,
e) Mn is NAIT and NAAS.

If L(MB) c L(Tn), then for all (p, q) eK(L(Sn))\K(L(Sn. t)), p uL(iy q. From
(7) it holds that for all (p, q)eK(L(Sn))y pvL(Tn) q and so p uL(Sn) g. From
(2), Lemma 3.2 tells that Sn is confluent. From (2), (4) and (5), Lemmas
5.1 and 5.2 tell that L(Sn) is ̂ R-semiconfluent and this algorithm terminates.

Suppose that L(Mn) <£ L(Tn). Find pairs of states of Mn with the same
word difference, if any, using Tn except for its initial state and its accept
states (see Lemma 6.6). Amalgamate each of the pairs and let M'n be the
result. We define Sn+l as the result of amalgamation of the initial state of

Sn and the initial state of M'n (so L(Sn+l) = L(SH) u L(M'n)). Define Tn+1 as
the result of amalgamation of the initial (and accept) state of TM> the initial

THE WORD PROBLEM FOR REGULAR RELATIONS 939

state of M'n and all its accept states.

Remark. Similarly to the case of the Knuth-Bendix algorithm, we can

define Sn+l as L(Sn+1) = C(L(Sn))u L(M'n). In this case notice that Tn is

not necessarily the result of amalgamation of the initial state of Sn and all

its accept states. This change of definition almost always makes this algorithm

more efficient. Further the author thinks that we should require only the

minimal jR-semiconfluent set to find a semiconfluent set more quickly.

Actually in our computer program some other tricks are used. But we shall

not go into details.

This algorithm A is implemented as a computer program written by C

language. The program consists of about 2900 lines. In Section 10 we

give some examples to which we apply this program.

§9o Orderiogs of Generators

When we apply the algorithm A to a given finite set A and a given

subset R of A*xA*, generally we do not know which total ordering of A

is the best. In this section we describe a principle to know, while executing

this algorithm for an ordering of A, that the ordering is likely to be bad.

From now on we assume that A is closed under inversion in A*/(Ry

so in A*/(Ry. (But this restriction is not essential.) Let x and y be

elements of A and let u and v be elements of A* satisfying (xuy,

v)e(Ry n (A xA)*. Further let x and y1 be elements of A such that

xx=yy=\ in J*/<^>- Then (x'v,eeuy), (vyf ,eexu) E (Ry n (A xA)*. Sup-

pose that x<v(l) (the first letter of v). Then xuy<v by the lexicographical

ordering. So these two relations (x'v, eeuy), (vyf, eexu) are unnecessary

to produce a JR-semiconfluent set since v is not (jR)-irreducible and so x'v,

vy'$J(R). Thus

Principle 9.1. A given total ordering of A is perhaps bad for the

algorithm A if, while executing A for the ordering, we get a pair of relations

of the form (x'v, eeuv), (vy, eexu) accepted by an Sn in the definition of A

where x, y, x, y'eA and u,veA* such that x>v(l), v is LGSJ-irreducible

and xx=yy' = l in A*/(R). Thus if we get such two relations, it is perhaps

better to interchange the ordering of x and v(\). (The ordering of the other

elements of A may also change.)

940 CHUYA HAYASHI

Of course these two relations may be unnecessary even if we do not change
the ordering. In addition since this change of the ordering affects the other
relations, in some cases this principle will work wrong. In the next section
some examples will be given where it works well.

§ i00 Some Examples

In this section we give some examples to which we apply the algorithm
A, implemented as a computer program. In the case of Examples 10.1-10.3
the cpu time to find the semiconfluent set is less than 10 seconds for small
/, m and n.

Example 100L We consider the free abelian group of rank 2 as in
Example 2.7

<*, y \ [x , y] = l>-

Set A = {x, X, y, Y] and R = {(xX, e), (Xx, e), (yY, 6), (Yy, 6), (xyXY, 6)}.

Then A={e, x, X, y, Y} and R' = {(xX, ee\ (Xx, ee), (yY, ee), (Yy, ee),

(xyXY, eeee)}.

10.1.1 We define < as in Example 2.1 (lexicographical ordering) assuming

that e<x<X<y< Y. Then the algorithm A terminates with the following

finite J?-semiconfluent set (or a finite state automaton accepting it).

{(xX, ee), (Xx, ee), (yY, ee), (Yy, ee), (yx, xy), (yX, Xy),

(Yx, xY), (YX, XY)}.

10.1.2 We define < assuming that e<x<y<X<Y. The algorithm A still

terminates with the .R-semiconfluent set

{(xX, ee),--,(Yy, ee), (yx, xy), (yX, Xy), (Yx, xY), (YX, XY)}

u 0 {(xy"X> eey")> (yX*Y, eeX")}.
»=1

Example 10B28 We consider the triangle groups

A(/, m, ») = <*, y, z\X
2=y2=z2 = (Xy)> = (Xz)m = (yz)" = iy.

THE WORD PROBLEM FOR REGULAR RELATIONS 941

Set A = {x, y, z} (x<y<z) and

R = {(xx, 6), (yy, e), (**, 0, ((*3>)f, *)> ((**)m, f)> ((?*)", *)}•

The algorithm vi is likely to terminate with a finite .R-semiconfluent set for

any /, ra, n>\.

Example 10.3. Consider the von Dyck groups

D(l, m, W) = <K, v\ul = vm = (uv)n = iy.

Set A = {u, U, v, V] (u<U<v<V) and

R = {(uU, e),...,(Fi;, e), (ii1, 6), (vm, 6), ((MU)-, 6)}.

Then the algorithm A seems to terminate for all /, m, n>\. The produced

^-semiconfluent set is often finite, but in the cases 1 = 3, n = 2 it appears to

be infinite. However also in these cases the algorithm perhaps produces a

finite .R-semiconfluent set, if we newly define the ordering < as satisfying

e<u<v< U<V.

Example 10.4. Consider the groups

Define A = {xiy Xl9 yl9 Fu x2> X2> y2> ^2> z> %} anc^ R as usual.

10.4.1 Define the ordering < as satisfying e<#1<(the ordering in the

definition of A). For / = 0, 1 and 2 the algorithm A terminates. For 1=2

the produced ,R-semiconfluent set is finite and for / = 0,1 it is infinite.

10.4.2 By Principle 9. 1 we know that the following ordering may be better.

e<xi<Xl<x2<X2<yi< Yl<y2< Y2<z<Z.

So we apply the algorithm A for this ordering. Then for / = 0, 1, 2, 3 this

algorithm terminates. The produced set is finite for 1 = 0, 2 and infinite for

/=!, 3. (In the case /=!, for any ordering of A the JR-semiconfluent set

is perhaps infinite.)

The following example is not the result of the computer program (but

it is noticed by the above example).

942 CHUYA HAYASHI

Example iO.,5* Consider the compact 2-dimensional surface groups

<*i, yi,'~,xg, yg [*!, yd — \xg, yg] = iy.

Set A = {xit Xly 3/ l f Yly~-,xgy Xg, yg, Yg} and R as usual. Define < as in
Example 2.1 (lexicographical ordering) assuming that x^ <Xl <••• <xg<Xg<

y\<Yl<-" <yg<Yg. By manipulating we can easily show that the union
of the following two sets is .R-confluent.

{(*!*!, e), (XlXl, e),-,(yfF,, e),- -,(!>„ e)}

{(/>, q)£(AxA)*\p~iq or q~lp is a subword of (xlylX1 F^-ay^Y,)2

with length 4g and p (l) (the first letter of p) is yt or F£ for some z}

where r"1 is the formal inverse of r for all re^4*5 for example

Acknowledgment

The author wishes to thank K. Saito and the referee for their valuable
comments and I. Naruki for his encouragement.

Bibliography

[AU] Aho, A.V. and Ullman, J.D., The Theory of Parsing Translation, and Compiling,
Vol. I, Prentice-Hall, Englewood Cliffs, N.J., 1972.

[BOSS] Baumslag, G., Gersten, S.M., Shapiro, M. and Short, H., Automatic groups and
amalgams, preliminary version, (MSRI preprint 09123-90).

[CEHPT] Cannon, J.W., Epstein, D.B.A., Holt, D.F., Patterson, M.S. and Thurston,
W.P., Word processing and group theory, to appear. Preprint available from
Epstein or Holt.

[ER] Epstein, D.B.A. and Rees, S., Aut programs for automatic structures, computer
tape from Warwick University.

[Gi] Gilman, R.H., Presentations of groups and monoids, J. Alg. 57 (1979), 544-554.
[Gr] Gromov, M., Hyperbolic groups, in Essays in Group Theory, M.S.R.I. series

8, Gersten, S.M., editor, Springer Verlag (1987), 75-263.
[HU] Hopcroft, J.E. and Ullman, J.D., Formal languages and their relation to automata,

Addison-Wesley, 1969.
[RS] Rabin, M.O. and Scott, D., Finite automata and their decision problems, IBM

Jour, of Research and development, 3 (1959), 63-91, in Sequential machines: selected
papers, edited by Moore, E.F., Addison-Wesley.

[Sa] Saito, K., The Limit Element in the Configuration Algebra for a Discrete Group:
A precis, Proc. Internal. Congress Math., Kyoto (1990), 931-942.

