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§1. Introduction

The present paper is devoted to the study of eigenvalue asymptotics of
Schrodinger operators with only discrete spectrum. Let Ve L2 (R") and
V(x)>1. 'The Schrodinger operator —A+ T admits the unique self-adjoint
realization in L2(R") where A denotes the Laplacian in R". We denote it
by T. If V(x)— o as |x| » oo, then T has an infinite sequence of positive
eigenvalues, {4;};2,, diverging to infinity. Let N(4), 4>0, denote the
number of eigenvalues less than 1 with repetition according to the
multiplicities. Under suitable assumptions on V, we can prove the asymptotic
formula

(1.1) N(/1)~(27r)—"w,,f (A=V(x)){*dx as A—

n

where @, is the volume of the unit ball in R" and

J(x).4 =max{f(x), 0}.

For the results of the form of (1.1) we refer to Edmunds and Evans
[2], Feigin [4], Fleckinger [5], Fleckinger and Lapidus [6, Section 5],
Levendorskii [9], Reed and Simon [10, Theorem XIII. 81], Rozenbljum
[12], Tamura [16], Titchmarsh [17, Chapter XVII] and de Wet and Mandl
[18].
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In the present paper we will give a new criteria on the potential ¥ for
the formula (1.1). Our main results are Theorems 2.1, 2.2 and 2.3 and
those are proved by Dirichlet-Neumann bracketing method and a modification
of results in Fleckinger and Lapidus [7]. By virtue of these main results
we can establish the formula (1.1) for several potentials.

First we will consider radial potentials, that is, V(x)=f(|x|), fe Cl([O,
o)), f is strictly increasing, f>1, and f(f) > o0 as t —c0. If f satisfies the
following condition

AR ¢
(1.2) M2 1= (J (A—f(z))"/lz"-ldt> as A— o

0

where v,=1/2n) (n=3), v,=v,=1/8, then we have the formula (1.1).

The condition (1.2) is satisfied, for example, if feC*([0, o)) and
f'=>0. Also we can prove (1.2) for very slowly growing function such as
f(t)y=loglog---log t for large t. Previously, the eigenvalue asymptotics for
these very slowly growing potentials on R" are studied only by Levendorskii
[9, p177, Theorem 5] for C*® potentials and our theorem gives the formula
(1.1) for C! potentials.

Next we will consider potentials which are not necessarily radial. Our
main theorem gives the following new result. If Ve CY(R") (n>3), V'>1,
V(x) — o0,

(1.3) VI (x)| < cV(x)' (0<a<1/2)

for large |x| and ¢(2A)<co()) for large A where o(1)=|{xeR":V(x)<1}|,
then we have the formula (1.1). The condition (1.3) is studied by Feigin
[4] (cf. [9, p178]) for C*® potentials and our requirement on the regularity
of potentials is C!-regularity.

Also we will give an extention of the result by Titchmarsh [17, p176]
and alternative proofs of results by Rozenbljum [12, Theorem 2] and
Fleckinger [5].

Furthermore we will give asymptotic formulas for some nonclassical
potentials. A nonclassical potential is the potential whose zero set is an
unbounded subset, for example, V(x, y)=|xy|* on R%. The nonclassical
potentials are studied by Gurarie [8], Levendorskii [9], Robert [11], Simon
[13], Solomyak [14], and Tachizawa [15], and they only consider potentials
whose zero sets are cones. QOur results contain new potentials whose zero

sets are not cones such as V(x, y)=II"_, |x—a;|% [1%_, [y—b;|"” on R%. The
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results on these nonclassical potentials will be proved by means of simple
modifications of the main results.

We will outline the content of this paper. We will state our main
results in Section 2 and its proofs will be given in Section 3. In Section
4 there are some applications of the main results. In Section 5 we will

apply our method to some examples of Schrodinger operators with nonclassical
potentials.
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§2. Main Results

Let Q be a measurable subset in R". We denote the boundary, the

closure and the n-dimensional Lebesgue measure of Q by Q, Q and ||,

respectively. For p(1 <p<o0) LP(Q) denotes the usual Lebesgue space with

the norm || ||, o. When Q is an open subset in R", L}, (Q) (Llloc(.@)) denotes

the space of all measurable functions which are Lebesgue integrable on every

compact (bounded) subset of Q. The definitions of L2 (Q) and LZ(Q) are
similar.

Let V(x)eLZ(R"), V=1 and V(x)—> o as |x|] > . Consider the
sesquilinear form

t(u, v)=f Vu—V—vdx+J Vuv dx

n

for u, ve Cy (R") where Vu denotes the gradient of u. Then ¢ is a sesquilinear
form in L%(R") with the domain Cg (R").

Let H(V) be the closure of C (R") by the norm #(u, u)'/>. Then H(V) is
a Hilbert space with the inner product #(*,’). We can easily show that ¢ is
closable in L2(R") and let  be the closure of ¢ to H(V). Then f is a closed,
non negative, and symmetric sesquilinear form in L?(R") with the domain
H(V). By the representation theorem (cf. [3, Chapter IV, Theorem 2.4]),
there exists a self-adjoint operator T in L%(R") with the domain D(T) which
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is a dense subset of H(V) such that

t(u, v)=(Tu, v)
for all ve H(V) and all ue D(T) where

D(T)={ue H(V):i(u,v)=(f,v) for some fe L*(R")
and for all ve H(V)}

and
(u, v):J uv dx.

By the assumption on V, T has only discrete spectrum (cf. [3, Chapter
VIII, Section 4]) and we define N(1) as the number of eigenvalues of T
less than A>0.

Here we introduce some notations and conditions.

Let A, be a positive constant and [ be a function from (1, o) to (O,
). For A>1,, we consider a tessellation of R" by the family of congruent

cubes {QC}CEQ where Z, denotes an index set and {Qg}gezl are disjoint open

cubes with side length I(1) whose sides are parallel to the coordinate axes.
We set

I,={(eZ;: ess sup V(x)<A}
erC

and

J,={leZ;: ess inf V(x)<A}.
erC

We consider the following conditions.

(H1) There exist a positive constant A,>1, and a function a;: (4,,
o0) = (0, 1) such that

L+#Q
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and

(#(L\)

ary o

for all A1>1, where #I, and #(J,\I,;) denote the number of elements in I,
and J,\I,, respectively.

(H2) Let p,=n/2(n=3), p,=2, and p;=1. Let

V(x) 1
=1-— ={—
86) 3 e (IQ;I L

for {el,. There exist positive constants y and A;>1,, and a function a,:
(43, o©) = (0, 1/2) such that

2/n
g(x)"? dx)
4

GV, ) <yo(Aay(2)

for all A>4; where

G, (V, A)=I1(yrt~m@r) % (f lg(x) — g fPn dx)n/upn)
%

QGIA
and
o(l)=|{xeR" V(x)<A}|.

The following theorem holds.

Theorem 2.1. Let VeLX(R"), V=1 and V(x) > o© as |x|] > c0. Let
Ay be a positive constant and | be a function from (4, ©) to (0, o). Suppose
that the conditions (H1) and (H2) hold.

Then there exist positive constants A, and ¢ such that

‘N(l)—(Zn)—”wnJ (A=V){ dx

n

<co(A) {2 a;(A) + 2" a, () + 1) "+ A0 D2I() )
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for all 2> A, where 6,=min{1/2, 1/n} and c depends only on n, y, and 1, depends
only on A,, As.

For later applications we will give another condition instead of (H2).

Theorem 2.2. Let V, A, and | be as in Theorem 2.1. Suppose that the
condition (H1) and the following condition (H2) hold.

(H2) There exist a positive constant A3 =X, and a function a,: (1,
) = (0, 1/2) such that

G (V, )< Aa(A)a,(A)

for all A> A5 where

Gn( v, }.) = l(/{)n(l —4,/Py) Z ( IV(DC) _ Vaclp" dx)%/?n ’
2

lel
p,,=n/2(n23), p2=2y p1=1) q,,=n/2(n22), q1=1/4 and

1
Vo =—o V(y)dy.
%104 Jo

Then the same conclusion as in Theorem 2.1 holds.

The following theorem will be used in Section 4.

Theorem 2.3. Let V and | be as in Theorem 2.1. Suppose that the
following conditions hold.

(C1) There exists a positive constant c, such that 6(24) < c,0(4) for large A.

(C2) I(A) '=0(AY?) as A — .

(C3) GV, W= o(A%a(2)) where GV, A) is the quantity defined in
Theorem 2.2.

(C4) When n>3, we assume

max ess sup (A— V(x)); =o(4).
CEJA\I;_ erC

When n=1 or 2, we assume
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max ess sup |[A— V(x)|=0(4).
CEJA\IA er;

Then we have

N(/l)~(2n)’"w,,J (A—TVY"? dx

RrR"

as A — 0.

§3. Proofs of Theorems

We shall explain the formulation of eigenvalue problems which is a
modification of that of Edmunds and Evans [2]. Let 2 be a non empty

open set in R". Let WeLl(Q), W>1, reL®), and r>0. Let

So(R2)=CP(R2) and S,(2) be the set of all functions on £ which are restrictions
to © of functions in CJ(R"). Let H(W, ) be the closure of S,(£2), for i=

0, 1, with respect to the norm (u, u)}/%, where (u, v)W'g=J {VuVo + Wud }dx,
o

then H (W, Q) is a Hilbert space with the inner product (,’)yo. When
Q=R", wehave Hy(W, R")=H (W, R") and we denote this space by H(W).

When £ is an open cube Q and W=1, Hy(Q, 1) and H{(Q, 1) coincide
with usual Sobolev spaces H3(Q) and H'(Q), respectively (cf. [3, Chapter
V, Theorem 4.7]).

We consider the sesquilinear form
ai(u, v)=J uvr dx
o

for u, veS(R). Let H(W, r, Q) be the closure of S;(2) with respect to
the norm {(u, w)y o+ a;(u, w)}''?, then H(W, », Q) is a Hilbert space with
the inner product (*,)y o+ai(*,;'). We can easily show that g; is closable in
H (W, Q) and let a; be the closure of a; to H(W, r, ). Then &; is a
closed, non negative, and symmetric sesquilinear form in Hy(W, Q) with the
domain H(W, r, Q). By the representation theorem, there exists a bounded
self-adjoint operator Uj(or U(W, r, Q)) in H(W, ) such that

alu, v)=(Uwu, )
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for all u, ve H(W, Q).

Let E,(U,) be the resolution of identity corresponding to U;. For u>0,
we define
n(u; W, r, Q)=rank J dE,(Uy).

u

Here the following three lemmas hold.

Lemma 3.1. Let Q, Q, and Q, be non empty open sets in R" such that
Q,nQ, =, Q,0UQ, has interior equal to 2 and Q\ (2, U Q2,) has Lebesgue

n-measure 0. Let WEL,IOC(EZ), W=>1, re L®(Q), and r>0. Then we have
nO(”’a W: v, ‘Ql)+n0(#9 W; v, Qz)ﬁno(ﬂs W) v, ‘Q)
Snl(/“'; W, 7, Q)Snl(ﬂ) W) v, Ql)+nl(ll’1 W; v, QZ)

for all u>0.

Lemma 3.2. Let Q be a non empty open set in R" and WeLL (Q),
W>=1. Let vy, rzeL""(.(_.?) and 0<r(x)<r,(x) for a.e. x€Q. Then
nw; W, ry, Q) <nu; W, 75, Q),
for all u>0 and i=0, 1.

Lemma 3.3 [1, p16, (1.31)]. Let Q be a non empty open set in R" and
WeLL.(Q), W>1. Let r,, r,€ L*(Q) and r,, r,>0. Suppose that U(W,
7., ) is a compact operator in H(W, Q) for i=0, 1 and k=1, 2. Then

n(fy+ oy W, ri+ry, Q) <nlug W, vy, Q) +nuy; W, 1y, Q),

for all py, 1,>0 and 1=0, 1.

Lemma 3.1 is the formulation of the Dirichlet-Neumann bracketing
method which will be used in the present paper. The proofs of Lemmas
3.1 and 3.2 are simple modifications of results in Edmunds and Evans [3,
Chapter XI, Section 2.2] and we use the ‘“min-max principle’” instead of the
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max-min principle in [3, Chapter XI, Theorem 1.2].

When Q is an open cube Q and WeL®(Q), W>1, we can easily prove
that U(W, 1, Q) is a compact operator in H(W, Q) for i=0, 1. Also when
W=1, reL*(Q) and r>0, U1, », Q) is a compact operator in H(1, Q)
for i=0, 1 (cf. [1, p76]).

Throughout the proof, ¢ denotes various positive constants depending

only on n and this constant may differ even in the same string of estimates.

Proof of Theorem 2.1. Since V(x) — o0 as |x| > 00 and V'>1, T has the
compact inverse operator T~ ! in L2(R") and T has only discrete spectrum
([3, Chapter IV Theorem 2.9, Chapter VIII Theorem 4.1]). Since
So(RM=S;(R")=C{R"), we have Uy(V, 1, R)=U,(V, 1, R"). By the
definition, Uy(V, 1, R" is the restriction of T~ ! to H(V).

Since T~ ! is a compact operator in L%(R"), we have, for all 1>0,

N(A)= inf codim ¥ < o
ZeK(2)

where K(1) denotes the set of all subspaces ¥ < H(V) such that

l"lj {|Vu|2+V]u|2}dx2J u|?dx

n

for all ue & (cf. [1, pl4 Lemma 1.14]). This fact means that Uy(V, 1, R")
is a compact operator in H(V) and

(3.1) N)=no(A™" V, 1, R)=n (A" V, 1, R")

for all 1>0.

We shall estimate ny(A~'; V, 1, R"). The arguments of the proof are
similar to those of the proof of Theorem 2 in [7]. Let lg=max{1, 1,, 13}
and 1>1,. For simplicity we put /=I(4).

Using Lemma 3.1 and (3.1), we have

z n()('l_l; V: 1) Q{)SN(/I)

5&]1

= Z 1’11(1_1; V) 1) QC)+ Z nl('l_l; V) 1) Qg)

Lel LedJ \I
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In the last inequality, we used the fact that V(x)> 1 for a.e. xeR"\UCeJ;Q_C.

Here we set

P(N)=Q2n)"w, | (A-=VY{* dx

R"

and we have

2 m(A7h V, 1, 0)— ()< N()— ()

CEI}.
(3.2)

<Y m@ L VL Q)=o)+ Y m(ATh V1, Q).

Lel 2 LeJ A\I 2

We set, for (€],

Vix) 1
+ - )
A A

r(x)=1—

1 1 am 1
rr={ — r(x)—- )2 dx) +-,
: (|le Qg( ? 7

and

P4, 0)=(2m) ""w,|Qrl(Ar—1)"2.

We shall now first find a lower bound for N(1)—¢@(4) by use of the
left-hand side of (3.2); then we shall obtain an analogous upper bound for

N(A)—@(A) by means of the right-hand side of (3.2).
Step 1: a lower bound.

For (el,, the min-max principle gives
|2
”i('l_l; Vv, 1, Q;)zni(l_l§ 1, 1‘;’*’1; Qg)

and we have
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YAV, 1, 0)—e)= ) no(A7h 1, 7, Q) —o(2)

Lel ) Lel;

3.3)

=A1 +A2+A3
where

A;=Y {ne(™5 1, r, Q)—o(4, O},
{sll
A,=73 o4, D—oA),
CeIA

and

A= Z {no('l—l; 1, Q{)_”o(l_1§ 1, 7, Qg)}

Lel

Now we use the following lemma in Edmunds and Evans [3, Chapter
XI, Theorem 2.6].

Lemma 3.4. Let O be an open cube in R" whose sides are parallel to
the coordinate axes. Let Ay and A, be the Dirichlet and Neumann Laplacian
on Q, respectively. For v>0, let M(v) denotes the number of eigenvalues of
— A, less than v. Then therve exists a positive constant ¢ depending only on n
such that

M)~ (2m) "o,"2|Ql| < {1 +v0 T D2|0|0= D

for all v>0, i=0, 1.

For all v>0 and =0, 1, we have Mi(v)=n,-((v+1)_1; 1, 1, Q). Hence,
by Lemma 3.4, there exists a positive constant ¢ depending only on » such that

m(u; 1, 1, Q) —(@2m) "o, (u™ ' = 12|04

(3.4)
Sc{l _I_ln—l(ﬂ—l_l)(n-l)/Z}
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for all u satisfying 1>u>0. Since
n(u(r)™h 1,1, Q) =niu; 1, r;, Q)

for {eI,, we have, by (3.4),

s 1, 7, 09— @m) ", (rgu ™ =12 Q|

(3.5)
<c{140" Yt =12}

for all u<r,.
Here we shall estimate 4;. By (3.5), we have

[no(A™ % 1, 7, Q) — 04, O|<c(1 41712071002,

We can easily prove that

Z O] <a(4)
{ell

and we have

(3.6) |4 | <co(A)(A™m+ A2~ 1y,

Next we shall estimate 4,. We have

— A== Y (4, 0)

Lel;

(3.7)

= ¥ f A=VY2 de <A ($(J \ )"
9

ted \I
By the assumption (H1),
(3.8) |4,| <ca(A)A"2a,(1).

We shall estimate 4.
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Let b(1)=a,(1)'"", then we have, for (eI,
no(Ah 1, 7, Q)<mo(A™H 1, rptlr—rd, Op)
<ng((1=b)A™Y5 1, 7y, Q) +no(B(NA™H 1, r=7l, Q)
where we used Lemmas 3.2 and 3.3 and the fact
(3.9) by <2 <.

(3.9) is the consequence of the condition (H2), that is, a,(1)<1/2.
As a result we have

nO(A'_I; 1; v, Q{)_nO(}-_l; 1, 43 Q{)
(310) S110((1_17(;['))&-": 1) 1’{, QC)_HO(A_l; 1) 7§) Q{)
+n0(b(l)l_1; 1, |"“’g|, Oy
Similarly
nO(A’_l; 1’ rc: Q;)_"o(l—l» 1’ 7, Q;)
(3.11) <no(A™4 1, 1, Q) —no((L+0()A™ 4 1, 7, Qp)
+"o(b(/1)'{_l; 1, |r——r§|, Q;)
We shall estimate (3.10). By (3.5) and (3.9), we have
”o((l—b(i))}b_l; 1, £9) Qg)""o(i_l§ 1, < Qg)
< {(Ar(1 =) =1)"2 = (Ar,—1)"2} Q] + e+ A" D2 |Q |17
If n>2, then we have
(Arf1 =) = 1) — (A, — 1)
<c(Arf1—8() 1 =12~ 1Arb(A)(1 —b(A) !

If n=1, then we have
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(/174(1 —b(A)~ = 1)1/2 —(r—1)'"? < {}.rcb(l)(l —b(A)” 1}1/2_
Therefore

no((1 =65 1, 7, Q) =mo(7"5 1, 75, Q)
(3.12)
SC-{-caz(l)G"l"/z |QC' -I—Cl("' 1)/2 lQC' l—i

where 0,=min{1/2, 1/n}.
Next we estimate ny(b(A)A~1; 1, lr =7, Q;) by means of the following
lemma ([1, p.80, Remark 4.3]).

Lemma 3.5. Let Q be an open cube in R" whose sides are parallel to
the coordinate axes and let pe L*(Q), p>0. Then there exists a positive
constant ¢ depending only on n such that

n(w; 1, p, QY<eu™"?|lplly2o O "0

for all p>0, i=0, 1, where p, is the number defined in the condition (H2).

Birman and Solomyak proved this lemma for n;(y; 1, p, ), pe LPn(£),
and their estimate for n,(u; 1, p, Q) is not the same form as that in Lemma 3.5
When Q is a cube (), the precise calculation in their proof leads t¢
our estimate.

Using Lemma 3.5 and the definition of 5(1), we have

"O(b(l)/l_l; 1, {"_’da Qg)
(3.13)

<ca,(A)7A |r— "{”ZI,.Z,QC ‘le i),

Hence, by (3.10), (3.12) and (3.13),

no(l_l; 1, 7, QC)*no(i_l; 1, S QC)
(3.14) Sc+cay (A2 |Qy] +cA" V2 |Q 1!

eay()T VR |y =132, 1041 TR,

Similarly we can estimate (3.11). If Ar,>1+5(4), that is,
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b(l)S(—l—— (,1___ V)n/2 dx>2/n’

Cl 9
then similar arguments as in (3.12) lead to the estimate

no(7% 1, 7, Q) —nol(1+BGNA™ 1, 7, Q)
Sc+eay(AY 277 (O +cn V|17,

If Ar,<1+b(7), that is,

b(J)> <if (A= VY2 dx)”",
0dJ,

then we have ng((14+56(A)A™" 1, r, O)=0 and

mo(A7%5 1, 1y Q) <cteldr— 120y +eA® V20,17
SC-{-Cb(/’{)"n |Q§l +Cl("— 1)/2 ‘Qd l—l
<c+cay(A)n|Qy +eA" V210171

where we used the fact a,(1)!2 <a,(1)’".
Therefore we have, by (3.11) and (3.13)

no(l_1§ 1, e, Qg)*"o(/lﬁl; 1, 7, Qz,’)

G-13) < o cay(2) 1O +eA" VRO
Feay(A) V22 |y — ’c";/nz,Qg Q! ~m@rn),

Accordingly, by (3.14), (3.15), and the definitions of g and g,

|45 < Z |”o()-—l; 1, r, Qg)—"o(l_l; 1, ) Q§)|

Lel

< c(81,) +cay (AP IM2a (M) + A" V21 ()

+cay(A) M2 A2 z lg—gl ;/,‘Z,Q; |Qc|l i
lel

By the assumption (H2), we have

957
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cay()I Y g —gillo, 104! M < cyAPa(ay ().
lel

Hence

(3.16) [A5] <c(1+9)a(A) (A"2ay(A)n 417" 4 A~ D21~ 1),
By (3.2), (3.3), (3.6), (3.8), and (3.16),

(3.17) N —o)= —|4,]— 14, —14,]

> —c(14+7)0(2) {A"2a;(A) + A" 2ay(A)ln 4 17"+ A0~ 02~ 1),

This completes Step 1.

Step 2: an upper bound.

We have
(3.18) Y m(ATh VL Q)—e()+ Y, m(AThV, 1, Q)
{ell CEJA\IA
=A41+A4,+A45+4,
where

/‘lll= Z {nl(l_l; 1) VC’ Q;)—QD(A, C)})

Lel 2

Ay= 3 o, D—0(),

lel;

,3= Z {nl(/l_l; 1) v, QC)_nl(’l_l; 1) r{) QC)})

Lel )

and

A:1-= Z nl(/l_l; V) 11 Q{)

LeJ )\

We can estimate A}, A’ and A% as in Step 1, that is, we have
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[41] + |45] + 145
(3.19)
< c(1+7)0(2) {A"2ay(A) + A"2ay(A)0n 4+ 17"+ A0~ D12~ 1},

We shall estimate 4,. Since V>1, we have, by the min-max principle,

A= Y nA L5 1V,1,0)0< Y n(A75 1,1, Q).

e\, e\,
By (3.4) the last term does not exceed
(AP + e+ A"~ DR (#(J,\])).
By means of the assumption (H1), we have
(3.20) Ay <cA"*a(A)ay(A)+ca(A) ™"+ A"~ V2g(A)17 !

where we used the fact a,(4)<1.
By (3.2), (3.18), (3.19), and (3.20),

N@A)—o(A)
(3.21)
< c(1 +y)0(A) {A"*ay(A) + A" *ay(A)Pr+ 17" 4 A~ D2~ 1Y,

This completes Step 2.

By (3.17) and (3.21), we have

n

'N(i)—(2n)—"w.. f (A=V){? dx

< c(147)0(2) {A"2ay(A) + A"2a, ()0 +1(A) "+ A0~ D12(3) 1}

for all A>A4,. Q.E.D.

Proof of Theorem 2.2.

First we consider the case n>2. We will establish the inequality

(3.22) < f lg— gl dx>"”2""’ < yim2 < J
Q§ Q

n/(2pn)
V= Vg dx) ?
4



960 Kazuva TAcCHIZAWA

for all (eI, and all A>1; where y is a positive constant depending only on
n. If (3.22) holds, then we get Theorem 2.2 by Theorem 2.1.
When n=2, we have

)

Hence (3.22) holds.
When n>3, we have, for {el,,

l—"” [
Q

_ 2 1/2
V=V dx> .
4

|V — VQ(|"/2 dx= '[ |g—ch|"/2 dx

¢ %

where

1 1 V(y)
(3-23) go, =~ | &Wdy=_— J <1——) dy.

10d Jo, 0d Jo, \ 2
We shall prove the inequality
(3.24) J lg—g " dx<y J lg—go,"* dx

% %

for some positive constant y depending only on =.
By Minkowski’s inequality,

(L T )2’" < (L

2/n
lg—go,"? dx) + lgc—gg 104"

¢ ¢

Now

il )< (gl s o)
g=|— | &7de) <|— | lg—gol" dx + &g,
: (ngI o 10 Jo, 7% ‘

Hence

8c—8o,| =8;:— 80, S\ g —&o X .
¢ s ¢ 10, o ¢
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As a result we have
J lg—g" dx < 22 f lg—go " dx
14 2

which is (3.24). Hence we have (3.22).
Next we consider the case n=1.
We shall prove

(3.25) G,V )= T (J ]g—-g;ld&t)uz
2

lel

Cell

<yl(A)3* z (J Ig—chl dx)”4
124

for all A>2; where y is a positive constant not depending on 4 and {. If
(3.25) holds, then we have, by (H2)’,
G, (V1) <yo(A)ay(4)

which 1s (H2).
(3.25) is the consequence of the inequality

(3.26) J lg—gd dx < vlu>”2( f le—g0] dx)”z
2 %

for all (eI, and all A>1;. We shall prove (3.26). Now

(3.27) J |g"g;| dx < J\ |g—gQC| dx + Ig;—gQC|'|Qg|-
9 (s

We shall estimate the first term on the right-hand side of (3.27). By Holder’s
inequality, we have

(3.28) J g —2o] dxstggl“zq 2~ g0, dx)”z
% %

<210/ (L

1/2
lg —gQCl dx
4
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where we used the fact that |g(x)|<1 a.e. x€Q,.
Next we shall estimate the second term on the right-hand side of

(3.27). We have

2
lgc_gQ |$2|(g;)1/2—(gQ )1/2| <— |g1/2_(gQ )1/2| dx
4 4 |Q{| o g

1 1/2
Ig—ggcll’zdx32<— le—go,| dx) :

<
0d e, 10d Jo,
Hence
1/2 1/2
(3.29) |g§_gQ§|'|QC|52|Q{| |g_gQ;| dx .
9
By (3.27), (3.28) and (3.29), we have (3.26). Q.E.D.

Proof of Theorem 2.3. For simplicity we set
YA = J‘ A—=V)? dx.

By the condition (C1) we have 1"2¢(A)=0(¥(1)) as A— 0. Hence,
by (C2), (C3), (2.6) and (2.16), we have

(3.30) ||+ 43l +141]+ 145 =0o(¥(4))

where A4,, A3, A}, Ay are quantities in the proof of Theorem 2.1 and we
used the condition (H2)" in Theorem 2.2.
We shall estimate 4,, 45, and 4,;. We set

g(A)=21"' max ess sup (A—V(x)),
{eJA\I;_ XEQC

and

n(A)=A"! max ess sup |1—TV(x)|.
LedJ \I; erC
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By (3.7), we have

|4,l=145=c Y J A=V dx<ce(A)"* A" (A).
2

Led )\,
By the condition (C4), we have
(3.31) |4, =145]=0(¥(2)).

Next we shall estimate A;,. Now we have, for {eJ,\I,,

n (A7 V1, Q)= inf codim &
ZeKy(2)

where K,(1) denotes the set of all subspaces % < S,(Q,) such that

|
0

forallue ¥ and S,(Q,) is the space defined in the beginning of this section.
If we denote Iz;(/l) the set of all subspaces & <.S,(Q,) such that

|
0

for all ue.#, then we have I%;(}.) < K(4) and

{IVu|* + VIu*}dx > J‘ |u|? dx

' 9

4

1 vV
{IVul* + |u|*}dx > j (1 +1 — 7>+ |ul? dx
%

(A7, A+ =VATY,, Q)= inf codim Z.
Zek (1)

Hence we have
nl(A_l; V) 1) QC)SVII(}._I; 1) (1+A‘_1~V}'_1)+’ QC)

By Lemma 3.5, we have

nl(l—l; Vx 1) Q{)SC{J

9

n/(2pn)
(1P dx} (O e,

963



964

Kazuvya TAcCHIZAWA

As a result

(3.32) Ay= ), m(A7H V1,0

{e.ll\ll

< ¥ c{ (A+1—D)P dx}""z""’ T i)
2%

Led )\I

First we consider the case n>3. Since p,=n/2, we have

4,< Y ¢ A+1=1)"? dx
ehaMy Jor

Csll

Sc{ A+1=D)? dx— ), f A+1=1)"2 dx}
R" o
<{POH)-¥ D)+ ¥ J =V dx
e\ Joy
<c{PA+1) =Y} + ce(A)"> A" a(A).

By (C2) and Lemma 1.1 in [12], we have

. YA+
lim =1
A= l]’l(/l)

Therefore, by (C4),

(3.33) Ay =o(¥(1))-

Next we consider the case n=1 or 2. By (3.32), we have

Ay <A+ 3 1Oy

Led,\I;

Since

max ess sup V(x)<A+n(A)A<2i
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for large A, we have, by (C1),

Z 10 <0(2) < cy0(A).

el \I;

Hence we have
(3.34) Agzo(‘l’(l)).

By (3.30), (3.31), (3.33) and (3.34), we have

n

NA)~(Q2n) "w, J A—="? dx as A— 0.
Q.E.D.

§4. Applications

In this section we will study some applications of our main results in

Section 2. First we consider radial potentials.

Theorem 4.1. Let f>1 be a strictly increasing function on [0, o) such
that fe Cl([O, o)) and f(t) > o0 ast — 0. We assume, for a positive integer n,

)

(41) An/Z{f—l(A)}rl-v,.:o < J

0

(A—f@)y et dt) as A— o0
where v,=1/(2n) (n=3), v,=v,=1/8. Let V(x)=f(x|) for x€é R". Then

NA)~(2n)"w, J

A=M"? dx as - .
R

Proof. In Theorem 2.1 we set [(A)={f"'(4)}!/2. We shall calculate
a;(2) and a,(A) in (H1) and (H2).
We consider the condition (H1). By a simple geometrical consideration,

we have

(5(J:\12)

—1 -1/2
L) <c{f 1D}
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for sufficiently large 4 where ¢ is a positive constant depending only on 7.

Next we consider the condition (H2). First we consider the case

n>3. We have

tel, tel

GV, D= J lg—g|"?dx < ¥, f lg" — (2" dx
% o
W O] J IV(g"?)| dx < cl(2) J IV(g"?)| dx
Q; 2,

Lel;

where 2, ={xeR": V(x)<1} and we used the Poincaré’s inequality ([3, p.242,
Theorem 3.23]).

Here we have

7722 2
J V(") dx=cf g(1~]%>/2 1%f’(t)t"_ldtSc{f_l(/l)}"'l.
2, 0

Accordingly we have
GV, W<dN{f W)~ =co(){f (W}~

for large A.
Secondly we consider the case n=2.

G,(V, )=I() ¥ ( f lg—g,? dx)”zsdw y ( J lg—gd dx>1,2
o 9

Lel Lel,

where we used the fact that |g|<1. The last term does not exceed

cl(2)*'? < ) J Vel dx>1/2 CIARE
9

Lel
f~1(A) 1/2
<ca(D)V2I)V? (J If’(t)tdt) < ca(D{f 1D}
0

Hence we have

Go(V, N <ca(W){f (W}~
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Finally we consider the case n=1.

GV, H=UN'"* ) (f
)

Lel

1/2
lg—g dx
e

<d)'? Y (J "% — ()" dx>x/z
9

lel,

_<_CG'(;L)1/2 < Z J‘ |g1/2_(gc)1/2| dx)I/Z.
2

lel,

As a result we have

V)] _ 1
Gy(V, ) <ca(A) (A2 (J (1—%) 1/2'—f}:dt)”2
(4]

<ca(N"PUNP=co(W){f 1 (A)} 14
Hence we have
G, (V, A <ca(){f 1A} #n

for n>1 and for large A where p,=1/2(n>3), u,=p,=1/4. By Theorem 2.1,
we have

< ()

‘N(/l) —-@2n)™" wnJ (A—=V){? dx

for large A where v,=1/2n) (n=3), v,=v,=1/8.
By the assumption (4.1), we have

N(i)~(2n)””wnj A=1"*dx as L — .
Q.E.D.

Remark 4.1. By Theorem 4.1, we can give the asymptotic formula for
the Schrodinger operator —A+ 1V on R" when, for example,

V(x)=exp exp---exp |x|,
V(x)=|xI* (x> 0)
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or
V(x)=log---log |x|

for large |x|. By easy calculations we can show that these potentials satisfy
the condition (4.1).

Next we consider potentials which are not necessarily radial. First we
shall give a theorem which is an extension of the result by Titchmarsh [17,
pl176].

Theorem 4.2. Let VeCR"), V=1 and V(x)—> o as |x| » 0. We
assume the following conditions.

n

(4.2) 2"*6(A)=0(¥(%)) as 1 — o0 where ¥(A)= J‘ A=T)"12 dx.

(4.3) There exist constants ¢;>0 and a such that 0<a<1/2 and
VIV (x)| <c, V(x)'*° for large |x|.

(4.4) lim @ =0 where
A)

s O
A(A)=|{xeR": dist(x, 0Q;) <A™},

Q,={xeR" V(x)<A} and a is a constant in (4.3).
Then

N(A) ~(271:)_"w,,f A=T)"2 dx.

n

Proof. Let 0 be a positive constant such that a<60<1/2. In
Theorem 2.2 we set [(A)=A"? for large A.
First we consider the condition (H1). By (4.4), we have

(BUNL) _ A AW
¢I) ~o(W)—AR) 1—A)e()!

as A — o0.
Next we consider the condition (H2). We have, for large A, by (4.3),
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GV, H=lAyt-alm Y ( j Vi)~ Vo dx>qn/p,
L

{ell

<Ayt el gyen Y (f IVV ()P dx )"""’"
%

Lel

< cl(l)"“ —q../pn)l(,{)qn c‘{n A +a)n Z IQ;"In/Pn

Cell

<ccdr AT g(A)A ™0 Dam,

Therefore, by (4.2) and Theorem 2.2, we have

N)~Qn) ", | (A=) dx.

R
Q.E.D.

When #n>3, we can prove the following new result.

Theorem 4.3. Let n>3. Let VeC'(R"), V>1 and V(x) > © as
|x| > 0. We assume the following conditions.

(4.5) There exists a positive constant c, such that 6(22) < c,0(2) for large J.

(4.6) There exist constants ¢,>0 and a such that 0<a<1/2 and
IVV(x)| < e, V(%)™ for large |x|.

Then

N(/l)~(2n)'"w,,J (A— VY2 dx.

n

Proof. Let 0 be a positive constant such that a<0<1/2. In
Theorem 2.3 we set {(A)=A"% for large 1. Clearly the conditions (C1) and
(C2) are satisfied. We consider the conditions (C3) and (C4) in Theorem
2.3. We have

GV, =Y J V=V, "2 dx <c Y. l(A)”’ZJ VI (x)|"? dx
(2C Q

tel tel, .

By the assumption (4.6), the last term does not exceed
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e UMY JAF M2 Gy = 2 JM2 G(J)) @ ami2
Hence we have
GV, 2)<cc? M2 g(A)A~C~ami2

for large A and the condition (C3) holds.

Next we consider the condition (C4). Let (eJ,;\I,. For every
x€Q, N2, such that V(x)<4, there is a zeQr\_ﬁ; such that V(z)=1 and
the line segment which connect x and z lies in Q,N€Q,. If there are no
such z and line segment, then we conclude that V(y)<4 for all yegg, that
is, (€I, and this contradicts the choice of (.

By (4.6), we have, for all xe O,n2; such that V(x)<4,

1
A=V(x)=V(z)—V(x)< f IVP(x + t(z — x))-(z — x)ldt
0

<cc (AT < ec At el

Hence the condition (C4) holds. Therefore, by Theorem 2.3, we have

NA)~Qn) "w, | (A-=V)!*dx as A— 0.

R"

Q.E.D.

Remark 4.2. The condition (4.2) is weaker than (4.5). In fact we can
easily give an example of 7 such that (4.2) holds and (4.5) is false.

Remark 4.3. In [4] Feigin studies the asymptotic distribution of
eigenvalues of pseudo-differential operators which contain the Schrodinger
operator —A+V where e C*(R"), V=1 and |0’ V(x)| < C,V(x)* *“If! for all
BeN", xeR". In Theorem 4.3 our assumption on V is Ve C'(R") and this

is an improvement on the regularity condition in the Feigin’s result.

Next we will give an alternative proof to Theorem 2 in Rozenbljum [12].

Theorem 4.4. Let Ve L2 (R"), V=1 and V(x) = © as |x|]>00. We

assume the following conditions.



EIGENVALUE ASYMPTOTICS OF SCHRODINGER 971

(4.7)  There exists a positive constant ¢, such that 6(2A) <c,a(4) for large A.

(4.8) Let E be a family of disjoint open unit cubes {Q;} such that
R"=UQ;. There exist a continuous and decreasing function v(t), te[l, o),
v(t) >0 as t— 00, and an index a, 0<a<1/2 such that

V(%) = V)| <l —y**V(x)! V()

for an arbitrary Q,€E and for all x, ye Q,.
Then

N(A)~(2n)'”w,,j (A—TV)"? dx.

n

Proof. First we consider the case a>0. Let k(t)=tv(t)” Y2 for
t>1. Then k(2) is a strictly increasing function on [1, o) and k(t) — o0 as
t—> 0. Let h(s) be the inverse function of k(t), that is, h(s)=k " !(s). In
Theorem 2.3 we set [(A)=[A(1)/?]™! for sufficiently large A where [x] denotes
the integral part of x, and we consider cubes {QC}CGZA with side length (1)
which are partition of each unit cube in E.

Then we have
(4-9) AT T =27 PR < v(R(2) 4 — 0

as A— 00. (4.9) means that the condition (C2) in Theorem 2.3 holds.
We will consider the condition (C3) in Theorem 2.3 when n>3. We
decompose I, to disjoint two subsets I} and I2, that is,

I'={lel}; inf V(x)>h(A)} and IZ=1,\1}.
xEQc

We shall estimate ). f |V — Vg |"? dx. For (eI, there exists a z€ Q;
ter? YO ’
such that V(2)<h(4). Hence we have, for all xe Q, and large 4,

[V(2) — V()| < cl(A)2*V(2)! “*9(V(2)) < ch(2) ~*h(D)' *v(1) = ch(A).

Accordingly we have V(x) <ch(d) < c/lv(h(l))”(z“) forallxe Q;, { eI} and

(4.10) z |V — VQ<|"’2 dx < cA"? o ( A)v(h( A))n/(4a)_
CEI% (3
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Next we shall estimate Z J‘ |V — VQCIn/Z dx. By the condition (4.8),
tel; YO
we have

[V (%) — V()| < cl(2) 2 V(%) V()
Scl—aV(h(/{))—. 1/2/11+av(h(/1))=Civ(h(;t))llz

for (eI} and for all x, ye 0.

Hence
21 f |V—— VQC'nIZ dx
tel; ¥
4.11)
<y {L J V(x)— V()| dy }"’2 dx <2 o (A)RAY'*.
cert Jor UQd Jo

By (4.10) and (4.11), we have

Y J V= Vo' dx< ek o((A)"*
Q

Lel 2 .

for large A.
When n=2, similar arguments as in the case n>3 give

1) Y, < J V=V dx>”2 < cAo(AR(A)) .
Qg

Cel;~ .

When n=1, we have

w3
Lely Q

for large 4. Hence the condition (C3) in Theorem 2.3 holds.
Finally we consider the condition (C4). Let (eJ\I,. If V is
discontinuous at dQ;, then we define T7{ as the function which is continuous on

Q and coincides with V" on Q,. By (4.8), we have

[V~ V| dx )”4 < A4 G(A(R(A)1B
4

|V x) = 7 ()] < lx—y |2 T () WV (%))
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for all x, ye@.
Since { e JJ,\I;, there exists a ze@ such that V;(z):l. Hence we have,
for all xeQ, and large enough 4,

[A—TV(x)|=| I7;(2) - I7{(9‘”
<)XV ()T (2))=cl(A)** 21 T¥().

By (4.9) we have h(A)<A for large . Hence we have v(1)<v(h(1)) for
sufficiently large 4.
Therefore we have, for all xe Q, and large 4,

(4.12) |A—V(x)] < e~ "W(h(A) ™ 221y (h(1)) = cAv(h(A))!2

and the condition (C4) holds.
By Theorem 2.3 we have

NA)~(Q2n) "o, A=TV)Y?2dx as A— 0.
R

When a=0, we set [(1)=1 and h(1)=AY2. Similar arguments as before
gives the conclusion. Q.E.D.

Next we consider the condition which is a modification of the result
by Fleckinger [5] (cf. Fleckinger and Lapidus [6, Section 5]).

Theorem 4.5. Let V be a continuous function on R", V>1 and V(x) - o©
as |x| = oo. We assume the following conditions.

(4.13) There exists a positive constant ¢, such that 6(24) <c,0(1) for large 1.

(4.14) For every €>0 there exists a 1>0 such that |V(x)—V(y)|<eV(x)
for all x, yeR", |x—y|<.

Then

NA)~Qn) "o, J (A= VY2 dx.

n

Proof. In Theorem 2.3 we set [(A)=1"% where 0<0<1/2. For every
£>0 we define 7n(¢) as the maximal # satisfying the condition (4.14). For
A>0 we set
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g(1) =inf{e>0; n(e)>/nl™?}.
It is clear that g(1) -0 as A — c0. We have
GV, H<2a(De()™

for sufficiently large A where g, is the constant in Theorem 2.2.
As in the proof of Theorem 4.4, we have, for all xe Q({eJ,\I}),

[1—V(x)| <e(A)A.

Hence we have

NO)~Cm) "o, | (A—V)"? dx.
-

Q.E.D.

Remark 4.4. In[5] Fleckinger considers additional condition as follows:

(4.15) Consider a tessellation of R" by a family of disjoint cubes {Qc};ez
where Z denotes an index set and Q, is an open cube with side length
n>0. We set

I={(eZ: O, Q;}
and
J={leZ: O;nQ, # &}

where Q,={xeR" V(x)<A}. Then

lim ————(#(J \I))
o (&)

=0

for large A.

In our proof we do not need this condition (4.15).

§5. Nonclassical Potentials

In this section we consider the eigenvalue asymptotics of the Schrodinger
operator —A+ 7 on R" when T is a nonclassical potential. A nonclassical
potential is the potential 77 such that >0 and the set {xe R": V(x)=0} is
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an unbounded set. Several results on these nonclassical potentials are known
([81, [9, Section 10] [11], [13], [14], [15]) and those are only on the potentials
whose zero sets are cones in R". Our method is a modification of that of
Tachizawa [15] and we can apply it to some nonclassical potentials whose
zero sets are not cones.

The potentials which we consider in this section belong to the special
function class, that is, 4 _-weights and we use some results about 4 -weights
in Tachizawa [15, Section 2].

Let V be a nonnegative continuous function on R" and let 7" be the

self-adjoint operator associated with the sesquilinear form

t'(u, v)= J‘ VuVo dx + f Vuodx

as in Section 2. We write T'=—A+7V, formally. If T’ has only discrete
spectrum, then we denote the number of eigenvalues less than A as N'(4).
We will consider some examples.

Example 5.1. V(x, y)=|xy|* (x, y)eR?, a>0.

This potential is considered by Simon [13]. By Lemma 2.3 in [15],
V(x, y)=|xy|* is an A_-weight on R? and, by Remark 2.3 in [15], it is easily
proved that the Schrodinger operator T'= —A+|xy|* has only discrete
spectrum.

We shall prove

(5.1) N'(}.)~1,11+”"‘10g/1 as A— o0
T

by the method of Tachizawa [15].
We set

Vi(x, y)=|xy|*+1

and let T be the self-adjoint operator associated with —A+TV7;. Since N(1)
denotes the number of eigenvalues of T less than A, we have

(5.2) NA)y=N'(A+1).

We will estimate N(1) using the method in the proof of Theorem
2.1. We set, for large 4,
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Q,={(x, y)eR* |xy|*+ 1<, |x|<c,(A—1)2*NC
lyl<e (A—1)@+aeay
I(A)=(A—1)""(log(A—1))'?,
I,={CeZ; O,cQ;}
and

J,={leZ;: 0;nQ,+ T}

where ¢; is a positive constant depending only on « and we shall give precise
value of ¢; later. In the proof of Theorem 2.1 we used the fact that n,(1™!;
V, 1, D)=0 where D=R"\Ucel,1§§' Hence the proof of Theorem 2.1 is

valid in this nonclassical case if we prove n,(A”1; V, 1, 2%)=0 where

Q:=R2\( U E)-

ted
We have
Q% =the interior of F;UF,UF;
where
Fi={(x, )eQ%: lyl<c,(A=1)7""2},
Fy={(x, ) eQ}: |x|<c,(A=1)"12},
and

Fy=Qi\(FUF)).

¢, is a positive constant which will be given later. We will show that n,(1™;

V, 1, 2%)=0. If 1 is sufficiently large, then we can write
Fy={(x, WeR™ |x]>k), lyl<c,(i—1)"12)
and
Fy={(x, y) R |y|>k(A), |x|<c,(A—1)"""}

where k(1) is a function of A such that k(1)>c,;(A—1)@ /22,
Then, by the Dirichlet-Neumann bracketing method,
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3

(5.3) "1(/{_1; V1, Q:{)S Z ”1(}-—1; Vy, 1, F).

i=1

For the proof of n,(A~1; V|, 1, F;)=0 for i=1, 2, we use the following
lemma which is derived from Lemma 2.4 in [15].

Lemma 5.1. Let a>0 and A>0. Then there exist positive constants
Kk, and K, depending only on a such that

I

for all ueS,(I) where I=(—r, A" VD 1, 471C*D) gud S,(I) denotes the
space defined in Section 2.

du|? 2 22+ 2
—| +Alxu*  dx=x, A DN |u)? dx
dx I

If we set ¢; =max{x; ZHD/CD > C+a/2} 1 1 and ¢y =c; ¥**?k,, then we

have
fj {IVadl + ey |* + D)lul?} dxdy
Fq
Oul? (2+a)/2),,|%,,]2
= o o TaU=1) [Y|ul® ¢ dy
|x} > k(2) ¥l <epa—1)~12 6y

+JJ |u|? dxdy

Fy

>(11—1)Jj |u|2dxdy+JJ |u|2dxdy=lfj |u|? dxdy
Fy Fy Fq

for all ueS,(F,), u#0 and for sufficiently large . Hence we have
n(A™Y Vy, 1, F)=0.

Similarly
n (A7 7y, 1, Fy)=0.

By the choice of ¢,, we can show

Vi(x, y)>4 for all (x, y)eF;.
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As a result
nl(l_l; Vl) 1’ F3)=0
By (5.3), we have

n (A4 7V, 1, 29H=0

if A is sufficiently large.
Now we consider the conditions (H1) and (H2). Simple calculations
give, for large A,

(#T\Y)

log(A— 1))~ 12
(#TA) < 63( og(l ))

and

I(2) Z lg ~ggH2,Q; < ¢y 192 (log(/l—l))_l/4
Lel )

where g=1—(|xy|*+1)A7 1, g§=|Q§|'1 f gdx and c;, ¢, are positive constants
%
not depending on 4. Applying the proof of Theorem 2.1, we have, for large 4,

< ¢5A|1Q;| (log(A—1))"1/®

1
‘N(/l)——f (A—|xy|*—1)dxdy
4n J o N
where ¢5 is a positive constant not depending on A. Hence, by (5.2), we have

< ¢;(A+1)|€2) (log 1)~ /8

1
’N "(4) ~in J (A—|xy|")dxdy
2

where

Q= {(x, ) ER? lxy[* <2, x| <c,2CTCD, |y < 2 +IE}

We can easily show that the order of j (A—|xy|*) dxdy is same as that

2;

of 1] as A—> 0. Hence we have

1
N'(A)~ o f (A—|xyl*)dxdy
Q)
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and simple calculation gives

1 1
—f (A —lxy|)dxdy ~=A1 T *log A.
4n o T

Hence we have (5.1). *

Example 5.2. V(x, y)=(1+x))*(1 +y)’|xl"lyl’, xeR™, yeR™, «, B, y,
520, a+y#0, f+8#£0, yn, <(f+38)n; and ny <(x+y)m,.

This potential is considered by Tachizawa [15]. In exactly the same
way as in Example 5.1, we have

(5.4) N ~Q2n) "w, j A=V)2 dxdy as 1— ©
2
where
n=n;+n,,
Q,={(x,y) e R" X R": V(x, y) <4, |x| <c,AZ 2@+
] <A@ PIEe oy

and ¢, ¢, depend only on «, 3,7y, 8, n; and n,. Hence, in the case yn, <(f+)n,
and on, <(a+7)n,, the order of N'(1) is same as that of 2422 and in the
other cases, the order of N'(1) is same as that of (4"'+41"?) logd where
vi=n/2+n,/(a+7) and v,=n/2+n,/(f+ ).
For the proof of (5.4), we also set I()=(A—1)""*(log(1—1))/%.
Example 5.3. V(x, y)=T,|x—a]l* T, |y—b;/% (x, y)eR?

a;<--<a, by<--<b, 0<o;, 0<p;, “iSZZ=1ﬁj (@=1,--p), ﬂjSZf;l %

G=1,-9.
P q
Lets; =max; ;;, %, S =max, _;, B, 0, =Zi=1°‘i and 02:2,-: Bj Let

231 =(2+52)(20'1)_1, ,u2=(2+s1)(20'2)_1

and

i={(x, »)ER?: V(x, y)<4, |xl<ey 2, lyl <2}
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(3.3)

and

set

(1]
(2]

(3]
[4]

(5]
(6]
(7]
(8]
[91]
[10]
(1]
(12]

(13]
[14]

[15]

Kazuvya TAcHIZAWA

Then we have

1
N'(A)~— (A—=V)dxdy as A— 0
4 o
2

accordingly the order of N'(A) as A — o0 is same as that of

1 Aty
/11+ 1/a, t—sz/a; dt+ t—dz/dl dt
-2 1
1 Aoy
+ll +1/02 t-h/az dt+ t_ﬂl/UZ dt .
A2 1

The proof of (5.5) is similar to that of (5.1). For the proof, we also
I(A)y=(A—1)""*(log(A—1))""%.
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