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§1. Introduction

The present paper is devoted to the study of eigenvalue asymptotics of
Schrodinger operators with only discrete spectrum. Let VeL^c(R

n) and
V(x)>\. The Schrodinger operator — A + F admits the unique self-adjoint
realization in L2(Rn) where A denotes the Laplacian in Rn. We denote it
by T. If V(x) —*> oo as \x\ -> oo, then T has an infinite sequence of positive
eigenvalues, {^j}jLi, diverging to infinity. Let AT(A), /l>0, denote the
number of eigenvalues less than X with repetition according to the
multiplicities. Under suitable assumptions on V, we can prove the asymptotic
formula

oo
f

(1.1) N(X) - (27c) " " con\ (A - V(x))nl2 dx as
JR"

where a)n is the volume of the unit ball in Rn and

/(*)+=max{/(*), 0}.

For the results of the form of (1.1) we refer to Edmunds and Evans
[2], Feigin [4], Fleckinger [5], Fleckinger and Lapidus [6, Section 5],
Levendorskii [9], Reed and Simon [10, Theorem XIII. 81], Rozenbljum
[12], Tamura [16], Titchmarsh [17, Chapter XVII] and de Wet and Mandl
[18].
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In the present paper we will give a new criteria on the potential V for

the formula (1.1). Our main results are Theorems 2.1, 2.2 and 2.3 and

those are proved by Dirichlet-Neumann bracketing method and a modification

of results in Fleckinger and Lapidus [7]. By virtue of these main results

we can establish the formula (1.1) for several potentials.

First we will consider radial potentials, that is, V(x)=f(\x\), /eC1([0,

oo)), / is strictly increasing, />!, and f(t) -> oo as t -* oo. If/ satisfies the

following condition

ar'a) \
(k-f(t)}nl2tn-ldt\ as A-»oo

o /

where vn = l/(2n) (w>3), v2 = v1 = l/8, then we have the formula (1.1).

The condition (1.2) is satisfied, for example, if /eC2([0, oo)) and

/'>0. Also we can prove (1.2) for very slowly growing function such as

/(£) = loglog---log t for large t. Previously, the eigenvalue asymptotics for

these very slowly growing potentials on Rn are studied only by Levendorskii

[9, pi 77, Theorem 5] for C°° potentials and our theorem gives the formula

(1.1) for C1 potentials.

Next we will consider potentials which are not necessarily radial. Our

main theorem gives the following new result. If VGC1(Rn) (n>3), V>\,

(1.3) \VV(x)\<cV(x)1+

for large \x\ and a(2JL)<ca(X) for large A where <r(Ji) = \{xERn:V(x)<}i}\,

then we have the formula (1.1). The condition (1.3) is studied by Feigin

[4] (cf. [9, pi 78]) for C°° potentials and our requirement on the regularity

of potentials is C1 -regularity.

Also we will give an extention of the result by Titchmarsh [17, pi 76]

and alternative proofs of results by Rozenbljum [12, Theorem 2] and

Fleckinger [5].

Furthermore we will give asymptotic formulas for some nonclassical

potentials. A nonclassical potential is the potential whose zero set is an

unbounded subset, for example, V(x, y) = \xy\* on R2 . The nonclassical

potentials are studied by Gurarie [8], Levendorskii [9], Robert [11], Simon

[13], Solomyak [14], and Tachizawa [15], and they only consider potentials

whose zero sets are cones. Our results contain new potentials whose zero

sets are not cones such as V(x, y) = H?=l \x — at\*i Hq
j=l \y — bj\ftj on R2. The
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results on these nonclassical potentials will be proved by means of simple

modifications of the main results.

We will outline the content of this paper. We will state our main

results in Section 2 and its proofs will be given in Section 3. In Section

4 there are some applications of the main results. In Section 5 we will

apply our method to some examples of Schrodinger operators with nonclassical

potentials,
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§2. Main Results

Let Q be a measurable subset in Rn. We denote the boundary, the

closure and the w-dimensional Lebesgue measure of Q by dQ, Q and \Q\,

respectively. For p(l <p<ao) LP(Q) denotes the usual Lebesgue space with

the norm || ||pO. When Q is an open subset in Rn, Lfoc(Q) (Lloc(Q)) denotes

the space of all measurable functions which are Lebesgue integrable on every

compact (bounded) subset of Q. The definitions of L^C(Q) and L^C(O) are

similar.

Let V(x)EL£c(R
n), V>\ and V(x) -* oo as |*| -» oo. Consider the

sesquilinear form

t(u, fl)= VuVvdx+ I Vuv dx
JR" JR"

for u, veC£ (Rn) where Vu denotes the gradient of u. Then t is a sesquilinear

form in L2(Rn) with the domain Q3 (Rn).

Let H(V) be the closure of Cf (Rn) by the norm t(u, i/)1/2. Then H(V) is

a Hilbert space with the inner product t ( - , - ) . We can easily show that t is

closable in L2(Rn) and let t be the closure of t to H(V). Then t is a closed,

non negative, and symmetric sesquilinear form in L2(Rn) with the domain

H(V). By the representation theorem (cf. [3, Chapter IV, Theorem 2.4]),

there exists a self-adjoint operator T in L2(Rn) with the domain D(T) which
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is a dense subset of H(V) such that

t(u, v) = (Tu, v)

for all veH(V) and all ueD(T) where

D(T) = {u€H(V):t(u,v) = (f,v) for some f<=L2(Rn)

and for all v

and

(M, v)= uv dx.

By the assumption on V, T has only discrete spectrum (cf. [3, Chapter
VIII, Section 4]) and we define A/"(A) as the number of eigenvalues of T
less than A>0.

Here we introduce some notations and conditions.
Let A! be a positive constant and / be a function from (A l 5 oo) to (0,

oo). For A > A l 5 we consider a tessellation of Rn by the family of congruent

cubes {Qj^gz where ZA denotes an index set and {Qj$eZ are disjoint open

cubes with side length /(A) whose sides are parallel to the coordinate axes.
We set

A: ess sup

and

ess inf

We consider the following conditions.

(HI) There exist a positive constant A 2^^i an(^ a function a±. (A2,
oo)-»(0, 1) such that
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and

for all 1>A2 where fl/A and lf(JA\JA) denote the number of elements in

and Jj\Ii, respectively.

(H2) Let pn = n/2(n>3), p2 = 2, and pl = l. Let

<K«) = 1- and, ? = j- riO""

for {e/A. There exist positive constants y and A 3 >A 1 , and a function

(A3, oo) -> (0, 1/2) such that

Gn(V, l)<ya(A)«

for all 1>/L3 where

.. ._ ., __ . . \n/(2pn)
G /T7" 1\ If 0 \n(i — n(2p )) *^ ' ' i v v . <r. , i ' ^ ^ '

n{ V , A^ = t^Aj "
J A

and

The following theorem holds.

Theorem 2.1. Let FeL£c(U"), F> 1 aw^ F(jc) -> oo ^ |*| -* oo. L^

/Lj 6^ a positive constant and I be a function from (A^ oo) to (0, oo). Suppose

that the conditions (HI) and (H2) hold.

Then there exist positive constants /10 and c such that

JR

-F)f dx
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for all A>/10 where 0n = min{l/2, l/n} and c depends only on n, y, and /10 depends

only on A2> ^3-

For later applications we will give another condition instead of (H2).

Theorem 2020 Let V, At and I be as in Theorem 2.1. Suppose that the

condition (HI) and the following condition (H2)f hold.

(H2)' There exist a positive constant A 3 >A 1 and a function a2°- (A3,

oo) -» (0, 1/2) such that

for all /L>A 3 where

>l = n/2(n>3), P2
 = 2, />i = l, qn

 = n,

1 ' V(y)dy.

same conclusion as in Theorem 2.1 holds.

The following theorem will be used in Section 4.

Theorem 2.3. Let V and I be as in Theorem 2.1. Suppose that the

following conditions hold.

(Cl) There exists a positive constant c± such that cr(2A) < clo~(h)for large A.

(C2) l(X)~l = o(^12) as A-»oo.

(C3) Gn(Vy A) = o(A^"cr(A)) where Gn(Vy A) M ^Ac quantity defined in

Theorem 2.2.

(C4) When n>3, we assume

max ess sup (A — F(#)) + = o(A).

When n = l or 2, zue assume
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max ess sup |/l — V(x)\ = o(l).

Then we have

(A-F)f dx
R"

as A -» oo.

§ 3. Proofs of Theorems

We shall explain the formulation of eigenvalue problems which is a
modification of that of Edmunds and Evans [2]. Let Q be a non empty

open set in JR". Let WeLloc(Q)y W>\, reL°°(Q), and r>0. Let

S0(Q) = C£(Q) and S^Q) be the set of all functions on Q which are restrictions
to Q of functions in C*(Rn). Let H{(W, Q) be the closure of St(Q)9 for i =

0, 1, with respect to the norm (u, u)\^Q where (u, v)WtQ = {VuVv + Wuv}dx,
Jn

then Ht(W, Q) is a Hilbert space with the inner product (',')WQ- When
Q = R", we have H0(W, Rn) = Hl(W, R") and we denote this space by H(W).

When Q is an open cube Q and W=l, ffQ(Qy 1) and H\(Q, 1) coincide
with usual Sobolev spaces HQ(Q) and Hl(Q)y respectively (cf. [3, Chapter
V, Theorem 4.7]).

We consider the sesquilinear form

at(u, v)= uvr dx
JQ

for u, veSi(Q). Let H^W, r, Q) be the closure of S{(Q) with respect to
the norm {(M, u)WQ-\-a{(uy u)}1/2, then Ht(Wy r, Q} is a Hilbert space with

the inner product (YV.n + ^iCv)- We can easily show that a{ is closable in
Hi(W, Q) and let a{ be the closure of a{ to H^W, r, Q). Then a£ is a
closed, non negative, and symmetric sesquilinear form in H{(Wy Q) with the
domain H^W, r, Q). By the representation theorem, there exists a bounded
self-adjoint operator t/t-(or U^W, r, Q)) in Hf(TF, Q) such that



950 KAZUYA TACHIZAWA

for all uy vEHt(W, Q).
Let En(Ui) be the resolution of identity corresponding to Ut. For /j>0,

we define

Here the following three lemmas hold.

Lemma 3.1. Let Q, Q^ and Q2
 oe non empty open sets in Rn such that

Ql nQ2 = 0, ^i uQ2 has interior equal to Q and Q\(Ql uO2) has Lebesgue

n-measure 0. Let WeL}oc(Q), W>\, reL™(Q), and r>0. Then we have

WoOi; W, r, flO + ifodi; W, r, Q2)<n0(p; W, r, Q)

<n,(^ W, r, Q)<ni(K Wy ry Q^ + n^ W, r, fl2)

for all ju>0.

Lemma 3.2. Let Q be a non empty open set in Rn and

W>1. Let ri9 r2ELco(Q) and Q<rl(x)<r2(x) for a.e. xeQ. Then

nfa W, riy Q)<nt(^ W, r2, O),

for all ju>0 and i = Q, 1.

Lemma 3.3 [1, p!6, (1.31)]. Let Q be a non empty open set in Rn and

WeL{oc(Q), W>1. Let rls r2eL°°(^) and rl5 r2>0. Suppose that Ut(W,

rk, Q) is a compact operator in H^W, Q) for i = 0, I and k=ly 2. Then

n^i; W, rl9 OJ + w^; W, r2,

for all fj,lt ^2
>

Lemma 3.1 is the formulation of the Dirichlet-Neumann bracketing
method which will be used in the present paper. The proofs of Lemmas
3.1 and 3.2 are simple modifications of results in Edmunds and Evans [3,
Chapter XI, Section 2.2] and we use the "min-max principle" instead of the
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max-min principle in [3, Chapter XI, Theorem 1.2].

When Q is an open cube Q and PFeL°°(Q), W>1, we can easily prove

that Ui(W, 1, Q) is a compact operator in Ht(W, Q) for i = 0, 1. Also when

W=\, reL°°(0) and r>0, f/£(l, r, Q) is a compact operator in Hf(l, Q)

for t = 0, 1 (cf. [1, p76]).

Throughout the proof, c denotes various positive constants depending

only on n and this constant may differ even in the same string of estimates.

Proof of Theorem 2.1. Since V(x) —» oo as \x\ —> oo and V>1, T has the

compact inverse operator T"1 in L2(Rn) and T has only discrete spectrum

([3, Chapter IV Theorem 2.9, Chapter VIII Theorem 4.1]). Since

S0(R
n) = S1(R

n) = C^(Rn)9 we have U0(V, 1, Rn)=Ul(V, 1, /?"). By the

definition, t/0(F, 1, 1?") is the restriction of T~1 to #(F).

Since T"1 is a compact operator in L2(Rn), we have, for all A>0,

N(l)= inf codim 5? < oo

where K(A) denotes the set of all subspaces j£? c H(V) such that

f
[\Vu\2+V\u\2}dx> \u\2dx

R" J R"

for all ue& (cf. [1, p!4 Lemma 1.14]). This fact means that U0(V, 1, R")

is a compact operator in H(V) and

for all

We shall estimate fz 0 (A~ 1 ; K, 1, Rn). The arguments of the proof are

similar to those of the proof of Theorem 2 in [7]. Let A0 = max{l, A2> ̂ 3}

and A>A 0 . For simplicity we put /=/(A).

Using Lemma 3.1 and (3.1), we have

1; F, 1,
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In the last inequality, we used the fact that V(x)>k for a.e. xERn\(J^€j

Here we set

(A-Fyf dx
R"

and we have

Inoa-1; v, \, 0C)

(3.2)

< EMA'1; V, l, a)-

We set, for

and

We shall now first find a lower bound for N(ty — (p(%) by use of the
left-hand side of (3.2); then we shall obtain an analogous upper bound for

by means of the right-hand side of (3.2).

Step 1: a lower bound.

For C e ^> the min-max principle gives

n&~1; V, 1, Q;) = n,a-1; 1,

and we have
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£ noCT1; V, 1, 0<)-<j»Cl) = X "o^"1; 1, ', O;)-
?e/A Ce'A

(3.3)

where

-^. 0},

and

^3=1 {noCA-1; 1, r, Q^-noCr1; 1, rc> Qc)}.
C^/A

Now we use the following lemma in Edmunds and Evans [3, Chapter
XI, Theorem 2.6].

Lemma 3.4. Let Q be an open cube in Rn whose sides are parallel to

the coordinate axes. Let A0 and Al be the Dirichlet and Neumann Laplacian
on Q, respectively. For v>0, let Mt(v) denotes the number of eigenvalues of
— Af less than v. Then there exists a positive constant c depending only on n

such that

for all v>0, i = 0, 1.

For all v>0 and i = 0, 1, we have Mt(v) = nt((v + 1)~1; 1, 1, 0). Hence,
by Lemma 3.4, there exists a positive constant c depending only on n such that

(3-4)
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for all \JL satisfying 1>^>0. Since

for Ce/j, we have, by (3.4),

(3.5)

for all jU<r^.
Here we shall estimate y4j . By (3.5), we have

We can easily prove that

and we have

(3.6) |;

Next we shall estimate A2. We have

(3.7)

By the assumption (HI),

(3.8) \A2

We shall estimate A
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Let b(X) = a2(W", then we have, for fe/i,

noOT1; 1, r, Q^<n0(^
1; 1, rc + |r-r?|, 0C)

^((l-fra))!"1; 1, r?> QtHiiofW1; 1, I'-^l, 0?)

where we used Lemmas 3.2 and 3.3 and the fact

(3.9)

(3.9) is the consequence of the condition (H2), that is,
As a result we have

fioU'1; 1, r, Q^-raoCr1; 1, rc, Q<)

(3.10) ^^(O-W)^"1; 1, ^ OcJ-^a"1; 1, ^>

Similarly

"oCA-1; 1, r{> Q^-noW"1; 1, >-, 0c>

(3.11) ^noCl-1; 1, rt, 0;)-

We shall estimate (3.10). By (3.5) and (3.9), we have

n0((l-b(l))l-1; 1, r{, Q^-noW'1; 1. ^ PC)

If w>2, then we have

If w = l , then we have
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Therefore

1; 1, rc> QJ-^A-1; 1, rc>

(3.12)

where 0w = min{l/2, !/«}.
Next we estimate ^^(A)/,"1; 1, |r — rj, Qj by means of the following

lemma ([1, p. 80, Remark 4.3]).

Lemma 3.5. Let Q be an open cube in Rn whose sides are parallel to

the coordinate axes and let peL°°(Q), p>0. Then there exists a positive
constant c depending only on n such that

«,(w i, P, Q)<^-p,Q-»

for all jL£>0, f = 0, 1, where pn is the number defined in the condition (H2).

Birman and Solomyak proved this lemma for n 1(1*1 1, /?, £2), peLp"(Q),
and their estimate for n^(ii\ 1, ps Q) is not the same form as that in Lemma 3.5

When Q is a cube Q, the precise calculation in their proof leads IT
our estimate.

Using Lemma 3.5 and the definition of 6(1), we have

(3.13)

Hence, by (3.10), (3.12) and (3.13),

n0(A~l; 1, r, Q^-n0(A~l\ 1, rc,

(3.14)

Similarly we can estimate (3.11). If /b*£> 1 +6(/l), that is,
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then similar arguments as in (3.12) lead to the estimate

WoW"1; 1, ^ Qd-n0((l+b(X))l-1; 1, rc, Qj

If Ar c<l+6(A), that is,

then we have n0((l +fc(A))A~1; 1, rc, Q?) = 0 and

where we used the fact a2(k)1/2 <a2(%)en.
Therefore we have, by (3.11) and (3.13)

(3.15) <

Accordingly, by (3.14), (3.15), and the definitions of g and

I^ 3 I<Z KU"1; *> ?> Q^~nQ(^~l\ 1, rc, 0C)|

By the assumption (H2), we have
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Hence

(3.16) \A3\

By (3.2), (3.3), (3.6), (3.8), and (3.16),

(3.17)

This completes Step 1.

Step 2: an upper bound.
We have

(3.18) I^a'1; F, 1, Q<)-<KA)+ Z n^'^V, I,

where

1; i, ^ Oc)-9(A, 0}

and

We can estimate A\, A'2 and A3 as in Step 1, that is, we have
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\A\\ + \A'2\ + \A'3\
(3.19)

<c(l+7)(T(^){A"/2aia) + A"/2a2a)9" + /-" + A("-1)/2/-1}.

We shall estimate A'4. Since V>\, we have, by the min-max principle,

A'4= £ n^'1; V, 1, Qc)< X n^-1; 1, 1, Q{).

By (3.4) the last term does not exceed

By means of the assumption (HI), we have

(3.20)

where we used the fact
By (3.2), (3.18), (3.19), and (3.20),

(3.21)

This completes Step 2.

By (3.17) and (3.21), we have

(A — V)nl2 dx
R"

f 1\ _L 3"/2^r ( 1\®" -i- 1( y\~n -L )(n~ !V2Jf )\~ H
IAI "i /L ^2\ / "^ \ / '" \ / /

for all A>/10. Q.E.D.

Proof of Theorem 2.2.

First we consider the case n>2. We will establish the inequality

(j.22)
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for all ^e/A and all A > A 3 where y is a positive constant depending only on
n. If (3.22) holds, then we get Theorem 2.2 by Theorem 2.1.

When n = 2, we have

e;

Hence (3.22) holds.
When n>3, we have, for

\v-vQ\2dx
1/2

QC|' J" '

_g
C C

where

(3-23) ,=-
IL/

We shall prove the inequality

r r
(3.24) \g-gtf12 dx<y \ \g-gQ^/2 dx

JQ;. JQ^

for some positive constant y depending only on n.
By Minkowski's inequality,

Now

-( l

Hence

gnl2dx -

j^ f \S-SQr\
nl2dX\'".

l« ^1 J Q- /
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As a result we have

]g-gQ\Hl2 dx

which is (3.24). Hence we have (3.22).

Next we consider the case n = l.

We shall prove

a2

for all /1>A3 where y is a positive constant not depending on /I and f. If

(3.25) holds, then we have, by (H2)',

which is (H2).

(3.25) is the consequence of the inequality

(3.26) f \g-g,\dx<yl(W2(( k-gojdx}
J Qr \ J Qr /

for all CG/A and all A>A 3 . We shall prove (3.26). Now

f f(3.27) \g-gt\dx < \g-gQ.\dx + \gi

1/2

We shall estimate the first term on the right-hand side of (3.27). By Holder's

inequality, we have

(3.28) \g-gor\ dx < \Qr\1/2\ \g-gnr\ dx

<x/2|0c|
1/2 ( f \8-Soldx

\JQ,

1/2
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where we used the fact that |g(,x:)|<l a.e.
Next we shall estimate the second term on the right-hand side of

(3.27). We have

QC

2 f / 1 f V/2
^rr- I l£-£nJ <«<2| 7^- I |g— ̂ e?| dx

Hence

a \
\g-gQr\dxY12.

2C * '

By (3.27), (3.28) and (3.29), we have (3.26). Q.E.D.

Proof of Theorem 2.3. For simplicity we set

By the condition (Cl) we have An/2a(A) = O(T(A)) as A-> oo. Hence,
by (C2), (C3), (2.6) and (2.16), we have

(3.30) \Ai\ + \A3\ + \A\\ + \A'3\=o<V(W

where A^, A$y A\, Af$ are quantities in the proof of Theorem 2.1 and we
used the condition (H2)' in Theorem 2.2.

We shall estimate A2, A'2, and A'4. We set

e(A) = A~1 max ess sup (A— V(x)) +
CeJA\/A xeQc

and

A,~l max ess sup |A—F(%)|.
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By (3.7), we have

\A2\ = \A'2\ = c

By the condition (C4), we have

(3.31) \A2\ = \A'2\ =

Next we shall estimate A'4. Now we have, for

n ^ ( X ~ l \ V, 1, Qt)= inf codim g

where K^(l) denotes the set of all subspaces ^aS^Q^) such that

\u\2 dx

for alined and S^Q^) is the space defined in the beginning of this section.

If we denote K^(X) the set of all subspaces ££ c: S^Q^) such that

f
JQ

for all weJ^f , then we have KC(A) c K^(X) and

w^A"1 ; 1, ( l-f / l~1-FA"1) + J 0C)= inf codim JSf
JZ>e£c(A)

Hence we have

^(A-1; V, 1, Oc)^"!^"1; 1, ( l+A-'-FA-^, 0?

By Lemma 3.5, we have

^(r1; V, 1, Q$<c
'uc
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As a result

(3.32) A'4= X nitt~l\ V, 1, Qr)

First we consider the case n>3. Since pn = n/2, we have

I ^
/A\JA JQ

j?"

By (C2) and Lemma 1.1 in [12], we have

,. yg+i) 1hm - =1.

Therefore, by (C4),

(3.33) A'4

Next we consider the case n = l or 2. By (3.32), we have

^o/aM+i)"'2 x ioci.
«e^\JA

Since

max ess sup F(^c) < 1 + f/(A)/l < 2A
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for large A, we have, by (Cl),

Hence we have

(3.34) A'4 =

By (3.30), (3.31), (3.33) and (3.34), we have

f
N(Ji)~(2nrnQ)n U-PO+2 dx as A-> oo.

Q.E.D.

§ 40 Applications

In this section we will study some applications of our main results in
Section 2. First we consider radial potentials.

Theorem 4.1. Let f>\ be a strictly increasing function on [0, oo) such

thatfe Cl([Q, oo)) andf(t) -» oo as t -> oo. We assume, for a positive integer ny

«r'(A) \
(X-f(t)}nl2tn-1 dt as A ^oo

D /

where vn = l/(2n) (w>3), v2 = v1 = l/8. Le^ F(*) =/(|^|) for xeRn. Then

f
AT(A)-(2n)-"™n (>L- F)"/2 </* ^ A -> oo.

Proo/. In Theorem 2.1 we set /(A)- (f ^A)}1'2. We shall calculate
ai(X) and «2(/l) in (HI) and (H2).

We consider the condition (HI). By a simple geometrical consideration,
we have

-1,2
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for sufficiently large "k where c is a positive constant depending only on n.

Next we consider the condition (H2). First we consider the case
n>3. We have

f
JQ

<* I /W f
Ce/A JQ

\V(gn/2)\ dx < cl(X) \V(gn/2)\dx

where Q^ = {xeRn: V(x)<h} and we used the Poincare's inequality ([3, p.242,
Theorem 3.23]).

Here we have

JoA Jo ^ \ A / A

Accordingly we have

Gn(V, ty<cl(X){f~l(A)}n~l

for large A.
Secondly we consider the case n = 2.

G2(V, I) = 1(1) X (f |^-^|2^
C e / A \ J Q c

where we used the fact that \g\ < I. The last term does not exceed

l/2

1/2

D

Hence we have

G2(V, tiZ
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Finally we consider the case n = l.

G,(V, i)=za)i/2 £ f f \g-t
?6/A \JSc

As a result we have

- i/2

Hence we have

Gn(V, A)^

f o r w > l and for large A where juw= l/2(w>3), jU 2 — Mi =1/4. By Theorem 2.1,

we have

for large A where vn = l/(2w) (w>3), v2 = v1 = l/8.

By the assumption (4.1), we have

, [ (A- i
JR"

Q.E.D.

Remark 4.1. By Theorem 4.1, we can give the asymptotic formula for

the Schrodinger operator — A+F on Rn when, for example,

F(#) = exp exp---exp \x\,

V(x) = \x\* (a>0)
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or

V(x) = log-- -log \x\

for large \x\. By easy calculations we can show that these potentials satisfy
the condition (4.1).

Next we consider potentials which are not necessarily radial. First we
shall give a theorem which is an extension of the result by Titchmarsh [17,

P176].

Theorem 4.2. Let VzCl(Rn), V>\ and V(x) -> oo as |*|->oo. We
assume the following conditions.

f
(4.2) An/2<j(A) = 0(T(A)) as A -> oo where ¥(A) = (A- F)f d*.

(4.3) There exist constants cl>0 and a such that 0<a<l /2 and

\VV(x)\ <C!FW1+a for large \x\.

(4.4) lim - =0 where

a is a constant in (4.3).

Then

{ _ ,12W"L»
Proof. Let 6 be a positive constant such that a<B<\/2. In

Theorem 2.2 we set /(A)-A"0 for large A.
First we consider the condition (HI). By (4.4), we have

as A -> oo.
Next we consider the condition (H2)'. We have, for large A, by (4.3),
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Inlpn

^-*n\ > / ~~ \ ) n n

a \
\VV(x)\pn doc }

Q.r /

Therefore, by (4.2) and Theorem 2.2, we have

Q.E.D.

When w>3 , we can prove the following new result.

Theorem 4.3. Let n>3. Let VeCl(Rn\ V>\ and V(x) -> oo as

\x\ -> oo. We assume the following conditions.

(4.5) There exists a positive constant cv such that cr(2A) <CiG()C)for large X.

(4.6) There exist constants c2>Q and a such that 0<a<l/2 and

\VV(x)\ < c2V(x)l+a for large \x\.

Then

Yi2 dx.

Proof. Let 6 be a positive constant such that a<6<l/2. In

Theorem 2.3 we set /(A) = /l~9 for large A. Clearly the conditions (Cl) and

(C2) are satisfied. We consider the conditions (C3) and (C4) in Theorem

2.3. We have

&n(V, X)= £ \V-VQ I"'2 dx <c^ l(W2 |VFW|»/2 dx
C6/ A JQ^ ^eJA JQ^

By the assumption (4.6), the last term does not exceed
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cct/2 /(A)"'2 A(1 +fl)M/2 (j(A) - cc*2 X112 a

Hence we have

&n(V, ^<ccn^2^2a

for large A and the condition (C3) holds.

Next we consider the condition (C4). Let l^EJ^\Ix. For every
xeQ^nQi such that F(*)<A, there is a zeQ^nQA such that V(z) = A and
the line segment which connect x and z lies in Q^nOA. If there are no
such z and line segment, then we conclude that V(y)<h for all yeQ^ that
is, Ce/j. and this contradicts the choice of f.

By (4.6), we have, for all xeQ^nQ^ such that

l-V(x)=V(z)-V(x)< \VV(x + t(z-x))-(z-x
Jo

)\dt

Hence the condition (C4) holds. Therefore, by Theorem 2.3, we have

AT(/l)-(27i)"wcon (A-Fyf dfoc as A -» oo.
JR"

Q.E.D.

Remark 4.2. The condition (4.2) is weaker than (4.5). In fact we can
easily give an example of V such that (4.2) holds and (4.5) is false.

Remark 4.3. In [4] Feigin studies the asymptotic distribution of
eigenvalues of pseudo-differential operators which contain the Schrodinger
operator -A+F where FeC°°(l?"), F>1 and |^F(^)|<C^F(^)1+^I for all

/JeAP1, xeRn. In Theorem 4.3 our assumption on F is FeC1^") and this
is an improvement on the regularity condition in the Feigin's result.

Next we will give an alternative proof to Theorem 2 in Rozenbljum [12].

Theorem 4.4. Let FeLgc(J?"), F>1 and V(x) -> oo as |*|-»oo. We
assume the following conditions.
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(4.7) There exists a positive constant cl such that a(2)C)<ci(j(k) for large A.

(4.8) Let S be a family of disjoint open unit cubes {Qj such that

l?" = uQj. There exist a continuous and decreasing function v(t), £e[ l , oo),

v(t) -> 0 as £-» oo, and an index a, 0<a<l/2 such that

\V(x)- V(y)\ < \X-y\2°V(X)1 +av(V(X))

for an arbitrary QtEE and for all x,

Then

J

(A-F)f dx.
R"

Proof. First we consider the case a>0. Let k(t) = tv(t)~ll(2a} for

t>l. Then k(t) is a strictly increasing function on [1, oo) and k(t) —* oo as

£ — > o o . Let /z(s) be the inverse function of k(t), that is, h(s) = k ~ ^ ( s ) . In

Theorem 2.3 we set /(A) = [/z(A)1/2]-1 for sufficiently large A where [#] denotes

the integral part of x, and we consider cubes {Q^^z with side length /(A)

which are partition of each unit cube in H.

Then we have

as A— > oo. (4.9) means that the condition (C2) in Theorem 2.3 holds.

We will consider the condition (C3) in Theorem 2.3 when w>3. We

decompose /A to disjoint two subsets I\ and I\, that is,

; inf V(X}>h(X)} and /f = I,\I\.

We shall estimate £ \V-VQ \n/2 dx. For C G / A , there exists a ze
Ce/^ JQC

 C

such that F(#)</z(A). Hence we have, for all xeQ^ and large /I,

|FOO-F(*)|<c/(A)2flF(*^

Accordingly we have V(x) < ch(X) < av(^(A))1/(2fl) for all xeQ^^ell and

(4.10) X | \V-VQf12
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fNext we shall estimate £ \V—VQ\n/2 dx. By the condition (4.8),

we have

\V(x)-V(y)\<d(X)2aV(x)1'

for Ce/j[ and for all #,
Hence

(4.11)

^A

By (4.10) and (4.11), we have

\V-VQ\"'2 dx<c^2a

for large A.
When w = 2, similar arguments as in the case n>3 give

\V-VQ\2

When w = 1 , we have

for large A. Hence the condition (C3) in Theorem 2.3 holds.
Finally we consider the condition (C4). Let {eJA\/A. If V is

discontinuous at 3Q^, then we define Vr as the function which is continuous on

Q^ and coincides with V on Q^. By (4.8), we have
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for all xy y E Q^.

Since CeJ^X/^, there exists a z^Q^ such that V^(z) = A. Hence we have,
for all xeQ^ and large enough A,

By (4.9) we have h(h)<k for large A. Hence we have v(A) < v(/z(A)) for
sufficiently large A.

Therefore we have, for all xeQ^ and large A,

(4.12) \l-V(x)\<c^a

and the condition (C4) holds.
By Theorem 2.3 we have

N( A) - (27i) ~ " a}n \ (A - V)ni2 dx as A -* oo .
R"

When a = 0, we set Z(/l) = l and /z(A) = /L1/2. Similar arguments as before
gives the conclusion. Q.E.D.

Next we consider the condition which is a modification of the result
by Fleckinger [5] (cf. Fleckinger and Lapidus [6, Section 5]).

Theorem 4.5. Let V be a continuous function on Rn, V> I and V(x) -* oo
as \x\ — > oo. We assume the following conditions.

(4.1 3) There exists a positive constant c^ such that cr(2/l) < c^tyfor large A.
(4.14) For every e>0 there exists a 7?>0 such that \V(x)-V(y)\<sV(x)

for all x, yeR", \x—y\<rj.

Then

N(A)~(2n)-nco« (/l-FXf dx.
J R"

Proof. In Theorem 2.3 we set 1(1) = X~0 where 0<0<l/2. For every
e>0 we define rj(e) as the maximal Y\ satisfying the condition (4.14). For

we set
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e(A) = inf{e>0;

It is clear that e(A) -> 0 as A -> oo. We have

for sufficiently large A where gn is the constant in Theorem 2.2.

As in the proof of Theorem 4.4, we have, for all xeQ^e JA\/A),

Hence we have

Q.E.D.

Remark 4.4. In [5] Fleckinger considers additional condition as follows:
(4.15) Consider a tessellation of Rn by a family of disjoint cubes {Qj^z

where Z denotes an index set and Q^ is an open cube with side length
?/>0. We set

and

J = {CeZ:

where f2A = {xeR": V(x)<X}. Then

,. nhm - - '- — 0

for large A.

In our proof we do not need this condition (4.15).

§5. Nonclassical Potentials

In this section we consider the eigenvalue asymptotics of the Schrodinger
operator — A-f-F on Rn when V is a nonclassical potential. A nonclassical
potential is the potential V such that F>0 and the set {xeRn: V(x) = 0} is
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an unbounded set. Several results on these nonclassical potentials are known
([8], [9, Section 10] [11], [13], [14], [15]) and those are only on the potentials
whose zero sets are cones in R". Our method is a modification of that of
Tachizawa [15] and we can apply it to some nonclassical potentials whose
zero sets are not cones.

The potentials which we consider in this section belong to the special
function class, that is, A ^-weights and we use some results about ̂ 4^-weights
in Tachizawa [15, Section 2].

Let V be a nonnegative continuous function on R" and let T' be the
self-adjoint operator associated with the sesquilinear form

t'(u, v) = VuVv dx + Vuvdx
JRn JR"

as in Section 2. We write T ' = — A + F , formally. If T" has only discrete
spectrum, then we denote the number of eigenvalues less than A as N'(A).

We will consider some examples.

Example 5.1. V(x, y) = \xy\*, (x, y)eR2, a>0.
This potential is considered by Simon [13]. By Lemma 2.3 in [15],

V(x, y) = \xy\* is an ^4^-weight on R2 and, by Remark 2.3 in [15], it is easily
proved that the Schrodinger operator T'=—A + \xy\* has only discrete
spectrum.

We shall prove

(5.1) N'(A)~-li + il*logl a s A - » o o
n

by the method of Tachizawa [15].
We set

V^x, y) = \xy\*+l

and let T be the self-adjoint operator associated with — A+F t . Since AT(A)
denotes the number of eigenvalues of T less than /I, we have

(5.2) N(X) = N'(i+l).

We will estimate AT(/l) using the method in the proof of Theorem
2.1. We set, for large A,



976 KAZUYA TACHIZAWA

Q,= {(X, y)eR2:

and

where cl is a positive constant depending only on a and we shall give precise
value of c1 later. In the proof of Theorem 2.1 we used the fact that w^J,"1;
F, 1, D) = 0 where D = J?"\UC6jJ^. Hence the proof of Theorem 2.1 is
valid in this nonclassical case if we prove w^A"1; V, 1, O*) = 0 where

We have

Of = the interior of FivF2vF3

where

and

c2 is a positive constant which will be given later. We will show that
F, 1, Q%) = Q. If A is sufficiently large, then we can write

and

?2: \y\>k(X), \x\

where &(A) is a function of A such that ^(/L)>C l(A- l)(2+a)/(2a).
Then, by the Dirichlet-Neumann bracketing method,
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(5.3) mU'1; Vlt 1, f2J)< £ n^'1; V,, \, F,).

For the proof of w1(x,~1; Vly 1, Ft) = 0 for z = l, 2, we use the following

lemma which is derived from Lemma 2.4 in [15].

Lemma 5.1. Let a>0 and A>Q. Then there exist positive constants

Kl and K2 depending only on a such that

[ \ d ^ 2 + A\x\«\u\2} dx>KlA
2l(2+^ f \u\2 dx

Ji I dx ) Jj

for all ueS^I) where I=(-K2A~ll(2+*\ K2A~l'(2+^) and S^I) denotes the

space defined in Section 2.

If we set Cl-max{K;r(2 + a)/(2a), ^(2 + a)/2} +1 and c2 = cfa /<2 + a>K;2 , then we

have

du
> dx

) |*|>fc(A)

\u\2dxdy

f f
\u\2dxdy+ I I \u\2dxdy = X \u\2 dxdy

J JFI JJFI

for all Me^S^Fj), u^O and for sufficiently large A. Hence we have

Similarly

n^-1; V,, 1, F2) = 0.

By the choice of c2, we can show

for all (jc, y)eF3.
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As a result

fi^-1; FL 1, F3) =

By (5.3), we have

if A is sufficiently large.
Now we consider the conditions (HI) and (H2). Simple calculations

give, for large A,

and

IW I k-^H2,Qc<^PAl(log(A-l))-1/4

fwhere g=l — (\xy\" +1 )A 1, g^ = \Q^\ | ^^ and c3, c4 are positive constants

not depending on A. Applying the proof of Theorem 2.1, we have, for large A,

. _ L f (A-M'-lVfcrfy
471 J«A

where c5 is a positive constant not depending on A. Hence, by (5.2), we have

1

where

We can easily show that the order of | (A — \xy\*) dxdy is same as that

of A|£2'A| as A-» oo. Hence we have
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and simple calculation gives

— I (AH^iv»*y~-
4^Jfl,

Hence we have (5.1).

Example 5.2. V(x, y) = (l + W)"(H-bl)/fMyM*, ae*"1, yeR"2, oc, 0, y,
<5>0, a + y^O, j3 + <5/0, y/*2< (/? + <?)«! and (5^ <(a + y)w2.

This potential is considered by Tachizawa [15]. In exactly the same
way as in Example 5.1, we have

On [ (A- i
J f^r

(5.4) N'(X)~(2nr*con \ ()i-V)nl2 dxdy as 1 -»oo

where

and C I L , c2 depend only on a, /?,y, 5,^! andn2. Hence, in the case iy^2
and dnl <(a-fy)w2 , the order of AT(A) is same as that of 1V1 + AV2 and in the
other cases, the order of N'(X) is same as that of (AV1 +AV2) log A where
v1=w/2 + w1/(a + y) and v2 = n/2 + n2/(p + 6).

For the proof of (5.4), we also set /(/l) = (/l-l)-1/2(log(A-l))1/2.

Example 5.3. V(x, y) = ntssl\x-ai\^'n^i\y-bj\^9 (x, y)eR2,

Let 5! =max1 ̂ i;S|, af, 52 = maXl < j :<g j8j} <T! =^= ^^ and cr2 =£*= ^^ Let=

and
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Then we have

1 .
(5.5) JV'(A) (A-V)dxdy as A-» oo

and accordingly the order of AT(A) as A -> oo is same as that of

ra2l*idt+

The proof of (5.5) is similar to that of (5.1). For the proof, we also
set /a) = (l-l)-1/2(log(A-l))"2.
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