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Projection Maps for Tensor Products
of ^/(r5C)-Representations

By

Georgia BENKART*, Daniel BRITTEN** and Frank LEMIRE***

Abstract

We investigate the tensor product $~ = F(A*)® ••• (><) F(/lm) of the finite dimensional
irreducible (& = #f(r,C) modules labelled by partitions A 1 , - - - ,> l m of m not necessarily distinct
numbers n1,---,nm respectively. We determine the centralizer algebra End^(^) and the projection
maps of &" onto its irreducible ^-summands and give an explicit construction of the corresponding
maximal vectors. In the special case that n{ — \ for z '= l , - - - ,m, the results reduce to the
well-known results of Schur and Weyl.

§ Introduction

The finite dimensional irreducible polynomial representations of the
complex general linear Lie group G = GL(r,C), or equivalently of its Lie
algebra ^ = ̂ /(r,C), are in one-to-one correspondence with the partitions A
having at most r nonzero parts. Let V(h) denote the irreducible ^-module
indexed by A. The natural representation of 9 on Cr corresponds to the
representation F"({1}) labelled by the unique partition of 1. The tensor
product of finitely many irreducible polynomial representations is a completely
reducible ^-module, and determination of its irreducible summands has long
been a problem of interest. Classically, this problem has been tackled by
two quite different approaches. In the first, the decomposition of the tensor
product V(ll)(j<)V(A2) of two arbitrary irreducible ^-modules has been
described at the character level by the Littlewood-Richardson rule. In the
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second, the M-fold tensor product T= (X)MF({1}) of the natural representation
has been decomposed by showing that the centralizer algebra End^(T) of *§
in the space End(T) of transformations on T is a homomorphic image of
the group algebra C[SM] of the symmetric group SM. The Young
symmetrizers yr give primitive essential idempotents in C[SM] which afford

a decomposition C[SM] = ©X^r ^[^M] °f ^I^Afl into minimal right ideals,
and hence they determine the projection maps of T= ©X^t^ onto its
irreducible summands yTT. The maximal vectors for the irreducible
summands can be explicitly constructed using the corresponding Young
symmetrizers.

In this paper we investigate the tensor product F(A1)(X)---® V(Am) of
the ^-modules labelled by partitions Al,--,Am of m not necessarily distinct
numbers nly--,nm respectively. Although the characters of the irreducible &-
summands of FC/l1)® - - - ( X ) F(Am) are known from the Littlewood-Richardson
rule, the explicit submodules corresponding to those characters are not. We
identify this tensor product with a summand eT of the Tkf-fold tensor product
T= ®MV({\}) of the natural representation for M=n1-\ ----- \-nm by using a
certain idempotent eE C\_Sj^\. It follows then that eT = ̂ dleyTT where the y^s
are the Young symmetrizers in C[SM]. The submodules eyTT which are
nonzero are irreducible, but the sum is no longer direct. (See the example
after the statement of Theorem 1.13.) In this paper we describe a
distinguished set of labels T such that the corresponding eyr's are essential
idempotents, the sum of the irreducible modules eyxT over this set is direct
and gives eT. This enables us to determine the centralizer algebra
Endy(V(kl)®'--®V(Xn')) = End<g (eT) and to explicitly construct the maximal
vectors for the irreducible summands occurring in the decomposition of
eT. Our methods generalize the classical ones of Schur and Weyl, and
indeed our results reduce to their well-known results when A1 =12 = ••• =
^m = {l}. Encoded into our description of the distinguished labels T is the
Littlewood-Richardson rule.

In the special case that each partition A1 has only one part, the idempotent

e equals the idempotent \tf\~1 Xff6^ ° corresponding to the Young subgroup

y = SIiX---xSJmofSM where Ii = {nl + ---+ni_l + l,''',nl + '--+ni}. When-

ever r>M, the centralizer algebra of ^ on FC/l1)® •••(§) F(Am) is the
Hecke algebra eC[SM]e. Thus, we obtain by our investigations a description
of primitive idempotents in the Hecke algebra eC[SM]e. (Compare [C] and
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[K], Theorem A.)

§1. Centralizer Algebras

In this section we begin with a few generalities about centralizer algebras

and then specialize to study ^f(r,C)-modules. Initially we suppose that ^ is

a Lie algebra and T is a ^-module. The centralizer algebra End^(T) of &

on T is the set {0e End(T)\(f)(xt) = x(j)(t) for all XE& and ttT} of linear

transformations on T commuting with *§ . When T is assumed to be a

completely reducible ^-module, the projection maps of T onto its irreducible

summands belong to End&(T), and the ^-submodules of T are the spaces

eT where e is an idempotent in End<#(T). Thus, the centralizer algebra is

significant for understanding the decomposition of T into irreducible

constituents. Similarly, for a submodule eT of T, the centralizer algebra

Endy(eT) plays a critical role in analyzing its irreducible summands. As the

next result indicates, these centralizer algebras are closely related.

Proposition 1.1. Let $ be a Lie algebra and T be a completely reducible

^-module. If e is an idempotent in Endg(T), then

Proof. The elements of eEnd&(T)e when restricted to eT clearly belong

to End^(eT). To prove the reverse inclusion, let f£End<g(eT) and let id,

denote the identity map of T. Extend / to a linear transformation (denoted

/) on T=eT®(id — e)T by having /map (id — e)T to zero. Since (id — e)T

is a ^-submodule of T, we have f(xu) = Q = xf(u) for all ue(td — e)T and

ThusJeEnd^(T). IfueeT, thenf(u) = et for some te T. Therefore,

(id - e)f(u) = (id - e)et = 0.

Since (id — e)f is zero on (id — e)T as well, (td — e)f=Q on T, and /=

We suppose now that # = ̂ (r,C) and T=(g)"F({l}) of n copies of the

natural representation V({l}) = Cr of ^, which is a completely reducible

^-module. There is an action of the symmetric group Sn on T given by

= ua- i
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for G»eSn, which extends to a representation of the group algebra C[Sn] on
T. The action of the group algebra C[*SJ commutes with that of ^, and
thus, the group algebra can be used to decompose T into ^-submodules.

Let A = {At > A2 > • • • > ^ > A^ + ! = 0} denote a partition of n, and let /(A) = t
be the number of nonzero parts of A. We write X \- n to signify that X is a
partition of n, and use |A| to denote the sum of the parts of A, which is just
n. Associated to A is its Young frame or Ferrers diagram <^"(A) having n

boxes with At- boxes in the z'th row for i= I , - • - , £ . A standard tableau of shape
A is a filling of the boxes in the diagram of A with the numbers 1, • • - , ?? in
such a way that the entries increase from left to right across each row and
down each column. Associated to the standard tableau T are two subgroups
of Sn, the row group $x of permutations which transform each entry of T to
an entry in the same row, and the column group %. of permutations moving
each entry of T to an entry in the same column. These subgroups of Sn

enable us to construct the following element in the group algebra

There is some keZ+ such that s? = ksx (see [W], p. 121), so that ST is an
essential idempotent. If ?T = (l/&)st, then S?=ST, and ST is a Young
symmetrizer . The idempotents JT, for T in the set ^^(n) of all standard
tableaux over all partitions A of n, are primitive idempotents which afford

a decomposition of the group algebra Cf/SJ =

right ideals. Correspondingly, they determine a decomposition of T =

®nv({\}}. Thus, r=eL.^w
 ;.r (see [wi and also

The representation of C[Sn] on T gives a surjective homomorphism
ij/:C[Sn] ^> End#(T) with kernel equal to 0^A, where J/A is the minimal
two-sided ideal of Cf^SJ corresponding to the partition A, and the sum is over all
partitions A of n with /(A)>r. Hence,

(1.2) Endy(T)=
hn

Each J/A is the sum of all the minimal right ideals srC[Sn] where T has A
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as its underlying partition. (Compare [Bo] Theorem 4.6.) Thus, when T
has shape A and *f(A)>r, then ?TT=(0). Otherwise, srT =V(A). Therefore
when /(A)<r, V(A) occurs as a summand of T with multiplicity equal to
the number of standard tableaux of shape A.

For each partition A we choose a standard tableau £A obtained by filling
in the diagram of A with the numbers l , - - - , n in succession beginning with
the first row, then the second, and so forth and proceeding from left to
right. We let ?A denote the Young symmetrizer defined by the canonically
chosen standard tableau £A and identify F(A) with ?AT.

Example. When n = 2, there are exactly two partitions of n, A = {2}
and n = {I2} = {1 > 1}, and just two standard tableaux (the canonically chosen
one for each partition),

and

The associated symmetrizers are s^=l/2(f^ + (l 2)) and sn=
l/2(id — (l 2)).

Thus, T=F({2})0F({12}) is the decomposition of T into irreducible
summands. In this case the elements in F({2}) are just the symmetric
tensors, and those in F({12}) the anti-symmetric tensors.

Since our eventual aim is the study of the tensor product
F(Am), we assume that A1 is a partition of the integer niy and let Mt = nl-\ ----- h n{

for i=l,'-,m. We let £' denote the canonically chosen standard tableau
obtained from filling in the diagram of A1. However, rather than inserting
the integers !,•••,«,-, we use instead the values in Ii = {Mi_1 + \,'-,Mi} (where
M0 = 0). Let e~?A' denote the associated Young symmetrizer. Then the
idempotent ei belongs to the group algebra of the group Sr. of permutations
on Ih which we identify with a subgroup of SM for M=nl-i ----- \-nm = Mm.

def
Clearly the idempotents ei commute, and e = el-e2'-"em is an idempotent in

C[SM]. Moreover, if T= ®MF({1}), then

(1.3)

Throughout this work we identify the tensor product ^(A1)® • • • ( > < ) F(Am)
with eT. As a consequence of Proposition 1.1 and (1.2) we have:

Proposition 1.4. For i=l,--,m let nt denote a positive integer and assume
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ti is a partition of n{. Identify FOi1)®-"® F(Am) with eT=e(g)MV({l}) as

in (1.3). Then

Remarks. Observe that iff=e(f>e where <^eZ AI-M ^A an<^ iff\eT = ®> then

/=0. Indeed, e(fre\eT = ® implies e(/)e = 0 on T, and hence, e(j)ee^ AI-M <&'n-

But then ecbe

One of our main objectives is to describe the projection maps of eT

onto its irreducible summands. By Proposition 1.4 these maps are primitive

idempotents in e£ AI-M $& \e\eT- In our description we find it helpful to

reverse the order of the row group and column group for every standard

tableau i except for the canonical ones attached to the partitions A*. The

element

3't=( Z P } \ Z 5gn(y)y] = Z ssn(y)py.
\pe@T J \ye^r / pe^r

ye^t

is an essential idempotent in C[SM], and the essential idempotents yT afford

a decomposition of C[*SM] and T just as the st's and ?t's do. If the underlying

partition of T is A we have yxT= V(h) whenever

The character of the irreducible ^-module F(A) is the Schur function

SA (see [Ma]), and the product of the two Schur functions sv and SA is just the

character of the tensor product F(v)0F(A). The Littlewood-Richardson rule

(see [J], [S], [T], and [Ma] for proofs) provides an algorithm for decomposing

the product of two Schur functions into a sum of Schlur functions:

where the coefficients £?,A are the so-called Littlewood-Richardson coefficients.

Therefore,
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The Littlewood-Richardson coefficients have a combinatorial description as
the number of lattice permutations of shape n/v and weight A. If n and v
are partitions with 7ij>v^ for all z, then we write n =>v and say v is contained
in n. The diagram obtained by deleting the boxes of ^(v) from the diagram

is the skew shape n/v. The coefficient cJ,A is zero unless 7i^2v,A and

A lattice permutation is a word co = bl-'bq of positive integers such that
for each integer &>0 the number of occurrences of k is greater than or
equal to the number of occurrences of the integer k + l in b l - - - b p for
p = l , - - - , q . If Ak denotes the number of occurrences of k in co, then
A = {A! > A2> '"} is a partition, termed the weight of co. Suppose n^v and
|7i| = |v| + |A|. If a) = bl--bq is a lattice permutation of weight A, then one
inserts the ^-'s into n/v by filling in the rows from top to bottom and right
to left. For example, if v = {2,l2} and 7C = {32,2}, then the word o> = 1212
is a lattice permutation of weight A = {22}, which is inserted into n/v as
pictured below:

1
2

1
2

The coefficient c5fA records the number of lattice permutations of weight A
which give semistandard tableaux when inserted into n/v. By semistandard
we mean that the entries in the tableau are weakly increasing across each
row from left to right and strictly increasing down each column.

There is a procedure for determining the coefficients cJ,A> which we
illustrate with the simple example v = {3,l}, A = {22}. Insert 1's into the first
row of the diagram of A, and 2's into the second. Take the boxes with the
1's from ^"(A) and append them one by one to the frame ^(v), in such a
way that each lies in a different column and the result at each step is the
frame of some partition. Next take the boxes with the 2's and adjoin them
to the frames just formed. Again, no two of these boxes should lie in the
same column and the result at each stage should be the frame of a
partition. The 2's should be added in such a way that if the frame is read
from top to bottom and right to left, the number of 1's at each step is greater
than or equal to the number of 2's; that is, the result of reading the 1's
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and 2's in this fashion should be a lattice permutation. Therefore, the

algorithm yields the following which we term the components when the

Littlewood-Richardson process is applied to v(X)A or simply the components of

2 2
1 1

2

1
2

1
2

1 2

2

1
2

1

1

I T

2

2

1
2

2
i i i

1

2
1
2

1

If a component has shape n and if £(n)<r, then F(TC) occurs as a summand

of the tensor product. Consequently for r>4,

2})0 F({4,2,12})0 F({32,2})
0F({3,22,!}).

In this work we interpret the Littlewood-Richardson algorithm as a

process to produce a collection of standard tableaux, which we term

Littlewood-Richardson tableaux. To describe these tableaux we use the

phase the northeast corner (NE corner) of a position (a,b) or its entry in a

tableau to mean all positions (a,b') in the tableau with a>a and b'>b.

Lemma 1.5. Let v and A be two partitions and suppose that 6 is a

component of v(X)/l If i+l is the entry in row a and column b of 9, then

there are at least as many ?s as (i+ l)'s in the NE corner determined by (a,b).

Proof. Assume that the lemma fails at row a and column b of 9 and

that a is minimal with that property. Then we may suppose that in the

NE corner determined by (a,b) there are more (f + l)'s than fs and that the
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entry in position (a,b) is i+l. The lattice permutation and semistandard
properties of the Littlewood-Richardson procedure insure that / is the (a',bf)
entry of 6 for some a <a and b'<b. The semistandard property also
guarantees that the entry in position (a —1,6) is i. Moreover, if t'+l is in
position (a,c) for c<b, then i is the entry in position (a— l,c). Since the
(z'-fl) 's in row a of the NE corner determined by (a,b) are paired with z's
directly above them, there must exist some i+l in the NE corner determined
by (a,b) for which the property fails. Necessarily i+l occurs in some row
higher than row a, but that contradicts the minmality of a. Thus, the
lemma must hold. H

We now describe our procedure for filling in the boxes of a component
to yield a standard tableau. Suppose v and k = {kl > ••• >A< f>^+ 1 =0} are
partitions. We assume that the boxes of ^(v) have been filled with the
numbers l , - - - , | v | in the canonical way and insert the numbers |v| + l , - - - , |v | + |A|
into ^(A) from smallest to largest by proceeding from left to right and top
to bottom. If 9 is a component of v(X)>l we substitute the symbol af * for
each i in 6 and refer to the result 9*. We change the * on each af * in 0*
to some j with l<j<A,t according to the following steps:

Algorithm 1.6. For I<y</ l l 5 let /7- be the length of the j-th column of
L Set j=l.

(i) Set i = £j. Locate the leftmost unlabelled &£. ^ and label it a^j. If
i=ly proceed to step (Hi).

(ii) Locate the leftmost unlabelled a f _ l f * in the northeast corner (NE
corner) of afj and label it o ^ i ^ l j . Redefine i to be i—l and repeat this step
until i=l.

(iii) I f j < A , l , then redefine j to be j+l and repeat step (i). Otherwise,
quit the algorithm.

At the conclusion of this algorithm we replace afj with the entry in the
i-th row and j-th column of ^(K) which is |v| + A1H MJ-I+./, and then fill
each empty box of 9 with the corresponding entry in ^(v).

We show that this procedure can be accomplished in one and only one
way for each component of v(X)A. Moreover, the net effect is a standard
tableau with underlying partition n where n is the shape of the
component. Before addressing those issues, perhaps it is instructive to
consider the following example.
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Let v = {3,2,l} and /1 = {32,1} so the diagrams of v and A are filled
according to:

7
10
13

8
11

9
12

We assume that 6 is the following component of

(1-7)

2
2
3

1
1
2

1 i

After Algorithm 1.6 has been performed, the component 9 has been

transformed to:

(1.8)

2.2

2,3

and the end product is the standard tableau

1
4
6
11

2
5

10
13

3
7

8
12

9

Lemma L90 Let v and A={A 1 >- - ->A^>/1^ + 1 =0} be two partitions.
Suppose that 6 is a component of v(X)/l and that each i in 9 has been replaced
by a^* to give 0*. Then Algorithm 1.6 can be successfully performed to change
each a f >* m 0* to afj /or some y «;zf/z 1 <j<hh and at its completion each pair
of subscripts (i, f) with \<i<t and \<j<X{ occurs exactly once.

Proof. Step (i) of Algorithm 1.6 can always be carried out, so that if

the algorithm fails to label all ait*, then at some point step (ii) cannot be

performed. Assume for i>\ that the algorithm has assigned the indices

(z, k) for l<k<j and as well as the indices tfp », (^-1, j), •••,(!, /) from the

y-th column. Denote this partially labelled version by rj. Let (a, 6) be the

location of OLLJ in r\. We argue that in the NE corner of rj determined by

(a, b) there remains at least one unlabelled a j _ l f * so that step (ii) can be
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performed. Assume to the contrary that all the a^^'s in the NE corner

of (a, b) have been changed to a f _ l f for some t<j. Let K={t\ai_i t is in

the NE corner of (a, b) in r]}, so that all the elements of K necessarily are

less than j. Since 0 contains an / in position (a, b), Lemma 1.5 tells us

that 9 contains at least one i—\ in the NE corner of (a, b), so that K^0. For

each teK, let (cti dt) denote the location of a,-1 in r\, and let keK be such

that dk<dt for all teK. By the semistandardness of the entries of 0, we

have that either (ck, dk) is in the NE corner of (a, b) or (a, b) is in the NE

corner of (ck, dk). In the first case there are at least |K| + 1 z"'s in the NE

corner of (a, b) in 9, so there must be at least that number of (i— l)'s in

the NE corner of (a, b) in 9 by the lattice permutation property. Only \K\

of the ai_lys in the NE corner of (a, b) of rj have been assigned a second

subscript, so one remains, contrary to our assumption. Hence, we may

assume that (a, b) is in the NE corner of (ck, dk). Since 9 contains at least

|jK"| + l &'s in the NE corner of (ck, dk), Lemma 1.5 implies that there are at

least |X|-M (i— l)'s in the NE corner of (ck) dk) in 9. By assumption exactly

\K\ of those (i— l)'s lie in the NE corner of (a, b). Since k is in Ky a^j ? f e

is in the NE corner of (a, b). However, by the semistandard property of 9,

there exists some a £ _ l f * in the NE corner of (ck, dk) of v\ further to the left

than o ^ _ l f c . But this is impossible since the algorithm requires k to be the

second subscript in the leftmost &,-_! * in the NE corner of (ck, dk) in rj. We

conclude that Algorithm 1.6 can be performed to label all the a t-* in 0*. H

Lemma 1.9 insures that for each component 9 of v(x)A we can carry

out the steps in 1.6 in a unique way. This motivates the following definition:

Definition 1.10. Let v and A, be two partitions, and suppose that 9 is a

component of v(x)A. Replacing each i in 9 by a£ * and then performing the

steps in Algorithm 1.6 gives the slant labelling of 9.

For the component depicted in (1.7) the slant labelling is the one shown

in (1.8).

Lemma 1.11. Let v and ^ = {^l > ••• >A< f>/l< f + 1 =0} be two partitions,

and suppose that 9 is a component of v(x)/l that has been given the slant

labelling. Replace atj in 9 by |v| + /l1H l-^-i-i+J and fill the empty boxes

of 9 with the corresponding entries in a standard tableau £ of shape v having

entries in {l,---,|v|}. The result is a standard tableau T.
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Proof. Suppose that T has underlying partition n. We need only

consider the skew portion of i of shape n/v. The Littlewood-Richardson

process guarantees that that it is semi standard. Now if i occurs in location

(a, b) of 6 and f in position (#4-1, b) then i<i'. Therefore if i is not

standard, then in the process of creating T, for some i and some k<j, a^-

occurs in position (a, b) of 0* and aa in position (a, b + l). We may assume

i is as large as possible with this property. If the length of column k in

A is i, then the length of column j, which is less than or equal to i, is forced

to be i as well. But then at-j, which occurs to the left of a^, should have

been labelled a i fk by the algorithm. Thus, we may assume that the length

of column k is bigger than i. Then a i + l f c is to the left and below a i f e .

If a £ + i ( f c is in column b' of 0* for b'<b, then the algorithm would have

labelled (x.tj with k instead of j. Thus, it must be that a i + 1 < f c is in column

6 + 1, and by semistandardness it resides in the (a + l, b + l) position. What

is in the (a+l, b) location of 0*? By semistandardness and the maximality

of i it must be a i+1 tp for some p with p<k<j. But then at-j should have

been labelled a,- p by the algorithm. Consequently, T is standard. [H

We now want to extend these ideas to the tensor product of arbitrarily

many partitions.

Definition 1.12. Let nly--',nm denote positive integers (not necessarily

distinct) and for j=l,---,m fix a partition )J of n<r Let Mj = nl-\ h njy and

set M=Mm. A tableau r of shape n, for n some partition of M, is said to be

a (^,"-^m}-Littlewood-Richardson tableau (a (Al,~-,A.m)-LR tableau for short)

provided the following conditions are satisfied:

(i) For each integer j=l,---,m, the boxes of i containing ike numbers

ly--,Mj form a tableau ij of shape vj where vj is a partition of Mj.

(ii) The tableau T1 is the canonically filled tableau of shape A1.

(iii) For l<j<m assume that 0j is a component of v-7"1®^ of shape

vj. The tableau TJ is obtained from the slant labelling of 6j by substituting

My.j+A-7! H \-AJi-i+j for the entry a^- and then filling in the empty boxes

of 6^ with the entries of r7"1 in the corresponding positions.

Remark. It is apparent from Lemma 1.11 that a (A1,-",Am)-LR tableau
is a standard tableau. By the Littlewood-Richardson rule the number of
them is precisely the number of summands when the tensor product
F(A1)(X)---(X)F(/im) is decomposed into irreducible ^-representations.
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Example. Suppose that I1 = {3,1}, A2 = {22} and A3 = {13}, and
7C = {5,3,2,1}. Then 71^=4, M2 = 8, and M=M3 = 11. The tableau

1
4
7
11

2
5
8

3
10

6 9

is a (A1, A2, A3)-LR tableau of shape n.

The ultimate goal of this paper is to establish the following theorem. In
its statement the vectors v{ for i = l , - - - , r denote the standard basis elements
for Cr viewed as a r x 1 matrix, so that vt has a 1 in the i-ih row and zero
everywhere else.

Theorem 1.13. For i=l,--,m let n{ denote a positive integer and assume

A1" is a partition of n{. Identify the 4f = p£(r,C) module V(ll)0 • • • (x) V(Am) with
M= eV({l}) as in (1.3). Let i be a (Xl,--^m)-LR tableau of shape n,

for n some partition of M = nl-{ ----- \-nm. Then:

(i) eyr (and hence eyxe) is an essential idempotent in C[SM]9 and thus
eT = £Teyre is an idempotent for some scalar £t.

(ii) When i has shape n and S(n)<r, then eyTT=e^T is an irreducible
^-module which is isomorphic to V(n). A maximal vector for ey^T^e^T is the
vector eylf}l = ̂ 1eryll31. where fir

 = Ui®--®uM is the simple tensor constructed

according to:

Uj = vt if j is in the ith row of i.

(iii) eT=@^eyrT=@^exTy where the sum is over all (A1 ,---,Am)-L^
tableaux T of shape n for all partitions n of M with /(n) < r, is a decomposition

of eT into irreducible & -representations.

The proof of Theorem 1.13 constitutes the remainder of the paper. The
next section develops the necessary ingredients for establishing that eyT is
an essential idempotent in C[SM] and for showing that the vectors eyT/3T are
maximal. The final section is devoted to the proof of part (iii) of Theorem
1.13. We conclude this section with an example to illustrate the main ideas
behind Theorem 1.13 and with some remarks.

Example. By the Littlewood-Richardson rule
, 1})©F({2,12}) for all r>3. For the tensor product F({2})(X) F({12})
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the corresponding idempotent is

-(3 4)).

There are three standard tableaux belonging to the partition {3,1} of 4:

T =
1

4
T =

1
and T" = 1

and hence, three corresponding summands yxT@y1.,T@y1.llT in T=

(X)4F({1}). It is easy to verify that eyr,, = Q, but the other two Young

symmetrizers survive multiplication by e, and there is a collapsing of the

direct sum y^T@yrlT into a single irreducible module when e is applied. Our

method selects T as the distinguished label for the submodule belonging to the

partition {3,1} and gives the maximal vector of eyrT as

2))(yt-(3

As is shown in ([BBL], Chapter 2), the vectors yrf)r and >>Tj3T/ are maximal

vectors for the summands yTT and yx,T respectively, and the calculation

above gives the maximal vector eyr@T as an explicit linear combination of them.

A similar computation shows that ey1.l^l=
l/2{yrl^Tt—y^^=—ey^T. The

tableau labelling the summand corresponding to the partition {2, 12} is

I
3
4

2

and hence, the centralizer algebra is given by

eyT*eC[S4]e.

Remarks. When A1 = - - -=J , m = {l}, every standard tableau of shape TC,

for 7i some partition of m, is a (A1,--,Am)-LR tableau. In this particular

case the idempotent e is just the identity, and (ii) reduces to the decomposition

y*T encountered earlier. Thus, Theorem 1.13
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can be viewed as the natural generalization of that classical result.

When the partition ti has just one part, the row group attached to the

canonically filled tableau ££ is the group Sfi where I. = { W I H \-ni_l +1,---,

W l _ l |-WJ and the column group is trivial. The idempotent et associated

to A' is the idempotent (l/ntl) ^peS p defined by SIt. Thus, when all partitions

A1 have just one part, the idempotent e is the idempotent \Sf\~l ^ae#>o

determined by the Young subgroup ff' = SIl x Sl2 x ••• x SIm of SM. For all

r>M, the centralizer algebra End^(eT) equals the Heche algebra eC[SM]e

determined by ^, and Theorem 1.13 provides primitive idempotents eT in

eC[SM]e. In this special case, for each (A1 ,---,Am)-LR tableau T, the entries

in {l,-",n1-\ hwj comprise a subtableau T1 which is obtained from t1"1

by adjoining a horizontal strip (no 2 boxes in the same column) having n{

boxes. The slant labelling requires that the numbers in the interval It be

placed into the boxes of iW~l beginning with the leftmost box on the bottom

and proceeding to the rightmost box on the top. For example, when A1 = {3},

and A2 = {2} = A3, the idempotents ex = &ley^e in the Hecke algebra eC[SM]e

correspond to the (A1, A2, A3)-LR tableaux T where i is one of the following:

1

-1

4

11

I

h

1

f0

,<L

1

6

nz
T
/

1

L

(

O
J

|

I

^

2
7

7J

c

n

3

rJ

i

"/

3

I

i(

A
n

7

3

5

i

A"i

(.
L

I

r

[_

^

c

7/

1

)

1

4
6

1
4

7J

1
3

2
5

f(_

i
1

2

c

)

3

7

/.

3

7

7

J T J /

5 6 7

1 ") 0 C
1 Z j j

J. /; 7
T- O /

1 9 7 71 Z j /

4 r :̂J O

1 2 3

4 5
6 7
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There are many other ways that the labelling of the second subscript
in af * could have been performed to yield a collection of tableaux satisfying
the conclusions of Theorem 1.13. We have chosen the slant labelling because
it facilitates the proof of Theorem 1.13.

§2. eyx is an Essential Idempotemt

Recall that we are fixing certain standard tableaux CV">Cm corresponding
to the partitions A1,---,!"1 and are assuming that the idempotent e{ is the
symmetrizer associated to £'. Suppose that C6i and ^ denote the column
group and the row group of £', respectively, and let

6? (/y ^, v (/?
w — » i X • • • X T& _.

Observe that e is some scalar multiple of

As before, let M—n^-l t-nt where A'h^, and write /k =
Then for gE% and /e* we have g(Ik) = Ik=f(Ik) for k= l , - - - , m .

Assume now that T is a (A1 ,---,A l f l)-LR tableau of shape n with row group
&x and column group #t. Then

=1 Z P ) ( Z ^«(v)y) = Z
\pe^T / Vye^t / pe^

The subtableau ip of t consists of the boxes containing the entries in

{l,-,Mp}=/1u-u/p.

Lemma 2.1. Suppose ye^ r awJ pe^T, awJ assume that py(Ik) = Ik for
all k = ! , - • - , m. T/zew p(Ik) = Ik = y(Ik) for all k.

Proof. Let Jp = ll(j---ulp. It suffices to show that y(Jp) = Jp for all
p = l , - - - , m . Let ,KT0 = 0 and for c > 1 , let ^c = {^c 6 JP|JC is in the first c columns
of T}. Assume that y(Kc,)^Kc, for all c <c, but y(Kc)^Kc. Then there
exists x E J p in column c of T such that 3/ = 'y(1%)^ Jp. Then x is an entry in
the subtableau TP, but 3; is in iq — ip for some q>p. Thus, y is in the same
column as x but is below x. Assume that y is in row a of T, and let A
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denote the set of elements in row a of T. Then p(y) = py(x) e J pr\A = KC_1

as portrayed below, where the shaded portion depicts TP.

P(y)

However, p(Kc_1) = py(Kc_l)^Jp, and hence p(Kc.lr\A)^Jpr^A = Kc_ln

A. Thus, p(Kc_lnA) = Kc_1nA as p is a bijection. We have reached a

contradiction, for y£Kc_ 1nA, yet p(y)eKc_lr\A. Thus it must be that Jp,

and hence Ip, are preserved by y and by p as well. |

Lemma 2.2. ([Mi], Lemma 4.2) Lei £ 6e a standard tableau of shape

k where Ahw. TAen an element aeC[Sn] can be written a = RC where Refflr
and Ce#£ if and only if no two entries in the same row of £ lie in the same
column of <r(0-

Theorem 2.3. Let i be a (^l,"-^m)-LR tableau. Then in eyT the identity
id, occurs with coefficient equal to \0lrr\@t\ |#tn#|.

Proof. Write yr=yi +3^2+^3 where

(i) yl is the sum of all py such that pe^rn^ and ye^Tn^.

(ii) y2 is the sum of all py such that py(Ij) = Ij for all j=l)-")my but

either p$@ or y£<g.

(iii) j;3 is the sum of all py such that py(Ij) £/,- for some j.

We consider the products eyt. Each summand of eyi is, up to sign, a

term of the form gfpy, where ^ e ̂ , /E ^, p £ ̂ r, and y e #t. Observe that the

identity id cannot occur in the expression for ey$. Indeed, each summand

of ey3 is ±gfpy, where for some /,- there exists an xelj with py(x)elk^lj. But

then gfpy(x)elk and so gfpy^id. Next consider eyl and suppose that

sgn(g)sgn(y)gfpy=±td for ^e^7, /e^. Since pe^Tn^ and ye^n^, this

implies/p= jg~1y~16^)n^ = {/;̂ }. Thus p-/'1 6«, y ̂ ^g'1 e^7, and

sgn(y). Consequently, id occurs in eyl with coefficient equal to

|^tn^|. The proof of the theorem will be complete once we show that
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no summand of ey2 is a multiple of id.

Suppose then that gfpy = td where py(Ij) = Ij for all j, and either
or y^^. By Lemma 2.1 p(Ij) = Ij = y(Ij) for all j, so that all the permutations
involved preserve the intervals Ij. Take k minimal with the property that
either p\T <£&k or y\r <£^fe. We show that it is impossible for &/py|/ =^|/fc.
Thus we focus on the skew tableau iVr*"1. We assume that the entry in
row i and column j of £fc is a,-j. Since ik is obtained from i^"1 by taking
the slant labelling of a component 9k of v*"1®^*, we may assume that the
entries of the skew tableau ik/ik~l are also the a^'s.

First assume that there exists (afc<J- a,-j) e #fc such that y(afcj) = ai<7-. Then
a/jj and afj- lie in the same column of T, and multiplying both sides of
py=f'1g~1 by (afcj aM) yields py'^f'^g''1 where / = y(afcj aM)e^r and
#'" * =£" * (afcj afj) 6 C. By replacing 7 by y' if necessary and £ by g' we may
assume that no such transpositions exist. Similarly, by making suitable
replacements we may assume that there does not exist a transposition

(« «) in ^fc with P(*ih) = <*i'

Since either p\T ^0ik or y\T ^^ki the permutation py is not the identity

permutation when applied to £fc. Take the bottommost row of £k, (say row
j>) on which py does not act as the identity. From all the apf. with py(ap r) 7^ otpr,
choose the one, say %pq, which occurs leftmost in ik/ik~l. Suppose that
py(aij') = (Xpq. Then i<p by maximality of p. We consider the positions of
OLtj and %pq in T. Suppose that ap>€ is in row a and column 6 of T. If afj
is in a column to the right of column b, then necessarily it occupies some
row a with a <a by the semistandard property. Then y moves QLtj to
some entry as r in row a to the right of apq, as pictured below,

b

and s>p>i must hold by semistandardness. Now if s=p, then p(%pt) = xpq

to contradict the reductions made above. Hence, s>p>i and py(as<f) = asf

holds by maximality. It is impossible for y to displace aSjt to a different
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row of T, because then p would not bring it back to ccst. Thus y must fix
aSjt and so must p. This contradicts the fact that p(us,t) = xptq-

Thus, we may assume that afj lies in column b' where b'<b. Consider
first the case that column j of £k has length at least p so that ocpj exists. We
claim that apj- must lie in column c where c<b. Indeed, if b' = b, then by
semistandardness no other entry of the form ap^, for q'^q lies in column b,
so that i<p. Then apj-, which is to the left and below a^- because of the
slant labelling, must be in column c for some c<b. Similarly if 6'<6, then
ccpj is in column c<b' by the slant labelling. Then apj is fixed by py by
our choice of q. Thus in the j-th column of py(£,k) both apj and ap^q = pyfaj)
occur. By Lemma 2.2 py cannot equal f ~ l g ~ ^ and have that property.

Thus, we may assume that column j of (k has length less than p. Then
where /Ip is the p-th part of /lfc. In each of the first kk

p columns of
there must occur a term of the form apsf, because by assumption

=r1^~1(Ck) andrVHf*) has that property.

But since ap ^ lies in column j>A% one of the first Xk
p columns must be missing

such a term. This contradiction shows that it is impossible under the
assumptions placed on the permutations for py to equal f~lg~l. Thus, no
identity terms occur in the expression for ey2, and the identity terms in eyT

come only from eyl and so id has the coefficient claimed. H

Corollary 2.4. Let i be a (A1 ,- • • ,km)-LR tableau. Then eyr is a
nonnilpotent element in

Proof. Consider the map Ley :C[SM]->C[SM] which is left multiplication
by eyx. Relative to the basis {aeSM} of C[SM] the transformation Ley has
a matrix with K = \3$rn&\ |^Tn^| as its diagonal entries by Theorem
2.3. Thus, the trace of Ley is fcM! which is nonzero, so that Ley , and
hence eyT, cannot be nilpotent. H
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Proof of Theorem 1.13. (i) eyr is an essential idempotent in C[SM] for

T a Ct1,---,A I I I)-LR tableau of shape n = {n1>-">n^K}>Q} and

(ii) eyTpz is a maximal vector of the irreducible module eytT = ezT.

To avoid detailed computations inside C[»Sr
M] we use the Lie algebra

9 = pS(r,C) where r>M and its action on T= (X)MF({1}) to establish

(i). Since e commutes with the action of ^ on T, and since yrT is an

irreducible ^-submodule of T, the space eyTT is (0) or isomorphic to

yTT=V(n). If {vi}ri=i denotes the standard basis for F({1}) as in statement

of Theorem 1.13, then eyr(vi(X) • • • (X)VM) is nonzero by Theorem 2.3, as

^I®'"®^M occurs as a summand in it with coefficient equal to
|^FTn^| l^n^l^O. Thus, eyTT= V(n). Likewise since eyre commutes with

^, we have that (eyx)
2T is (0) or isomorphic to V(n). By Corollary 2.4

(O02=l>fftf/0, so that teVt)2(«i®-"®VM)^<). Thus, (0)/(^)2Tg:e3;tT,

and irreducibility forces (eyr)
2T = eyTT.

Relative to the Cartan subalgebra of diagonal matrices in ^, the simple

tensor ft = vi (X)-"®^ has weight Hi&i H h/Jrer where Sj denotes the

projection of a matrix onto its (;', j) entry and ^ records the number of

subscripts it equal to j. (See for example, [BBL], Chap. 3 or [Be].) In

particular, the vector /?r in the statement of Theorem 1.13 has weight

n18l H h7trer, (where if j>£(n), then by convention 7^—0). As a shorthand

notation we write n for the weight nlel-\ \-nrsr
 arjd saY j8T has weight

TT. Any other simple tensor /? of weight n is obtainable from (3T by applying

a permutation a to /?t. Since eyr commutes with ^, and since eyrT=V(n),

there must exist some /? of weight TC with ejTjS/0. We may assume

j8 = <7(/?t). Now if a^^T, then ^Xft) = °- Thus, it must be that ae^,. But

then

(2.5) 0*eyJ = eyT<r(PJ = sgn(<r)eyA.

By completely analogous arguments, (eyT)2pr^=Q. Now in the ^-module

(eyT)2T=eyrT there is a unique vector (up to scalar multiple) of weight TT,

as n 'is the highest weight of that module. Therefore

(2.6) («302/S« = to«&

for some nonzero scalar £eC. The vector e>>j3T is a maximal vector for ej;TT

and so every vector in that module can be achieved by applying an element

of the universal enveloping algebra % = %(&) to eyt/?t. Therefore for each
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veT, we have eyTv = ueyT/3T for some u e t f t . Now if we apply eyx to both
sides of that relation we see that

Consequently (eyr)
2 — t;eyT = 0 on T. If (eyT)2 — £eyT = ̂ ffeSM daa, then applying

(eyT)2 — ̂ eyr to ^i(X)---(X)?;M shows that dff = 0 for all cr, and hence that

(ey^2 — &y* as desired.
In the process of establishing of Theorem 1.13 (i) we have also shown

that ey^T-^Q is a maximal vector of weight n in eyrT=V(n) whenever the
rank r of $ satisfies r>M. When £(n)<r<M, we can imbed Cr in CM and
view ^ as imbedded in gif(MyC) in the natural way. Since the factors in

the simple tensor jST, and also in eyrf}x are Vj for j =! ,••• /(TI), ej>t/?r, and hence
eyTT, must be nonzero when viewed relative to ^. Thus, these additional
results hold for all r>/(7i), and (ii) of Theorem 1.13 follows. •

§3o The Linear Independence of the Vectors eyT($r

In this section we show that the set {ej;j3r}, where T ranges over the
(>!1,---,Am)-LR tableaux having no more than r rows, is linearly independent
and use that result to complete the proof of Theorem 1.13. Our approach

is to impose a certain ordering ">-" on the (A1 ,---,/lm)-LR tableaux with the

property that

The independence of the set {eyrpx} will follow from (3.1) and the essential
idempotent property of the eyr's. We begin with a useful observation.

Lemma 3.2. Let T and i' be two tableaux (not necessarily standard)

associated with partitions of M. If there is some transposition (a 6)e^rn^T/,

then yryT, = Q.

Proof. If y is any element in the column group of T, then yTy = sgn(y)yrt

and if p is any element in the row group of T', then pyr/ =yTl. Thus, if

(a 6)e^Tn^?T,, then
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to imply 3;̂ , = 0. H

Suppose now that K\-n{ for z = l , - - - ,w , and let T be a (A^- ' -^

tableau. Recall that Mi = n1-\ ----- \-nit and the boxes of T containing the

numbers in {l,-",Afp} form a subtableau TP of shape vp for vp some partition

of Mp. The tableau ip is obtained from the slant labelling of some component

QP of vp-1(g)Ap having shape vp. (See Definition 1.12.) The order we define

on two (A1
J--- ,Am)-LR tableaux T, T' of the same shape searches for the first

two subtableaux Tfe and irk which differ and compares the locations of numbers

in the corresponding components 9k and 9ek. In this procedure, as in the

slant labelling process, we assume that each entry i in a component has been

changed to a f>*.

Definition 3.30 Let T and T' be two (A,1 ,- • - ,A,m)-LR tableaux of the same

shape gotten from components 6j and 0'J, j=2,--,m respectively. Then T/>-I'

provided that for some k and £ the following three conditions hold:
(i) T*-1=T'*-1 but T*^T*.

(ii) For i = l, •••/ — !, the location of the ait*'s in 0* and 0% are the same

and t is the largest integer with that property.

(iii) If the rows of 0^ and 0* are read from top to bottom, in the topmost

row where the number of a^*'s differ, 0* has more.

The pair (k, £) is termed the ordering pair of T and T'.

Since for any (A1 ,--- ,Am)-LR tableau T, the first subtableau T1 is the

canonically filled tableau C1 associated to A1, the ordering pair (k, /) necessarily

will have k>2.

Lemma 3.40 If T and T' are (/l1,---,/lm)-Ll? tableaux of the same shape

withi>ir, and if gE(£ = (g1 x ••• x <^m, andfeg% = 3$i x ••• x 9tm, then

Proof. Assume that the conditions of the lemma are satisfied, and write

§=gi-'gm with £ fe% and f=fl--fm with f^^. Let (*/) be the ordering
pair for T and T'.

Our first observation is that if ye^Tn^, and p6^r,nJ?, then

(3-5) yrgfy* =y*y ~ lysfpp ~ *yv = sgn(y)yxg'fyv

where g' = yge^ and f=fpe$. Therefore,
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Thus, yTgfyv = Q if and only if yrgfyxf = Q if and only if 3^-^3,̂  = 0, for
gf = yg>f=fP> ye^Tn^, and pe^r,n^. In particular since i1 =rfi = ̂ y by
taking y=g^~i e^n^ and p=fi~

1 e^rrr>^l we can assume that yrgfyzf =
±yTg'f'yTf, where g' and/' act as the identity on {l^-^M^}.

Suppose then for some p with 2<p<k that yTgfyr, — ±yrg'fyTf where

(3.6) g'e(^rn^)g and g' restricted to {l^-^M^^} is the identity;

(3.7) /'e/(^T,n^?) and the location of each value in {l^-^Mp^^ is the same
in T as it is in /Y.

As discussed above, elements g' and /' satisfying (3.6) and (3.7) can be
found when p = 2. We assume £e{2,---, /e} is maximal with those properties.
From the collection of all possible such g' e (^ rn^)g satisfying (3.6) pick one
such that | {a E I p\g (a) ̂  a] \ is minimal (where Ip is, as before, the interval
{Mp-.i + l,--,Mp}). We claim that this g' has the property that it does not
map any entry of t coming from Ip to another entry in the same
column. Indeed if g'(a) = b=£a where a, b are in the same column of T,
then (a 6)6^.0^. Since g e^, and the elements of ^ preserve the interval
Ipt we have 6e/p. The permutation (a b)g' satisfies (3.6) but fixes more
elements in Ip, contrary to the minimality assumption on g'. Thus, g' has
the desired property.

Let $s denote the set of entries in row s of the standard tableau £p

associated with Xp '. Suppose that t is the topmost row of £p such that the
entries in $t occupy different positions in T and /'T'. If no such row exists,
set t = £(lp) + l. Now if £</(Ap), and if the z'th rows of T and /V contain
the same subset of elements of $t but ordered differently, then there is some
(fre&f^n^p which permutes just those elements, so that T and $/V agree on
the locations of the values from $t in their ith rows. But,

and hence, /'(/>' e/(^r/n^). We could then replace/' by/'0' and assume that
T and /'T' agree on the entries from $t in their ith rows. Thus, we may
assume that for our choice of /'e/(^?r/n^) satisfying (3.7) that either T and
/'T' agree on all entries from Ip (in which case we set t = £(hp) + l) or else
there is a smallest value of t with £</(Ap) such that the entries from $t
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occupy different rows in i and /V. In the latter case, assume that the
elements in £t in the first i—l rows of T and /V are in precisely the same
positions, and i is the largest integer with that property. When t =
set i equal to one more than the number of rows of T.

We claim that if the restriction of g' to the elements in $ =
in first i—l rows of T is not the identity map, then 0= ±yTg'fytf=ytgfyi:fy
(and the proof of the lemma would be finished in this event). Indeed,
suppose that h<i—l is the smallest integer such that g moves an element
in $ that resides in row h of T. Let a be the leftmost such entry so that
g'(a) = c^a. Since g'e^?, a and c are in the same column of £p. Therefore,
by the slant labelling of T, it must be that either c is in the NE corner of
a in T, or a is in the NE corner of c. The first possibility can be eliminated
by the minimality of h. Thus, c is in a row strictly below that of a in T,
and since g does not map a to another entry in the same column of T, the
element c must be in a column strictly to the left of a. Hence, if a is in
position (h, j) in T, then c is in location (/?', /) in i where h'>h, and
/ <j. Let b denote the entry in position (h, /) of T as pictured below.

Then b occupies location (h, /) in both (g') *T and in /'T'. Thus, the
transposition (a b) belongs to both ^(gl}-\ and 9tf,v. Lemma 3.2 when
applied to the tableaux fe')""1! and /V gives

Thus, we can assume that g' restricted to the elements in $ which lie in
the first i—l rows of T is the identity map.

If the locations of all the values in Ip are exactly the same in the two
tableaux T and /Y, then it follows from the argument just given that g' is
the identity on {l,---,Mp}. We would contradict the maximality of p unless
p = k. But when p = k, the location of all the values in Ip cannot be the
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same in T and /Y by the definition of the ordering pair, so that this situation
cannot occur.

We claim that by similar reasoning we can also assume that g when
restricted to the elements in S' = S^'"\jSt-i in row i of T is also the
identity map. Suppose that g'(a) = c^a for some aeS" in row i of T, and
let a be the leftmost such element with those properties. Then c and a lie
in the same column of £p. If a is in location (i, /), then c must be in
position (z', /) for some i'>i and j' <j since g' restricted to elements in ff
in the first i—l rows is the identity. The entry b in location (z, /) belongs
to {l.-'-jMp-!} or to <?', and so is fixed by g'. Thus, (a &)e#to/)-itn#/ft,, and
consequently, yrg'fyT, =g'y(gir^yf,r,f = 0.

By our choice of /', the zth row of T and the ith row of /Y contain
different subsets of elements from &t. Since T>-T', and since /' permutes
the entries coming from the a t*'s among themselves, there is an ae<f, in
position (i, f) say of/'T', but not in the ith row of T. Since T and/'T' agree
on the entries in &t contained in their first i— 1 rows, a must be in a lower
row in T. Assume that a is in position (zfl, ja) of T. If ja>jy then by the
semistandardness of the component, the entry d in position (z, ja) of T must
come from {l,---,Mp_l}^jS>f. However, d would have the same position in
/Y by our assumptions, which is impossible. Hence, we can assume that
ja<j and ia>i. Suppose that g'(a) = c^a. Then since a and c are in the
same column of £p, we have by the slant labelling that either c is in the NE
corner of a in T or a is in the NE corner of c. If c is in the NE corner
of a in T, then c comes from labelling some as * with s<t. Since T and/'T'
agree on the entries in £", then c must have the same location in T and /'T',
call it (z'c, jc). Necessarily ia>ic>i must hold, since g' fixes the entries of
$' in the first i rows of T. Let b be the entry of T in position (z, jc) as
pictured below:

Ja Jc

Then be {l,---,Mp_1}u(f 1u---u^ s_ 1 , and so 6 has the same location in both
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T and /V. By our reductions in the previous paragraphs g'(b) = b. Thus
(a &)e#(0,)-itn^/,t,, and we conclude from Lemma 3.2 that yxg'fy%,=
g'y(g/r^yf,rf = Q. Hence, the assertions in the lemma are true in these
circumstances. On the other hand, if a is in the NE corner of c, and c is
in location (ic, ;c), then ic>ia>i, and jc<ja<j. Let b be the (f, jc)-entry of

T as displayed below:

Jc Ja

Since the entry in location (ia, jc) of T must belong to {l^-^Mp.Ju^, we
must have be {V-^Afp-jJueT . Thus, 6 occupies the same position in /'T',

and (a &)e«fo,ri tn# / l t /. As before, yt^'/3't/=5r>te/)-1r3'//r/// = 0» so the lemma
holds in this situation. Finally, we suppose that g'(a) = a. The entry b in
position (f, ja) of T is forced to belong to { l , - " , M p _ l } ^ j S > / , and so b is the
(f, j'J-entry of /'T' as well. Then (a 6) e #(,,)- itn#//t, once again, and
yT^fyv=g'y(gf)-^lyffTff = ̂ ' In each possible case we have shown that

y^gfyt,= ±y^fyv=o as claimed. m

Since e is the sum of terms ±gf where geW and/e^, Lemma 3.4 allows
us to conclude the following:

Corollary 3.8. // T and t' are (^y---^
m)-LR tableaux of the same shape

with T>-T' then eyreyv = Q.

Corollary 3.90 Let & be the complete set of (A,1 ,• ~ ,Am)~LR tableaux
having no more than r rows. Then the set {eyj8t|T e &} is a linearly independent

set.

Proof. If the tableau T has shape TC, then the vector ey& has weight
7T = 7C 1e 14---- - f7C r£ r relative to the Cartan subalgebra of # of diagonal
matrices. Since vectors of different weights are linearly independent, it

suffices to consider the relation
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where the sum is over all i' e $£ of shape 71, and the coefficients 0r, 6 C. Sup-
pose i is the largest tableau relative to the ">-" ordering which appears in
this expression with aT7^0. Then applying eyr we get

for some nonzero KE€ by Corollary 3.8 and (i) of Theorem 1.13. Since
ej;r/?r/0 (see Remarks 2.8), at = 0, contrary to assumption. Thus, the vectors
must be linearly independent. H

Conclusion of the Proof of Theorem 1.13. We have from Corollary
3.9 that the set {ey$^iE<£} is linearly independent. We know from
Section 2 that each ey^T is an irreducible ^-module. Hence, the sum

— e^ is direct. Since the number of summands is that given by the

Littlewood-Richardson rule, ©Zre^^t-^"6^ *° giye ("0 °f Theorem

1.13. This completes the proof. Hi
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