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Operator Representations of RZ

By

Konrad ScCHMUDGEN*

Abstract

We study the operator relation ab=gba, where |g|=1, for self-adjoint operators.

§1. Introduction

Suppose g is a fixed complex number of modulus one. Let R denote
the *-algebra with unit which is generated by two hermitean elements a and
b satisfying the relation

ab=gqba. 1.1

(The precise mathematical definition is as follows: Let C{a, b) be the free
complex algebra with unit generated by two elements a and b and let ((ab— gba))
be the two-sided ideal of C{a, b) generated by the element ab-gba. We
define an involution on the algebra C{a, b> by the requirements a*:=a
and b7 :=b, so that C{a, b) becomes a *-algebra. Since |g|=1, we have
(ab—qba)* =ba—qgab= —q(ab—qba). Hence the ideal ((ab— gba)) is *-invari-
ant and the quotient algebra C{a, b)/((ab— gba)) becomes a *-algebra. We
denote this *-algebra by R,f.)

For ¢=1, R} is nothing but the commutative polynomial algebra C[a, b] in
two hermitean variables a and b, that is, RZ is the coordinate algebra of
R?. Therefore, one can think of R? as the coordinate algebra of the ‘‘quantum
two-dimensional real vector space’ (cf. [3], Definition 8). Note that the

quantum group SL, (2, R) acts on R} in the obvious way by matrix
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multiplication (see [6] or [3]), i.e. R? is a quantum space for the quantum
group SL,(2, R).

Now let us pass from the algebraic level to the Hilbert space level (in
the terminology of [14]). That is, we want to study self-adjoint operators
a and b which fulfill the relation (1.1). Let us consider for a moment the
“classical” case g=1. Recall that the points of R? are precisely (in one-to-one
correspondence to) the equivalence classes of irreducible pairs {a, b} of
strongly commuting self-adjoint operators a and b. (Two self-adjoint
operators a and b are said to be strongly commuting if their spectral projections
commute or equivalently if f(a)b=bf(a) for sufficiently many bounded
functions f. For instance, one may take f(x) =¢"* for all t€ R or f(x)=(x—1) !
for one Ae C\R.) We shall try to proceed in a similar way in case of arbitrary
g. First we have to define a concept of strong commutativity for the relation
(1.1), that is, we have to select the ‘“‘well-behaved” representations of
(1.1). Adopting the terminology used in representation theory of Lie groups,
we shall call these representations “‘integrable””. Secondly, we have to classify

the irreducible integrable representations of (1.1) up to unitary equivalence.

It seems that there is no canonical way to define integrable representations
of the relation (1.1). Let us roughly explain the ideas of the approach
proposed in this paper. From the relation ab=gba in the algebra R} we
conclude immediately that p(a)b=0bp(qa) for each complex polynomial
p. Having this fact and the definition of strong commutativity for g=1 in
mind, one could try to define integrability by the requirement f(a)b<bf(qa)
for certain ‘“‘nice’’ bounded functions f. In case when a is non-singular and
either positive or negative, we shall use this method by taking the functions
f(x)=|x"* for teR and we shall call the corresponding couples a-
integrable. (The precise formulation is given in Definition 3.1.) For an
arbitrary non-singular self-adjoint operator a we proceed as follows. Let
a=a,@Pa_ be the decomposition of a into its positive part a, and its
negative part a_. We then assume that the operator b can be represented
by a 2x2 operator matrix £=(b;) with respect to the corresponding
decomposition of the Hilbert space such that b%=b;, 7,j=1,2. Such a
matrix £ will be called a self-adjoint operator matrix. Let by,=ulb;,| be
the polar decomposition of b;,. Then the couple {a, b} is said to be
a-integrable if {a,, b,,} is a,-integrable and {a_, b,,} is a_-integrable (both
with respect to the parameter gq), if {ay, |b5y|} is a,-integrable and

{a_, |by,|} is a_-integrable (both with respect to the parameter —g) and if
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uu*a , uu* = —ua_u*. (A justification of this definition will be given in
Section 4.) Finally, a pair {a, b} is called integrable if {a, b} is a-integrable
and if {b, a} is b-integrable.

It turns out that the operator relation (1.1) is more difficult to treat
than one would expect from its rather simple structure. Also, it bears
various interesting operator theoretic phenomena which might be surprising
at first glance. As an illustration of this remark we mention the following
result without proof which shows that there is a striking difference between
(1.1) and Lie algebra relations: Let a and b be self-adjoint operators which
satisfy the relation (1.1) on a dense invariant domain 2 of a Hilbert
space. Suppose that ker a={0}, kerb={0} and ¢*#1. If (€2 is an analytic
vector for a and b, then {=0.

This paper is organized as follows. In Section 2 we collect a few basic
definitions and some terminology which will be used freely throughout the
sequel. In Section 3 we define and study a-integrable representations and
integrable representations {a, b} of (1.1) in case when the self-adjoint operators
a resp. a and b are non-singular and either positive or negative. The

structure of these representations can completely described in terms of

P

.d .
operators ¢2 and ¢f, xeR, where P=i— and Q=x are the canonical

dx

operators. In Section 4 we derive our definition of a-integrability in the
general case. We shall define this notion first for pairs {a, £}, where £ is a
self-adjoint operator matrix of the form indicated above, and then for pairs
{a, b}, where b is a self-adjoint operator. On the technical level, it is much
easier and more convenient to work with a-integrable pairs {a, 4} and we
shall do this in a large part of this paper, even if the self-adjoint operator
matrix £ may not represent a self-adjoint operator. Section 5 is concerned
with a model for a-integrable pairs {a, £}, where £ is a self-adjoint operator
matrix. Criteria for the unitary equivalence and for the irreducibility of
these pairs are obtained. Section 6 provides sufficient conditions which
ensure that certain self-adjoint operator matrices give densely defined
symmetric operators. The more difficult problem of when such a matrix
represents a self-adjoint operator will be considered in a forthcoming
paper. In Section 7 we study a general example. Among others it shows
that there is a continuum of inequivalent irreducible a-integrable represen-
tations {a, b} of (1.1) by self-adjoint operators a and b.

After completing the first draft of this paper the author was informed
about the interesting work of Yu.S. Samoilenko and the Kiev school (see
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[8] and the references therein) on pairs of self-adjoint operators satisfying
quadratic relations. In particular, [8] contains a definition of integrability
for such relations. However, as the authors of [8] remark on p. 18, there
are two relations for which this definition might not be satisfactory, because

all integrable representations are trivial. These two relations (denoted by
(VI1,) and (VII,) in [8]) can be reformulated as ab=gba and ab—qba=%(q+ 1),

respectively, with |g/=1. The present paper could be considered as an
attempt to define and to study integrability for the relation ab=gba.

It is my pleasure to thank A. Van Daele for many helpful and inspiring
conversations on quantum groups and related matters. Also, I would like

to thank Ju.S. Samoilenko and L.I. Vainermann for valuable discussions.

§2. Preliminaries

If T is an operator, we write Z(T) for the domain of T and ker T for
the kernel of 7. Suppose A4 is a self-adjoint operator on a Hilbert space
#. We say that 4 is non-singular if ker A={0}, that 4 is positive if {AE,E)
>0 for all (e D(A), £#0, and that A is negative if (AEEY <O for all
teD(A), E£0. Wewrite A>0if A is positive and 4 <0 if 4 is negative. Set
Hy=e((0,+00))H, #H_:=e((—00,0)H and Hy:=e({0})H#, where e(.) are
the spectral projections of 4. The spaces #,, #_, #, reduce A, so we
can write 4 as A=A, D A_P A, relative to the direct sum H =4, PH_P
# . The operators A,, A_ and A, are called the positive part, the negative
part and the null part of A, respectively.

Let # =3#,@ s, be an orthogonal sum of two Hilbert spaces J#; and
#,. By a self-adjoint operator matrix (w.r.t. the decomposition # =4, P
H#,) we mean a 2 x 2 matrix £=(b;) of densely defined linear operators b;;
of #; into #; such that bf=b; for i,j=1,2. Let £=(b;) be such a
matrix. If 2;=2(b;)n2(b;j) is dense in #; for ije{l1,2}, i#j, then
b(Ey, E)i=(b11E1+b1,8,, by1E+b,,E,) defines a symmetric linear operator
on the dense domain 2, PP, in # =H,PH#, . Then we shall say that the
matrix vepresents the operator b. By a slight abuse of this terminology, we
also say that £ represents the operator b, the closure of b. Operator matrices
are always denoted by small script letters, while their represented operators
will be denoted by the corresponding letters in italics. Let Z=(5,-j) be
another self-adjoint operator matrix on # =#,@#, and let szjfj—d?j,
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j=1,2, be bounded linear operators. We say that the operator T:=T,D T,
of # into # intertwines £ and £ and write T4<Z T if TibijSEUTj for all
i,j=1,2. Clearly, T4<ZT is not equivalent to Th<5bT, but we have the
following simple lemma.

Lemma 2.1. Suppose that ¢ and £ represent operators b and B,
respectively.

() If T¢<ZT, then Th<bT.

(i1) Suppose D; is a cove for the operators b;; and by, i,j € {1,2},i#j. Then
Tb=bT implies that T6<ET.

The operator matrices 4 and £ are called unitarily equivalent if there
exist unitary operators U; of #; onto ffj, 7=1,2, such that UibijU}71=5ij
for 4,j=1,2.

Let ¥ and % be Hilbert spaces. We say that a linear operator T of
L*(R) ®% into LXR)® % is constant if T is of the form T=I®A, where
A:%—>%. For notational simplicity, we shall write A instead of IRA for
such an operator. The letters P and Q will always denote the canonical

operators, i.e. P is the differential operator Zd‘ and Q is the multiplication
x

operator by x. Also we shall write simply P, Q, ¢®F and e“2 for the operators
PRI, ORI, e RIand e*?® ]I, respectively, on a Hilbert space L2(R) QX %.

In what follows, ¢ will denote a fixed complex number such that |g|=1

and ¢>#1 and ¢ will stand for the number of (0,27) such that g=¢'.

§3. Integrable Representations in Case when One Operator
is Positive or Negative

Apart from Definition 3.2 below, we assume throughout this section

that a is a non-singular self-adjoint operator which is either positive or negative.

Definition 3.1. Let {a, b} be a pair of self-adjoint operators a and b
on a Hilbert space. We shall say that the couple {a, b} is an a-integrable
representation of the relation (1.1) or briefly that {a, b} is a-integrable if
there exists an integer k such that

lali, b=e(—¢+2nk)tb|alit for teR. (3.1)
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In this case we shall write {a, b} €%,.

Remarks.

1.) A motivation for the preceding definition was already given in the
introduction.

2.) Note that the above definition refers to the relation (1.1) with a fixed
parameter q. If relations (1.1) with different parameters occur (as in Section
4 or in Remark 4.) below) and confusion is possible, we will mention the
parameter which appears in (1.1) instead of gq.

3.) There are various arguments for taking only couples in %, as
a-integrable representations of (1.1). One reason for this would be that in
the classical case g=1, ¢ =0 the above relation (3.1) is equivalent to the strong
commutativity of a and b only if k=0. However, in this paper we shall
consider ¥, with arbitrary ke Z.

4.) One advantage of the above Definition 3.1 (with arbitrary integers k)
is that the following fact is true: If {a, b} is a-integrable, then for all n,me N
such that ¢""# +1 the couple {a", b™} is a"-integrable with respect to the
parameter ¢"". The preceding assertion is not valid in general if we define

a-integrability only by the class €, as indicated in Remark 2.).

Suppose for a moment we have already defined a-integrable representa-
tions of (1.1) for arbitrary self-adjoint operators a. (This will be done in

Section 4.) Then we can give

Definition 3.2. A pair {a, b} of self-adjoint operators a and b on a
Hilbert space is called an integrable representation of (1.1) if {a, b} is an
a-integrable representation of the relation ab=gba and if {b, a} is a b-integrable

representation of the relation ba=gab.
The next proposition provides a model for couples of the class %,.
Proposition 3.3. Suppose that k is an integer.
Let # o be a Hilbert space and let a, be a self-adjoint operator on #,
such that ay>0. Let A be another Hilbert space and let E be an orthogonal

projection on K. Let ee{+1, —1}. Define self-adjoint operators a and b on
the Hilbert space #:=L*(R)YRQ A @ H, by

a=ee2@ea, and b= ?T2PQE_1)PO. (3.2)

Then the couple {a, b} is an a-integrable representation of (1.1) and {a, b} € %,.
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Conversely, each couple {a, b}€¥, is unitarily equivalent to a couple
{a, b} of the form described by (3.2).

Proof. The first assertion is easily verified. We omit the details. To
prove the second assertion, we assume that {a, b} is a couple of the class

%,. Then, by Definition 3.1, we have
la|™bla] " =el"¢* 2™ e R. (3.3)

We write b as an orthogonal direct sum b=5b, Pb_@PO0 of its positive part
b,, its negative part b_ and its null part. Let # =H#, PAH_PH, be the
corresponding decomposition of the underlying Hilbert space #. From
(3.3) we conclude that the spaces #,, #_ and #, reduce the unitary
group |a|*=¢""8%l hence they reduce its generator logla| and so |a|. Since
either a>0 or a<0 by assumption, these three spaces reduce the operator
a itself. Thus we can write a=¢a; Pea,Deay, where e=sign a and ;>0
for j=1,2,0. Obviously, {a;,b.}€%, and {a,,—b_}€¥,. Definition 3.1,
applied to the pair {a,, b,}, yields

al b, ajt=e"PY2™ b teR.

Since the functional calculus for self-adjoint operators is invariant under

unitary transformations and since b, >0, the latter equality implies that

it gis it _ ¢ i(— @+ 2nk) is _ i(—@+2ak)ts pis
ai b3 a;"=(""° b)) =e b3

for 5, teR. Hence the unitary groups U(f):=a" and V(s):=b1_"’+2"")_ls
satisfy the Weyl relation U(t)V(s) =V (s)U(t), s, te R. From the Stone-von
Neumann uniqueness theorem (cf. [10], Theorem 4.3.1) it follows that there
exists a Hilbert space ", such that the pair {a;, b,} on #, is unitarily
equivalent to the pair {e2, e"?*2™?"} on the Hilbert space L*(R)® X ;. By
the same reasoning, applied to the pair {a,,—b_}, we conclude that there
is a Hilbert space # _ such that {a,,—b_} is unitarily equivalent to the pair
{2, &2 on LXAR)QA _. Put A=A, @A _ and let E be the
orthogonal projection of # onto # ,. Then, by the preceding, {a, b} is
unitarily equivalent to the pair {a, I;} on L2 R)YQHA @ H,, where @ and b
are as in (3.2). O

An immediate consequence of Proposition 3.3 is
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Corollary 3.4. Suppose keZ. Apart from the trivial one-dimensional
representations in €, (i.e. a€ R\{0} and b=0 on # =C), there are precisely four
trreducible pairwise inequivalent pairs of the class €,. Up to unitary equivalence,
these are the pairs {€,€%, &,"*T*™P} on the Hilbert space L*(R), where
€y, 8,€{1, —1}.

The a-integrable representations of (1.1) were originally defined only by
relation (3.1). The next corollary shows that (3.1) implies (1.1) on a suitable
domain.

Corollary 3.5. Suppose that {a, b} is an a-integrable representation of
(1.1) on a Hilbert space #. Then there exists a dense linear subspace 9 of
H such that:

1) 2<D(@)n20b), a2<D, bD2<9.
(11) 2 is a core for a and b.

(ili) aby=qba ¥ for YeD.

Proof. Let &%, be the linear span of functions e~ %7 in L2(R), where
6>0 and yeC. It is not difficult to prove that %#,<= 2(e*?) is a core for the
self-adjoint operator ¢*¢ for each e R. Since e~ *? is unitarily equivalent to
¢’ by the Fourier transform and %, is obviously invariant under the Fourier
transform, this implies that %#,< 2(e*F) is also a core for ¢*’. Applying the
Fourier transform, ¢ *? and then the inverse Fourier transform, it follows
easily that (e*fn) (x)=n(x+ix) for neF,, x€R and aeR. Hence %, is
om0+ 27RPy _ o (—@+270P 0

keZ. It is trivial that &, is invariant under 2.

invariant under ¢* for a€ R and 2 n for ne #, and

If {a, b} is an a-integrable representation of (1.1), we can assume, by
Proposition 3.3, that the operators a and b are of the form (3.2). But then
we see immediately from the preceding paragraph that the domain

D:=F,RH @ () 2(dp) has the desired properties (i)-(iii). |
1

n=

Proposition 3.6. Let {a, b} be a pair of self-adjoint operators on a
Hilbert space. Suppose that either b>0 or b<0. (Recall, as always in this
section, we also have either a>0 or a<0.) Then the following four conditions

are equivalent:

(1) There is an integer k such that the self-adjoint operators A:=logla| and
B:=logl|b| satisfy the Weyl relation
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el!A elsB=el(—¢+ 2mk)ts elSB eltA 5, teR. (34)

(ii) {a, b} is an a-integrable representation of ab=qba.
(iii) {b, a} is a b-integrable vepresentation of ba=qab.
(iv) {a, b} is an integrable representation of ab=gba.

Proof. (1)—(ii): By the Stone-von Neumann uniqueness theorem ([10],
Theorem 4.3.1), there exists a Hilbert space J# such that up to unitary
equivalence we have A=Q and B=(—¢+2nk)P, that is, |a|=¢2 and
|b|=¢€'"?*2™P on the Hilbert space L2 (R)®@A . Since we assumed that
either >0 or a<0 and that either 5>0 or <0, we get a=¢,e? and b=
£, 2+ 2™P with ¢, g,e{l,—1}. But the latter pair {a, b} is obviously in
%y, so {a, b} is a-integrable.

(ii)—(i): Suppose {a, b} €%¥,. Then, by Proposition 3.3, we can assume
that a and b are of the form (3.2). Since kerb={0} by assumption, #,={0}
and hence |b|=¢("?"2™P and also |a]=¢2. From this (3.4) follows.

We have just shown the equivalence of (i) and (ii). Replacing {a, b} by
{b,a} and q by g, it follows that (i) and (iii) are equivalent. Recall that by
Definition 3.2 (iv) means (ii) and (iii) together. Therefore, all four conditions
are equivalent. O

§4. The Definition of a-Integrable Representations
in the General Case

The main aim of this section is to derive a definition of a-integrability
for a pair {a, b} of arbitrary self-adjoint operators a and & on a Hilbert
space #. First let us note that we can assume without loss of generality
that the operator a is non-singular, i.e. kera={0}. Indeed, if a is arbitrary,
let #y=kera and write a=a, D0 on H=H,DH, Then a, is
non-singular. We shall say that {a, b} is a-integrable if there are self-adjoint
operators b, and b, on #, and H#,, respectively, such that b=b, @b, and
{ay,b} is a;-integrable. For the rest of this section we suppose that the

self-adjoint operator a is non-singular.

Since kera={0}, we can decompose a as an orthogonal direct sum
a=a,Pa_ on H=H,PDH_, where a, and a_ are the positive resp.
negative part of a. Suppose that the self-adjoint operator b is represented
by a self-adjoint operator matrix 4= (b;;); j—; , relative to the decomposition
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H=H, DH_.

The following notations and formulas are often needed in the sequel. Let
by, =ulby,| be the polar decomposition of the closed operator b,, and let p,,
and p,; denote the orthogonal projections of #_ resp. #, onto kerbd,,
resp. kerb,;. Recall that u is a partial isometry with initial space
1612157 = (ker|b,,|)" = (kerd,,) =(1 —p,)#_ in #_ and final space b, #_=
(kerd¥,)" =(kerb,,) =(1—p,,)#, in #,. In particular, we have that

w*u=1—p,, and wu*=1—p,,. 4.1)

In what follows we will develop some arguments which in turn lead to
the precise definitions given below (cf. Definitions 4.1 and 4.2). For this
reasoning we will ignore mainly domain questions for the corresponding
operators. (Roughly speaking, everything will be correct on suitable

domains.)

By matrix multiplication the relation ab=gba is equivalent to the four

equations
aibyy=q bya, (4.2)
a_b22=q bzza_ (4'3)
aibi,=q byra- (4.4)
a_byy=q bya,. (4.5)

Recall that a, >0 and a_ <0 and that b;; and b,, are self-adjoint operators,
so the a -integrability of (4.2) and the a_-integrability of (4.3) are well-defined
according to Definition 3.1. These are the first two requirements (D.1) and
(D.2) in Definition 4.1 below.

To derive the other parts of Definition 4.1, we essentially work with
(4.4) and (4.5). From these two relations we obtain

a+|b21|2=a+b;‘1b21 =a,byyb,,=q by,a_b,, ___qz bisbria,=

‘12 b31by1a. =92|bzxf2a+-

For the relation a,|b,;|>=¢%b,,|’a, we know already how to define

a.-integrability. It means that there exists a ke Z such that

al by Pai =€ 720 2Mp, 2, teR. (4.6)
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(Note that ¢g*#1 as assumed in Section 2, so that Definition 3.1 applies.)
Taking the square roots on both sides of (4.6), we get

ai3r|b21|a;"=€(—¢+"k)tlb21l, teR. (4.7)

We will show that the integer & in (4.7) can be taken as odd. For this we
suppose that & is even, i.e. k=2n with ne Z. But then (4.7) means that the

pair {a|b,,|} is a,-integrable. Hence, by Corollary 3.5, there is a suitable
domain such that

a,lby|=qlbyila,.

Since by,=|b%,lu=1b,,|lu by general properties of the polar decomposition,
this gives

aibyy=a,lby|lu=qlbyila,u and gbja_=qlb,y|ua_.
Comparing these two relations with (4.4), we obtain
A =py)(au—ua_)=0.
Using (4.1), this leads to
(A—p,)a, (1 —p,)=ua_u*. (4.8)

Let ¢ denote the restriction ua_u*[(1—p,,)#,. Since a, >0 and a_<0,
we conclude from (4.8) that ¢>0 and ¢<0 on the Hilbert space
(1—p,1)#,. This is only possible if p,, =1, that is, if |b,,/=0. Thus we
have shown that the integer & in (4.7) must be odd if |6,,|/#0. In case
|651/=0 the relation (4.7) is trivially fulfilled for any k. Therefore, we can
assume that k is odd. But then (4.7) says that the couple {a,,|b,,|} is
a.-integrable with respect to the parameter ¢ ™ = —q. This is condition
(D.3) in Definition 4.1 below. A similar reasoning leads to condition (D.4).

We still need a condition which connects the actions of the operators
on #, (in (D.1) and (D.3)) with the actions of the operators on #_ (in
(D.2) and (D.4)). By (D.3), the pair {a., |b,,[} is a,-integrable with respect
to —q. Therefore, we have

ailby|=—qlbyla,

by Corollary 3.5. Combined with (4.4), this gives
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arbyy=ai|bylu=—qlbysla,u=gbya_=qlbyua_,
so that (1 —p,)(a;u+ua_)=0.
By (4.1), this in turn yields
(I =pi)as(1=pyy) =uv*a,uu*=u(—a_)u*
which is the last condition (D.5) in Definition 4.1.

We summarize the outcome of the preceding discussion in

Definition 4.1. Suppose a is a non-singular self-adjoint operator on a
Hilbert space # with decomposition a=a,@a_ on # =H#,PDH_ into its
positive part a, and its negative part a_. Suppose £=(b;);j=1, is 2
self-adjoint operator matrix with respect to the decomposition # =#, P H#_.
Let b,,=ulb,,| be the polar decomposition of b;,. We shall say that the
pair {a, £} is an a-integrable representation of (1.1) if the following five

conditions are fulfilled:

(D.1) {a,,by,} is a,-integrable with respect to the parameter q.
(D.2) {a_,b,,} is a_-integrable with respect to the parameter g.
(D.3) {a;,lb,]} is a,-integrable with respect to the parameter —g.
(D.4) {a_,|by,|} is a_-integrable with respect to the parameter —g.

(D.5) wu*a,uu*=u(—a_)u*.

Definition 4.2. Let a be as in Definition 4.1 and let & be another
self-adjoint operator on #. We say that the couple {a, b} is an a-integrable
representation of (1.1) if there exists a self-adjoint operator matrix £ with
respect to # =, @A _ such that £ represents the operator b (cf. section
2) and {a, 4} is an a-integrable representation of (1.1).

Remarks.
1.) Obviously (D.5) is equivalent to

(D.5) w*ua_u*u=u*(—a)u.
That is, condition (D.5) is in fact symmetric with respect to a, and a_.

2.) Often the following equivalent forms of (D.5) and (D.5)" are more

convenient:

(I=pr)a (1 =py)=u(—a_)u*, (1—pi)a_(1—py;)=u*(—a,)u. (4.9)



OPERATOR REPRESENTATIONS OF R2 1041

The above formulation of Definition 4.1 is useful for applications, but

it can be weakened. For this we introduce the following conditions:

(D.3) The unitary group t—a' reduces p, H, =ker|b,,|.
(D.4) The unitary group t—|a_|" reduces p,,H_ =ker|b,,|.

Proposition 4.3. FEquivalent formulations of Definition 4.1 are obtained
if we replace (D.3) by (D.3) or if we replace (D.4) by (D.4).

Proof. We carry out the proof for (D.4). The condition (D.4) says
that there exists a ke Z such that

la_|"by lla_| " =el"etmt2m0p | for teR, (4.10)
hence (D.4) obviously implies (D.4)".

Conversely, assume that (D.3), (D.4) and (D.5) are satisfied. By (D.3),

there is an integer k such that
allbylait=e"0t 280N | for teR. (4.11)

In order to prove (D.4), it suffices to verify (4.10). Since |a_|" reduces p,,#_
by (D.4), (4.10) is trivially fulfilled for vectors in p;,#_. Thus it remains
to verify (4.10) for vectors in (I—p,,)#_. Let Ye2(b,,]) be such a
vector. From (D.5) (which is equivalent to (D.5) be the above remark)
we conclude easily that

(I=pila_|*(1—pyy)=u*atu. (4.12)

Recall that b,,=1b,,|u, |b,,|=ulb,,|u* and u*ulb,,|=1b,,| by general properties
of the polar decomposition (see, for instance, [4], p.335). Using (4.11),
(4.12) and these facts, we obtain

|a—|i'|b12|¢ =(1 —P12)|a—lit(1 —p12)|b12|l//=u*a'1u|b12|lﬁ
=u*aﬁb121/1=u*(ai§r|b21})ul//
=u*(e(_‘p+n+2nk)t|b21!ai_:.)ul//
=u*e(_"’+"+2"k”u|b12|u*aﬁul//
=702 b (1 —pyla— P (1 —p i)Y

— e(_¢+n+an)‘lblzna—lit‘p-

This completes the proof of (4.11) and so of (D.4). O
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Remarks.

3.) Let {a, £} be an a-integrable pair in the sense of Definition 4.1, where
£=(b;;) is a self-adjoint operator matrix on # =#,@H_. Suppose in
addition that

kerb,,={0} and kerb,, ={0}. (4.13)

Then u is a unitary operator of J#_ onto ., and condition (D.5) means
that —a, =ua_u*. Therefore, if v denotes the unitary operator 1@u of
H=H,PDH_ onto #,PH,, we have vav*=a,P(—a,) and

)
by ub,,u*
where b,;>0. In other words, if {a, 4} is an a-integrable pair such that

kerb;,={0} and kerb,;={0}, then we can assume, after a unitary
transformation, that #, =#_, a_=—a, and b,,=0,,>0.

Proposition 4.4. Let A, Ay and A", be Hilbert spaces and let E, and E,
be orthogonal projections in Ay rvesp. A ,. Suppose that wj:LZ(R)®Ji/j-—>L2(R)
RA, j=1,2, are isometries which interwine the unitary groups €'¢ (i.e.
wie"®=e"%; for te R, j=1,2). Letk, ky, k,€Z and set w:=— @ +n+2nk and
ojp=—@+2nk;, j=1,2. We define a self-adjoint operator a and a self-adjoint
operator matrix £ on the Hilbert space H =H,PDH _, where H =H_:=
LYARYQ A, by a:=e?@D(—e2) and

a1 P _ * aP
£:=<wle RE, — 1w, e >’ (4.14)

e*f w,eP(2E, — w,*

Then the pair {a, £} is a-integrable and (4.13) is fulfilled.

Conversely, each a-integrable pair {a, £ } (according to Definition 4.1) of a
self-adjoint operator a and a self-adjoint operator matrix £ which satisfies (4.13)
is unitarily equivalent to a pair of the above form.

Proof. The first assertion follows by a straightforward verification. We
sketch the proof of the second assertion. For this let {a, £} be an a-integrable
pair (in the sense of Definition 4.1) such that kerb;, ={0} and kerb,; ={0},
where £=(b;;). By the above Remark 3.) we can assume without loss of
generality that #, =#_, a_=—a, and by,=b,,>0. By (D.3), {a,, b,,}
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is a,-integrable with respect to the parameter —g. Since a, >0 and b,,>0,
we conclude from Proposition 3.3 (or from the Stone-von Neumann
uniqueness theorem, cf. Proposition 3.6) that there exist a Hilbert space /4~
and an integer k such that {a,, b,,} is unitarily equivalent to the pair {¢?,
elmetm+2mPY o the Hilbert space L*(R)®.#. For notational simplicity,
let us identify #, =#_ with L2 (R)® A", a, with €2 and b,;=b,, with
elmetnt2mP By (D.1), the pair {a,, b} is a,-integrable with respect to
the parameter g, i.e. we have {a,, b“}e(gkl for some k,eZ. Now we apply
again Proposition 3.3. There are Hilbert spaces 4| and 5, an orthogonal

projection E; on X, a selfadjoint operator ayy on # 'y, and a unitary operator

v, of LA(R)Q A, DAy, onto #,=L*(R)RA such that

v1(2@ag,)vf=a, =€ (4.15)
and

v, (e P OPOE —1)P0)F=b,,. (4.16)

The restriction w;:=v, [LX(R)® A is an isometry into L*(R)® A4 which
obviously satisfies w,el"?*2*VPQE, —1)w¥=b,, by (4.16). From (4.15) we
get v,(e"@all;)v¥=¢"? and hence w,e"%=¢"%, for te R. Thus we have
shown that the matrix elements b, ,, b, and b,, have the desired form. The
proof for b,, is quite similar to the proof for 5,;. O

§5. A Model for a-integrable Representations
The model mentioned in the heading is defined as follows:

Let A, H_, A, A, and A, be Hilbert spaces and let E, and E,
be orthogonal projections on 4 and X,, respectively. Put # =
LA RYQR A, and #_:=L*(R)YQ A _. Let w,:LHR)QH | >H,, w,y,:L*(R)
QA ,—H#_ and w,,:L2(R)QA —»H, be isometries and let u be a
partial isometry of 3, into #_ with initial space w,,(L*(R)®#"). Suppose
that the operators w, ;, w,,, W, and u intertwine the unitary groups "¢, te R.
Let k, k;, k,eZ and set a;:=—@+2nk; for j=12 and a;,=a,;:=
—@+7n+2nk. Define a self-adjoint operator a and a self-adjoint operator
matrix £=(b;;) on H:=H,DH_ by

4= 2@ (—e?) (5.1)
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and

- (wllea”P(zE1—1)wT1 uwlze"””w’l"z ) _ (5.2)

w2 Pwtyu* w52 (2E, — w5
Then it is not difficult to see that the couple {a, ¢} fulfills the conditions
in Definition 4.1, so {a, ¢} is an a-integrable representations of (1.1).

For 7,j=1,2, let p;; denote the orthogonal projection of the corresponding
Hilbert space onto kerb;;. Clearly, kerd;; is the orthogonal complement of

the range of w;;, so 1—p,;;=w,wf. Also, it is easy to see that the positive

part and the negative part of the operator b;;, j=1,2, are
w0 E o e (L (R) @ E, )
and w;;e " (1 — Epwilw (L2(R)Q (1 —E))A)),
respectively.
Remarks.

1.) The above model is more symmetric in the matrix entries of 4 than
the model occuring in Proposition 4.4. Also, it is more general, since the
operators b;, and b,; may have non-trivial kernels.

2.) Suppose that {a, £} is an a-integrable pair such that a is as stated in
(5.1), ice. a, =e% on #, =LY (R)QA, and a_=—¢? on #_=L*(R)Q A _
for certain Hilbert spaces ", and # _. Then it can be shown that £ is
of the form (5.2).

In order to obtain criteria for the irreducibility or the unitary equivalence
of pairs of the above model, we study bounded linear operators which

intertwine two pairs.

Theorem 5.1. Let {a, £} and {a, Z} be two pairs of the form described
above. Suppose that T is a bounded linear operator from 5 =#, DA _ into
H =F +(—B£’ _ such that Ta<aT. Then there are bounded linear operators
Ty H,—H, and Ty:H_—H_ such that T=T,@DT,.

Suppose in addition that a;==G;; for all i,je {1,2}. (Notations with tilde
always refer to the pair {a, Z}) Then the operator T=T,@P T, intertwines
the pairs {a, 8} and {a, &} (that is, Ta<aT and T6<ET) if and only if the
following three conditions are fulfilled:
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(1) For j=1,2, Tpp;;=p;;T; and this operator intertwines the unitary groups
"2 teR.
(i) For j=1,2, Ap:=w%Tw; is constant and AjEjZE'jAj.

(i) Tyu=uT, and A:==2%,T,w,, is constant.

The proof of Theorem 5.1 depends on the following two simple lemmas.

Lemma 5.2. Suppose that A, and A, are non-negative self-adjoint
operators on Hilbert spaces Hy resp. H,, where A, or A, is non-singular.
If B is a bounded linear operator from H#, into H, such that —BA,< A,B,
then B=0.

Proof. From —BA,<A,B we get —B*A,= —(4,B)*<(BA,)*=A4,B*
and so |B|*?4,=B*BA,<B*(—A,B)=(—B*A,)B< A,B*B=A,|B)?, i.e. |B?
commutes with the self-adjoint operator 4,. Hence |B| commutes with A4,
as well.

Let B=U|B| be the polar decomposition of B. Fix ne2(4,). We have
—BAn=A4,Bn and |Bl|An=A4,|Bln, so that —{A4,Bn, Bn)=(BAn,
Bny=<U|B|4,n, U|Bln)=<|B|4,n, |Bln)=<A4,|Bln, |Bln). Since A4,>0,
A,>0 and at least one of these operators is non-singular, the latter
is only possible if By=0 or |B|y=0. In either cases it follows that
B=0. O

Lemma 5.3. Let 9, and 4, be Hilbert spaces and let B be a bounded
linear operator from L (R)®%, into L2 (R)®%,. If B intertwines the unitary
groups t—€"2 and the self-adjoint operators e*¥ for some positive real number
f, then B is constant.

Proof. Put 4:=9,P%,. We extend B to a bounded linear operator
B of the Hilbert space L3(R)®¥ into itself by setting B =0 on the subspace
L*(R)®%,. Then B obviously commutes with the unitary group ¢*? and
with the self-adjoint operator ¢’¥ on the Hilbert space L?(R)®%. Since
BefP <P B, B commutes with the spectral projections and hence with each
function of the self-adjoint operator ¢F on L?(R)®Y%, so in particular with
(€’P)s=¢"PP for all se R. Thus Be(A®C-1), where 4 denotes the *-algebra
which is generated by the operators €2 and €**F on L?(R). Since A'=C"1,
(AQRC1)=C1QB(%) (see, for instance, [12], p. 184). Hence BeC1®
B(%) which means that B is constant. Since B=0 on L*R)®%, by
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definition, B is constant. O

Proof of Theorem 5.1. Writing T as a 2 x 2 operator matrix (T};) in the
obvious way, the relation Ta<aT leads to —T,,(—a_)<a,T;, and
—T51a, =(—a_)T,y. Therefore, we conclude from Lemma 5.2 that T;,=0
and T,;=0, so that T is of the desired form T'=T,@T,, where T;:=T};.

Now we turn to the proof of the second assertion of Theorem 5.1.
Necessity part: By definition, the relation T4<SZT is equivalent to the four
relations

T;b;<b,T; for j=1,., (5.3)

Ji=J

T.b,,<b,,T, and T,b,,Sb,T,. (5.4)

Fix je{1,2}. From Tjb;p,;=0<b;T;p;; by (5.3) we obtain

JJ
(1 =p;)Tip;;=0. (5.5)

Since I‘;jj is self-adjoint, ﬁjjl;jj=0 and hence [)jjif}bjjgﬁjjl;jjﬂ:O, so that

B Ti(1—p;)=0. (5.6)
(5.5) and (5.6) together yield T;p;;=p;T;.

Recall that {a,, b,,} is a,-integrable and {a_, b,,} is a_-integrable. More
precisely, by (5.1) and (5.2) we have ei'(2b1~]~ca“"'Q=e"‘”t b;; for teR. In
particular, this implies that p;; commutes with "¢ for all . Further, TacaT
gives Tya, <a, T, and T,a_<a_T,, so that Q}eQEeQTj by (5.1). From
TjeQEeQ'I} it follows that fl}ei‘Q=ei‘Q7}. (In order to see this, one can repeat
some arguments from the proof of Lemma 5.3, where we showed that
Be’? < 7B implies that Be*?=¢**’B.) Thus we obtain Tip;e*®=e"CTp;;
for te R which completes the proof of (i).

In order to prove conditions (ii) and (iii), we essentially use the concrete
form of the operators b;; and l;,-j as described by (5.2). From ijjjgi;jj'l}
by (5.3) and aj;=d;; by assumption we get

Tw; e (2E;— Vw60 (2E ;— )} T, (5.7

]

. ~en . - . .
Recall that wkw;;=1 and @}w;;=1, since w;; and @;; are isometries.

Therefore, (5.7) implies that the operator A;=@}T,w

5T w;; satisfies
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A PQE;—1) s e QE;— DA, (5.8)
so that

AP = A (e PQE;— 1)) (e PQE;— 1))* A ;=7 A,.

We already noted in the preceding paragraph of this proof that Tje"?=¢"2T;
for te R. By construction of the model, the operators w;; and @ ;; intertwine
the unitary groups €"?. Hence the operator Aj=2%Tw;; also intertwines
the unitary groups 2. That is, A; satisfies the assumptions of Lemma 5.3,
so A; is constant. Using this and applying (5.8) once more, we conclude
that AJ-EJ-=E'J~A]-. This proves (ii).

Finally, we verify condition (iii). Recall that b,,=ulby,|, |b1,]=0,4,
|6,,|=iib,, and b,,=|b,,|ii by general properties of the polar decomposition.
Using these relations and (5.4) we obtain

(Tyu—aTy)byaol =T ulbyy| —uTs)bys|=Tiby, —iTrbyus

b12Ty— by Tyu=b 5|t Ty — 65| Tyus|b 4| T, — Tyu). (5.9

Now we apply Lemma 5.2 to the operators Ay:=|by,|(1—p,,) on
Hy=(1=py)H_, Ay:=1b5,|(1—p5) on #y:=(1—p,)#, and B:= (1—55,)
(Tywu—uT,)(1—py,)#_. From (5.9) we see immediately that —BA4, < 4,B.
Lemma 5.2 yields that B=0. Since u=u(1—p,,)and (1 —p,,)ii =1, this gives

(A =p,)Tyu=uT,(1—py,). (5.10)

From lelzgglsz it fOllOWS that T1b12P12=09512T2p12, SO that
(1—513)T,py,=0. Hence

T p1,=up 3 Top1,=0. (5.11)
Further, Tyb,,<b,,T, leads to
b21TTzbszT=(T1b12)*2(512T2)*2Tﬁ;fz:T;Eu

and b, T1H,, 2 T§521f’21 =0, so that (1 —p,)T1p,1=0and p,,; T (1 —p,;)=0.
Therefore,

P21Tyu=p, Tipru=0. (5.12)

From (5.10)—(5.12) we conclude that Tyu=uT,.
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By (5.2), (5.4) and the assumption a,,=d,,, we have
T1b12=T1uw12e“”Pw’f2 E[;12Tz=ﬁ71’1235!121’%7”1'3712,
)

@Tzﬁ*Tluwlzealngealzpw’szZwlz. (5.13)

Since Tyu=u#T, as just shown, we have #*T,u=(1—p,,)T, and so
DF,u*¥Tuw ,=wi,(1—p,,)Tow, =%, T,w,=A. Therefore, (5.13) shows
that the operator A satisfies the relation Ae*?fce*?*A. By a similar
reasoning as in case of Aj, A intertwines the unitary groups €"¢, teR.

Therefore, by Lemma 5.3, A is constant and condition (iii) is proved.

Sufficiency part : Suppose T=(T};) satisfies the above conditions.
Let je{1,2}. Since w;w}=1—p;; and @ ;;@%=1—p;, it follows from (i) and
(i1) that

Ti=Tp;;+w ;i\ jw}

Jitri%ii

Both summands intertwine the unitary groups €2, the first one by assumption
(i) and the second one because @ ;;, A; and w;; have this property. Therefore,
Tje"Qze"QTj for teR. This ylelds JQEQTJ- (by differentiation at ¢=0)
and hence TjeQEeQY} (by power series expansion). Thus Ta<aT by (5.1).
In order to prove that Th<hT, we have to verify the relations (5.3) and

(5.4). We first show that T;b; .<b..T,j=1,2. From condition (i) we obtain

Ji="jiti

B;iTib;=Tp;b;=0 and b, =b,,p;T;=0. (5.14)

Jji Jp Ji JJP Ji

Since A; is constant, AE; E A; and a; —oc”, we have

@5 Tw; e P QE;—1) P (2E ;— )ik Tw;;.

Multiplying this by #;; from the left and by w;; from the right and using

the definition of b;;, we get

(1 pH)TbJ.l—b].l 1(1 pJJ)

Combined with (5.14), the latter implies that Tb”__b i1
Next we prove that T,b,,<b,,T,. From T,u=aT,, up,,=0 and p,,ii=0
we conclude that

(1 =p1)Top1a=u*uTypr,=a*T up,;,=0
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and P21 T(A —pay) =P Tyuu* =p,uTou* =0,
so that

b12Tap12=b13P12T2p12=0 (5.15)
and

P12T1b12=p31T1921b1,=0, (5.16)

where the last equality follows from the fact that p, s, =kerb,, L
b}XH _=b,#_. Using Tyu=uT, once more, we have

5%k =¥ ik — X 5 —o¥ -
W1 Tuw =W u*uT,w =0 51 —p 1) Trw =0T, T,w = A.
Since A is constant and a,,=0,, the latter yields
DA a* T uw, ,e?F < F2Pg %, T oo
12 1UWy, S 121 2%y ;5.

We multiply this relation by #uw@,, from the left and by w¥, from the
right. Using the definitions of b,, and 5,,, we then obtain (1—5,,)Tb,,<
b1, To(1—p12).

Combined with (5.15) and (5.16), this gives T,b,,<b,,T,.

A similar reasoning leads to T,b,, b, T;. O

Definition 5.4. Let {a, £} and {a, £} be two pairs of the form described
at the beginning of this section.
(i) We say that {a, ¢} is unitarily equivalent to {a, #} if there are unitary
operators U, of #, onto #, and U, of #_ onto #_ such that UaU '=3a
for U:=U,@PU, and UibijU_j1=5ij for 7,7=1,2.
(ii) The couple {a, £} is said to be irreducible if each projection T on # of
the form T=T,@T,, where T;:#,—>H#, and T,;:#_—-#_, such that
Ta<aT and T4<4T is either 0 or 1.

We briefly discuss the preceding definition by a few

Remarks.

3.) Recall thatif T is a bounded operator of # into J such that Ta<aT,
then, by Theorem 5.1, T is of the form T=T,@T,, where Tl:e%ﬁ—»,}?,L
and T,:#_—#_. This justifies the restriction to unitaries U and projections
T of the form U;@QU, resp. T{@P T, in the above definition.

4.) 'The above definition applies also to pairs {a, £} for which £ does not
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represent a densely defined symmetric operator & (cf. Example 6.1).

5.) Suppose that £ and Z represent operators b and b, respectively. Ob-
viously, if {a, £} is unitarily equivalent to {a, £}, then {a, b} and {a, b} are
unitarily equivalent. Also, if {a, b} is irreducible (i.e. there is closed linear
subspace except {0} and s# which reduces both a and ), then the couple
{a, ¢} is irreducible. The converses are not valid in general, but they are

true (for instance) if the assumption of Lemma 2.1, (ii), is satisfied for £ and 4.

Having Theorem 5.1, it is straightforward to formulate necessary and
sufficient criteria for the unitary equivalence and for the irreducibility of
pairs of the above model. We write down these criteria only in the important
special case where kerb,, ={0} and kerb,; ={0}. Recall that by Proposition
4.4 such a pair is unitarily equivalent to a pair {a, £} of our model, where
A=A, ,=H_ (hence H,=H_), w;,=1 and u=1.

Corollary 5.5. Suppose that {a, 4} and {a, £} are two couples of the
form described in Proposition 4.4. Then the couples {a, £} and {a, Z} are
unitarily equivalent if and only if there exists a unitary operator A of A onto
A such that operator Aj=w¥Aw; of LZ(JR’)®%J- into LZ(R)®Ji~/j is constant,
AE;=E;A; and Ap;j=p;;\ for j=1,2,

Corollary 5.6. Let {a, 4} be as defined in Proposition 4.4. The couple
{a, £} is irreducible (in the sense of Definition 5.4) if and only if each orthogonal
projection A on A" such that the operator Aj:=w}Aw; on L*(R)® A ; is constant,
Ap;i=p;A and N;E;=EA; for j=1,2 is either 0 or 1.

We omit the (easy) proofs of these corollaries. As an illustration we
consider the scalar case (i.e. X' =A4,=4,=C) in

Example 5.7. Let {a, £} be an a-integrable representation of (1.1) such
that kerb;;={0} for 7, j=1,2 and the spectral multiplicity of the operators a.
and a_ is one. Then, up to unitary equivalence, the pair {a, ¢} is of the
form stated in Proposition 4.4, where A =4, =4,=C. The projections
E; are either 0 or 1 and the operators w; are multiplication operators by
functions w;(x)e L*(R) such that |w;(x)|=1 a.e. By Corollary 5.6, such a
couple {a, £} is always irreducible.

Let {a, £} be another such couple. By Corollary 5.5, the pairs {a, £}

and {a, Z} are unitarily equivalent if and only if both functions zZ)j(x)_lwl(x),
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j=1,2, are constant a.e. on R and if Ej=Ej for j=1,2. (As always, all
notations with tilde refer to the couple {a, Z})

§6. Representation of the Operator Matrix £ as a
Symmetric Operator

We have seen in the preceding two sections how to define and how to
work with a-integrable pairs {a, 4}, where £ are self-adjoint operator
matrices. Knowing that operator matrices with unbounded entries are a
very delicate matter (cf. [7]), it is not surprising that in general such a

matrix £ does not give a densely defined operator as shown by the following

Example 6.1. Let A,, A, and A be self-adjoint operators on a Hilbert
space A and let #, =H#_:=L*(R)®A . Define a self-adjoint operator a
and a self-adjoint operator matrix £ on #:=#, P H_ by

a=a, Pa_=e?@(—e?)

ay P aP
and Jz(bij):=(e A ¢ A) ,

eaPA eazPAz

where a;=—¢@+2nk; and a= — @ +n+2nk with k, k;e Z. Clearly, {a, 4} is
an a-integrable pair (in the sense of Definition 4.1). Suppose that
D(A)ND(A,)={0}. (Note that such operators 4 and A, exist: For each
unbounded self-adjoint operator A there is a unitary operator U such that
A;:=UAU™" satisfies 2(A)NnD(A4,)={0}, cf. [11], Section 5.). Then we
have 2(b,,)Nn2(b,,)={0}, so the matrix ¢ does not represent a densely
defined operator. It is not difficult to impose other conditions on 44, 4,
and A which ensure that £ represents a (densely defined) symmetric or a
self-adjoint operator.

The aim of this section is to formulate some conditions which imply
that a self-adjoint operator matrix £ of the form (4.14) represents a symmetric
operator. For this some preliminaries are needed.

Throughout the rest of this section, we keep the notation of Proposition
4.4 and we assume that the Hilbert spaces Ay, A, and £ occuring therein
are separable. We freely use the terminology on direct integrals of Hilbert
spaces and operators (see, for instance, [12], Chapter IV). For a separable
Hilbert space ¥, we always identify the tensor product L?(R)®% with the
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Hilbert space L2(R) of %-valued square integrable measurable functions on
R with respect to the Lebesgue measure.

Lemma 6.2. The isometry wj:L}j(R)—x’L}(R), j=1,2, in Proposition 4.4
is given by a measurable field R>x—w;(x) of isometries wj(x) from H; into A .

Proof. We argue in a similar way as in the proof of Lemma 5.3. Let
Yy=H;PDA. We extend w; to a bounded linear operator @; on L%(R)
by defining %;=0 on 4". Since w; intertwines the unitary groups t—e't?
(see Proposition 4.4), &; commutes with the unitary group t—¢'"? and hence
with all bounded functions of Q on Léj(R). Considering the Hilbert space
L%(R) as a direct integral of Hilbert spaces J#,;:=%; for 1eR, the latter
means that @ ; commutes with the algebra of diagonalizable operators. There-
fore, @; is decomposable ([12], p. 259), i.e. @; is given by a measurable field
R>x—%;(x) of bounded operators on ;. Since @ ;=0 on A" and w; is an
isometry, @;(x)=0 on X% ae and w;(x):=®;(x)[H; are isometries

a.e.. O

The next lemma is a Hilbert space valued version of the classical
Paley-Wiener theorem. For feR, let I(f):={zeC:|Imz|<|fl}.

Lemma 6.3. Let 9 be a separable Hilbert space and let fe R. Suppose
that z—Y(z) is a holomorphic mapping of I(B) into G such that M:=
sup j l(x+iy)|2 dx<oo. Then the G-valued function y(x) € LZ(R) belongs

[¥I<IB] — o

to 2(efY). Moreover, (eFV) (x)=Y(x+iw), xeR, for weR, |w|<|pl.

Proof. Take an orthonormal basis (#,),.; of % and set Y,(2):=<{Y(=),1,>-
By the above assumptions, ,(2) is a holomorphic function on I(f) such
that sup f [W,(x+iy)|*> dx<oo. Therefore, by the Paley-Wiener theorem

Iyl <18
([5]), the function el (¢) is in L2(R). As usual, },=Fy, denotes the

Fourier transform of {,. Let weR, |w|<|f]. As shown in the proof of the
Paley-Wiener theorem (see [5], p. 174), the function ¥,(x +iw) has the Fourier
transform e~ W, (¢). Since Fe®PF !=¢"%2 it follows that

Uu(x)€D(e””) and (YN =Y, (x+iw) in  LA(R). 6.1)

Further, by the Plancherel theorem, we have
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JZ (> +e 2% |, (1)|* dt
=y f(I'//..(x+iw)I2+|¢n(x—iw)I2) dx
=f Y (x + iw) |2 + Y (x— i) ||?) dx<2M < oco.

The left-hand side is monotonic in w. Therefore, letting w{|f] and applying
the monotone convergence theorem, we get

Z (|Ie’”ll7,.(t)|12+lie""lpn(t)llz)=JZ (P +e7 2 [, (0)]* dt <2M <o

which in turn yields
Y e l1P =Y e P,)% < co. (6.2)

Clearly, the map (—({{(x), %,))mr 1S an isometry of LZ(R) onto the
orthogonal direct sum ) @ #,, where J#,:=L*(R). Therefore, it follows

nel

from (6.2) that Y/(x) € D(efF) in LZ(R). The formula for e®Py follows at once
from (6.1). O

For p>0, let #, denote the linear span of functions e ** in L2(R),
where 0>p and yeC.

Proposition 6.4. Suppose that, for j€{1,2}, there exists a positive number
p;j, a dense linear subspace &; of K and a family of (possibly unbounded) linear
operators {v{(z);z€l(x;)} of K into K; such that:
(i) vix)=wix)* on R a.e,,
(i) z-vi(z) is a holomorphic mapping of I(a;) into K; for all ne&; and

(iii)  sup J e 20 lvj(x+iy)nll* dx<co.
Iyl <laj]
-

Then the self-adjoint operator mairix £ from Proposition 4.4 represents a
symmetric operator whose domain contains the dense set F, Q& DF,,Q&,
in HX=H,PH_. (Here F,,Q&; means the algebraic tensor product of
vector spaces.) Moreover, we have wf({@n)e@(e"’?) and (e“’Pw’;(C®t1))(x)
=vj(x+iw){(x+iw), xeR, for weR, |w|<|aj], (€ F, and ne&;, where {(2)
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denotes the holomorphic extension to C of the function C(x)efpj.

Proof. Obviously, Z;:=%, ®¢&; is dense in A, resp. #_ for j=1
resp.j=2. We show that 2, 9(b;;) for j=1,2. Since bjj=wje“fP QE;—w?
by (4.14), this is equivalent to w}"@jE@(e“JP). In order to prove the latter,
it suffices to check that for any 6> p;, yeC and ne&; the -valued function
l/l(z):=vj(z)e_‘szz+”z satisfies the assumptions of Lemma 6.3. By (ii), ¥(2)
is holomorphic on I(x). Further, we have [y(x+iy)| <const. e P
lofx+iyn| for x+iyel(a;). Thus, by Lemma 6.3 applied with f=ua,
wj‘@;-E@(e“’P) and hence 2;S9(b;}). Since by,=b,;=¢"", we have 9
D(b,1)ND(by;). Thus the matrix represents a (densely defined) symmetric
operator b and 2P P,<=2(b). The formula for e“’Pw’}‘(C®n) follows at

once from the corresponding formula in Lemma 6.3. O

Remark. Let a and £ be as in Proposition 4.4 and keep the assumptions
of Proposition 6.4. Then the domain 21@ 2, is contained in D(ab)ND(ba)
and we have abl=gbal for (€ 2P D,.

§7. An Example

Throughout this section, let 4; and By, j=1,2, be (possibly unbounded)
self-adjoint operators on a separable Hilbert space #". We assume that 4;
and B; strongly commute, i.e. the spectral projections of A; and B;
commute. Further, let a;= —¢ +2nk; and a = — ¢+ + 2nk with k;, Ke Z for
7=1,2.

Our example will be a special case of the pairs in Propositions 4.4 and
6.4. In order to define it and to describe it by more explicit formulas, we
need some preliminaries.

Fix je{1,2}. Let 4;=A4; ., ®A; _PAjo on A =X, . DA; _DA;,
be the orthogonal decomposition of 4; into positive part, negative part and null
part. Let E; and F; denote the orthogonal projections of A;:=; . DX _
onto 4 , and of 4 onto J, respectively. Define operators C; and Bj on
K;by Cj=a7! (log 4;+@log |4, _|) and Bj:=B;|#;. (Note that B} maps
K; into itself, since A; and B; strongly commute.)

In what follows, the multiplication operator by the independent variable
on R in some Hilbert space L2(R) is often denoted by x. By an operator
such as fxC;+7yx>Bj, where f,y€ C, we shall mean the closure of the operator

B(x@C))+y(x*® B)) on the domain (2(x) Q2(C))N(D(x*)QZ(B)) in the
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Hilbert space L;,](R)ELZ(R)@JKJ-. A similar meaning is attached to
operators like ﬁij+yzzB}+ézB}, where z=x+1y is interpreted as a sum
of the multiplication operator x and the constant 7y. Recall that the operators
C; and Bj strongly commute on %, hence ﬂij+yxZB} is self-adjoint for
real § and y and all such operators strongly commute. Define isometries
wj:L}j(R)ﬁL}(R) by wj(x):=eixc1+i"283'.

Put Ej,,,:zecj([—n, n))eg([—n,n]) for ne N, and &;:= U E; , A;, where
n=1

er(") denote the spectral projections of a self-adjoint operator T. Clearly,
€ is a core for C; and for Bj. Let 9 be the linear span of vectors e**/({ ®7)
in A, where weC, (e#, and 7 eéaj@(fj‘om@(elii)). Recall that %, is
spanned by the functions e ™% *?* in L?(R), where 6>0 and yeC. As usual,
let £=(b,;) be the self-adjoint operator matrix defined by (4.14) and let
H=H,DH_, where #,=H_=LLR)=L* (R)R A .

Proposition 7.1. For je{1,2}, we have:

() byt =we P (QE;— wrE = A e+ xmBi gl ¢ (7.1)
for €,

(il) 9] is a core for the self-adjoint operator bj;.

Proof. Except for the Hilbert spaces #; and X, we shall omit the

lower index j throughout the following proof.

(i): It suffices to prove (7.1) for a vector £ =e®*3({ ®1#), where C(x):e"5x2+yx
with 6>0, yeC. If neX,, then both sides of (7.1) are obviously zero.
Thus it is sufficient to treat the case where neé, say neE,*;. For
z=x+1y, we define &(2): =e“*F {(2)n and v(2): = #C~*B'F For fixed zeC,
v(2) is a linear operator from " into ;. From the spectral theorem we
easily see that &(z) e D(v(z)) and that Y(2):=v(2)¢(2)={(2) e_"zc_izzB'J””B'n.
Since neE,A;, we have

k
I(=iBY" MwB —iC)yl <n™* ),

r=0

k " -r m
(T>|wl'llB Cll < (n(jw| +1))
for m, ke Ny, m>=k. Therefore, the power series expansion

T 3 22mk (Rm—R)) " (—iBY" @B —iC)y

m=0 k=0
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concerges absolutely in & for all zeC, so the mapping z—e ™ ZCiz’B +0zB’
g j pPp n

of C onto X is holomorphic. Thus z—y/(z) is a holomorphic mapping of
C into A

Let B>0. Recall that ne E, A ;=ec([—n, n])eg([—n, n])A;. Therefore,
it follows from the functional calculus for self-adjoint operators combined with

the strong commutativity of C and B’ that for 2=x+1iyeI(f) we have
y
e an .
I =1(2)] lle™=C~=F + o8y
—5x2 — 1542
<const. ¢ 9% ThIx XI@BtIeDn ) < const, 7,

where the constants depend on f, y, w, 5, m, but not on xe R. Hence the
mapping z—(z) satisfies the assumptions of Lemma 6.3 for any
f>0. Lemma 6.3 yields

(e*Paw* &) (x) = v(x + 1) E(x + 10t). (7.2)
Similarly, we obtain
(e7E)(x%) = &(x + ia). (7.3)

Since neé, Fé(x+in)=¢((x+in). By construction, the projection E (of X
onto % ) commutes with C and B’. Using these facts, we get

w(x)Ev(x+ i) (x +ia) =E ¢CHxB omix+ia)C—itx+ia)®B" [rr(y 4 joy)

=FE & @108yt ig)=A, ¥ (x4 dn). (7.4)
Similarly,
w(x)E —Do(x+ia)E(x +ia)=A_ 208 F(x 4 o). (7.5)

Using (7.2), (7.4) and (7.5) and finally (7.3), we obtain

(b8 (%) = (W(2E — 1)e*Pw* &) (x) = w(x)(2E — 1)v(x + i) (x +i01)
=(A+ @A_)e(2x+ia)le?' f(x-}-zcx) =A e(21+ia)azB (eaPé)(x)

which proves (7.1)

(i1): The non-singular part of the self-adjoint operator b is the operator

by=we(QE—1)w*[A; on the Hilbert space #; We have [b,[*=

J
wle? QE—1)|" w* | A j=we"Pw* [ A for te R. Clearly, e"” is the translation
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operator by —ta. The space %, is invariant under translation. From the
spectral theorem it is clear that the operators ¢°C and e leave the dense
domain & in % invariant. Putting all these facts together, we conclude
that the domain & is invariant under the unitary group |b,|*. By Lemma
7.2 below, & is a core for b,,. Since X ,=ker b and fj’om@(esz) is dense
in A4, 9 is a core for b. .

The following lemma is similar to a result of Poulsen [9].

Lemma 7.2. Let T be a non-singular self-adjoint operator on a Hilbert
space 9. If a linear subspace @ of D(T) is dense in % and invariant under
the unitary group U(t):=|T|", teR, then D is a core for T.

Proof. Fix a number ze C\R. Let %, be the closure of (|7|—2)2 in
%. Since U(t) commutes with |7| and since U(1)2<%2 by assumption,
Ut)%9,=%, for all real t. Consequently, U(t)9.<%, for teR. Set
V(t):=U@)|%, and W(t):=U(t)|9,. By Stone’s theorem, there are self-
adjoint operators R and S on ¥, and ¥,, respectively, such that V() =¢"R
and W(t)=¢"S, teR. Since U@t)=V ()@ W() on 4=%,PD%, and U(t)=
€"9'T" by definition, it follows that log|T|=R@®S, so |T|=e"@Pe’. Take a
vector neP()=D(|T|). For (€2, we have {|T|(,n>=<(z()>, hence
YTIE> =L, |TInd>=<L, €)=K, zy). Since 2 is dense in ¥, the
latter gives eSy=2zn. Since ¢’ is self-adjoint and % is not real, #=0. Thus
2(e%)={0} which yields {9;:{0}. From the preceding we conclude that 2
is a core for |T|. Since 2(T)=2(T]|) and |T.|=||TI.|, £ is a core for T
as well. O

By Proposition 7.1, (i) and (ii), the self-adjoint operator b;; coincides
with the closure of the essentially self-adjoint operator 4;e?**#)%8; %P g
We shall denote this closure again by Aje(zxﬁ"")“’nf ¢“*. 'Thus the couple {a, ﬂ}

in our example takes the following form:

a=e2@ —fl=e@ —¢* (7.6)
A e(2x+i11)a1B1 eauP e“P
ﬂE(b,s)=( ! . v m o 7.7
& Aze( xtioz)azBa o2

It is clear that the operator matrix £ in (7.7) satisfies the assumptions of
Proposition 6.4.
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Next we want to decide on the unitary equivalence and the irreducibility
of the couples of our example. Before stating our result, let us note that
B;F; is a self-adjoint operator on the Hilbert space /', because 4; and B;
strongly and hence the projection F; reduces B;.

Proposition 7.3. Suppose that {a, £} and {a, #}are two couples of the
form described above, i.e. the operators a and a and the self-adjoint operator
matrices 4 and & are given by (7.6) resp. (7.7). Suppose that a =G and oj=0;
for j=1,2. (It is needless to say that the tilde refers to the couple {a, Z})
(i) The couples {a, £} and {a, £} are unitarily equivalent if and only if the
4-tuples {A,, A5, B\Fy, B,F,} and {4, A,, B,\F,, B,F,} of self-adjoint
operators on A resp. A are unitarily equivalent, i.e. there is a unitary operator
A of A onto A such that AAJ-A_1=1“]] and ABJ-FJ-A_1=EJ~}?'J- for j=1,2.
(i) The pair {a, £} is irreducible if and only if the 4-tuple {A,, A,, B,Fy,
B,F,} of self-adjoint operators on A is irreducible, i.e. {A,, A,, B,Fy,
B,F,}=C1.

Proof. We carry our the proof of (i). The assertions of (ii) follow by
some slight modifications of the arguments. The if part of (i) is
clear. Indeed, considering A as a constant operator of L%(R) into L% (R),
the unitary operator U:=A@A of # onto J# establishes the equivalence
of {a, 4} and {a, Z}.

We prove the only if part of (i). For this let T=T,@ T, be a bounded
linear operator of # into J#, where T :#,—»#, and Ty _—H_. We
suppose that T intertwines {a, 4} and {a, Z}. Then Theorem 5.1 applies,
so the conditions (i)-(iii) stated therein are fulfilled. We freely use the
notation from Theorem 5.1. By (iii), A:==T,=T, is constant, i.e. A is an
operator from J into . (i) yields AU—F)=(I—F)A, so AF;=FA. By
(ii), there is a bounded linear operator Aj:Ji’j—r»jf’j such that zT)j/\j=Fjij, i.e.
w (%) Aj=Fjij(x) a.e.. The latter implies that

Ay, e BCm B iy = (Fihe P Ct R (7.8)

for all ne&; and 176@'71-. From the definitions of &; and g”j it follows easily
that both sides of (7.8) have power series expansions in x which converge
on the whole real line (see also the above proof of Proposition 7.1,
(1)). Comparing the constant terms, we get {A;n, ﬁ):(ﬁ'jl\r’, fiy for
all neé; and ﬁeg"j, so that Aj=F~}A[Ji’j. Since F}A:AFJ-, we obtain
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Aj=AlA ;. Comparing the linear terms and the quadratic terms in (7.8),
we have

<A]17’ C}ﬁ>=<A,Cﬂ7) ﬁ) (7.9)

and
A, (CE4+2B))iy={(A(C?+2B)n, >, (7.10)

where we used that Aj=l~7'j/\ [A;. Since g"j is a core for C‘j, (7.9) implies
that A;C,.c C'j/\j. Using the latter and the invariance of g}. under éj, (7.10)
leads to <{A;n, E’}ﬁ):(AjB}r], fiy. Therefore, AjB'~§§}Aj, since &; is
also a core for Bj.

To complete the proof of (i), we assume that T is unitary. Theu A:f -4
and Aj:éfj—hi’j are unitary operators. From A;=A[X;, AU—F)= (I—Fj)/\,
AiC;=C;A; and A;E;=E;A; (by condition (ii) of Theorem 5.1) we
conclude that A4;A"'=4, From A;B;=B’A; we obtain that AB;F;A™ ! =
B,F;. O

We conclude with a discussion of the special case where B;=0 and
B,=0. Then it is easy to check (using (7.1)) that the symmetric operator
defined by the operator matrix ¢ on the dense domain 2|\@ 9P, in # is
essentially self-adjoint. According to our terminology (see Section 2), this
means that £ represents the self-adjoint operator 5. Moreover, the domain
2;, j=1,2, is invariant under ¢®? and ¢®f for any weC and under b;; and
bi;=0b,;. Therefore, the self-adjoint operators a and b fulfill the relation
(1.1) in operator theoretic sense on the dense invariant domain 2@ 92,
(that is, we have ab&=pbal for £ € 2, P 2’,) which is a core for both operators.
Further, 2 is obviously a core for b;; and for b,,=b,;. Hence unitary
equivalence and irreducibility for the pairs {a, £} are equivalent to the
corresponding notions for the couples {a, b} of self-adjoint operators, cf.
Remarks 5.) and 3.) in Section 5. Thus Proposition 7.3 gives the following
statements: The couple {a, b} of self-adjoint operators on J# is irreducible if
and only if {4, A,} is irreducible on #". Two such pairs {a, b} and {a,
b} are unitarily equivalent if and only if {4,, 4,} and {4,, 4,} are. In
particular, by setting 4A;:=Re T and A,:=Im T, each generator T for the
von Neumann algebra B(X") gives us an irreducible pair {a, b} on #. Thus
this rather simple example produces already a continuum of inequivalent

irreducible a-integrable representations (in the sense of Definition 4.2) of
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the relation (1.1) by self-adjoint operators.

We close this paper with

Example 7.4. Define self-adjoint operators a and & on the Hilbert
space # :=L*(R)@ L*(R) by

0 0 0 aP
=<eo —eQ> and b:(eap eo) (7.11)

on the domains Z(a)=2(e2) D 2(e2) and 2(b)=2(*")P D(e*?). (Note that
this is the special case # ' =C, A,=A4,=B,=B,=0 of the above general

example.)

Let U denote the unitary operator on # =L*(R)@ L*(R) given by the 2 x2
operator matrix (u;;), where uyy=u,,=u,,=—u,:=2""?. Then we have
0 —e? et 0
UaU™'= and UbU '= 7.12

(e ) (5 W) om

on the respective domains. From (7.11) and (7.12) we conclude at once
that the pair {a, b} is a-integrable and that the pair {b, a} is b-integrable
(both in the sense of Definition 4.2), so {a, b} is an integrable representation
of (1.1) according to Definition 3.1. Note that the couple {a, b} of self-adjoint
operators is irreducible and that each of the non-singular operators a and b

is neither positive nor negative.
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