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Operator Representations of R%

By

Konrad SCHMUDGEN*

Abstract

We study the operator relation ab = qba, where |</| = 1, for self-adjoint operators.

§ 1. Introduction

Suppose q is a fixed complex number of modulus one. Let Rq denote
the *-a!gebra with unit which is generated by two hermitean elements a and
b satisfying the relation

ab = qba. (1.1)

(The precise mathematical definition is as follows: Let C(a> by be the free

complex algebra with unit generated by two elements a and b and let ((ab — qba))

be the two-sided ideal of C(a, by generated by the element ab-qba. We

define an involution on the algebra C<<2, by by the requirements a+: = a

and b + :=b, so that C<«, 6) becomes a *-algebra. Since |(j| = l, we have

(ab —qba)+=ba—^ab=—^(ab — qba). Hence the ideal {(ab — qba)) is '^-invari-

ant and the quotient algebra C<<z, by/((ab — qba)) becomes a *-algebra. We

denote this *-algebra by Rq.)

For q = l, Rq is nothing but the commutative polynomial algebra C[ay b] in

two hermitean variables a and b, that is, Rq is the coordinate algebra of

R2. Therefore, one can think of R2 as the coordinate algebra of the "quantum

two-dimensional real vector space" (cf. [3], Definition 8). Note that the

quantum group SLq(2, R) acts on R% in the obvious way by matrix
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multiplication (see [6] or [3]), i.e. R2 is a quantum space for the quantum
group SLq(2, R).

Now let us pass from the algebraic level to the Hilbert space level (in
the terminology of [14]). That is, we want to study self-adjoint operators
a and b which fulfill the relation (1.1). Let us consider for a moment the
"classical" case q= 1. Recall that the points of R2 are precisely (in one-to-one
correspondence to) the equivalence classes of irreducible pairs [a, b} of
strongly commuting self-adjoint operators a and b, (Two self-adjoint
operators a and b are said to be strongly commuting if their spectral projections
commute or equivalently if f(a)b^bf(a) for sufficiently many bounded
functions/. For instance, one may take f(x) = eltx for all teR orf(x) = (x — A)~l

for one A e C \R.) We shall try to proceed in a similar way in case of arbitrary
q. First we have to define a concept of strong commutativity for the relation
(1.1), that is, we have to select the "well-behaved" representations of
(1.1). Adopting the terminology used in representation theory of Lie groups,
we shall call these representations "integrable". Secondly, we have to classify
the irreducible integrable representations of (1.1) up to unitary equivalence.

It seems that there is no canonical way to define integrable representations
of the relation (1.1). Let us roughly explain the ideas of the approach
proposed in this paper. From the relation ab = qba in the algebra R% we
conclude immediately that p(d)b = bp(qd) for each complex polynomial
p. Having this fact and the definition of strong commutativity for q=l in
mind, one could try to define integrability by the requirement f(a)b<^bf(qa)
for certain "nice" bounded functions/. In case when a is non-singular and
either positive or negative, we shall use this method by taking the functions
f(x) = \x\lt for teR and we shall call the corresponding couples a-
integrable. (The precise formulation is given in Definition 3.1.) For an
arbitrary non-singular self-adjoint operator a we proceed as follows. Let
a = a+@a_ be the decomposition of a into its positive part a+ and its
negative part a-. We then assume that the operator b can be represented
by a 2x2 operator matrix 6- = (by) with respect to the corresponding
decomposition of the Hilbert space such that bfj = bjit ij = l,2. Such a
matrix ^ will be called a self-adjoint operator matrix. Let bl2 = u\bl2\ be
the polar decomposition of bl2. Then the couple [a, b} is said to be
a-integrable if {a+, frn} is a +-integrable and {«_, b22} is a_-integrable (both
with respect to the parameter q), if {a + , \b21\} is a + -integrable and
{o_, |612|} is a_-integrable (both with respect to the parameter —q) and if
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uu*a + uu* = — ua-U*. (A justification of this definition will be given in
Section 4.) Finally, a pair {a, b} is called integrable if {a, b] is a-integrable
and if {b, a} is £-integrable.

It turns out that the operator relation (1.1) is more difficult to treat
than one would expect from its rather simple structure. Also, it bears
various interesting operator theoretic phenomena which might be surprising
at first glance. As an illustration of this remark we mention the following
result without proof which shows that there is a striking difference between
(1.1) and Lie algebra relations: Let a and b be self-adjoint operators which
satisfy the relation (1.1) on a dense invariant domain 2 of a Hilbert
space. Suppose that ker a = {0}, kerb = {0} and q2 =£1. If fe® is an analytic
vector for a and b, then f = 0.

This paper is organized as follows. In Section 2 we collect a few basic
definitions and some terminology which will be used freely throughout the
sequel. In Section 3 we define and study a-integrable representations and
integrable representations [a, b} of (1.1) in case when the self-adjoint operators
a resp. a and b are non-singular and either positive or negative. The
structure of these representations can completely described in terms of

operators e® and eap, aeJ?, where P = i— and Q = x are the canonical
dx

operators. In Section 4 we derive our definition of a-integrability in the
general case. We shall define this notion first for pairs {a, 6}, where 6- is a
self-adjoint operator matrix of the form indicated above, and then for pairs
{a, b}, where b is a self-adjoint operator. On the technical level, it is much
easier and more convenient to work with 0-integrable pairs {a, &} and we
shall do this in a large part of this paper, even if the self-adjoint operator
matrix & may not represent a self-adjoint operator. Section 5 is concerned
with a model for a-integrable pairs {a, £}, where 6- is a self-adjoint operator
matrix. Criteria for the unitary equivalence and for the irreducibility of
these pairs are obtained. Section 6 provides sufficient conditions which
ensure that certain self-adjoint operator matrices give densely defined
symmetric operators. The more difficult problem of when such a matrix
represents a self-adjoint operator will be considered in a forthcoming
paper. In Section 7 we study a general example. Among others it shows
that there is a continuum of inequivalent irreducible a-integrable represen-
tations {a, b} of (1.1) by self-adjoint operators a and b.

After completing the first draft of this paper the author was informed
about the interesting work of Yu.S. Samoilenko and the Kiev school (see
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[8] and the references therein) on pairs of self-adjoint operators satisfying
quadratic relations. In particular, [8] contains a definition of integrability
for such relations. However, as the authors of [8] remark on p. 18, there
are two relations for which this definition might not be satisfactory, because
all integrable representations are trivial. These two relations (denoted by

(VII0) and (VII^ in [8]) can be reformulated as ab = qba and ab — qba = -(q+ 1),
z,

respectively, with |g| = 1. The present paper could be considered as an
attempt to define and to study integrability for the relation ab = qba.

It is my pleasure to thank A. Van Daele for many helpful and inspiring
conversations on quantum groups and related matters. Also, I would like
to thank Ju.S. Samoilenko and L.I. Vainermann for valuable discussions.

§20 Preliminaries

If T is an operator, we write S$(T) for the domain of T and ker T for
the kernel of T. Suppose A is a self-adjoint operator on a Hilbert space
$e. We say that A is non-singular if ker J[ = {0}, that A is positive if C<4£,O
>0 for all fe®C4), f ^ O , and that A is negative if <^4(J,O <0 for all
£ E &(A), £ / 0. We write A > 0 if A is positive and A < 0 if A is negative. Set
Jf+:=6((0, + oo))Jf, J?L:=g((-oo,0))H and ^0:=e({0})Jf, where e(.) are
the spectral projections of A. The spaces Jf+, Jjf_, Jf0 reduce A, so we
can write^4 as^=^ + 0^_0^40 relative to the direct sum J<f = Jf7

 + 0 Jf _ 0
J^Q. The operators A + y A_ and A0 are called the positive part, the negative
part and the null part of A, respectively.

Let ^ = ̂ 0^ De an orthogonal sum of two Hilbert spaces Jf\ and
Jf2- By a self-adjoint operator matrix (w.r.t. the decomposition Jf = «#57

1©
Jf2) we mean a 2 x 2 matrix 6- = (by) of densely defined linear operators b{j

of Jjfj into Jjfi such that bfj=bji for ij=l,2. Let ^ = (bij) be such a
matrix. If ^j: = ̂ (bjj)nS>(bij) is dense in 3ff^ for z,je{l,2}, tVj, then

K£i» ^2) : =(^i i^i+^12^2> ^21^1+^22^2) defines a symmetric linear operator
on the dense domain ̂ 0^2

 in ^ = ̂ i0^2 • Then we shall say that the
matrix represents the operator b. By a slight abuse of this terminology, we
also say that 6- represents the operator b, the closure of b. Operator matrices
are always denoted by small script letters, while their represented operators
will be denoted by the corresponding letters in italics. Let f = ( b t j ) be
another self-adjoint operator matrix on t^ = t^

?
10^?

2
 and let TjiJfj-*^-,
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7 = 1,2, be bounded linear operators. We say that the operator T: =
of tf into $ intertwines 6 and 1 and write T6-^6T if Tibij^bijTj for all
xj=l,2. Clearly, T£<^%T is not equivalent to Tb^bT, but we have the
following simple lemma.

Lemma 2.1. Suppose that 6- and & represent operators b and b,
respectively.

(i) // T^ci^T, then Tb^bT.
(ii) Suppose @j is a core for the operators bjj and bijy ije {1,2}, i^j. Then

Tb^bT implies that T6<^£T.

The operator matrices 6- and 6 are called unitarily equivalent if there
exist unitary operators Uj of J^- onto ffl -p 7 = 1,2, such that UibijU^1=bij

for i,7 = l,2.

Let ^ and ^ be Hilbert spaces. We say that a linear operator T of
L2(J?) (g)# into L2(J?)0§ is constant if T is of the form T = /(g) A, where
A:^— »^. For notational simplicity, we shall write A instead of /(X)A for
such an operator. The letters P and Q will always denote the canonical

operators, i.e. P is the differential operator i — and Q is the multiplication
dx

operator by x. Also we shall write simply P, Q, ewp and eco^ for the operators

P® A Q® I> ewF(X)/and ecoQ(X) I, respectively, on a Hilbert space L2(R)®^.

In what follows, g will denote a fixed complex number such that |^| = 1
and #2 / l and cp will stand for the number of (0,27i) such that q = el<p.

§3. Integrable Representations in Case when One Operator
is Positive or Negative

Apart from Definition 3.2 below, we assume throughout this section
that a is a non-singular self-adjoint operator which is either positive or negative.

Definition 3.1. Let {«, b} be a pair of self-adjoint operators a and b

on a Hilbert space. We shall say that the couple {a, b} is an «-integrable

representation of the relation (1.1) or briefly that {a, b} is a-integrable if
there exists an integer k such that

a lt \a\it for teR. (3.1)
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In this case we shall write {a, b}E^k.

Remarks.
I.) A motivation for the preceding definition was already given in the

introduction.
2.) Note that the above definition refers to the relation (1.1) with a fixed

parameter q. If relations (1.1) with different parameters occur (as in Section
4 or in Remark 4.) below) and confusion is possible, we will mention the
parameter which appears in (1.1) instead of q.

3.) There are various arguments for taking only couples in ^0 as
a-integrable representations of (1.1). One reason for this would be that in
the classical case q= 1, (p = 0 the above relation (3.1) is equivalent to the strong
commutativity of a and b only if k = Q. However, in this paper we shall
consider <$k with arbitrary &eZ.

4.) One advantage of the above Definition 3.1 (with arbitrary integers k)
is that the following fact is true: If {a, b} is a-integrable, then for all n.meN
such that qnm^±l the couple {an, bm} is a"-integrable with respect to the
parameter qnm. The preceding assertion is not valid in general if we define
<2-integrability only by the class ^0 as indicated in Remark 2.).

Suppose for a moment we have already defined a-integrable representa-
tions of (1.1) for arbitrary self-adjoint operators a. (This will be done in
Section 4.) Then we can give

Definition 3.2. A pair [a, b} of self-adjoint operators a and b on a
Hilbert space is called an integrable representation of (1.1) if (a, b} is an
<2-integrable representation of the relation ab = qba and if {b, a} is a 6-integrable
representation of the relation ba = qab.

The next proposition provides a model for couples of the class #fc.

Proposition 3.30 Suppose that k is an integer.
Let J^Q be a Hilbert space and let a0 be a self-adjoint operator on J^0

such that a0>0. Let JT be another Hilbert space and let E be an orthogonal
projection on 3C. Let ee{ + l, —1}. Define self-adjoint operators a and b on
the Hilbert space Jtf :=L2(R)® JT0 Jf0 by

a:=seQ®ea0 and ?:=*<-*+ 2*k)F(2#-l)©0. (3.2)

Then the couple {a, b} is an a-integrable representation o/(l.l) and [a, b}e^k.
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Conversely, each couple {a, b}E^k is unitarily equivalent to a couple

{a, b} of the form described by (3.2).

Proof. The first assertion is easily verified. We omit the details. To

prove the second assertion, we assume that {a, b] is a couple of the class

^k. Then, by Definition 3.1, we have

*, t€R. (3.3)

We write b as an orthogonal direct sum b — b+@b_®§ of its positive part

b + , its negative part 6_ and its null part. Let Jf = Jf + ® ^f _ 0 Jf 0 be the

corresponding decomposition of the underlying Hilbert space Jf . From

(3.3) we conclude that the spaces Jf+, Jf_ and J^Q reduce the unitary

group \a\lt = eltlogla' , hence they reduce its generator log|«| and so \a\. Since

either a>0 or a<0 by assumption, these three spaces reduce the operator

a itself. Thus we can write fl = £a1®efl2®£ao> where 8 = sign a and aj>Q

for j= 1,2,0. Obviously, {alyb + }e^k and {a2, — 6_} e#fc. Definition 3.1,

applied to the pair [a1} b + }, yields

a? b+ a-
it = e

(-(p + 2nk)t b + , teR.

Since the functional calculus for self-adjoint operators is invariant under

unitary transformations and since 6+>0, the latter equality implies that

for s, teR. Hence the unitary groups U(t): = al{ and V(s): = bi

satisfy the Weyl relation U(t)V(s) = e?tsV(s)U(t), s, teR. From the Stone-von

Neumann uniqueness theorem (cf. [10], Theorem 4.3.1) it follows that there

exists a Hilbert space JT+ such that the pair {ait b + } on Jf+ is unitarily

equivalent to the pair {eQ, e(~<p + 2"Vp} On the Hilbert space L2(R)(g) Jf+. By

the same reasoning, applied to the pair {a2, — &_} , we conclude that there

is a Hilbert space Jf_ such that {a2, — b_} is unitarily equivalent to the pair

{eQ, e(-<p + 2«Vp} on L2CR)(g)jr_. Put jT:-Jf+©JT_ and let E be the

orthogonal projection of Jf onto Jf + . Then, by the preceding, {a, b} is

unitarily equivalent to the pair {a, b} on L2(J?)(X)Jf 0<^f0> where a and b

are as in (3.2). D

An immediate consequence of Proposition 3.3 is
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Corollary 3.40 Suppose &eZ. Apart from the trivial one- dimensional
representations in ^k (i.e. a€ jR\{0} and b = 0 on Jf? = C), there are precisely four
irreducible pairwise inequivalent pairs of the class ^k. Up to unitary equivalence,
these are the pairs {e^0, s2e

(~(p + 2nk)p} on the Hilbert space L2(J?), where

£l, e2e{l, -1}.

The a-integrable representations of (1.1) were originally defined only by
relation (3.1). The next corollary shows that (3.1) implies (1.1) on a suitable
domain.

Corollary 3.5, Suppose that {a, b} is an a-integrable representation of
(1.1) on a Hilbert space ffl . Then there exists a dense linear subspace & of
ffl such that:

(i) @^@(a)c^9(b), a@<^®, b@<^@.
(ii) Q) is a core for a and b.
(iii) ab\l/ = qba ^ for

Proof. Let ^0 be the linear span of functions e~8x +yx in L2(R), where
8 > 0 and y e C. It is not difficult to prove that ^"0 c @(e*Q) is a core for the
self-adjoint operator e"Q for each a el?. Since e~*Q is unitarily equivalent to
e*p by the Fourier transform and J^0 is obviously invariant under the Fourier
transform, this implies that ^"0^^(eaP) is also a core for e*p '. Applying the
Fourier transform, e~aQ and then the inverse Fourier transform, it follows
easily that (e*pT\) (x) = r\(x-\-m) for rje^0, x$R and aeJ?. Hence J^ is
invariant under e*p for a el? and eQ

 e(-<P + 2^)Ff? = gg(-<P + 2^)F ̂  for ^^ and

ktZ. It is trivial that ^ is invariant under eQ.
If {a, b] is an a-integrable representation of (1.1), we can assume, by

Proposition 3.3, that the operators a and b are of the form (3.2). But then
we see immediately from the preceding paragraph that the domain

has tne desired properties (i)-(iii). D

Proposition 3,60 Let [a, b] be a pair of self -adjoint operators on a
Hilbert space. Suppose that either b>Q or b<0. (Recall, as always in this
section, we also have either a>0 or a<0.) Then the following four conditions
are equivalent:

(i) There is an integer k such that the self-adjoint operators ^4: = log|a| and
-B:=log|6| satisfy the Weyl relation
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nk)tS eisB jtA ̂  ^ ?ej? ^^

(ii) {a, b} is an a-integrable representation of ab = qba.

(iii) {6, a} is a b-integrable representation of ba = qab.

(iv) {a, b} is an integrable representation of ab = qba.

Proof. (i)-»(ii): By the Stone-von Neumann uniqueness theorem ([10],

Theorem 4.3.1), there exists a Hilbert space Jf such that up to unitary

equivalence we have A = Q and B = ( — cp + 2nk)P, that is, \a\ = eQ and

\b\ = e
(-(p + 2nk)p, on the Hilbert space L2(R)®tf. Since we assumed that

either a>0 or a<0 and that either b>0 or &<0, we get a = £le
Q and b =

e^e(-<p + 2nk)p Wjtj1 G^ g2E | | j_i| gut the latter pair {a, b} is obviously in

^fe, so [a, b} is ^-integrable.

(ii)—»(i): Suppose (<z, 6} e^ft. Then, by Proposition 3.3, we can assume

that a and 6 are of the form (3.2). Since ker6 = {0} by assumption, Jf0 = {0}

and hence \b\ = e(~<p + 2nk)p and also \a\ = eQ. From this (3.4) follows.

We have just shown the equivalence of (i) and (ii). Replacing {«, b} by

{b,a} and q by §, it follows that (i) and (iii) are equivalent. Recall that by

Definition 3.2 (iv) means (ii) and (iii) together. Therefore, all four conditions

are equivalent. []

§4. The Definition of a-Integrable Representations

in the General Case

The main aim of this section is to derive a definition of «-integrability

for a pair {#, b} of arbitrary self-adjoint operators a and b on a Hilbert

space $P. First let us note that we can assume without loss of generality

that the operator a is non-singular, i.e. ker^ = {0}. Indeed, if a is arbitrary,

let Jf0:=kera and write « = a100 on Jf = Jfo0^o- Then al is

non-singular. We shall say that {a, b} is a-integrable if there are self-adjoint

operators b1 and b0 on J^Q and Jf0, respectively, such that b = b^@bQ and

[a^b^] is a1-integrable. For the rest of this section we suppose that the

self-adjoint operator a is non-singular.

Since kera = {0}, we can decompose a as an orthogonal direct sum

a = a+@a- on ffi^ = Jf+®J-f_, where a+ and a_ are the positive resp.

negative part of a. Suppose that the self-adjoint operator b is represented

by a self-adjoint operator matrix £ = ( b i j ) i j = i j 2 relative to the decomposition
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The following notations and formulas are often needed in the sequel. Let

bi2 = u\bi2\ be the polar decomposition of the closed operator bl2 and let pl2

and p21 denote the orthogonal projections of Jf_ resp. J^+ onto ker&12

resp. ker&21. Recall that u is a partial isometry with initial space

_ in JfL and final space b123f_ =

)± = (ker&21)"i" = (l — p2i)^f+ in jjf+. In particular, we have that

u*u=l-pl2 and uu* = l—p2l. (4.1)

In what follows we will develop some arguments which in turn lead to
the precise definitions given below (cf. Definitions 4.1 and 4.2). For this
reasoning we will ignore mainly domain questions for the corresponding
operators. (Roughly speaking, everything will be correct on suitable
domains.)

By matrix multiplication the relation ab = qba is equivalent to the four
equations

a + b^=q blla+ (4.2)

a-b22 = q b22a- (4.3)

a + bl2 = q bl2a_ (4.4)

a-b2l=q b2ia+. (4.5)

Recall that a+>® and a_ <0 and that 61]L and b22 are self-adjoint operators,
so the a + -integrability of (4.2) and the a_-integrability of (4.3) are well-defined
according to Definition 3.1. These are the first two requirements (D.I) and
(D.2) in Definition 4.1 below.

To derive the other parts of Definition 4.1, we essentially work with
(4.4) and (4.5). From these two relations we obtain

a + \b2l\
2 = a + b%ib2l=a + b12b2l=q b12a_b21=q2 b12b21a+ =

2q

For the relation % + \b2i\
2 = q2\b2l\

2a+ we know already how to define
a+-integrability. It means that there exists a keZ such that

)t\b2l\
2, teR. (4.6)



OPERATOR REPRESENTATIONS OF R% 1039

(Note that g2/! as assumed in Section 2, so that Definition 3.1 applies.)

Taking the square roots on both sides of (4.6), we get

t%\b2l\a+lt = t*-'+'*»\b21\, teR. (4.7)

We will show that the integer k in (4.7) can be taken as odd. For this we

suppose that k is even, i.e. k = 2n with neZ. But then (4.7) means that the

pair {a + |&2i|} is « + -integrable. Hence, by Corollary 3.5, there is a suitable

domain such that

Since bl2 = \b*2\u = \b2l\u by general properties of the polar decomposition,

this gives

\u = q\b2i\a + u and qbl2a_ =q\b2l\ua-.

Comparing these two relations with (4.4), we obtain

Using (4.1), this leads to

«a-ii*. (4.8)

Let c denote the restriction ua-U*\(\—p2l)3tf>
+. Since a+>0 and a_<0 ,

we conclude from (4.8) that c>0 and c<0 on the Hilbert space

(1— />21)Jf+. This is only possible if p2i = 1, that is, if |621| = 0. Thus we

have shown that the integer k in (4.7) must be odd if \b2i\=£Q. In case

|62il=0 tne relation (4.7) is trivially fulfilled for any k. Therefore, we can

assume that k is odd. But then (4.7) says that the couple {0 + ,|62il} is

a + -integrable with respect to the parameter e((p~n^l=—q. This is condition

(D.3) in Definition 4.1 below. A similar reasoning leads to condition (D.4).

We still need a condition which connects the actions of the operators

on Jj?+ (in (D.I) and (D.3)) with the actions of the operators on Jf_ (in

(D.2) and (D.4)). By (D.3), the pair {a + > \b2l\} is a+-integrable with respect

to —q. Therefore, we have

by Corollary 3.5. Combined with (4.4), this gives
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so that (1 —

By (4.1), this in turn yields

which is the last condition (D.5) in Definition 4.1.

We summarize the outcome of the preceding discussion in

Definition 4.1. Suppose a is a non-singular self-adjoint operator on a

Hilbert space ^f with decomposition a = a+@a_ on Jf = Jf+0JfL into its

positive part a+ and its negative part a_. Suppose £ = (bij)ij=in2 *s a

self-adjoint operator matrix with respect to the decomposition Jf = Jf+ 0 Jf_.

Let bl2 = u\bi2\ be the polar decomposition of bi2. We shall say that the

pair {(2, ^} is an a-integrable representation of (1.1) if the following five

conditions are fulfilled:

(D.I) {a + ,bli} is a + -integrable with respect to the parameter q.

(D.2) {^-,^22} is ^--integrable with respect to the parameter q.

(D.3) {a + ,|62i|} is <2 + -integrable with respect to the parameter —q.

(DA) {a_,|612|} is a_-integrable with respect to the parameter —q.

(D.5) u

Definition 4.2, Let a be as in Definition 4.1 and let b be another

self-adjoint operator on Jf . We say that the couple {a, b} is an a-integrable

representation of (1.1) if there exists a self-adjoint operator matrix 6- with

respect to 3tf = JfV 0Jf_ such that & represents the operator b (cf. section

2) and {a, ^} is an a-integrable representation of (1.1).

Remarks.

1.) Obviously (D.5) is equivalent to

That is, condition (D.5) is in fact symmetric with respect to a+ and a_.

2.) Often the following equivalent forms of (D.5) and (D.5)' are more

convenient:
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The above formulation of Definition 4.1 is useful for applications, but

it can be weakened. For this we introduce the following conditions:

(D.3)' The unitary group t-*al+ reduces p2lH+ = ker|62il-

(D.4)' The unitary group £— »|a_| r t reduces p12H_ =ker|612|.

Proposition 4.3. Equivalent formulations of Definition 4.1 are obtained

if we replace (D.3) by (D.3)' or if we replace (D.4) by (D.4)'.

Proof. We carry out the proof for (D.4). The condition (D.4) says

that there exists a keZ such that

\a^\it\bl2\\a^~it = e(-(p + K+2Kk)t\b12\ for teR, (4.10)

hence (D.4) obviously implies (D.4)'.

Conversely, assume that (D.3), (D.4)' and (D.5) are satisfied. By (D.3),

there is an integer k such that

fl+l*2il«;ft = «("v+* + 2"k ) t l&2il for teR. (4.11)

In order to prove (D.4), it suffices to verify (4.10). Since |a_|rt reduces p12^-

by (D.4)', (4.10) is trivially fulfilled for vectors in £12Jf_. Thus it remains

to verify (4.10) for vectors in (J-p12)Jf_. Let ^e®(|612|) be such a

vector. From (D.5)' (which is equivalent to (D.5) be the above remark)

we conclude easily that

(l-/>12)|a_|tt(l-p,2) = u*a!'«. (4.12)

Recall that b12 = \b21\u, \b2i\ = u\b12\u* and u*u\bl2\ = \bl2\ by general properties

of the polar decomposition (see, for instance, [4], p. 335). Using (4.11),

(4.12) and these facts, we obtain

This completes the proof of (4.11) and so of (D.4).
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Remarks.

3.) Let {a, ^} be an 0-integrable pair in the sense of Definition 4.1, where
$ = (bij) is a self-adjoint operator matrix on Jtif = Jj?+ © Jtif _ . Suppose in
addition that

= {0} and ker&21 = {0}. (4.13)

Then u is a unitary operator of <%?_ onto 3tf+ and condition (D.5) means
that — a+=ua-U*. Therefore, if v denotes the unitary operator l@t* of
jV = Jtf'+®Jtf'_ onto J4f+®je+, we have vav* = a+®(-a+) and

where 621>0. In other words, if {a, &} is an a-integrable pair such that
ker612 = {0} and ker621 — {0}> then we can assume, after a unitary
transformation, that J4?+=J#*_, a- = —a+ and bi2 = b2i>0.

Proposition 4A Let Jf", J^1 and JT2 be Hilbert spaces and let Ei and E2

be orthogonal projections in Jfj resp. Jf2. Suppose that wj:L
2(R)^)^fj-^L2(R)

(X)JT, y=l,2, are isometries which interwine the unitary groups eltQ (i.e.

Wje
iiQ = eitQwjfor teRJ=l,2). Let k, kl9 k2eZ and set a:= -q> + n + 2nk and

a^-:= —cp + 2nkj, j=l,2. We define a self-adjoint operator a and a self-adjoint
operator matrix 6 on the Hilbert space ^f = Jf+0Jf_, where Jf+=Jf_:=
L2(J?)(X)Jf, by a:=eQ®(-eQ) and

^ .,_,
\^ e«p ™ j*Pnj? _iw * '' v ;

U2

{a, £} is a-integrable and (4.13) is fulfilled.
Conversely, each a-integrable pair {a, 6- } (according to Definition 4.1) of a

self-adjoint operator a and a self-adjoint operator matrix £ which satisfies (4.13)
is unitarily equivalent to a pair of the above form.

Proof. The first assertion follows by a straightforward verification. We
sketch the proof of the second assertion. For this let {a, ̂ } be an a-integrable
pair (in the sense of Definition 4.1) such that ker&12 = {0} and ker&21 = {0},
where £ = (bij). By the above Remark 3.) we can assume without loss of
generality that Jf+=Jf_, a_ = -a+ and bi2 = b2i>0. By (D.3), {a + , b21}
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is a + -integrable with respect to the parameter —q. Since a+ >0 and 621>0,
we conclude from Proposition 3.3 (or from the Stone-von Neumann
uniqueness theorem, cf. Proposition 3.6) that there exist a Hilbert space Jf"
and an integer k such that {a + , b2i} is unitarily equivalent to the pair {eQ,
e(-<p + * + 2nk)p} Qn the Hilbert space L2(l?)(X)jr. For notational simplicity,

let us identify Jf+=Jf_ with L2OR)(X)Jf, a+ with eQ and b2l=bl2 with

e(-v + * + 2*k)p^ By (D.I), the pair {fl + , 6n} is a.,-integrable with respect to

the parameter qy i.e. we have {a+, bli}E(^k for some k^eZ. Now we apply
again Proposition 3.3. There are Hilbert spaces Jf\ and Jf Oi> an orthogonal
projection El on Jf^ a selfadjoint operator a01 on Jf 01 and a unitary operator
N! of L2(R) (X)Jf\0Jf01 onto Jf+ = L2(J?)(X)Jf" such that

and

= 611. (4.16)

The restriction w;^ = 1^ fL2(l?)(X) Jft is an isometry into L2(l?)(X)Jf" which
obviously satisfies wle

(-<p + 2nk^p(2E1 -l)wj =6n by (4.16). From (4.15) we

get «1(e£fQ©a l
0

f
1)uT = «l'tG and hence WiC i fQ = eftQWi for teR. Thus we have

shown that the matrix elements 6n, 612 and 62i have the desired form. The

proof for 622 ^s quite similar to the proof for 6n. D

§5o A Model for a-integrabie Representations

The model mentioned in the heading is defined as follows:

Let Jf+, Jf_, Jf, Jfj and Jf2 be Hilbert spaces and let El and E2

be orthogonal projections on Jfj and Jf2, respectively. Put #?+:=

and Jf_:-L2(l?)(X)^_. Let wn:L2(JR)® Jf!-*^, w22:L
2(R)

_ and w12:L2(/?)(g)Jf-*«?f+ be isometries and let u be a

partial isometry of Jf+ into J«f_ with initial space zo12(L2(J?)(X)JO- Suppose
that the operators wlly w22, w12 and u intertwine the unitary groups eltQ, teR.

Let k, klt k2GZ and set a^-: = — cp + 2nkj for 7 = 1,2 and a12 = a21: =
— (p + n + 2nk. Define a self-adjoint operator a and a self-adjoint operator

matrix f = (btj) on Jf:=^+0^_ by

« :=eQ©(_eQ) (5.1)



1044 KONRAD SCHMUDGEN

and

Then it is not difficult to see that the couple [a, ^} fulfills the conditions

in Definition 4.1, so {a, 6} is an a-integrable representations of (1.1).

For ij= 1,2, let ptj denote the orthogonal projection of the corresponding

Hilbert space onto ker6^. Clearly, ker^- is the orthogonal complement of

the range of wtj) so I —pij = wijwfj. Also, it is easy to see that the positive

part and the negative part of the operator bjjy y=l,2, are

and

respectively.

Remarks.

1.) The above model is more symmetric in the matrix entries of 6- than

the model occuring in Proposition 4.4. Also, it is more general, since the

operators bi2 and b2l may have non-trivial kernels.

2.) Suppose that [a, #} is an ^-integrable pair such that a is as stated in

(5.1), i.e. a+=eQ on ^+=L2(R}®$T+ and a^ = -eQ on JP_ = L2(R)® Jf_

for certain Hilbert spaces C% \ and Jf^_ . Then it can be shown that 6- is

of the form (5.2).

In order to obtain criteria for the irreducibility or the unitary equivalence

of pairs of the above model, we study bounded linear operators which

intertwine two pairs.

Theorem §=L Let {a, £} and {a, $} be two pairs of the form described
above. Suppose that T is a bounded linear operator from ^ = ̂ +@^^ into
^=J%0J*_ such that Ta^aT. Then there are bounded linear operators
TV^-^JV and T2\$e_-*3e_ such that T=T1©T2.

Suppose in addition that afj- = 5f j-/or all z',/e{l,2}. (Notations with tilde
always refer to the pair [a, £}.) Then the operator T=T1^T2 intertwines
the pairs {a, £} and {a, 1} (that is, Ta^aT and T&<^%T) if and only if the
following three conditions are fulfilled:
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(i) For j =1,2, Tjpjj=pjjTj and this operator intertwines the unitary groups

eitQ,

(ii) For j= 1,2, Aj'.= w*jTjWjj is constant and AjEj = EjAj.

(iii) T1u = uT2 and A:=w*2T2wl2 ™ constant.

The proof of Theorem 5.1 depends on the following two simple lemmas.

Lemma 5.20 Suppose that A1 and A2 are non-negative self-adjoint

operators on Hilbert spaces J^l resp. ffl2-> where Al or A2 is non-singular.

If B is a bounded linear operator from Jf\ into J^2 such that — BA±<^A2B,

then B = 0.

Proof. From -BAi ^A2B we get -B*A2<^ -(A2B)*

and so \B\2A1=B*BAl^B*(-A2B) = (-B*A2)B<^AlB*B = Al\B\2, i.e. |B|2

commutes with the self-adjoint operator Al. Hence \B\ commutes with A±

as well.

Let B=U\B\ be the polar decomposition of B. Fix rjE^(Al). We have

and \B\Atf = A1\B\ri, so that — (A2Bv\, Bi\) = (BAj\,

I, C/lB|i/> = <|B|^1»/, |B|i/> = <^1|B|iy> |Bfo>. Since A^Q,

A2^Q and at least one of these operators is non-singular, the latter

is only possible if Brj = 0 or \B\rj = 0. In either cases it follows that

B = 0. D

Lemma 5.3. Let &i and &2 be Hilbert spaces and let B be a bounded

linear operator from L2(R)^)^1 into L2(R)^)^2. If B intertwines the unitary

groups t-*elt® and the self -adjoint operators e^p for some positive real number

jft, then B is constant.

Proof. Put ^: = <^10^2- We extend B to a bounded linear operator

B of the Hilbert space L2(J^)®^ into itself by setting B =0 on the subspace

L2(J?)(X)^2- Then B obviously commutes with the unitary group elt® and

with the self-adjoint operator epp on the Hilbert space L2(J?)(X)^. Since

Be^p^epp B, B commutes with the spectral projections and hence with each

function of the self-adjoint operator epp on L2(l?)®^, so in particular with

(epp)" = eisflp for all seR. Thus B e(^(g)C-l)', where A denotes the *-algebra

which is generated by the operators eltQ and eisfip on L2(R). Since A' = C m l y

®B(^) (see, for instance, [12], p. 184). Hence BeC-l(g)

which means that B is constant. Since B=Q on L2(J?)(X)^2 by
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definition, B is constant. Q

Proof of Theorem 5.1. Writing T as a 2 x 2 operator matrix (Tfj-) in the

obvious way, the relation Ta^aT leads to — T12( — a_)^5 + T12 and

— T2 1a+<=( — a_)T21 . Therefore, we conclude from Lemma 5.2 that T12 = 0

and 71
21=0, so that T is of the desired form T=71

1©T2, where Tj: = Tjj.

Now we turn to the proof of the second assertion of Theorem 5.1.

Necessity part: By definition, the relation T£<^$T is equivalent to the four

relations

Tjbjj^bjjTj for .7 = 1,2, (5.3)

T1612c612T2 and T^ci^TY (5.4)

Fix ye{l,2}. From TJ&yA/^Os&yT}/^ by (5.3) we obtain

(l-pjj)Tjpjj = 0. (5.5)

Since bjj is self-adjoint, Pjjbjj = ® anc^ hence PjjTjbjj^pjjbjjTj = Qy so that

(5.5) and (5.6) together yield Tjpjj=pjjTj.

Recall that {« + , 6U} is a + -integrable and {«_, 622} is a_-integrable. More

precisely, by (5.1) and (5.2) we have €*%&-** = <?»* bn for teR. In

particular, this implies that p^ commutes with elt® for all t. Further, Ta^aT

gives Tla+^a+Tl and T2a_^a_T2, so that TjeQ^eQTj by (5.1). From

TjeQ^eQTj it follows that TjeitQ = eitQTj. (In order to see this, one can repeat

some arguments from the proof of Lemma 5.3, where we showed that

Be^^e^B implies that B e***p = e*** B .) Thus we obtain Tjpjje
itQ = eitQTjpjj

for teR which completes the proof of (i).

In order to prove conditions (ii) and (iii), we essentially use the concrete

form of the operators btj and b^ as described by (5.2). From Tjbjj^bjjTj

by (5.3) and &jj = &jj by assumption we get

Tf»iif>S(1.EJ-\)Wfcwuf"
P(2E1-\)w*uTi. (5.7)

Recall that w*jWjj=l and w*jWjj = l, since w^ and w^ are isometrics.

Therefore, (5.7) implies that the operator Aj = w*jTjWjj satisfies
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(5.8)

so that

We already noted in the preceding paragraph of this proof that TjeltQ = elt

for te R. By construction of the model, the operators w^ and w^ intertwine
the unitary groups eltQ. Hence the operator Aj = w*jTjWjj also intertwines
the unitary groups eltQ. That is, Aj satisfies the assumptions of Lemma 5.3,
so AJ is constant. Using this and applying (5.8) once more, we conclude
that AjEj = EjAj. This proves (ii).

Finally, we verify condition (iii). Recall that b12 =
 u\b\2\, l ^ i z l — ̂ Z I M >

\b2i\ = ub2i and bl2 = \$2i\u by general properties of the polar decomposition.
Using these relations and (5.4) we obtain

(5.9)

Now we apply Lemma 5.2 to the operators ^41:=|612|(1 —£12) on

(Tlu-uT2) \(l -Pi2)^-- From (5-9) we see immediately that -BA^A2B.
Lemma 5.2 yields that B = Q. Since u = u(l —pl2) and (1 —p2i)u = uy this gives

(\-p21)T1u = HT2(\-p12). (5.10)

From 7\&12£&12r2 it follows that T1bl2Pi2 = °^bl2T2pl2, so that

0-/» 12)^12 = 0. Hence

= upl2T2pl2=Q. (5.11)

Further, Tibl2^bl2T2 leads to

and 621 77^21 = T5f21/i21= 0,so that (l-/»21)T?/i21=0 and /i2

Therefore,

0. (5.12)

From (5.10)— (5.12) we conclude that T1u = uT2.
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By (5.2), (5.4) and the assumption ai2 = <x1 2 , we have

r2«;12. (5.13)

Since Tlu = uT2 as just shown, we have u*Tlu = (l—p12)T2 and so

w*2u*Tiuwi2 = w*2(l ~P\2)^2W\2 = ^2^2wi2 = J^- Therefore, (5.13) shows
that the operator A satisfies the relation Ae*i2p^e*12pA. By a similar
reasoning as in case of Aj, A intertwines the unitary groups eltQ, teR.
Therefore, by Lemma 5.3, A is constant and condition (iii) is proved.

Sufficiency part : Suppose T = (Ttj) satisfies the above conditions.
Let ^'e {1,2}. Since w^wj—l —pjj and w^wj^l —pjj, it follows from (i) and
(ii) that

Both summands intertwine the unitary groups eltQ, the first one by assumption
(i) and the second one because w yp Aj and Wjj have this property. Therefore,
TjeitQ = eitQTj for teR. This yields TjQ^QTj (by differentiation at * = 0)
and hence Tj€Q^eQTj (by power series expansion). Thus Ta^aT by (5.1).
In order to prove that Tb^bT, we have to verify the relations (5.3) and
(5.4). We first show that Tjbjj^bjjTj,j= 1,2. From condition (i) we obtain

PjjTJbJJ=TjPjfijJ = V and SjftPjj^jjPjjT^O. (5.14)

Since Aj is constant, AjEj = EjAj and a^- = a^, we have

wJjTjV,jjf"r(2Ej - 1 ) £ es»p(2Ej - 1 WfjTfOjj.

Multiplying this by w ̂  from the left and by w^ from the right and using
the definition of bjp we get

Combined with (5.14), the latter implies that Tjb^b^Tj.

Next we prove that Tlbl2^bl2^2- From Tlu = uT2, upL2 = 0 and

we conclude that
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and p2lT(\ -p2l)=p-2lTlUu*=p2lZT2u* = 0,

so that
b12T2p12 = b12pi2T2pl2 = Q (5.15)

and

£i2ri&i2=£2 i r i />2i*i2 = 0, (5.16)

where the last equality follows from the fact that
b*iJti? _ = b± 2J^_. Using Tlu = itT2 once more, we have

W*2U*T1UW12 = W*2U*U T2W12 = W i*2(l — p

Since A is constant and a12
 = a i 2 > tne latter yields

We multiply this relation by uw±2 from the left and by w*2 from the
right. Using the definitions of bl2 and bi2, we then obtain (1 —^21)^1^12 —

Combined with (5.15) and (5.16), this gives T1bi2^b12T2.

A similar reasoning leads to T2b2l^b2lTl. D

Definition 5.4. Let {a, ^} and {a, ^} be two pairs of the form described
at the beginning of this section.

(i) We say that {a, ^} is unitarily equivalent to {a, %} if there are unitary
operators Ul of Jf+ onto $ + and U2 of Jf_ onto ^_ such that UaU~i = a
for U: = Ul@U2 and U^U^1 =btj for f ,>=l,2.

(ii) The couple {«, ^} is said to be irreducible if each projection T on Jf of
the form T=T10T2, where T1:^f+->jf+ and T2:^f_->Jf_, such that
Ta^aT and T6<^$T is either 0 or 1.

We briefly discuss the preceding definition by a few

3 .) Recall that if T is a bounded operator of Jf into Jf such that Ta^aT,
then, by Theorem 5.1, T is of the form T=T1®T2, where T1:J^3

+— »J^+

and T2: Jf _ -» Jf*_ . This justifies the restriction to unitaries U and projections
T of the form L^QC/j resp. T!0T2 in the above definition.

4.) The above definition applies also to pairs {a, ^} for which ^ does not
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represent a densely defined symmetric operator b (cf. Example 6.1).
5.) Suppose that 6- and 6- represent operators b and b, respectively. Ob-

viously, if {a, £} is unitarily equivalent to {a, «?}, then {a, b} and {a, b} are
unitarily equivalent. Also, if {a, b} is irreducible (i.e. there is closed linear
subspace except {0} and $? which reduces both a and b), then the couple
{a, ^} is irreducible. The converses are not valid in general, but they are
true (for instance) if the assumption of Lemma 2.1, (ii), is satisfied for ^ and?.

Having Theorem 5.1, it is straightforward to formulate necessary and
sufficient criteria for the unitary equivalence and for the irreducibility of
pairs of the above model. We write down these criteria only in the important
special case where ker&12 = {0} and ker&21 = {0}. Recall that by Proposition
4.4 such a pair is unitarily equivalent to a pair {a, &} of our model, where
Jf = Jf+=Jf_ (hence ^+=Jf_), wi2 = l and u = l.

Corollary 5050 Suppose that {a, 6} and {a, $} are two couples of the
form described in Proposition 4.4. Then the couples {a, ^} and (a, ^} are

unitarily equivalent if and only if there exists a unitary operator A of Jf onto
& such that operator Aj: = wJAwj of L2(R)(^)J^j into L2(JR)(X) J^- is constant,

AjEj = EjAj and Apjj=pjjA for j = l,2,

Corollary 5.6. Let [a, &} be as defined in Proposition 4.4. The couple
{a, &} is irreducible (in the sense of Definition 5.4) if and only if each orthogonal
projection A on 3C such that the operator A;-: = w*Awj on L2(J?)(X) Jf^ is constant,
Apjj=pjjA and AjEj = EjAj for j=l,2 is either 0 or 1.

We omit the (easy) proofs of these corollaries. As an illustration we

consider the scalar case (i.e. ff = Jf\ = Jf2 = C) in

Example 5.7. Let {a, 6} be an ^-integrable representation of (1.1) such
that kerbij={0} for i, 7 = 1,2 and the spectral multiplicity of the operators a +

and <2_ is one. Then, up to unitary equivalence, the pair {a, £} is of the
form stated in Proposition 4.4, where Jf" = Jfj = JT2 = C. The projections
Ej are either 0 or 1 and the operators Wj are multiplication operators by
functions wj(x)eLao(R) such that |z0j(jc)| = 1 a.e. By Corollary 5.6, such a
couple [a, £} is always irreducible.

Let {a, $} be another such couple. By Corollary 5.5, the pairs {a, &}
and [a, $} are unitarily equivalent if and only if both functions wj(x)~lw^x),
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7 = 1,2, are constant a.e. on R and if Ej = Ej for j=l,2. (As always, all
notations with tilde refer to the couple {a, %}.)

§6. Representation of the Operator Matrix 6- as a
Symmetric Operator

We have seen in the preceding two sections how to define and how to
work with a-integrable pairs {a, ^}, where 6 are self-adjoint operator
matrices. Knowing that operator matrices with unbounded entries are a
very delicate matter (cf. [7]), it is not surprising that in general such a
matrix 6- does not give a densely defined operator as shown by the following

Example 6.1. Let Aly A2 and A be self-adjoint operators on a Hilbert
space Jf and let Jf+ = J^_ :=L2(J?)(X) Jf. Define a self-adjoint operator a
and a self-adjoint operator matrix ^ on Jf:= J^+ @Jf_ by

3nd - — - f*A:

where 0,- = —(p + 2nkj and a = — cp + n + 2nk with k, k^Z. Clearly, [a, 6} is
an a-integrable pair (in the sense of Definition 4.1). Suppose that
^(A)r\^(Al) = {0}. (Note that such operators A and A1 exist: For each
unbounded self-adjoint operator A there is a unitary operator U such that
Al: = UAU~l satisfies @(A)n@(A1) = {Q}, cf. [11], Section 5.). Then we
have @(bll)n@(b2i) = {0}, so the matrix 6- does not represent a densely
defined operator. It is not difficult to impose other conditions on Al9 A2

and A which ensure that 6- represents a (densely defined) symmetric or a
self-adjoint operator.

The aim of this section is to formulate some conditions which imply
that a self-adjoint operator matrix 6- of the form (4.14) represents a symmetric
operator. For this some preliminaries are needed.

Throughout the rest of this section, we keep the notation of Proposition
4.4 and we assume that the Hilbert spaces Jf\, Jf2

 and JT occuring therein
are separable. W"e freely use the terminology on direct integrals of Hilbert
spaces and operators (see, for instance, [12], Chapter IV). For a separable
Hilbert space ^, we always identify the tensor product L2(R)0^ with the
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Hilbert space Lg(R) of ^-valued square integrable measurable functions on

R with respect to the Lebesgue measure.

Lemma 6.2a The isometry wj:L}j(R)-^L^r(R)J 7 = 1,2, in Proposition 4.4

is given by a measurable field RBX->WJ(X) of isometries Wj(x) from Jfj into Jf" .

Proof. We argue in a similar way as in the proof of Lemma 5.3. Let

^J-:=«^rj-0jr. We extend Wj to a bounded linear operator Wj on L^(R)

by defining Wj = Q on Jf. Since Wj intertwines the unitary groups t-»eltQ

(see Proposition 4.4), Wj commutes with the unitary group t-»eltQ and hence

with all bounded functions of Q on L^(R). Considering the Hilbert space

Lq(R) as a direct integral of Hilbert spaces jfA:=^- for AeR, the latter

means that Wj commutes with the algebra of diagonalizable operators. There-

fore, Wj is decomposable ([12], p. 259), i.e. Wj is given by a measurable field

R3x-+Wj(x) of bounded operators on ^-. Since Wj = 0 on JT and Wj is an

isometry, Wj(x) = ® on Jf a.e. and Wj(x)\=Wj(x)\tfj are isometries

The next lemma is a Hilbert space valued version of the classical

Paley-Wiener theorem. For fieR, let /(£):=

Lemma 6.3. Let & be a separable Hilbert space and let fieR. Suppose

that z-+\l/(z) is a holomorphic mapping of !(/?) into ^ such that M:=
OO

sup | || \j/(x + iy) || 2 dx < oo . Then the $ -valued function \j/(x) e L%(R) belongs
\y\<\P\ -oo
to @(epp). Moreover, (ewJV) (x) = \l/(x + io))9 xeR, for weR, M<|]8|.

Proof. Take an orthonormal basis (rjn)nel of ^ and set \l/n(z):=(\l/(z),riny.

By the above assumptions, \l/n(z) is a holomorphic function on /(/?) such

that sup | \$n(x + iy)\2 dx<oo. Therefore, by the Paley- Wiener theorem
\y\<\P\

([5]), the function eim\l/n(t) is in L2(R). As usual, \j/n = F\l/n denotes the

Fourier transform of \l/n. Let coeR, |co|<|)8|. As shown in the proof of the

Paley-Wiener theorem (see [5], p. 174), the function \l/n(x + ico) has the Fourier

transform e~mt\l/n(t). Since Femp F~ * = e~ mQ , it follows that

\l/n(x)e2(emp) and (emp\l/n)(x) = \l/n(x + ico) in L2(R). (6.1)

Further, by the Plancherel theorem, we have
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dt

i(D)2) dx

The left-hand side is monotonic in a>. Therefore, letting cof |j8| and applying

the monotone convergence theorem, we get

(e^' + e-2"') |£,(t)|2 dt
J n

which in turn yields

I ll^jr = E ||e-^J|2<oo. (6.2)
n n

Clearly, the map £->«£(#), *?n))we/ *s an isometry of Lj(jR) onto the

orthogonal direct sum ]T ©Jfn, where 3f?n:=L,2(R). Therefore, it follows

from (6.2) that \l/(x)e®(e*p) in L|(J?). The formula for emF\l/ follows at once

from (6.1). D

For p^O, let 3?p denote the linear span of functions e~
dx2 + yx in L2(R),

where d>p and yeC.

Proposition 6o4. Suppose that, for JE {1,2}, there exists a positive number

pp a dense linear subspace &j of K and a family of (possibly unbounded) linear

operators {vj(z)\zeI(aL^} of K into Kj such that:

(i) Vj(x) = Wj(x)* on R a.e.,

(ii) Z-*VJ(Z)YI is a holomorphic mapping of /(a,-) into Kj for all rjES'j and

(iii) sup e 2pJx \\Vj(x + iy)r]\\2 dx<oo.
\y\<\*j\ J

— ao

Then the self-adjoint operator matrix £ from Proposition 4.4 represents a

symmetric operator whose domain contains the dense set 3Fpl®&\®^P2®$\

in ^ = ̂ f+0^f_. (Here ^r
f)j®^j means the algebraic tensor product of

vector spaces.) Moreover, we have wj((s^f])e2(ec°p) and (e(oPw^((!(^)f]))(x)

= vj(x-\-io})(>(x-{-io})rj, xeR, for toel?, leu^la^l, (e^pj. and qeffp where £(z)
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denotes the holomorphic extension to C of the function

Proof. Obviously, ^j'.= ^ p j ® f f j is dense in Jf+ resp. Jf_ for j=l

resp. j = 2. We show that ®7- ̂  &(bjj) for ;' = 1,2. Since bjj = w^jp (2Ej — 1)w*

by (4.14), this is equivalent to w*@j^@(eajF). In order to prove the latter,

it suffices to check that for any d>pp yeC and rjedfj the ^-valued function

\l/(z):=Vj(z)e~8z +yz satisfies the assumptions of Lemma 6.3. By (ii), \//(z)

is holomorphic on /(a^-). Further, we have \\\j/(x + iy)|| ^const. e~PJ*

\\Vj(x + iy)ri\\ for x + iyel(<x.j). Thus, by Lemma 6.3 applied with @ = otj,

wJS>fj^^(eajp) and hence Q)'^Q)(b^. Since bl2
 = b2i = e°iP, we have ^}^

^(621)n^(612). Thus the matrix represents a (densely defined) symmetric

operator b and ^J0^2<=^(6). The formula for ecoPw*(£(><)ri) follows at

once from the corresponding formula in Lemma 6.3. Q

Remark. Let a and # be as in Proposition 4.4 and keep the assumptions

of Proposition 6.4. Then the domain @\®@'2 is contained in

and we have ab£ = qba£ for

Throughout this section, let Aj and Bj, j=l,2, be (possibly unbounded)

self-adjoint operators on a separable Hilbert space Jf. We assume that Aj

and BJ strongly commute, i.e. the spectral projections of Aj and Bj

commute. Further, let o^ = — cp + 27c^7- and a = — <p + n 4- 27T& with h-p KeZ for

>=1,2.
Our example will be a special case of the pairs in Propositions 4.4 and

6.4. In order to define it and to describe it by more explicit formulas, we

need some preliminaries.

Fix ye{l,2}. Let Aj = Aj^ + ®Aj^@Aj^ on Jf = Jf;.< + 0jrj.i_0JfJ.f0

be the orthogonal decomposition of Aj into positive part, negative part and null

part. Let Ej and Fj denote the orthogonal projections of «#}:= «#}>+ 0«#},-

onto Jfj.+ and of Jf onto Jf^, respectively. Define operators Cj and B^- on

/C,- by CJ:=OL~JI (log ^f+01og 1^,-D and B'f^B^tfj. (Note that B} maps

KJ into itself, since Aj and J5,- strongly commute.)

In what follows, the multiplication operator by the independent variable

on M in some Hilbert space L&(R) is often denoted by x. By an operator

such as (3xCj-\-yx2B'j, where /?,yeC, we shall mean the closure of the operator

on the domain (^(^)(X)^(C-))n(^(^2)®^(B)) in the
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Hilbert space L^-(J?) = L2(J?)(X) Jfj. A similar meaning is attached to

operators like ^zCj + yz2B'j-\-dzB'^ where z — x + iy is interpreted as a sum

of the multiplication operator x and the constant iy. Recall that the operators

Cj and Bj strongly commute on J^-, hence /3xCj-±-yx2B'j is self-adjoint for

real f$ and y and all such operators strongly commute. Define isometrics

LfrR) by tvJ(x):=eixC> + ix'BJ.

Put Ejta:=ec.([-n, n\)eE'.([-n,n\) for neJ¥0 and ^-:= (j EjtnJfj9 where

eT(-) denote the spectral projections of a self-adjoint operator T. Clearly,

£*j is a core for C;- and for 5j. Let Sft'j be the linear span of vectors ecoxBj(£(£)ri)

in Jf, where weC, C^^o and ^e^0(^j,on^(eB^))- Recall that J^0 is
spanned by the functions e~8x +yx in L2(R), where ^>0 and yeC. As usual,

let £ = (brs) be the self-adjoint operator matrix defined by (4.14) and let

?_, where 3tf+=je_=L~

Proposition 7.1. For JG{1,2}, we have:

(i) bjj^w^p(2Ej-\)wJ^ = Af(2x^^^^p^ (7.1)

for ££@'j.

(ii) @'j is a core for the self-adjoint operator bjj.

Proof. Except for the Hilbert spaces Jfj and Jfj 0 we shall omit the

lower index j throughout the following proof.

(i): It suffices to prove (7.1) for a vector ^ = e(0xB((s®r\), where (,(x) = e~dx*+ yx

with (5>0, yeC. If ^eJf j 0 , then both sides of (7.1) are obviously zero.

Thus it is sufficient to treat the case where r\e$, say r]eEnJ^j. For

z = x + iy, we define £(*): = emzB'£(z)ri and ̂ ): = g"teC"ir2B>. For fixed *eC,

^(^r) is a linear operator from Jf into Jf j. From the spectral theorem we
easily see that £(z)e&(v(z)) and that t(z):=v(z)£(z) = {(z) g-^-^B' + cazS'^

Since rjEEnJ^ we have

for m, keN0, m^k. Therefore, the power series expansion

Y Y z2m~k (k\(m-k)\r\-iBT~k(u>B'-iC}kn
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concerges absolutely in Jf^ for all zeC, so the mapping z-*e~lzC~lz B + (0zBfj
of C onto $fj is holomorphic. Thus z—>ij/(z) is a holomorphic mapping of
C into Jf,..

Let j8>0. Recall that vitE^^e^-n^ <[)%'([ -?i, n])Jf,, Therefore,
it follows from the functional calculus for self-adjoint operators combined with
the strong commutativity of C and B' that for z = x + iyeI(P) we have

<const. *- * C » ||^||< const. e~ 9

where the constants depend on j3, y, a), Y\, m, but not on xeR. Hence the
mapping z-*\j/(z) satisfies the assumptions of Lemma 6.3 for any
/?>0. Lemma 6.3 yields

(e"pw*£)(x) = v(x + ia)£(x + ioc). (7.2)

Similarly, we obtain

(7.3)

Since ^e^5 F£(x + i<x,) = /;(x + iai). By construction, the projection E (of Jf^
onto «#}, + ) commutes with C and B'. Using these facts, we get

) = E eix€+ix2B' e-

= E e«c
 e

(2x+i**B> £(x + ia) = A+ e
(2x+i^B' £(x + ia). (7.4)

Similarly,

w(x)(E-l)v(x + ia)£(x + i<x,) = A_ e
(2x+ix)aiB' ^(jc + ia). (7.5)

Using (7.2), (7.4) and (7.5) and finally (7.3), we obtain

) = w(x)(2E - 1 )v(x + ix

which proves (7.1)

(ii): The non-singular part of the self-adjoint operator b is the operator
bm:=we?p(2E-l)w*\Jtr

j on the Hilbert space Jf}. We have \bn/ =
w\e*p (2E-\)\lt w* \JtTj = weit"pw* \^j for 1 6 R. Clearly, eitxP is the translation
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operator by — toe. The space J^0 is invariant under translation. From the

spectral theorem it is clear that the operators ecoC and ewE leave the dense

domain $ in Jf^ invariant. Putting all these facts together, we conclude

that the domain $ is invariant under the unitary group |6,,s|
rt. By Lemma

7.2 below, $ is a core for bns. Since e^
r
j->0 = ker b and «#}j0n®(eB2) is dense

in Jfj0, ^ is a core for b. Q-

The following lemma is similar to a result of Poulsen [9].

Lemma 7.2, Let T be a non-singular self-adjoint operator on a Hilbert

space <§ . If a linear subspace 2 of 3t(T) is dense in <& and invariant under

the unitary group U(t):=\T^y teR, then 2 is a core for T.

Proof. Fix a number zeC\R. Let ^z be the closure of (\T\ — z)2 in

^. Since U(t) commutes with \T\ and since U(t)^^Si by assumption,

U(t)9z^&z for all real t. Consequently, U(t)^z^^z for teR. Set

V(t):=U(t)\9z and W(t):=U(t)\9z. By Stone's theorem, there are self-

adjoint operators JR and *S on <§ z and ^z, respectively, such that V(t) = eltR

and W(t) = eits, teR. Since U(t) = V(t) ® W(t) on # = #z0#i and U(t) =

eitiog\r\ by definition, it follows that log|!T|=.R0S, so \T\ = eR®es. Take a

vector rje@(es)^@(\T\). For £e^, we have <|T|C,ij> = <C,iO, hence

<|T|C,>/> = <C, |T|i/> = <C, ^> = <C, ^>- Since ® is dense in », the
latter gives esf/ = itj. Since es is self-adjoint and 2: is not real, r] = ®. Thus

@(es) = {0} which yields ^z = {0}. From the preceding we conclude that 2

is a core for |T|. Since @(T) = @(\T\) and ||T.|| = || |T|.||, 2 is a core for T

as well. D

By Proposition 7.1, (i) and (ii), the self-adjoint operator bjj coincides

with the closure of the essentially self-adjoint operator Aje(2x + i"j}*jBj e*jp\@'j

We shall denote this closure again by Aje(2x + i<x^jBj e*'p . Thus the couple {a, 6}

in our example takes the following form:

(7.6)

(^
It is clear that the operator matrix 6- in (7.7) satisfies the assumptions of

Proposition 6.4.
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Next we want to decide on the unitary equivalence and the irreducibility

of the couples of our example. Before stating our result, let us note that

BjFj is a self-adjoint operator on the Hilbert space Jtif, because Aj and Bj

strongly and hence the projection Fj reduces Bj.

Proposition 73. Suppose that {a, £} and {a, %}are two couples of the

form described above, i.e. the operators a and a and the self-adjoint operator

matrices & and & are given by (7.6) resp. (7.7). Suppose that a = 6c and %j = &j

for j =1,2. (It is needless to say that the tilde refers to the couple {a, «?}.)

(i) The couples {a, £} and {a, &} are unitarily equivalent if and only if the

^-tuples {Aiy A2, B^F^ B2F2} and {Al9 A2, B^F^ B2F2} of self-adjoint

operators on Jf resp. tf are unitarily equivalent, i.e. there is a unitary operator

A of Jf onto $C such that AAjA~i=Aj and ABjFjA'1 = BjFj for j= 1,2.

(ii) The pair {a, £} is irreducible if and only if the 4-tuple {Alt A2, BlFl,

^2^2} °f self-adjoint operators on 3C is irreducible, i.e. {Alt A2, B^F^,

B2F2}'=01.

Proof. We carry our the proof of (i). The assertions of (ii) follow by

some slight modifications of the arguments. The if part of (i) is

clear. Indeed, considering A as a constant operator of L^(R) into LJ^(R),

the unitary operator t/:=A0A of Jf onto $ establishes the equivalence

of {a, £} and {a, £}.

We prove the only if part of (i). For this let T= 7\© T2 be a bounded

linear operator of Jtf into $, where T1:J#f
+-+&+ and r2:^_-^J?_. We

suppose that T intertwines {a, £} and {a, £}. Then Theorem 5.1 applies,

so the conditions (i)-(iii) stated therein are fulfilled. We freely use the

notation from Theorem 5.1. By (iii), A:=T1 = T2 is constant, i.e. A is an

operator from Jf into jf. (i) yields A(I-Fj) = (I-Fj)A, so AFj = FjA. By

(ii), there is a bounded linear operator Ajitfj-trffj such that WjAj = FjAwj, i.e.

Wj(x) Aj = FjAwj(x) a.e.. The latter implies that

<A^, e-***'-**2*' fjy = (FjAe+ixCi + ix2BJ r\, rjy (7.8)

for all r\ e $j and Y\ £ $ j. From the definitions of ^ and S j it follows easily

that both sides of (7.8) have power series expansions in x which converge

on the whole real line (see also the above proof of Proposition 7.1,

(i)). Comparing the constant terms, we get <A^, fjy = (FjAri, //> for

all rjEffj and fje<H'j, so that Aj = FjA\J#r
j. Since FjA = AFj, we obtain
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Aj = Afjf j . Comparing the linear terms and the quadratic terms in (7.8),

we have

<A,jf, CJ.f?> = <AJ.C^, fj> (7.9)

and

(A//, (C? + 2£V))7> = <A/C? + 2B>7, i j f > , (7.10)

where we used that Aj = FjA fjfj. Since ^ is a core for Cp (7.9) implies

that AjCj^CjAj. Using the latter and the invariance of Sj under Gjy (7.10)

leads to <A7-?7, B'jfjy = <(AjB'jf]y fjy. Therefore, AjB'j^B'jAj, since gj is

also a core for Bj.

To complete the proof of (i), we assume that T is unitary. Theii A:Jf -*$

and Aj:jfj-~+$'j are unitary operators. From Aj = A fjf}, A(I—Fj) = (I—Fj)A,

AjCj^CjAj and AjEj = EjAj (by condition (ii) of Theorem 5.1) we

conclude that AAjA'1 = Aj. From AjB'j^B'jAj we obtain that ABjFjA~l =

BjF, a

We conclude with a discussion of the special case where JB1=0 and

I?2 — 0- Then it is easy to check (using (7.1)) that the symmetric operator

defined by the operator matrix # on the dense domain @\®&'2 *n ^ ^s

essentially self-adjoint. According to our terminology (see Section 2), this

means that 6- represents the self-adjoint operator b. Moreover, the domain

2'j, j=l,2, is invariant under ewQ and ett>p for any (DEC and under b^ and

bl2 = b2l. Therefore, the self-adjoint operators a and b fulfill the relation

(1.1) in operator theoretic sense on the dense invariant domain £$\®&2

(that is, we have ab^=pba£, for £E@\®@'2) which is a core for both operators.

Further, 3)'^ is obviously a core for b^ and for bl2 = b2\- Hence unitary

equivalence and irreducibility for the pairs {a, ^} are equivalent to the

corresponding notions for the couples {a, b} of self-adjoint operators, cf.

Remarks 5.) and 3.) in Section 5. Thus Proposition 7.3 gives the following

statements: The couple {a, b} of self-adjoint operators on Jf is irreducible if

and only if {Al, A2} is irreducible on Jf. Two such pairs (a, b} and {a,

b} are unitarily equivalent if and only if {Aly A2} and {Aly A2} are. In

particular, by setting ^41:=Re T and A2:=lm T, each generator T for the

von Neumann algebra jB(jT) gives us an irreducible pair {a, b} on $? . Thus

this rather simple example produces already a continuum of inequivalent

irreducible a-integrable representations (in the sense of Definition 4.2) of
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the relation (1.1) by self-adjoint operators.

We close this paper with

He 7040 Define self-adjoint operators a and b on the Hilbert
space ^•=L2(M)@L2(R) by

on the domains @(a) = @(eQ)®@(eQ) and @(b) = @(e<xp)@@(e«p). (Note that
this is the special case JT = C, Al =A2 = Bl = B2 = 0 of the above general
example.)
Let U denote the unitary operator on $F = L2(R)®L2(R) given by the 2x2

operator matrix (u^), where u l l L = ul2 = u22
 = — u2\ '•= 2~1 /2 . Then we have

-eQ\ />F 0 \
eQ J and UbU->=(Q _gxp) (7.12)

on the respective domains. From (7.11) and (7.12) we conclude at once
that the pair {a, b} is a-integrable and that the pair {6? a} is 6-integrable
(both in the sense of Definition 4.2), so {a, b} is an integrable representation
of (1.1) according to Definition 3.1. Note that the couple {a, b} of self-adjoint
operators is irreducible and that each of the non-singular operators a and b

is neither positive nor negative.
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